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Anisotropy of ultrathin ferromagnetic films and the spin reorientation transition
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The influence of uniaxial anisotropy and the dipole interaction on the direction of the magnetization of
ultrathin ferromagnetic films in the ground state is studied. The ground-state energy can be expressed in terms
of anisotropy constants which are calculated in detail as a function of the system parameters and the film
thickness. In particular noncollinear spin arrangements are taken into account. Conditions for the appearance of
a spin reorientation transition are given and analytic results for the width of the canted phase and its shift in
applied magnetic fields associated with this transition are derived.
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. INTRODUCTION rectly within mean field and spin wave the&ty'® or with
full numerical calculations like Monte Carlo simulatiotfs:®
Experimentally it became possible in recent years to grow In the present paper we describe the ferromagnetic film
epitaxial thin films of ferromagnetic materials on nonmag-Within a classical local spin model with dipolar interaction
netic substrates with a very high quality. This offers the pos-and uniaxial anisotropy. We will concentrate on ground-state
sibility to stabilize crystallographic structures which are notproperties of thin films in order to clarify the discussion and
present in nature, and which may exhibit new properties of0 eliminate all uncertainties connected with finite tempera-
high technological impact. To understand the magnetic strudure calculations. A major goal of the present study is the
ture of these systems is a challenging problem both experfalculation of the anisotropy coefficients at zero temperature
mentally and theoretically. from the parameters of an underlying Hamiltonian. The im-
Generally speaking, for not too thin films the magnetiza-portant point is that even in this situation the dependence of
tion is in-plane due to the dipole interactiGshape anisotro- these coefficients on the microscopic parameters is far from
py). However, in very thin films this may change due to thebeing trivial due to non-collinear magnetic states in the thin
increasing importance of surface effects. Indeed, at surfacddm. It is the purpose of this paper to elucidate this behavior.
due to the broken symmetry uniaxial anisotropy energies

arise which in generally are much higher than in the bulk. Il. THE MODEL
These anisotropy energies may favor a perpendicular orien- ) ) _
tation of magnetizatioh Additionally in the inner layers of ~ The calculations of the ground-state properties of ultrathin

the film due to strain-induced distortion bulk anisotropy en-ferromagnetic films are done within the framework of a clas-

ergies may appear absent or very small in the ideal crystafical ferromagnetic Heisenberg model consistind.divo-

As a consequence in these films a reorientation of the sporimensional layers with the direction normal to the film.

taneous magnetization is observed either as a function of filrthe Hamiltonian reads

thickness or as a function of temperature. This spin reorien-

tation_ transition has been discussed extensively in the J L §i.§j 3(s;- Fij)(Fij .§j)

past’~® H=—5 2 S§t+5 2 —= 5
Phenomenologically in order to describe the magnetic () AL rij

properties, anisotropy coefficients, compatible with the o

underlying symmetry of the film are introduced which are - D(fi)(siz)z—E D({i‘)(siz)“—z B-s, 1)

supposed to arise from an expansion of the enéagythe : : :

free energy at finite temperatuyjes terms of the orientation - Xy i i )

of the magnetization vector relative to the film. These coefWheres;=(s;.s/,s;) are spin vectors of unit length at posi-

ficients are then studied experimentaligr a review see Ref. tionr;=(r,rY rf) inlayer\; andrj;=r;—r;. The positions

6). In ferromagnetic resonand&MR) experiments, for in-  r; are normalized such that nearest neighbors ahey-=1.

stance, these coefficients directly enter the resonance frgris the nearest-neighbor exchange coupling consfafft,
quency(for references see for instance Refs. 7 ahd 8 :

Theoretically, it has been shown that the anisotropy coef R
ficientsK,(T), which are in general temperature dependentfourth order, respectively denotes the external magnetic
can be calculated numerically at finite temperatures withirfield with the effective magnetic momept of the spins in-
mean field theory, starting from a Hamiltonian with micro- corporated, andv= uou?/47as is the strength of the long
scopic constant anisotropy parameterBurthermore, the range dipole interaction on a lattice with lattice constant
temperature dependence of the lowest order anisolgy (o Is the magnetic permeability
was determined analytically using a combination of mean To calculate the ground-state energy per spin we assume
field theory and first-order perturbation thedry. In other  translational invariance of the spin structure parallel to the
approaches the magnetization of the film is calculated difilm. This assumption is not correct rigorously since it can be

and D{") are the local uniaxial anisotropies of second and
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TABLE I. Number of nearest neighbors and dipole sum® 5
for different lattice typess is the distance between layers.

Lattice Zg 27 Zgen (O (O D5 q

sd00) 4 1 0 9.0336 —0.3275 ~—167%e 27
fcc00) 4 4 0 9.0336  1.4294 ~ x16m2e 279
bcq00l) O 4 0 58675 27126 ~%6\37% ™

shown that for a perpendicular oriented magnetization, fo
instance, a state with striped domains is energetically slightl
more favorable. However the corresponding energy differ-

ence for ultrathin films is of ordez™ "2 and therefore neg-

ligible for realistic parameters of Fe or Ni films showing spin
reorientation transition®
Assuming translational invariance in they plane the

summation over all spins within a plane can be done exactly

resulting in the energy per surface spin

3 L
E(s)=— 5 M‘VE:l Z)u—2|Su" Sy

E 0 O
L 2
—2 S DS, 1 S,
=S R 5 0
0 0 -1
L
_;1 [DP(s2)2+D{(s2)*+B-s,] 2
with §=(§1, ces ,§|_). The quantitiesu and v denote layer

indices, z|,,,| is the number of nearest neighbors between

layer u andv, and®,, | are constants arising from a par-
tial summation of the dipole interaction. The quantities
have been calculated previouSly° and they are listed to-
gether withzs in Table I.

With an external magnetic fieIéz(O,BH ,B.) in theyz
plane, all spinsfﬂ are confined to this plane. They therefore
can be expressed by their azimuthal anglg,, §M
=(0,sind, ,cosd,). Equation(2) thus can be rewritten as

L

N 1 w
E(d)=-3 W2=l [(szy|— ZCI>|#,,|>COS(19#—19,,)

L

_ (2)
le [D{Ycos'd,

3w
- T@|M_V|COS(19M+ 9,)

+DWcod s, +Bysin g, + B, cosd,] ©)

with 5‘=(1‘:‘1, ...,9.). The ground state is obtained by
minimizing the energ;E(f}) with respect tod. In zero ex-

ternal field two stationary points of the energy given in Eq.

(3) are easily identified to be given b§*=(0, ...,0) and
d=(=12, ... m/2), respectively. We define a total anisot-
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ropy per surface spin in zero field by the corresponding
energy differencek = E(3) — E(J*). This quantity is given
by

L

3
_ ) p®
K ,Z’l (D@+DM)

L
w
ngzl Dy @

The first term is the sum of the anisotropy constants of sec-
ond and fourth order while the second term is due to the
dipole interaction. Note that this dipole term is identical to

the dipole anisotropy per unit ared /@)uom? calculated

Yvithin continuum theory, but with additional surface correc-

tion, as

3wL
oy

=

L ) 3w
1 (D\,u—v\_iﬂom - 7@14'0((1)2) (5)
For K>0 a perpendicular magnetization is more favor-
able than an in-plane magnetization and vice versa. How-
ever, in certain parameter intervals additional stationary
points appear which may lead to an even lower energy re-
sulting in a canted spin structure. This will be discussed in
detail in Sec. V.

In general the minimization of Eq.3) has to be done
numerically. For realistic parameters appearing for instance
for Fe or Ni films, however, the exchange interaction is by
far the largest term in the Hamiltonian leading to a nearly
collinear spin structure. In this situation the anisotropy terms
can be treated as small perturbation and as a consequence the
minimization can be done to a large extent analytically.

IIl. PERTURBATION CALCULATION

We define an averaged angtes 1/L.3_, 9, and devia-
tions from it,e,, so thatd,= 6+ ¢, and>._; €,=0. Finite
€, appear due to the various anisotropy terms and they are
therefore small for anisotropy terntgcluding the external
magnetic fieldd which are small compared to the exchange
energy. This will be assumed in the following. Under these
circumstances a perturbative treatment is possible. We de-
compose the energy E) into two parts,

E(3)=E©(6)+ 5E(6,¢), (6)
with 8E(6,0)=0 and
EQ@(g)=- ) i
(0)= szlz\,ﬁy\
L L
3w 2)
+——cog26) >, @, ,—cogd>, D!
8 w,v=1 pn=1 M

L
—cod9 >, D{)—L(Bsing+B, coss). (7)
u=1
An expansion ofﬁE(G,E) in terms ofe then gives

T D
5E(0,6)=a(6)-e+56-C~6+0(6)3, €)
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where we have introduced an obvious matrix notation. Therhuse is determined from

gradient
- 1 - -
P R C-e+ 1_EE -a(6)=0 (16)
a(0)=—=6E(6,€)|:—5 (9)
de with identity matrix 1 and a matrixe with E,,=1 for all
is given by matrix elements. To solve this equation forwe introduce
the pseudoinvers€’ of the matrix C, which in our case
a(0)=A(6)sin(26) (100 fulfills
with 1
C.C'=1- CE (17

3w &
A (0)=D@+2D*cog9— T > ®p_,. (11  The matrixC' is uniquely defined if one requires that it is a
et symmetric matrix with eigenvecta, and corresponding ei-
Thus, to lowest order the anisotropy terms are lineae in genvalue zero. The matrix elements 6f are explicitly
while the exchange term expressed in E8).by the matrix ~ given by?

C with matrix elements 2

of = 1 [L?-1 . . L+1
L TR AR o 2
CM:—JZ‘#,V‘-H‘)‘W)\Zl 32,y (12) g2
) +| v— T) (18)
is quadratic ine.

The minimum of SE( 6, €) appears fore, of the order of  Itis easy to see that with the help of this matrix E46) can
the anisotropy terms showing that the truncated(Bygives ~ be rewritten as

the correct energy up to second ordereinNote that up to
this order the Zeeman term enters only EQ. Therefore, at
this level of truncatiord agrees with the azimuthal angle of
the averaged magnetization.

It can be easily seen from the definition Ed2) that éo
=(1,...,1) is aneigenvector ofC with eigenvalue zero.
VVthh this vector it is convenlgntato rewnlte the f:onst.ramt c=—c'.a(0). (20)
>, _,€6,=0 as a scalar producty- e=0. This notation will o .
be used in the following. Inserting into Eq(13) we get the final result

The minimalization of the energy is done in two steps.
First we keepd fixed and minimize with respect te, under
the constraintéO~E:O. The corresponding energy at the 1. . .
minimum, E(6), is accessible for instance by varying the SE(0)=—Zal( 6)-C'-a(6)+0(e)>, (21b)
external magnetic field and it is precisely this quantity which
for instance is needed to calculate the FMR signal. Finallywhere we used the general prope@y=C'-C-C" of the
the ground state energy is obtained by minimizif(@) with  pseudoinverse. The ground state energy is obtained by mini-

C-(e+Ct.a(6)=0. (19

Sinceéo is the only eigenvector o€ with eigenvalue zero
the term in brackets has to be parallelétp Multiplying this
term bye, and usinge,- =0 ande,- C'=0 it follows

E(6)=E©(8)+ SE(H), (213

respect tod. mizing E(6) with respect tof.
The variation with respect te, is achieved by introduc- Equation(21) is the main result of this work, giving a
ing the function general expression for the ground state energy of a thin mag-

netic film in second-order perturbation theory. The influence
N O R T of a noncollinear spin structure on the ground state energy
V(0.e)=a(f) et 5€-C e+ e, (3 will be discussed in the following.

where N denotes a Lagrangian multiplier. Stationarity of

z IV. RESULTS
¥(6,€) gives )
In the following we drop terms of orde®(e)® in E(6)
C-e+a(6)+reg=0. (14)  and we specialize to a special case in order to obtain analytic
results. We neglect the exponentially small effective dipole

Taking the scalar product wit, and noting thag,-C=0 interactions between layers with distance larger than one,

the multiplier\ is obtained as ie., ®;,=0, and we assume that the anisotropi2{’
1 which enter the Hamiltonian Eql) are constant within the
N=— —60-a(0). (15) thin film but may deviate from its constant value at the sur-

face (\ =1) and at the interface to the substrate<(L), i.e.,
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D(M=D{"+ 6, ,.DV+ 6, D", (22)
ANO)=AL(0)+ 6 1AL 6) + 6y LAI() (23
with
)4 op@ 3w
As(6)=Dg7+2Dg)cos o+ - ;. (24)

It is easy to see that

A(6)-CT-A(6)=C] (A2(6)+AX(6))+2C] AL OA(6)
(25

sinceC’-€,=0 andC],=C/ | . Then the second-order cor-
rection calculated in the previous sectidfg. (21b)] can be
written as

SE(6)=A(6,L)sir?(26) (26)
with
L-1[L-2
A(,L)=— E[T(As( 0)+Ai(0))?
+(AL0) —A(6))?]. 27

Note that from now orL can be considered as a continuous

parameter and all quantities are explicitlydependent. In-
sertinga(6) and E©®(6) into Eq. (21) and introducing the
guantities

3
277L——<D1>, (283

J w
KO(L)=§(ZL—221)+E 5

Ko(L)=LD@+D@+ D§2>—w< 27l — gcpl),
(28b)
K4(L)=LD{®+DW+D®, (280)
we can finally write for the energy per surface spin
E(6,L)=—Ky(L)+A(6,L)sir’(26)—K,(L)cog 8
(29)

Note that the total anisotropy enerffyintroduced in Eq(4)
fulfills

—Ky(L)cos'6—L(Bysin 6+ B, cos).

K(L)=Ka(L)+Kg(L), (30

as 6E(0) vanishes at the collinear stationary poirﬁ% and
&, respectivelyK,(L) andK,(L) contain the microscopic

anisotropy parameters and the dipole terms of the film aver-

aged over the different layers.
It is easy to see that an equation t©¢6,L) in the form
given by Eq.(29) often introduced phenomenologicafijut

without theA term, is obtained if one assumes that all spins
in the film are strictly parallel. The important point to note
here, however, is the fact that an additional anisotropy en-

ergy A(6,L) enters Eq(29) which is connected to noncol-
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linear spin structures originated by inhomogeneities in the
magnetic film. Indeed, this quantity only vanishes in the ho-
mogeneous casA,=A;=0. However, for a magnetic thin
film the amplitudesA, in general are not constant. Even if
the microscopic anisotropy constarﬁl&”) are homogeneous
(which is unlikely to occur for a realistic filijrthis is not the
case for the dipole term.

To discuss the implications of this additional anisotropy
term A(6,L) we first consider the case that there is no mi-
croscopic uniaxial anisotropy of fourth ordd]),§\4)=0. In
this caseA(0,L)=A(L) is independent of. Thus for an
inhomogeneous distribution of amplituddg, an effective
anisotropy term of fourth order in c@ds generated although
there is no corresponding anisotropy term of this order in the
Hamiltonian.

If there exists a microscopic anisotropy term of fourth
order the situation is more complicatedt becomes
0-dependent meaning that higher order anisotropy term of up
to eighth order are generated &{6,L).

Finally we mention that the quantit¥(6,L) can be fur-
ther simplified in two common special cases: In the case of a
symmetric filmD{M=D{" we getA(6)=A(6) and there-
fore

(L-1)(L-2)

ALG), (313
while for the caseD{"=0 andD?+ D> (3w/2)®, we

haveA( #)>A;(0) and

1
(L—1)(L—§)

6LJz, (310

Ai_o(0,L)=— AZ(0).
As an important application of these results we will study
spin reorientation transitions in the next section.

V. SPIN REORIENTATION TRANSITION

The direction of the magnetization in the ground state for
a given thickness$ is obtained by minimizinds(6,L) [Eq.
(29)]. If the total anisotropy energ(L) [Eqg. (32)] changes
sign as function ofL, a spin reorientation transition takes
place in which the direction of the magnetization changes
either continuously or discontinuously depending on the spe-
cific form of E(6,L). In the first case a so-called canted
phase appears. Analytic results for the width and the position
of this phase will be derived in this chapter.

We decompos& (L) in volume and surface part the usual
way?! to get

K(L)=LK,+K+K; (32
with
K,=D@+D¥-27w, (339
@)1 1@, 3®
Ks,i=D&+D{)+ -0y (33b
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Note thatAg i(8) from Eq.(24) can be written as 1 : I . I — :

As{(0)=Kg +Dcog26). (34 L |— L' @q. 36a)) 8L, <0 ]
A spin reorientation transition occurs if the total anisotropy osL| Li(Eq' G5 |
energyK(L) passes through zero as function laf If Kg . | |7 L, (Eq.(36b)

+K;>0 this happens for sufficiently large dipole interaction
with increasingL, as thenK,<0. The corresponding transi-
tion is from perpendicular magnetization at smialtto an
in-plane magnetization for large possibly with a canted
magnetization in between. This type of transition occurs for
Fe films. The opposite scenario can occur for negakve
+K; if a positive volume anisotrop¥K,>0 is present as
observed in Ni films. Thus, to lowest order the critical thick-
ness is explicitly given bX(L,)=0, leading to

A

fourth order anisotropy e

i | L | L
_ KeFK; @5 g 5 6 7 8
; K. .

v thickness L [ML]

. 2 2 .

o Fe/Ag[l_O_O) f|(|g1$ D((%))+Di( ~3o. In t.hl.s case the FIG. 1. Phase diagram of sc Fe-like system in thed{"-L
other quantitiedD,”, D™, and®, are negligible and we pjane. The parameters arRefs. 9 and 2D J/w=2.6x 1C%,
getL,~5.8 in good agreement with numerical calculatiéhs. D®/w=37, andD@=D¥W=0.

For L in the vicinity of L, the minimum of E(6) may ' '
occur at a finited, i.e., a canted phase occurs. To deduce therhus a negative fourth-order anisotropy enerlg)‘(‘) in-
limits of stability of the two phases for which=0 and®  creases the width of the canted phase but even without such
= /2, respectively, we expand E@9) around these angles. a term a canted region can be observed due to the effective
From the sign of the corresponding expansion coefficient itanisotropyA(6,L,). If the numerator of the right-hand side
follows that in general there are two transitions of seconcf Eq. (37) is positive, a canted phase occur, while for nega-
order at thicknessdsu andL; , respectively. The phase with tive numerator we find a discontinuous transition with hys-

60=0 becomes unstable Iaﬂ where teresis. To illustrate these results, in Figs. 1 and 2 we show
| | | the phase diagram in tr[ef,“)—L plane of a sc Fe-like system
K(Lp)+Kg(Ly)+4A(0Ly)=0 (363 and a fcc Ni-like system, respectively. The canted phase at

at this point. With increasing thickness the parallel phas:PV =0 is stabilized solely by alnoncoll|r_1ear spin stru(g)ture.
with 6= /2 becomes stable &t" where Note that the phase boundaky is a vertical line, aD

cancels in Eq(36b).
- A similar calculation can be done in finite magnetic fields.
K(Ly)— K4(L,i)—4A(§,Lf) =0. (36b) If the field is orientated perpendicular to the film the thick-
ness at which the phagke=0 becomes unstable is shifted by

For K4(L,) +4A(L,)=0 both transitions coincide result-
ing in a jump from#=0 to 6= 7/2 atL,. This is always the
case forL=1 and in the symmetric case also fo=2 pro- a
vided D{* vanishes. Otherwise a canted phase,{4A
>0) or a region with hysteresisK(y+4A<0) appears as
described in the following. Note that in the phages0 and
6= /2, respectivelye vanishes according to Eq&l0) and
(20) showing that in these phases all spins are strictly paral-
lel. This is not the case in the canted phase. Note also that for
finite magnetic fields which are neither perpendicular nor
parallel to the film minimalization of Eq29) leads to a#d
between zero andr/2 and therefore to a noncollinear spin
structure.

The difference of the thicknesses at which the two collin-
ear phases become unstable defines the watlf-L; — L'r| 1 i |

of the canted region which can be expressed as 6 i
thickness L [ML]

I} T T T

— L' (Bq. 362) | -
‘‘‘‘‘‘‘ L (Eq. 35))

— L (Eq. (36b))

4
n
T

4)
()/
v

o
n
I

fourth order anisotropy D

T
2K4(Lr)+4(A(O,Lr)+A(E,Lr> FIG. 2. Phase diagram of a fcc Ni-like system in th&)—L
T _ . (37) plane. The parameters a(®efs. 9 and 2D J/w=10", D/w
L, Kst K =31, D?/w=—-180, andD{?=D{)=0.
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5|_ﬂ B, tion of the magnetization is calculated. Explicit expressions
L~ 2K, (388  for this energy are obtained which contain important anisot-
ropy contributions due to noncollinear spin structures in cer-
while for fields parallel to the film the corresponding shift is tain parameter intervals. The microscopic parameters enter-
given by ing the Hamiltonian are not in a simple way related to the
sLL B ground state energy. This is important for a comparison of
r_ "l _ (38b) measured and calculated anisotropy parameters. Our investi-
L 2K, gation shows that in general a canted phase is obtained and
A phase diagram for finite temperatures and field has beethat the corresponding transitions into this phase are of sec-
obtained within mean field theory previoudfyFor small ~ond order. Analytic expressions are obtained for the width of
external fields the shifts of the phase boundaries obtained afg€ canted phase and its shift in external magnetic fields.
linear in the field similar to the present situation.
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