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Anisotropy of ultrathin ferromagnetic films and the spin reorientation transition

K. D. Usadel and A. Hucht*
Theoretische Physik, Gerhard-Mercator-Universita¨t, D-47048 Duisburg, Germany

~Received 24 February 2002; revised manuscript received 16 May 2002; published 11 July 2002!

The influence of uniaxial anisotropy and the dipole interaction on the direction of the magnetization of
ultrathin ferromagnetic films in the ground state is studied. The ground-state energy can be expressed in terms
of anisotropy constants which are calculated in detail as a function of the system parameters and the film
thickness. In particular noncollinear spin arrangements are taken into account. Conditions for the appearance of
a spin reorientation transition are given and analytic results for the width of the canted phase and its shift in
applied magnetic fields associated with this transition are derived.
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I. INTRODUCTION

Experimentally it became possible in recent years to gr
epitaxial thin films of ferromagnetic materials on nonma
netic substrates with a very high quality. This offers the p
sibility to stabilize crystallographic structures which are n
present in nature, and which may exhibit new properties
high technological impact. To understand the magnetic st
ture of these systems is a challenging problem both exp
mentally and theoretically.

Generally speaking, for not too thin films the magnetiz
tion is in-plane due to the dipole interaction~shape anisotro-
py!. However, in very thin films this may change due to t
increasing importance of surface effects. Indeed, at surfa
due to the broken symmetry uniaxial anisotropy energ
arise which in generally are much higher than in the bu
These anisotropy energies may favor a perpendicular or
tation of magnetization.1 Additionally in the inner layers of
the film due to strain-induced distortion bulk anisotropy e
ergies may appear absent or very small in the ideal crys
As a consequence in these films a reorientation of the sp
taneous magnetization is observed either as a function of
thickness or as a function of temperature. This spin reor
tation transition has been discussed extensively in
past.2–5

Phenomenologically in order to describe the magne
properties, anisotropy coefficientsKn compatible with the
underlying symmetry of the film are introduced which a
supposed to arise from an expansion of the energy~or the
free energy at finite temperatures! in terms of the orientation
of the magnetization vector relative to the film. These co
ficients are then studied experimentally~for a review see Ref.
6!. In ferromagnetic resonance~FMR! experiments, for in-
stance, these coefficients directly enter the resonance
quency~for references see for instance Refs. 7 and 8!.

Theoretically, it has been shown that the anisotropy co
ficientsKn(T), which are in general temperature depende
can be calculated numerically at finite temperatures wit
mean field theory, starting from a Hamiltonian with micr
scopic constant anisotropy parameters.9 Furthermore, the
temperature dependence of the lowest order anisotropyK(T)
was determined analytically using a combination of me
field theory and first-order perturbation theory.9,10 In other
approaches the magnetization of the film is calculated
0163-1829/2002/66~2!/024419~6!/$20.00 66 0244
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rectly within mean field and spin wave theory11–16 or with
full numerical calculations like Monte Carlo simulations.17,18

In the present paper we describe the ferromagnetic
within a classical local spin model with dipolar interactio
and uniaxial anisotropy. We will concentrate on ground-st
properties of thin films in order to clarify the discussion a
to eliminate all uncertainties connected with finite tempe
ture calculations. A major goal of the present study is
calculation of the anisotropy coefficients at zero temperat
from the parameters of an underlying Hamiltonian. The i
portant point is that even in this situation the dependence
these coefficients on the microscopic parameters is far f
being trivial due to non-collinear magnetic states in the t
film. It is the purpose of this paper to elucidate this behav

II. THE MODEL

The calculations of the ground-state properties of ultrat
ferromagnetic films are done within the framework of a cla
sical ferromagnetic Heisenberg model consisting ofL two-
dimensional layers with thezW direction normal to the film.
The Hamiltonian reads

H52
J

2 (̂
i j &

sW i•sW j1
v

2 (
iÞ j

sW i•sW j

r i j
3

2
3~sW i•rW i j !~rW i j •sW j !

r i j
5

2(
i

Dl i

(2)~si
z!22(

i
Dl i

(4)~si
z!42(

i
BW •sW i , ~1!

wheresW i5(si
x ,si

y ,si
z) are spin vectors of unit length at pos

tion rW i5(r i
x ,r i

y ,r i
z) in layerl i andrW i j 5rW i2rW j . The positions

rW i are normalized such that nearest neighbors obeyr ^ i j &51.
J is the nearest-neighbor exchange coupling constant,Dl i

(2)

and Dl i

(4) are the local uniaxial anisotropies of second a

fourth order, respectively,BW denotes the external magnet
field with the effective magnetic momentm of the spins in-
corporated, andv5m0m2/4pa3 is the strength of the long
range dipole interaction on a lattice with lattice constana
(m0 is the magnetic permeability!.

To calculate the ground-state energy per spin we ass
translational invariance of the spin structure parallel to
film. This assumption is not correct rigorously since it can
©2002 The American Physical Society19-1



fo
ht
fe
-
in

ct

e
r-

-

re

y

q

t-

ec-
the
to

c-

r-
ow-
ary
re-
in

nce
by
rly
ms
e the

are

ge
se
de-

K. D. USADEL AND A. HUCHT PHYSICAL REVIEW B 66, 024419 ~2002!
shown that for a perpendicular oriented magnetization,
instance, a state with striped domains is energetically slig
more favorable. However the corresponding energy dif
ence for ultrathin films is of ordere2J/2v and therefore neg
ligible for realistic parameters of Fe or Ni films showing sp
reorientation transitions.18

Assuming translational invariance in thexy plane the
summation over all spins within a plane can be done exa
resulting in the energy per surface spin

E~sW !52
J

2 (
m,n51

L

zum2nusWm•sWn

2
v

2 (
m,n51

L

F um2nusWm•S 1

2
0 0

0
1

2
0

0 0 21

D •sWn

2 (
m51

L

@Dm
(2)~sm

z !21Dm
(4)~sm

z !41BW •sWm# ~2!

with sW5(sW1 , . . . ,sWL). The quantitiesm and n denote layer
indices,zum2nu is the number of nearest neighbors betwe
layer m andn, andF um2nu are constants arising from a pa
tial summation of the dipole interaction. The quantitiesFd
have been calculated previously19,20 and they are listed to
gether withzd in Table I.

With an external magnetic fieldBW 5(0,Bi ,B') in the yz

plane, all spinssWm are confined to this plane. They therefo
can be expressed by their azimuthal angleqm , sWm
5(0,sinqm ,cosqm). Equation~2! thus can be rewritten as

E~qW !52
1

2 (
m,n51

L F S Jzum2nu2
v

4
F um2nu D cos~qm2qn!

2
3v

4
F um2nucos~qm1qn!G2 (

m51

L

@Dm
(2)cos2qm

1Dm
(4)cos4qm1Bisinqm1B'cosqm# ~3!

with qW 5(q1 , . . . ,qL). The ground state is obtained b
minimizing the energyE(qW ) with respect toqW . In zero ex-
ternal field two stationary points of the energy given in E
~3! are easily identified to be given byqW '5(0, . . . ,0) and
qW i5(p/2, . . . ,p/2), respectively. We define a total aniso

TABLE I. Number of nearest neighborszd and dipole sumsFd

for different lattice types.d is the distance between layers.

Lattice z0 z1 zd.1 F0 F1 Fd.1

sc~001! 4 1 0 9.0336 20.3275 ;216p2e22pd

fcc~001! 4 4 0 9.0336 1.4294 ;716p2e2A2pd

bcc~001! 0 4 0 5.8675 2.7126 ;76A3p2e2pd
02441
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ropy per surface spin in zero fieldK by the corresponding
energy difference,K5E(qW i)2E(qW '). This quantity is given
by

K5 (
m51

L

~Dm
(2)1Dm

(4)!2
3v

4 (
m,n51

L

F um2nu . ~4!

The first term is the sum of the anisotropy constants of s
ond and fourth order while the second term is due to
dipole interaction. Note that this dipole term is identical
the dipole anisotropy per unit area (L/2)m0m2 calculated
within continuum theory, but with additional surface corre
tion, as

3v

4 (
m,n51

L

F um2nu5
L

2
m0m22

3v

2
F11O~F2!. ~5!

For K.0 a perpendicular magnetization is more favo
able than an in-plane magnetization and vice versa. H
ever, in certain parameter intervals additional station
points appear which may lead to an even lower energy
sulting in a canted spin structure. This will be discussed
detail in Sec. V.

In general the minimization of Eq.~3! has to be done
numerically. For realistic parameters appearing for insta
for Fe or Ni films, however, the exchange interaction is
far the largest term in the Hamiltonian leading to a nea
collinear spin structure. In this situation the anisotropy ter
can be treated as small perturbation and as a consequenc
minimization can be done to a large extent analytically.

III. PERTURBATION CALCULATION

We define an averaged angle,u51/L(n51
L qn and devia-

tions from it,en , so thatqn5u1en and(n51
L en50. Finite

en appear due to the various anisotropy terms and they
therefore small for anisotropy terms~including the external
magnetic field! which are small compared to the exchan
energy. This will be assumed in the following. Under the
circumstances a perturbative treatment is possible. We
compose the energy Eq.~3! into two parts,

E~qW !5E(0)~u!1dE~u,eW !, ~6!

with dE(u,0W )50 and

E(0)~u!52
J

2 (
m,n51

L

zum2nu

1
3v

8
cos~2u! (

m,n51

L

F um2nu2cos2u (
m51

L

Dm
(2)

2cos4u (
m51

L

Dm
(4)2L~Bisinu1B'cosu!. ~7!

An expansion ofdE(u,eW ) in terms ofeW then gives

dE~u,eW !5aW ~u!•eW1
1

2
eW•C•eW1O~eW !3, ~8!
9-2
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where we have introduced an obvious matrix notation. T
gradient

aW ~u!5
]

]eW
dE~u,eW !ueW50W ~9!

is given by

aW ~u!5AW ~u!sin~2u! ~10!

with

Al~u!5Dl
(2)12Dl

(4)cos2u2
3v

4 (
m51

L

F ul2mu . ~11!

Thus, to lowest order the anisotropy terms are linear ineW
while the exchange term expressed in Eq.~8! by the matrix
C with matrix elements

Cmn52Jzum2nu1dmn (
l51

L

Jzum2lu ~12!

is quadratic ineW .
The minimum ofdE(u,eW ) appears foren of the order of

the anisotropy terms showing that the truncated Eq.~8! gives
the correct energy up to second order ineW . Note that up to
this order the Zeeman term enters only Eq.~7!. Therefore, at
this level of truncationu agrees with the azimuthal angle o
the averaged magnetization.

It can be easily seen from the definition Eq.~12! that eW0
5(1, . . . ,1) is aneigenvector ofC with eigenvalue zero.
With this vector it is convenient to rewrite the constra
(n51

L en50 as a scalar product,eW0•eW50. This notation will
be used in the following.

The minimalization of the energy is done in two step
First we keepu fixed and minimize with respect toen under
the constrainteW0•eW50. The corresponding energy at th
minimum, E(u), is accessible for instance by varying th
external magnetic field and it is precisely this quantity wh
for instance is needed to calculate the FMR signal. Fina
the ground state energy is obtained by minimizingE(u) with
respect tou.

The variation with respect toen is achieved by introduc-
ing the function

C~u,eW !5aW ~u!•eW1
1

2
eW•C•eW1leW0•eW , ~13!

where l denotes a Lagrangian multiplier. Stationarity
C(u,eW ) gives

C•eW1aW ~u!1leW050W . ~14!

Taking the scalar product witheW0 and noting thateW0•C50W
the multiplierl is obtained as

l52
1

L
eW0•aW ~u!. ~15!
02441
e
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ThuseW is determined from

C•eW1S 12
1

L
ED •aW ~u!50W ~16!

with identity matrix 1 and a matrixE with Emn51 for all
matrix elements. To solve this equation foreW we introduce
the pseudoinverseC† of the matrix C, which in our case
fulfills

C•C†512
1

L
E. ~17!

The matrixC† is uniquely defined if one requires that it is
symmetric matrix with eigenvectoreW0 and corresponding ei
genvalue zero. The matrix elements ofC† are explicitly
given by20

Cmn
† 5

1

2LJz1
FL221

6
2Lum2nu1S m2

L11

2 D 2

1S n2
L11

2 D 2G . ~18!

It is easy to see that with the help of this matrix Eq.~16! can
be rewritten as

C•~eW1C†
•aW ~u!!50W . ~19!

SinceeW0 is the only eigenvector ofC with eigenvalue zero
the term in brackets has to be parallel toeW0. Multiplying this
term byeW0 and usingeW0•eW50 andeW0•C†50W it follows

eW52C†
•aW ~u!. ~20!

Inserting into Eq.~13! we get the final result

E~u!5E(0)~u!1dE~u!, ~21a!

dE~u!52
1

2
aW ~u!•C†

•aW ~u!1O~eW !3, ~21b!

where we used the general propertyC†5C†
•C•C† of the

pseudoinverse. The ground state energy is obtained by m
mizing E(u) with respect tou.

Equation ~21! is the main result of this work, giving a
general expression for the ground state energy of a thin m
netic film in second-order perturbation theory. The influen
of a noncollinear spin structure on the ground state ene
will be discussed in the following.

IV. RESULTS

In the following we drop terms of orderO(eW )3 in E(u)
and we specialize to a special case in order to obtain ana
results. We neglect the exponentially small effective dip
interactions between layers with distance larger than o
i.e., Fd.150, and we assume that the anisotropiesDl

(n)

which enter the Hamiltonian Eq.~1! are constant within the
thin film but may deviate from its constant value at the s
face (l51) and at the interface to the substrate (l5L), i.e.,
9-3
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Dl
(n)5Dv

(n)1dl,1Ds
(n)1dl,LD i

(n) , ~22!

Al~u!5Av~u!1dl,1As~u!1dl,LAi~u! ~23!

with

As,i~u!5Ds,i
(2)12Ds,i

(4)cos2u1
3v

4
F1 . ~24!

It is easy to see that

AW ~u!•C†
•AW ~u!5C1,1

† ~As
2~u!1Ai

2~u!!12C1,L
† As~u!Ai~u!

~25!

sinceC†
•eW050W andC1,1

† 5CL,L
† . Then the second-order co

rection calculated in the previous section@Eq. ~21b!# can be
written as

dE~u!5D~u,L !sin2~2u! ~26!

with

D~u,L !52
L21

8Jz1
FL22

3L
~As~u!1Ai~u!!2

1~As~u!2Ai~u!!2G . ~27!

Note that from now onL can be considered as a continuo
parameter and all quantities are explicitlyL-dependent. In-
sertingaW (u) and E(0)(u) into Eq. ~21! and introducing the
quantities

K0~L !5
J

2
~zL22z1!1

v

2 S 2pL2
3

2
F1D , ~28a!

K2~L !5LDv
(2)1Ds

(2)1D i
(2)2vS 2pL2

3

2
F1D ,

~28b!

K4~L !5LDv
(4)1Ds

(4)1D i
(4) , ~28c!

we can finally write for the energy per surface spin

E~u,L !52K0~L !1D~u,L !sin2~2u!2K2~L !cos2u

2K4~L !cos4u2L~Bisinu1B'cosu!. ~29!

Note that the total anisotropy energyK introduced in Eq.~4!
fulfills

K~L !5K2~L !1K4~L !, ~30!

as dE(u) vanishes at the collinear stationary pointsqW i and
qW ', respectively.K2(L) andK4(L) contain the microscopic
anisotropy parameters and the dipole terms of the film a
aged over the different layers.

It is easy to see that an equation forE(u,L) in the form
given by Eq.~29! often introduced phenomenologically,8 but
without theD term, is obtained if one assumes that all sp
in the film are strictly parallel. The important point to no
here, however, is the fact that an additional anisotropy
ergy D(u,L) enters Eq.~29! which is connected to noncol
02441
r-

s

-

linear spin structures originated by inhomogeneities in
magnetic film. Indeed, this quantity only vanishes in the h
mogeneous caseAs5Ai50. However, for a magnetic thin
film the amplitudesAl in general are not constant. Even
the microscopic anisotropy constantsDl

(n) are homogeneous
~which is unlikely to occur for a realistic film! this is not the
case for the dipole term.

To discuss the implications of this additional anisotro
term D(u,L) we first consider the case that there is no m
croscopic uniaxial anisotropy of fourth order,Dl

(4)50. In
this caseD(u,L)5D(L) is independent ofu. Thus for an
inhomogeneous distribution of amplitudesAl , an effective
anisotropy term of fourth order in cosu is generated although
there is no corresponding anisotropy term of this order in
Hamiltonian.

If there exists a microscopic anisotropy term of four
order the situation is more complicated:D becomes
u-dependent meaning that higher order anisotropy term o
to eighth order are generated inE(u,L).

Finally we mention that the quantityD(u,L) can be fur-
ther simplified in two common special cases: In the case
symmetric filmD i

(n)5Ds
(n) we getAs(u)5Ai(u) and there-

fore

D i5s~u,L !52
~L21!~L22!

6LJz1
As

2~u!, ~31a!

while for the caseD i
(n)50 andDs

(2)1Ds
(4)@(3v/2)F1 we

haveAs(u)@Ai(u) and

D i50~u,L !52

~L21!S L2
1

2D
6LJz1

As
2~u!. ~31b!

As an important application of these results we will stu
spin reorientation transitions in the next section.

V. SPIN REORIENTATION TRANSITION

The direction of the magnetization in the ground state
a given thicknessL is obtained by minimizingE(u,L) @Eq.
~29!#. If the total anisotropy energyK(L) @Eq. ~32!# changes
sign as function ofL, a spin reorientation transition take
place in which the direction of the magnetization chang
either continuously or discontinuously depending on the s
cific form of E(u,L). In the first case a so-called cante
phase appears. Analytic results for the width and the posi
of this phase will be derived in this chapter.

We decomposeK(L) in volume and surface part the usu
way21 to get

K~L !5LKv1Ks1K i ~32!

with

Kv5Dv
(2)1Dv

(4)22pv, ~33a!

Ks,i5Ds,i
(2)1Ds,i

(4)1
3v

4
F1 . ~33b!
9-4
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Note thatAs,i(u) from Eq. ~24! can be written as

As,i~u!5Ks,i1Ds,i
(4)cos~2u!. ~34!

A spin reorientation transition occurs if the total anisotro
energy K(L) passes through zero as function ofL. If Ks
1K i.0 this happens for sufficiently large dipole interacti
with increasingL, as thenKv,0. The corresponding trans
tion is from perpendicular magnetization at smallL to an
in-plane magnetization for largeL possibly with a canted
magnetization in between. This type of transition occurs
Fe films. The opposite scenario can occur for negativeKs
1K i if a positive volume anisotropyKv.0 is present as
observed in Ni films. Thus, to lowest order the critical thic
ness is explicitly given byK(L r)50, leading to

L r52
Ks1K i

Kv
. ~35!

For Fe/Ag~100! films Ds
(2)1D i

(2)'37v. In this case the
other quantitiesDv

(4) , Dv
(2) , and F1 are negligible and we

getL r'5.8 in good agreement with numerical calculations20

For L in the vicinity of L r the minimum ofE(u) may
occur at a finiteu, i.e., a canted phase occurs. To deduce
limits of stability of the two phases for whichu50 andu
5p/2, respectively, we expand Eq.~29! around these angles
From the sign of the corresponding expansion coefficien
follows that in general there are two transitions of seco
order at thicknessesL r

i andL r
' , respectively. The phase wit

u50 becomes unstable atL r
i where

K~L r
i!1K4~L r

i!14D~0,L r
i!50 ~36a!

at this point. With increasing thickness the parallel pha
with u5p/2 becomes stable atL r

' where

K~L r
'!2K4~L r

'!24DS p

2
,L r

'D50. ~36b!

For K4(L r)14D(L r)50 both transitions coincide resul
ing in a jump fromu50 to u5p/2 atL r . This is always the
case forL51 and in the symmetric case also forL52 pro-
vided Dl

(4) vanishes. Otherwise a canted phase (K414D
.0) or a region with hysteresis (K414D,0) appears as
described in the following. Note that in the phasesu50 and
u5p/2, respectively,eW vanishes according to Eqs.~10! and
~20! showing that in these phases all spins are strictly pa
lel. This is not the case in the canted phase. Note also tha
finite magnetic fields which are neither perpendicular n
parallel to the film minimalization of Eq.~29! leads to au
between zero andp/2 and therefore to a noncollinear sp
structure.

The difference of the thicknesses at which the two coll
ear phases become unstable defines the widthdL r5L r

'2L r
i

of the canted region which can be expressed as

dL r

L r
52

2K4~L r!14S D~0,L r!1DS p

2
,L rD D

Ks1K i
. ~37!
02441
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Thus a negative fourth-order anisotropy energyDl
(4) in-

creases the width of the canted phase but even without s
a term a canted region can be observed due to the effec
anisotropyD(u,L r). If the numerator of the right-hand sid
of Eq. ~37! is positive, a canted phase occur, while for neg
tive numerator we find a discontinuous transition with hy
teresis. To illustrate these results, in Figs. 1 and 2 we sh
the phase diagram in theDv

(4)–L plane of a sc Fe-like system
and a fcc Ni-like system, respectively. The canted phas
Dv

(4)50 is stabilized solely by a noncollinear spin structu
Note that the phase boundaryL r

' is a vertical line, asDv
(4)

cancels in Eq.~36b!.
A similar calculation can be done in finite magnetic field

If the field is orientated perpendicular to the film the thic
ness at which the phaseu50 becomes unstable is shifted b

FIG. 1. Phase diagram of asc Fe-like system in theDv
(4)–L

plane. The parameters are~Refs. 9 and 20! J/v52.63103,
Ds

(2)/v537, andDv,i
(2)5Ds,i

(4)50.

FIG. 2. Phase diagram of a fcc Ni-like system in theDv
(4)–L

plane. The parameters are~Refs. 9 and 20! J/v5104, Dv
(2)/v

531, Ds
(2)/v52180, andD i

(2)5Ds,i
(4)50.
9-5
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dL r
i

L r
52

B'

2Kv
, ~38a!

while for fields parallel to the film the corresponding shift
given by

dL r
'

L r
5

Bi

2Kv
. ~38b!

A phase diagram for finite temperatures and field has b
obtained within mean field theory previously.22 For small
external fields the shifts of the phase boundaries obtained
linear in the field similar to the present situation.

VI. CONCLUSION

Starting from a microscopic model the ground state
ergy of a thin ferromagnetic film as a function of the dire
.

02441
en

re

-
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tion of the magnetization is calculated. Explicit expressi
for this energy are obtained which contain important anis
ropy contributions due to noncollinear spin structures in c
tain parameter intervals. The microscopic parameters e
ing the Hamiltonian are not in a simple way related to
ground state energy. This is important for a comparison
measured and calculated anisotropy parameters. Our inv
gation shows that in general a canted phase is obtained
that the corresponding transitions into this phase are of
ond order. Analytic expressions are obtained for the width
the canted phase and its shift in external magnetic fields
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