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Classical percolation transition in the diluted two-dimensionalSÄ 1
2 Heisenberg antiferromagnet

Anders W. Sandvik
Department of Physics, Åbo Akademi University, Porthansgatan 3, FIN-20500 Turku, Finland

~Received 24 October 2001; published 11 July 2002!

The two-dimensional antiferromagneticS51/2 Heisenberg model with random site dilution is studied using
quantum Monte Carlo simulations. Ground-state properties of the largest connected cluster onL3L lattices,
with L up to 64, are calculated at the classical percolation threshold. In addition, clusters with a fixed number
Nc of spins on an infinite lattice at the percolation density are studied forNc up to 1024. The disorder averaged
sublattice magnetization per spin extrapolates to the same nonzero infinite-size value for both types of clusters.
Hence, the percolating clusters, which are fractal with dimensionalityd591/48, have antiferromagnetic long-
range order. This implies that the order-disorder transition driven by site dilution occurs exactly at the perco-
lation threshold and that the exponents are classical. The same conclusion is reached for the bond-diluted
system. The full sublattice magnetization versus site dilution curve is obtained in terms of a decomposition into
a classical geometrical factor and a factor containing all the effects of quantum fluctuations. The spin stiffness
is shown to obey the same scaling as the conductivity of a random resistor network.

DOI: 10.1103/PhysRevB.66.024418 PACS number~s!: 75.10.Jm, 75.10.Nr, 75.40.Cx, 75.40.Mg
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I. INTRODUCTION

The two-dimensional~2D! Heisenberg antiferromagnet o
a square lattice can be driven through a quantum ph
transition1,2 by, e.g., introducing frustrating interactions3 or
by dimerizing the lattice.4 It has also been believed that
nontrivial ~quantum! phase transition could be achieved
diluting the system, i.e., by randomly removing eith
sites5–8 or bonds.9,10 The site dilution problem is of direc
relevance in the context of antiferromagnetic layered
prates doped with nonmagnetic impurities.11–13 Diluted
Heisenberg models are also of more general interest, as
tems in which the combined effects of disorder and quan
fluctuations can be studied with a variety of analytical a
numerical methods. The single impurity problem has be
studied extensively and is now rather well understood.14 Sys-
tems with a finite concentration of impurities are much mo
difficult to treat, both analytically and numerically. The loc
tion and nature of the phase transition driven by dilution
therefore still controversial.

An early quantum Monte Carlo~QMC! study of the tem-
perature dependence of the correlation length gave a bo
pc.0.2 for the critical fraction of removed sites above whi
the long-range order vanishes in the 2D Heisenberg mod5

QMC calculations in the ground state indicatedpc'0.35.6

Various analytical treatments have given results forpc rang-
ing from 0.07 to 0.30.7,8 These estimates for the critical ho
concentration are below the classical percolation thresh
p* '0.407,15,16 and hence the phase transition would
caused by quantum fluctuations. A critical hole density mu
smaller than the percolation density was also found in
bond-diluted Heisenberg model.9,10

An unusual type of quantum phase transition in the s
diluted system was recently claimed by Katoet al.17 They
carried out QMC simulations of larger lattices at lower te
peratures than in previous works and found evidence of
critical dilution coinciding with the classical percolatio
point, pc5p* . In spite of this, they argued that the transitio
is a nontrivial quantum phase transition, which would be
0163-1829/2002/66~2!/024418~17!/$20.00 66 0244
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consequence of the fractal clusters atp* being quantum criti-
cal ~i.e., with algebraically decaying spin-spin correlatio
function!. This leads to nonclassical critical exponen
which furthermore were found to be nonuniversal, depend
on the spinSof the magnetic sites~approaching the classica
values whenS→`). Although such behavior violates th
standard notions of universality, it cannot be completely
cluded for random systems.18 However, in another recen
study the spin correlations of the percolating 2D Heisenb
model withS51/2 were analyzed in greater detail.19 It was
confirmed thatpc[p* , but, in conflict with the quantum
criticality scenario,17,20,21strong evidence was presented o
transition driven solely by percolation. The exponents sho
then be identical to those of classical percolation for allS.

This paper presents details of the QMC studies hi
lighted in Ref. 19 and introduces further evidence that
order-disorder transition in the diluted 2D Heisenberg mo
indeed occurs exactly atp* and is classical. The stochast
series expansion~SSE! QMC method22–24 is used to study
the ground state of both site- and bond-diluted system
their respective percolation points. Site-diluted systems
also studied for the whole range of hole concentrationsp
,p* . Particular emphasis is put on the importance of ca
fully controlling potential sources of systematic errors in t
simulations. In studies of disordered systems these issue
much more serious than for clean systems, because o
necessity to carry out a large number of relatively sh
simulations for different samples~in order to obtain accurate
disorder averages!. Procedures developed to accelerate
equilibration, and to detect possible remaining effects of
sufficient equilibration and finite temperature, are discus
here and constitute an important part of the paper.

The main physics questions addressed and results
tained are summarized as follows. At the percolation po
the infinite clusters on a 2D lattice have a fractal dimensi
ality, d591/48.15 An antiferromagnet at this special poin
could in principle be either classically critical~if there is
long-range order on the fractal clusters!, quantum critical
~with power-law decaying spin-spin correlation function o
©2002 The American Physical Society18-1
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ANDERS W. SANDVIK PHYSICAL REVIEW B66, 024418 ~2002!
the clusters!, or quantum disordered~with exponentially de-
caying correlations on the clusters!. In the last of these case
the phase transition would occur at a dilution fraction le
than the percolation density, whereas it coincides with
percolation point in the other two cases. In order to de
mine which of the three qualitatively different ground sta
is realized in the percolating cluster of the standard Heis
berg model, the sublattice magnetization is calculated for
largest cluster onL3L lattices at the percolation densit
with L up to 64. In addition, clusters of fixed sizeNc without
boundary imposed shape constraints~i.e., on an infinite 2D
lattice! are studied forNc up to 1024. The sublattice magne
tization is averaged over several thousand samples and
trapolated to infinite size. The same nonzero value is
tained for both types of clusters, showing consistently t
they are long-range ordered. Self-averaging is demonstr
by studying sample-to-sample distributions of the sublat
magnetization. The existence of long-range order on the
colating clusters implies that the order-disorder transit
driven by dilution occurs exactly at the percolation thresh
and that the critical exponents are classical. The same q
tative behavior is found for site and bond dilution, but t
long-range order is substantially weaker in the bond-dilu
system.

In order to reliably calculate the experimentally intere
ing sublattice magnetizationM as a function of the site dilu
tion fractionp for all 0<p,p* , a decomposition ofM (p)
into a classical and a quantum-mechanical factor is used.
classical factor, which contains the singular behavior ap
5p* , can be easily evaluated by classical Monte Carlo sim
lations. The critical exponent governing its asymptoticp
→p* form is known exactly.15 The quantum-mechanical fac
tor is calculated using QMC simulations of the largest clus
on L3L lattices. It is only weakly dependent on the dilutio
The wholeM (p) curve is determined to an accuracy of a fe
percent.

The spin stiffness is also calculated. Based on known
sults for the classical Heisenberg model25 and the long-range
order found here in the percolating clusters, it is argued
the stiffness should obey the same scaling as the conduct
of a random resistor network at and close to the percola
threshold. The numerical results are fully consistent with
known conductivity exponent.

The outline of the rest of the paper is the following.
Sec. II the various types of diluted Heisenberg lattices
defined, and the application of the SSE simulation algorit
to these systems is discussed. The procedures develope
controlling potential systematic errors arising from insuf
cient equilibration and finite temperature are also introdu
here. Simulation data illustrating the convergence criteria
presented in Sec. III. In Sec. IV the sublattice magnetizat
of percolating clusters is studied, both for site- and bo
diluted systems. In Sec. V the full sublattice magnetizat
versus site-dilution curve is calculated. Results for the s
stiffness are presented in Sec. VI. The paper concludes
a summary and discussion in Sec. VII.

II. MODELS AND METHODS

The antiferromagneticS51/2 Heisenberg model on sev
eral types of random 2D lattices will be considered. In
02441
s
e
r-
s
n-
e

x-
-
t
ed
e
r-

n
d
li-

d

-

he

-

r

e-

at
ity
n
e

e

for

d
re
n
-
n
in
ith

l

cases, the Hamiltonian can be written in the form

H5J(
b51

Nb

Si (b)•Sj (b) , ~1!

where b is a bond index corresponding to two interactin
nearest-neighbor spinsi (b), j (b) andNb is the total number
of bonds on the lattice. On a site-diluted lattice a fractionp
of the sites are empty~holes! and the rest are occupied b
spins. Bonds exist between all occupied nearest-neigh
sites. On a bond-diluted lattice all sites are occupied a
nearest neighbors interact with a probabilityp. Note that a
diluted lattice typically contains isolated~free! spins that are
not interacting with any other spins. They have to be spe
fied in addition to the list of bonds$ i (b), j (b)% in the Hamil-
tonian ~1!.

A. Diluted lattices

For lattices withN5L3L sites and periodic boundar
conditions, random magnetic configurations~samples! are
generated by filling each site with probability 12p. The ac-
tual number of magnetic sites is hence not fixed, but
fluctuations in the density decrease as 1/L. The percolation
densityp5p* is of special relevance. According to the mo
recent simulation,16 p* 50.407 253 79(13). Here the valu
p* 50.407 253 8 will be used. The largest cluster of co
nected magnetic sites is of particular interest and its prop
ties will be studied separately from those of the full lattic
The number of spins belonging to the largest cluster is
noted byNc . At p5p* , in the limit L→`, this cluster is
fractal, with the fractal dimensiond known rigorously to be
d591/48.15 For largeL the averagê Nc&;Ld, and Nc is
therefore typically considerably smaller than the total nu
ber of spins on the lattice. One can therefore reach la
cluster sizes in the QMC simulations by removing the sp
that do not belong to the largest cluster. This will be do
here in order to study the clusters forL as large as 64. An
example of a diluted lattice and its largest cluster is shown
Fig. 1.

The largest cluster on a lattice atp5p* exhibits strong
size fluctuations, as shown in Fig. 2. As an alternative
approaching the infinite fractal lattice as a function ofL with
fluctuating Nc , clusters with fixedNc and shapes not re
stricted by lattice boundaries will also be studied. Such cl
ters are constructed starting from an infinite 2D lattice w
only a single filled site. The four neighbors of this site a
filled at random with probability 12p* . In the next step the
neighbors of those sites that were filled are in turn filled w
probability 12p* , taking into account that sites that we
previously visited should not be visited again. This proc
dure is repeated until no new sites can be filled that
connected to the cluster, i.e., the nearest neighbors of all
in the cluster have already been visited. If the cluster is co
pleted before it reaches the desired sizeNc , or if the size
exceedsNc , the cluster building is restarted. The process
repeated until a cluster is completed exactly at the sizeNc .
This method of constructing fixed-size clusters becomes v
8-2
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CLASSICAL PERCOLATION TRANSITION IN THE . . . PHYSICAL REVIEW B 66, 024418 ~2002!
time consuming for largeNc , but it works well for sizes
Nc<1024 considered here. An example of this type of cl
ter is shown in Fig. 3.

In the case of bond dilution, the percolation point is e
actly p* 51/2.15 For L3L lattices this probability can be
realized for anyL and therefore random lattices with exact
half of the bonds removed will be considered in calculatio
at the percolation threshold.

FIG. 1. A 64364 lattice randomly diluted atp5p* . The solid
circles indicate magnetic sites belonging to the largest conne
cluster ~note that periodic boundary conditions are applied!. The
other magnetic sites are shown as open circles.

FIG. 2. Distribution of the size of the largest cluster on perio
L3L lattices forL516, 32, and 64. The probabilityP(Nc) of clus-
ter sizeNc is plotted vsNc /Ld, showing scaling with the fracta
dimensiond591/48. Note the structure atNc /Ld'0.38, which cor-
responds to lattices where instead of one dominant large clu
there are two of approximately half the size.
02441
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B. Quantum Monte Carlo algorithm

The SSE approach to QMC simulation of lattice model22

has been discussed in detail in previous papers. Its app
tion to the Heisenberg model is discussed in, e.g., Refs.
24, and 26. Its effectiveness for various ordered and dis
dered systems has recently been documented by se
groups.27–30 Here only a very brief summary will be given
in order to facilitate the subsequent discussion of procedu
developed for efficient equilibration and ground state conv
gence for disordered systems.

In order to apply the SSE method to the Heisenb
model, the Hamiltonian~1!, with J51 hereafter, is first writ-
ten as

H52 (
b51

Nb

@H1,b2H2,b#, ~2!

where the pair interaction has been divided into terms

H1,b5
1

4
2Si (b)

z Sj (b)
z , ~3!

H2,b5
1

2
@Si (b)

1 Sj (b)
2 1Si (b)

2 Sj (b)
1 #, ~4!

which are diagonal and off diagonal, respectively, in the
sis$ua&%5$uS1

z ,S2
z , . . . ,SN

z &% used in the simulations. A con
stant has been added to the diagonal part, and as a resu
nonvanishing matrix elements equal 1/2 and correspond
operations on antiparallel spins.

The SSE algorithm is based on importance sampling
the terms of the partition functionZ5Tr$e2bH% written in a
truncated Taylor expansion form,

Z5(
a

(
SM

bn~M2n!!

M ! K aU)
i 51

M

Hai ,biUaL . ~5!

The summation symbolSM refers to a sequence ofM
operator-index pairs,

ed

ter

FIG. 3. A cluster withNc51024 sites constructed on an infinit
2D lattice at the percolation density.
8-3
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ANDERS W. SANDVIK PHYSICAL REVIEW B66, 024418 ~2002!
SM5@a1 ,b1#,@a2 ,b2#, . . . ,@aM ,bM#, ~6!

where aiP$1,2%,biP$1, . . . ,Nb%, corresponding to the op
eratorsHai ,bi

in Eqs. ~3! and ~4!, or @ai ,bi #5@0,0#, corre-

sponding to an identity operatorH0,0[I . This new operator
has been introduced in order for the summation over allSM
in Eq. ~5! to imply summation of the Taylor expansion o
e2bH up to orderM. The order of a given term correspond
to the number of non-@0,0# elements inSM , which is de-
noted byn in Eq. ~5!. It has been assumed that the lattice
bipartite. All the signs arising from the off-diagonal oper
torsH2,b in Eq. ~2! then cancel in the nonvanishing terms
Eq. ~5! and the expansion is hence positive definite. T
cutoff M can be easily adjusted so thatn never reachesM
during the simulation. The truncation then does not con
tute an approximation, and SSE simulation results are t
exact to within statistical errors. As will be explained furth
below,M has to be chosen proportional toNb.

For the sampling of the terms (a,SM) an efficient algo-
rithm with three basic updates has been developed. The
update involves only diagonal operators. The sequenceSM is
scanned fromi 51 to M, and for each element@ai ,bi # with
ai50 or ai51 a substitution@0,0#↔@1,bi # is attempted. The
Metropolis acceptance probability can be easily calcula
from Eq. ~5!, taking into account also that an update in t
→ direction is allowed only if the spins at the tentative bo
bi are antiparallel after operation with the previousi 21 op-
erators. An accepted single-operator update changes th
pansion powern in Eq. ~5! by 61.

The second update is a more complicated cluster-type
date which operates at fixedn and simultaneously change
the operator-type index of several elements$ i %. The set$i%
forms an ‘‘operator loop,’’ the size of which can be ve
large. For eachi the substitution@1,bi #↔@2,bi # can be car-
ried out without changing the configuration weight. T
whole sequenceSM can be uniquely decomposed into a nu
ber of operator loops, which can be updated independent
each other with probability 1/2. Details of this operator-lo
update are discussed in Ref. 24.

Spins in the stateua& that are not acted upon by an
operator inSM are flipped with probability 1/2. Apart from
isolated spins on a diluted lattice, such free spins app
frequently only at high temperatures.

With the three updates described above—single oper
~or diagonal!, operator loop, and spin flip—the SSE meth
is completely grand canonical, i.e., all magnetization a
winding number sectors are sampled. In systems with
isolated spins, the spin flip is strictly not needed, but it is s
useful at high temperatures.

The simulation is started with an arbitrary stateua& and a
short index sequence containing only@0,0# elements~any M
will do—in the work discussed hereM5Nb/4 was typically
used!. M is adjusted during the equilibration of the simul
tion, so that it always exceeds the maximumn reached~by,
e.g., 20%!, and is thereafter kept constant. A Monte Ca
step ~MC step! consists of a full sweep of single-operat
updates followed by construction and updates of all oper
loops. After this, free spins in the stateua& are flipped with
02441
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probability 1/2. Further details of the sampling procedu
have been described in Refs. 24 and 26.

In the computer, an operator@a,b# can be represented b
a single four-byte integer. In addition, in the cluster upd
four integers are needed to store each operator element iSM
with their pointers to other elements in the list.24 The total
memory requirement is thus 203M bytes,31 plus a few ar-
rays the sizes of which scale linearly with the system sizeN.
The number of operations needed for carrying out one M
step scales asM, i.e., is proportional toNb.

Observables are typically measured after every MC s
~it is often practical to do the calculations in combinatio
with the single-operator update!. Estimators for various ex-
pectation values of interest in the context of the Heisenb
model have been discussed in Ref. 23. In the present w
the most important quantity is the staggered structure fac
defined on the wholeL3L lattice as~for a given disorder
realization, withSz50 on the nonmagnetic sites!

S~p,p!5
1

N K S (
i 51

N

~21!xi1yiSi
zD 2L , ~7!

and on the largest clusterC ~or the single cluster on the
infinite lattice!,

Sc~p,p!5
1

Nc
K S (

i PC
~21!xi1yiSi

zD 2L . ~8!

Disorder averaged sublattice magnetizations are define
terms of the structure factors according to

^m2&5^3S~p,p!/N&, ~9!

^mc
2&5^3Sc~p,p!/Nc&, ~10!

where, in the standard way,32 the factor 3 accounts for rota
tional invariance in spin space. The order parametermc de-
fined on a cluster will hereafter be referred to as the clus
magnetization.

The spin stiffness will also be discussed. For the nonr
dom 2D Heisenberg model with periodic boundary con
tions it is defined as33

rs5
3

2

1

L2

]2E0~f!

]f2 , ~11!

wheref is a twist under which the interaction on all bond
in one lattice direction is modified according to

Si•Sj→Si•R~f!Sj , ~12!

whereR is the matrix rotating the three-component spin ve
tor Sj by an anglef around the spin-z axis. The stiffness can
be expressed in terms of the winding number of the S
configurations. The winding numberWa , a5x,y, is the net
number of times spin currents wrap around the system in
lattice directiona, i.e.,

Wa5~Na
R2Na

L!/L, ~13!

whereNa
R andNa

L are the number of events in the propag
tion with the SSE operator sequenceSM in which spin is
transported to the ‘‘left’’ and ‘‘right’’ along thea direction.
8-4
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The winding numbers hence take integer valu
0,61,62, . . . . Thestiffness is given by

rs5
3

2
^Wa

2&/b, ~14!

which can be averaged over the two directionsa5x,y.
For random systems the situation is complicated by

fact that the stiffness can vary locally, whereas the wind
number estimator~14! is a global quantity characterizing th
rigidity of the system as a whole~i.e., the energy increas
due to changed boundary conditions!. This global stiffness is
still an important quantity, however. One can easily pro
that it is equivalent to an average stiffness. In a clean sys
the definition ~11! can clearly be replaced by a definitio
where the twist~12! is only applied on a single boundar
column ~which hasL interacting pairs!,

rs5
3

2

1

L2

]2E0~F!

]F2 . ~15!

The boundary twist here is related to the twist in the fi
definition ~11! by F5Lf. If this definition is used for a
diluted system one still obtains the same expression~14! in
terms of the squared winding number, regardless of wh
column is taken as the boundary to whichF is applied. This
is because the spin currents wrapping around the sys
have to go through allL columns. The number of interactin
pairs on the boundary column can depend on which of thL
possible columns is used, however, and the currents
therefore distributed unequally among the bonds altho
the same net current passes through all columns. This refl
the local variation in the rigidity of individual bonds. Th
stiffness defined according to the equivalent definitions~11!,
~15!, and ~14! is hence the average over all bonds of
arbitrary column. In the case that there is no cluster wrapp
around the system in either thex or y direction, the corre-
sponding winding number is always zero and the stiffnes
that direction vanishes. Recent discussions of the stiffnes
disordered quantum systems can also be found in Refs
and 35.

The bond energy, including the constant added in Eq.~3!,
is obtained in SSE simulations according to

Eb52^H1,b1H2,b&52^nb&/b, ~16!

wherenb is the number of elements@1,b# and@2,b# in SM .
Hence, the average expansion power^n&5uEub, whereE is
the total internal energy. One can also show that the h
capacityC5^n2&2^n&22^n&, and hence the width of the
distribution ofn is ;^n&1/2 at low temperatures. This is th
reason why the Taylor expansion can be truncated atM
;Nb.

C. Convergence issues

In QMC studies of random systems, disorder-avera
expectation values of the form

Š^A&‹5
1

NR
(
i 51

NR

^A& i ~17!
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normally have to be estimated using only a small subse
all NR disorder realizations. In addition, the individual e
pectation valueŝA& i are not evaluated exactly but are ass
ciated with statistical errors. TypicallŷA& i is a simple op-
erator expectation value@such as the staggered structu
factor ~7! or ~8!# which has an estimator that is linearly a
eraged over the importance sampled QMC configurations
principle, the most efficient way to estimate the disorder
erage~17! would then be to generate only a single QM
configuration for each randomly selected disorder reali
tion, so that each term contains both sources of fluctuati
~sample-to-sample and QMC statistical!. The final statistical
error can be estimated in the standard way using data bin
~in order to approach a Gaussian distribution from which
standard deviation of the average can be calculated!. How-
ever, in practice this approach is not feasible since the si
lations have to be properly equilibrated for each disor
realization before the QMC configurations can be used
averages. If a large number of MC steps are needed
equilibration it would clearly not be optimal to make use
only a single configuration. An accurate estimation of t
optimum number of configurations would require detail
knowledge of equilibration times, autocorrelation times, a
the statistical distributions of the estimators. In practice, i
rarely worthwhile to investigate these in detail~it would re-
quire an effort rivaling that of the actual simulations!. In any
case, the simulations should be relatively short so that m
disorder realizations can be studied. Furthermore, the si
lations should not be dominated by equilibration. The nu
ber of MC steps used for sampling expectation values sho
therefore be at least of the same order as the number of s
used for equilibration.

Another important issue is temperature. In order to stu
ground-state properties with the SSE method, a sufficie
high inverse temperatureb must be used. In diluted system
especially close to the percolation point, different parts o
large cluster may be connected only weakly, through ess
tially one-dimensional narrow paths~several examples o
which can be seen in Figs. 1 and 3!. Such ‘‘weak links’’ can
lead to correlations that develop only at very low tempe
tures. One can therefore expect that in order to reach
ground state much higherb values have to be used than fo
undepleted 2D systems.

Remaining temperature effects and insufficient equilib
tion are two potential sources of systematic errors in
simulations, and these have to be controlled very carefu
The following scheme has been developed in order to ch
for both equilibration and temperature effects. For each d
order realization, simulations are carried out at inverse te
peraturesbn52n, n50,1, . . . ,nmax. Starting withn50 (b
51), a numberNe of MC steps are first carried out fo
equilibration. Expectation values are sampled during the
lowing Nm52Ne steps. At the same temperature,Ne addi-
tional steps are carried out during which no expectation v
ues are sampled, again followed byNm sampling steps. The
second segment ofNe1Nm steps is a direct continuation o
the first one, so that the effective number of equilibrati
steps for the second sampling segment is four times tha
the first one. A disagreement between the results of the
8-5
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ANDERS W. SANDVIK PHYSICAL REVIEW B66, 024418 ~2002!
sampling segments then implies that the simulation at
level of the first segment is not sufficiently equilibrated, a
the second segment may also be affected. If the results a
one can conclude that at least the second segment sh
have equilibration errors that are smaller than the statist
errors ~although this should also be verified by compari
simulations with differentNm , which will be done below!.
Since the fluctuations of the results of short simulations
large, the agreement between the two segments can of co
be checked only in averages over large numbers of sim
tions of different disorder realizations.

The b-doubling scheme is illustrated in Fig. 4. Note th
simulations at subsequently lower temperatures can
started using the last SSE configuration generated at the
vious temperature. An equilibrated configuration atb will
have an SSE sequence lengthM approximately twice that in
the previous run atb/2. Therefore, in order to further acce
erate the equilibration at low temperatures, the starting
quence used is the previousSM doubled, i.e.,

S2M5@a1 ,b1#, . . . ,@aM ,bM#@aM ,bM#, . . . ,@a1 ,b1#.
~18!

Especially at low temperatures, where the system is alm
converged to the ground state, the doubled SSE configura
should be very nearly distributed according to the equi
rium distribution at the newb. With the reversed order of th
second set ofM operators in Eq.~18!, the initial S2M always
has zero winding number, which can be expected36 to be a
slightly better starting point than the alternative one w
twice the winding number~in practice, the difference in per
formance is minor!.

Expectation values calculated for allnmax11 values ofb
are stored on disk, so that the convergence to the gro
state can be checked. Ideally, the number ofb doublings
should be large enough that there are no statistically sig
cant differences between the results forbmax52nmax and b
52nmax21. Since the asymptotic convergence is exponen
the results atbmax should then have no detectable tempe
ture effects at the level of the statistical errors.

FIG. 4. Illustration of theb-doubling scheme used for equilibra
tion and convergence to the ground state. The horizontal line
ments represent MC steps carried out at the corresponding inv
temperaturesb52n. No data are collected during theNe steps cor-
responding to the unfilled segments. Averages over the two s
segments of lengthNm are stored separately for eachb.
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III. CONVERGENCE TESTS

In this section, test results for equilibration and groun
state convergence according to theb-doubling procedures
described in the preceding section are presented. Dilu
fractions close to the percolation point can be expected to
the worst with respect to slowb convergence. This is be
cause forp,p* the largest clusters are two dimensional a
more compact than atp* ~i.e., they have less ‘‘weak links’’!,
and forp.p* the cluster size does not diverge withL. Site-
diluted systems exactly at the percolation point are con
ered here.

A. Equilibration

The equilibration of the simulations will first be illustrate
by results forL532 systems obtained with differentNe and
Nm52Ne . Figure 5 shows results for the disorder averag
cluster magnetization when the segments are very shortNe
51 andNm52. At the highest temperature,b51, the two
segments give results that agree within statistical errors,
as the temperature is lowered the results begin to differ c
siderably. At still lower temperatures the results again c
verge and become statistically indistinguishable atb51024
in this case. The good agreement here can be explaine
the fact that low-temperature simulations in theb-doubling
procedure start from configurations that already have a ra
long history at higher temperatures, which in combinati
with the trick of doubling the SSE operator sequence p
duces almost equilibrated initial configurations when the s
tem is nearly in its ground state.

Figure 6 shows how results at an intermediate and
temperature depend on the number of MC steps in the
collection segments. Atb532, the first data segment con

g-
rse

id

FIG. 5. Test results for the convergence of the sublattice m
netization of the largest cluster on 32332 lattices atp* . The num-
ber of MC steps for averaging data for each point wasNm52. The
open and solid circles correspond to the first and second data
lection segment, respectively. The results are averages over4

disorder realizations.
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verges afterNm*16, whereas the second segment appear
be converged already forNm54. At b52048, the results for
the two segments agree statistically for allNm , and the av-
erages show no discernible dependence onNm . Hence, an
agreement between the two segments indeed appears to
good indication of sufficient equilibration. Since the conv
gence is the slowest at intermediate temperatures, a very
conservative check of low-temperature equilibration sho
be that the two segments agree at all temperatures. Fo
final result, the segments can then be averaged in orde
improve the statistics. However, this typically leads only to
modest reduction of the error bars~i.e., significantly less than
the reduction byA2 expected for independent data! since the
statistical errors are dominated by fluctuations between
disorder realizations. The fact that sample-to-sample fluc
tions dominate can also be seen clearly in Fig. 6, where
error bars decrease much slower than byA2 for successively
higherk.

The results presented here indicate that even extrem
short simulations give results void of nonequilibration effe
at low temperatures. However, longer runs were used to
duce some of the data presented in this paper. The m
reason for this is that although unbiased disorder average
the form ~17! can be obtained with short simulations, lar
statistical errors in the individual expectation values can
problematic when considering nonlinear functions of the
pectation values~such as their typical values! or their com-
plete statistical distributions. One then has to demand
the statistical errors of the individual expectation values

FIG. 6. Dependence of the calculated cluster magnetization
the number of MC steps in the data collection segments,Nm52k, at
two different inverse temperatures~results forL532 lattices atp* ,
averaged over 104 samples!. The open and solid circles correspon
to the first and second data collection segment, respectively.
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much smaller than the width of the distribution of the exa
expectation values. An example of how statistical errors
distort distributions is shown in Fig. 7, where histograms
the cluster magnetization are compared for six differ
simulation lengths. Both the data collection segments w
used for calculating the individual expectation values, i
the number of measurements for each realization is 2Nm .
The histograms become significantly narrower as the num
of MC steps is increased. The distribution is not complet
converged even for the longest simulation considered h
(Nm564), but the relatively small differences betweenNm
532 and 64 suggest that theNm564 result is close to the
exact distribution. Note that the first moment of the distrib
tion, i.e., the linear disorder average~17!, is the same within
statistical errors for allNm ~which was demonstrated atb
52048 in Fig. 6!.

In the calculations discussed in the following sections,Nm
between 100 and 250 was used to ensure that reliable d
butions could be obtained at the percolation point. Forp
,p* , where the full distributions are not as important,Nm
550 was typically used. Since effects of insufficient equ
bration are undetectable even in much shorter simulati
the results should definitely be void of any bias of this n
ture.

B. Ground-state convergence

Already the results shown in Fig. 5 demonstrate that v
low temperatures are required in order to converge the s
lattice magnetization to its ground-state value. ForL532, a
b value higher than 2000 is needed to eliminate tempera
effects within the statistical errors. In order to more acc
rately study remaining effects at low temperatures it is use
to calculate ratioŝmc

2(b i)&/^mc
2(b j )& of the squared cluste

n

FIG. 7. Distribution of the cluster magnetization of 32332 lat-
tices atp* for different lengths of the data collection segments. T
inverse temperatureb54096, and 104 disorder realizations were
used for eachNm .
8-7
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ANDERS W. SANDVIK PHYSICAL REVIEW B66, 024418 ~2002!
magnetization at different temperatures. The relative stat
cal errors are smaller in the ratios than in the absolute val
since the sample-to-sample fluctuations cancel when
same realizations are used at all temperatures. Figu
shows results for systems withL58, 16, 32 and 64, which
were simulated withb up tobmax52563L. The ratios, with
the data at the respectivebmax in the denominator, were ana
lyzed using the bootstrap method37 in order to obtain accu-
rate estimates of the error bars. ForL58 and L516, the
results atbmax and bmax/2 do not differ within statistical
errors and hence the result atbmax should not have any tem
perature effects left at this precision level. TheL532 and 64
results are not completely converged to the ground st
however. The exponential low-temperature convergence s
for all the system sizes indicates that the remaining temp
ture effects atbmax should only lead to an error that i
smaller than the difference between the ratios atbmax and
bmax/2. Hence, the underestimation of the sublattice mag
tization should be less than 0.2% forL532 and less than
0.5% for L564. These upper bounds for the systematic
rors are of the same magnitude as the respective statis
errors in^mc

2& ~which unlike the ratios also include contribu
tions from sample-to-sample fluctuations!. The remaining
small temperature effects should therefore not substant
affect the finite-size scaling of the sublattice magnetizat
~to be discussed in the following section!.

Figure 9 shows magnetization ratios for fixed-Nc clusters,
with bmax5323Nc . In this case there are small but dete
able differences between the results atbmax and bmax/2 for
all system sizes, except forNc51024 where the statistica
error is larger than the difference. Again, the maximum re
tive systematic errors remaining atbmax are similar in mag-
nitude to the statistical fluctuations in̂mc

2& and can only
have very minor effects on the finite-size scaling.

FIG. 8. Cluster magnetization ratios vs inverse temperature
L3L lattices. The number of samples used for averaging the res
was 88 000, 21 000, 9000, and 2500, forL58, 16, 32, and 64,
respectively.
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The b needed for ground-state convergence decrea
rapidly away from the percolation point, and therefore t
p,p* results forL3L lattices discussed in Secs. V and V
are completely converged even forL564.

IV. LONG-RANGE ORDER IN PERCOLATING CLUSTERS

In this section, the ground-state sublattice magnetiza
of the percolating cluster is investigated in detail. If it r
mains finite in the thermodynamic limit, the order-disord
transition driven by dilution must necessarily occur exac
at the classical percolation density. To see this, consider
sublattice magnetization~9! of the dilutedL3L lattice. Its
disorder average can be written as a sum of contributi
from all the clustersk on the lattices as

^m2&5
1

N2 K (
k

Nk
2mk

2L . ~19!

In the thermodynamic limit, only infinite clusters contribu
to this sum, and therefore one only needs to consider
behavior of the cluster magnetizationsmk

2 for large clusters.
If there is long-range order, it is natural to assume that
sublattice magnetization is self-averaging~a fact that will
also be demonstrated explicitly below!. The individualmk

2

values can then be replaced by the infinite-size extrapola
average for the largest cluster, i.e.,^mc

2&, which gives

^m2&5
^mc

2&
N2 K (

k
Nk

2L ~L→`!. ~20!

This expression is identical to the order parameter of a c
sical diluted system, up to the factor^mc

2& which is reduced
by quantum fluctuations from its classical value 1/4~for an
Ising model with Si

z561/2). If ^mc
2& remains finite atp

5p* @which is the condition for Eq.~20! to remain valid for

r
lts

FIG. 9. Magnetization ratios vs inverse temperature for fixed-Nc

clusters. The number of samples was 43 000, 15 000, 10 000, 3
and 1100, forNc564,128,256,512, and 1024, respectively.
8-8
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CLASSICAL PERCOLATION TRANSITION IN THE . . . PHYSICAL REVIEW B 66, 024418 ~2002!
all p<p* # the only singular behavior is in the classical e
pectation value and hence the critical behavior is that of c
sical percolation.

In general, Eq.~20! holds for any dilution fractionp
,pc , wherepc in principle may be less thanp* . The cluster
magnetization̂mc

2&1/2 will here be determined at percolation
where the infinite clusters are fractal. Dilutions less than
percolation density, where the infinite clusters are two
mensional, will be studied in the following section.

A. Sublattice magnetization in site-diluted systems

At the percolation point, the average number of spins
the largest cluster on a dilutedL3L lattice scales asymptoti
cally as^Nc&;Ld, with d the fractal dimension 91/48.15 As
can be seen in Fig. 2, the full distribution of the size of t
largest cluster also scales asLd, i.e., the distribution width
also diverges asL→`. This is in sharp contrast to the situ
ation below the percolation threshold where the size dis
bution approaches ad function at a size;L2. Note, how-
ever, that the scaled distribution atp* has sharp cutoffs both
at the lower and upper edge, meaning that also the sma
and largest clusters grow asLd. Hence, finite-size scaling o
^mc

2& calculated on such fluctuating-Nc clusters as a function
of L is a well defined procedure for extracting the sublatt
magnetization of the infinite fractal cluster. Nevertheless,
alternative way of approaching the thermodynamic limit w
fixed-Nc clusters on the infinite lattice is also consider
here. An agreement between the two calculations will p
vide additional support to the argument19 that the percolating
cluster is ordered.

In the pure 2D Heisenberg model the leading s
correction38 to m2 is ;N21/2, which can be seen clearly i
numerical data.32,23In analogy with this, as a scaling hypoth
esis at percolation, the following leading size corrections
tested here for the largest cluster onL3L lattices and fixed-
Nc clusters, respectively:

^mc
2&L5^mc

2&`1aL2d/2, ~21!

^mc
2&Nc

5^mc
2&`1bNc

21/2. ~22!

Figure 10 shows results forL up to 64 andNc up to 1024.
The data are fully consistent with the scaling ansatz,
though in order to fit all the points a polynomial cubic
L2d/2 has to be used in both cases~a cubic polynomial is
needed also to fit high-accuracy data for the clean
Heisenberg model23!. The infinite-size extrapolated value
for ^mc

2& from the two fits agree very well~within statistical
errors!. The sublattice magnetization is in fact quite larg
^mc&50.150(2), which is almost precisely half of the valu
m50.307 for the clean 2D system.32,23

It should be stressed that it is not critical whether or n
the scaling ansatz assumed here to carry out the extrapol
of the sublattice magnetization is strictly correct or not. U
less the behavior would change dramatically for even lar
systems, a slightly different finite-size correction would n
significantly affect the extrapolated̂mc

2&. One could of
course argue that a crossover to a qualitatively different
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havior cannot be excluded, as indeed has been done.20 No
plausible physical reason for such a crossover has been
sented, however. With two different boundary conditions
the clusters giving the same result for the infinite-size
trapolated sublattice magnetization, the most natural scen
must be that the percolating cluster is ordered.

In a disordered system the order parameter is not cons
over the whole system, but depends locally on the struc
of the lattice. One would, however, expect self-averagi
i.e., the sublattice magnetization averaged over different
gions of an infinite cluster should be the same when the
of the regions is sufficiently large. In finite systems, se
averaging can be seen in the statistical distributions of
individual cluster magnetizations. Figure 11 shows result
the percolation point for severalL3L and fixed-Nc systems.
As discussed in Sec. III, the histograms can be expecte
be slightly broadened by the statistical fluctuations in
SSE results for the individualmc

2 values. Such effects should
however, be minor when the simulations are as long as th
used for the data shown here (Nm5100 for theL3L lattices
and 250 for the fixed-Nc clusters!. The widths of both types
of distributions decrease with increasing system size, wh
is consistent with vanishing fluctuations in the thermod
namic limit. It can also be noted that the distributions b
come more symmetric for larger systems—the weak tails
ible at the high end of the distributions for small cluste
vanish as the system grows. The behavior is hence fully c
sistent with thed-function distribution expected for a self
averaging quantity in the thermodynamic limit.

It is also interesting to study how the cluster magneti
tion depends on the shape of the cluster. A compact clust
likely to have a stronger order than one which has ma
narrow paths. A natural length scale characterizing the o
all density of the unconstrained fixed-Nc clusters is the ra-
dius of gyration,

FIG. 10. Finite-size scaling of the disorder averaged squa
cluster magnetization. The results for the largest cluster onL3L
lattices ~solid circles! are plotted vsL2d/2 and those for fixed-Nc

clusters~open circles! vs Nc
21/2. Statistical errors are much smalle

than the symbols. The curves are cubic polynomial fits.
8-9



c
tiz

st
p
n

rs

s
-

el

th

m
ice
m

nt

he
d
is

ads
m.

gy-

red
tion
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R5S 1

2Nc
2 (

i 51

Nc

(
j 51

Nc

~xi2xj !
21~yi2yj !

2D 1/2

, ~23!

where xi ,yi are the~integer! coordinates of the magneti
sites. Figure 12 shows scatter plots of the cluster magne
tion versusR for two cluster sizes. ForNc5128, one can see
that the most compact clusters, i.e., those with the smalleR,
indeed have the largest magnetizations. After an initial ra
decrease withR for the smallestR, the average magnetizatio
only decreases slowly with increasingR, however. TheNc
51024 clusters show a similar behavior. There are of cou
in principle clusters with very largeR that should have much
smaller magnetizations, but these clusters lack statistical
nificance. The weakR dependence for the statistically sig
nificant clusters is another manifestation of a strongly s
averaging sublattice magnetization.

B. Sublattice magnetization in bond-diluted systems

For the bond-diluted system only simulations ofL3L
lattices were carried out. Figure 13 shows the results for
cluster magnetization at the bond percolation point,P*
51/2, plotted in the same way as for the site-diluted syste
in Fig. 10. Also in this case the scaling to a finite sublatt
magnetization is evident, but the value of the order para
eter is smaller than in the site-diluted system;^mc&
50.088(2). The difference can be explained by the differe

FIG. 11. Distribution of the cluster magnetization ofL3L lat-
tices~top panel! and fixed-Nc clusters on the infinite lattice~bottom
panel!.
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local structures of the two types of lattices. Although t
fractal dimensiond of the cluster is the same for site an
bond percolation,39 the average number of bonds per spin
smaller in the bond-diluted case—1.121 vs 1.259. This le
to stronger quantum fluctuations in the bond-diluted syste
The infinite-size energy per bond~which reflects the ten-

FIG. 12. Individual squared magnetizations vs the radius of
ration for clusters on the infinite lattice.

FIG. 13. Finite-size scaling of the disorder averaged squa
cluster magnetization of the bond-diluted system at the percola
density. The curve is a cubic polynomial fit.
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CLASSICAL PERCOLATION TRANSITION IN THE . . . PHYSICAL REVIEW B 66, 024418 ~2002!
dency to nearest-neighbor singlet formation! is 20.3890(1)
and20.4068(2) for site and bond dilution, respectively.

It can also be noted that for a givenL the average larges
cluster on the bond-diluted lattice is'45% larger than on
the site-diluted lattice. The stronger quantum fluctuations
the larger cluster sizes imply that for givenL a lower tem-
perature has to be used to converge the bond-diluted sy
to the ground state. For the largest size studied in this c
L532, an inverse temperatureb532 768 was used.

C. Scaling of the full staggered structure factor

The previous claims of quantum criticality at the perco
tion point17,21 were primarily based on a finite-size scalin
analysis of the staggered structure factor. A log-log plot
S(p,p) calculated using SSE simulations including all t
spins of dilutedL3L lattices is shown in Fig. 14. The nu
merical values agree well with those of Ref. 17. One c
however, expect a barely discernible finite-T reduction in the
previous L548 results because the temperature usedb
51000) was not sufficiently low for complete converge
the ground state~see Fig. 8 and a related discussion in R
19!.

The scaling seen in Fig. 14 is different from the expec
classical percolation behavior. Given the results presen
above for the scaling of the cluster magnetization, the de
tion from classical behavior for this range of system size
not surprising, however. Classically, the finite-size scaling
S(p,p) is solely the result of the divergence of the size
the connected clusters withL. In the quantum-mechanica
case, there is also a factor, the sublattice magnetization o
cluster, multiplying each cluster size, i.e.,

^S~p,p!&5
1

NK (
k

Nk
2mk

2L . ~24!

FIG. 14. Finite-size scaling of the disorder averaged stagge
structure factor of the full site dilutedL3L lattice. The line has
slope 43/24, expected for classical percolation.
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The size dependence of the averagemk
2 was shown in Fig.

10. From these results it is clear that there is an effect
partially compensates for the growth of the cluster sizesNk

in Eq. ~24!, namely, mk
2 decreases with increasing clust

size. Hence, for systems where the relative size correct
to the cluster magnetization are still significant, as is the c
for all sizes that can currently be reached in numerical sim
lations, the growth ofS(p,p) with L will be slower than for
a classical system. This explains the slow convergence
wards the classical behavior that can be seen in Fig. 14
can be noted that the largest cluster completely domin
the staggered structure factor and the curve shown in Fig
changes only very little if only the largest cluster is include
i.e., Sc(p,p)'S(p,p).40

V. DILUTION DEPENDENCE OF THE SUBLATTICE
MAGNETIZATION

The doping dependence of the sublattice magnetizatio
antiferromagnetic cuprates can be measured experimen
using nuclear quadrupole resonance,m1spin resonance, and
neutron scattering.11,13 Results for the Heisenberg mod
were recently obtained using an improved spin-wave the
which, however, breaks down close to the percolation thre
old ~the critical point is unphysical, located at a hole conce
tration higher than the percolation density!.12,41 Previous
QMC calculations of the doping dependence were based
Eq. ~9!.17 Use of this formula becomes very difficult close
the percolation threshold, however, since the smallness o
sublattice magnetization there is associated with a slow c
vergence to the asymptotic regime in which finite-size sc
ing is reliable. Here a different approach will be taken, bas
on the fact that the sublattice magnetization can be dec
posed into classical and quantum-mechanical factors, wh
can be evaluated separately. This decomposition was alre
discussed in Sec. IV and was written as Eq.~20!. Here the
notationM5^m2&1/2 will be used for the disorder average
sublattice magnetization. Equation~20! can then be written
as

M ~p!5Mqm~p!Mcl~p! ~L→`!, ~25!

whereMqm is the quantum-mechanical factor

Mqm5A^mc
2&, ~26!

andMcl is the classical~geometrical! factor

Mcl5
1

N K (
k

Nk
2L 1/2

. ~27!

In the ordered regime, 0<p,p* , only the largest cluster
contributes to this sum in the thermodynamic limit. The cla
sical factor can therefore also be obtained as

Mcl5^Nc&/N. ~28!

Figure 15 shows the size convergence using the two d
nitions of the classical factor when the dilution fractionp
5p* 20.005. The single-cluster average~28! clearly con-
verges faster. It is apparent that a reliable extraction of

d
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ANDERS W. SANDVIK PHYSICAL REVIEW B66, 024418 ~2002!
quantum-mechanical sublattice magnetizationM using the
structure factor formula~9! would be impossible in this case
since not even the classical magnetization is in
asymptotic scaling regime for the range of system si
where QMC simulations can be carried out (L&100). The
quantum-mechanicalM can be expected to have an ev
worse scaling behavior, due to effects similar to those fou
for the staggered structure factor in Sec. IV C. The quantu
mechanical factorMqm can be calculated based on mu
smaller system sizes, however. It was evaluated in the
treme casep5p* in Sec. IV, and even there it is as large
50% of the value in the other extreme, i.e., the nondilu
system (p50). Hence,Mqm is only weakly dependent on th
dilution fraction, and most of thep dependence ofM, includ-
ing the singular behavior atp* , is in the classical factorMcl .

The classical magnetization is known to vanish at the p
colation threshold with the exponent 5/36,15 i.e.,

Mcl~p→p* !5Acl~p* 2p!5/36. ~29!

In the weak dilution limit, one can easily obtain the res
Mcl512p. Numerical values for 0,p<p*20.002 were
obtained here by simulations of lattice sizes as large aL
54096, using the single-cluster estimator~28!. In the ex-
ample illustrated in Fig. 15, the results for the three larg
sizes are 0.43 640(4), 0.43 636(3), and0.43 634(2)~for L
5512, 1024, and 2048, respectively! and theL52048 result
~which is based on 33105 samples! can hence be taken a
the infinite-size value ofMcl(p* 20.005). Closer to the per
colation thresholdL54096 lattices were used. Figure 1
shows results for the whole dilution range. The linear sm
p form describes the data well forp up to '0.2. The
asymptotic form~29! is well reproduced forp* 2p&0.02,
with the constantAcl'0.91. In order to have an analyti

FIG. 15. Size dependence of the classical magnetization for
tems diluted at one half percent less than the percolation den
(p5p* 20.005). The open circles correspond to the full clus
sum, Eq.~27!. The solid circles are from the average including on
the largest cluster, Eq.~28!.
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expression describingMcl in a wider region aroundp* ,
higher-order terms can be added toAcl . The following forms
will be used in combination with fits to the quantum
mechanical factor in order to obtain expressions forM both
close top50 andp5p* ,

Mcl~p&0.2!512p, ~30!

Mcl~p* 2p&0.2!5@0.910213.053~p* 2p!2

25.642~p* 2p!3#~p* 2p!5/36.

~31!

Note that it is not claimed here that the higher-order terms
the form~31! are the correct subleading terms of the critic
percolation behavior—the purpose is just to have an exp
sion that describes the data well in practice, within the sta
region.

The quantum-mechanical factor can be calculated in
same way as was already explained in the case ofp5p* in
Sec. IV, i.e., using the SSE method for the largest cluste
connected magnetic sites onL3L lattices. HereL up to 64
was used for dilution fractionsp5p* 2d, with d
50.05, 0.10, . . . , 0.35, and 0.38. SSE simulations atp50
were previously carried out forL up to 16,23 and were here
extended up toL564. Since the ground-state convergen

s-
ity
r

FIG. 16. Upper panel, classical magnetization vs dilution. T
dashed line shows the small-p form Mcl512p. Lower panel, the
magnetization divided by (p* 2p)5/36 plotted vsp* 2p. The curve
is a polynomial fit, with parameters given in Eq.~31!.
8-12
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CLASSICAL PERCOLATION TRANSITION IN THE . . . PHYSICAL REVIEW B 66, 024418 ~2002!
occurs at lowerb asd is increased, the simulations are fas
than atp* and a larger number of samples could therefore
studied. The number of samples was.104 for L564 and up
to 106 for smaller lattices. The results were extrapolated
infinite size using a leading correction;1/L ~as in the case
of the clean 2D system32!. The resultingMqm(p) is shown in
Fig. 17, along with two quadratic fits that describe the d
very well over quite wide ranges ofp. The fitted forms are

Mqm~p&0.25!50.307220.134p20.51p2, ~32!

Mqm~p*2p&0.25!50.15110.721~p*2p!20.93~p* 2p!2.

~33!

The final result for the sublattice magnetization of t
site-diluted Heisenberg model is shown in Fig. 18. The so
circles were obtained by interpolating the numerical res
for Mcl and Mqm and multiplying them according to Eq
~25!. Forms describing the results well in quite wide regio
p&0.25 andp* 2p&0.25 can be obtained by multiplyin
the corresponding expressions~30!,~32! and ~31!,~33!. The
resulting curves are also shown in the figure. The initial l
ear reductionM (p)/M (0)512B0p, where the coefficient
and its estimated error isB051.4460.05. At the percolation
threshold the leading behavior isM (p)5A* (p* 2p)5/36

with A* 50.13760.002.
In Ref. 12, the sublattice magnetization normalized by

number of magnetic sites,M 8(p)5M (p)/(12p), which is
equivalent to the quantum-mechanical factorMqm for small
p, was calculated using spin-wave theory with aT-matrix
approximation. The initial linear weak-dilution form
M 8(p)/M 8(0)512B08p, with B0850.69160.005, was
found in that approximation. The results obtained here
M (p) correspond to a slightly smaller coefficient,B0850.44
60.05. Despite this difference in initial slope, the relati

FIG. 17. The quantum-mechanical factor~cluster magnetization!
vs dilution. The curves are quadratic fits~solid for small p and
dashed for smallp* 2p) with parameters given in Eqs.~32! and
~33!, respectively.
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agreement between the full sublattice magnetization sho
in Fig. 18 and the corresponding spin-wave result is v
good up top'0.15 ~not shown here—see Fig. 10 of Re
41!. For higherp, the spin-wave result falls significantly be
low the QMC result until very close to the percolation poin
where the actualM (p) approaches zero but the spin-wa
result remains finite.41 For p<0.35, the results shown in Fig
18 agree well with those presented previously by Katoet
al.17 Their extrapolations closer to the percolation thresh
are not reliable, however, since they fitted a different, no
classical exponent to describe thep→p* behavior. The esti-
mated accuracy for theM (p) curve obtained here is bette
than 2% over the whole range of dilutions~significantly bet-
ter for p&0.1).

VI. SPIN STIFFNESS

As discussed in Sec. II B, the spin stiffnessrs can be
obtained in SSE simulations in terms of the winding numb
fluctuations, Eq.~14!. At dilution fractionsp.p* there are
no clusters wrapping around the periodicL3L lattice for
large L, and therefore the stiffness vanishes identically. E
actly at the percolation threshold the wrapping probability
a given direction is approximately 0.52,16 and the stiffness
can then be nonzero for finiteL. It should vanish in the
thermodynamic limit, however. Forp,p* the wrapping
probability approaches 1 asL→` and in view of the exis-
tence of antiferromagnetic long-range order the stiffness
then be expected to be nonzero.

For the classical diluted Heisenberg model the behavio
the stiffness~or helicity modulus! is known.25 It scales in the
same way as the conductivity of a random resistor netwo
with the conductivity exponentt of percolation.42 According
to recent simulations, the value of this exponent ist
51.310(1).43 With the long-range order present in the pe

FIG. 18. Sublattice magnetization vs site dilution~solid circles!.
The curves are parametrized forms discussed in the text. The
shows the behavior close to the percolation threshold on a m
detailed scale.
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ANDERS W. SANDVIK PHYSICAL REVIEW B66, 024418 ~2002!
colating clusters of the quantum Heisenberg model, as d
onstrated in Sec. IV, one can expect that the stiffness sh
behave as in the classical model~in analogy with the ‘‘renor-
malized classical’’ behavior of the clean 2D Heisenbe
model,1 and in view of general symmetry arguments!. Scal-
ing with the conductivity exponent will therefore be test
here. It can be noted that the elastic moduli of a dilu
classical elastic lattice also obey scaling with the conduc
ity exponent, if the force constants are isotropic.44 With
nonisotropic forces other scalings have been shown to
possible, and the critical dilution fraction above which t
rigidity vanishes can in fact be below the percolati
density.45

The elastic moduli of classical percolating lattices ha
been studied extensively using numerical methods.45,46 The
primary scaling technique used there will be employed h
as well. If the analogy with the random resistor netwo
holds, the disorder averaged stiffness at the percolation p
should scale asL2t/n,46 where n is the correlation length
exponent of percolation, which is known exactly;n54/3.15

Figure 19 shows the stiffness of the site-diluted Heisenb
model at the percolation density, multiplied byLt/n, where
t/n50.9826 was used.43 The data extrapolate to a finit
value asL→`, and hence the results are indeed consis
with the conductivity scaling. The average stiffness sho
here was calculated by including only nonzero values of
stiffness in a given lattice direction, and was averaged a
over the two equivalent directions. The simulations includ
only the largest cluster in the system. The fraction of nonz
stiffnesses is approximately 0.52 for allL, in agreement with
the known16 wrapping probability of clusters in periodic sys
tems.

Figure 20 shows the full dilution dependence of the st
ness extrapolated to infinite system size. The behavior is
most linear up top'0.15. The fitted linear formrs(p)
50.180820.62p is shown in the figure, along with an ana
lytical result containing terms up top2 obtained using a non

FIG. 19. Spin stiffness of site dilutedL3L systems multiplied
by Lt/n. The curve is a quadratic polynomial inL2d/2.
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linear s model and percolation theory in Ref. 8. Th
s-model approach gives a quantum critical point below
percolation point, and the initial falloff is also faster tha
what is seen in the QMC data. The QMC data close to
percolation point are not well described by the random re
tor network exponent, although the results at the percola
point indicate that this should be the asymptotic form asp
→p* . The critical region may be very small, however, ma
ing it difficult to observe in direct calculations forp,p* .

VII. SUMMARY AND DISCUSSION

This paper has presented a variety of quantum Mo
Carlo results showing that the order-disorder transition in
dilutedS51/2 Heisenberg model is solely driven by classic
percolation. This is a consequence of the fractal cluster
the percolation point having long-range antiferromagnetic
der. The presence of this long-range order was demonstr
by studying the largest cluster onL3L lattices, as well as
clusters of fixed sizeNc on the infinite 2D lattice. For the
infinite-size extrapolated sublattice magnetization, the sa
nonzero value was obtained for both types of clusters.
accurate calculation of the sublattice magnetizationM versus
site dilution p was made possible by taking advantage o
factoring into classical and quantum-mechanical functio
which were evaluated separately. The classical factor is id
tical to the magnetization of a classical ferromagnet, and w
calculated to high accuracy using lattice sizesL up to 4096.
It contains the critical behavior ofM (p) close to the perco-
lation pointp* . The quantum-mechanical factor is equivale
to the sublattice magnetization of the largest cluster onL
3L lattices in the limitL→`. It remains nonsingular asp
→p* and can be reliably extrapolated using relatively sm
system sizes~here usingL<64). Its infinite-size value grows

FIG. 20. Infinite-size extrapolated spin stiffness vs dilution fra
tion ~circles!. The solid line isrs(p)50.180820.62p. The dotted
curve is the scaling formrs(p* 2p);(p* 2p) t, and the dashed
curve is a nonlinears-model result~Ref. 8!.
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CLASSICAL PERCOLATION TRANSITION IN THE . . . PHYSICAL REVIEW B 66, 024418 ~2002!
only by a factor 2 betweenp5p* and p50. Approximate
analytical forms describing the numericalM (p) for all p
were also constructed. The spin stiffness at the percola
point was shown to obey the same scaling as the condu
ity of a random resistor network.

The conclusions reached in this paper differ from the n
universal quantum criticality scenario, which has been elu
dated in several recent papers.17,20,21According to this sce-
nario, the fractal clusters at the percolation point have pow
law decaying spin-spin correlations, which implies that t
scaling exponents differ from those of classical percolati
It was argued that the exponents depend on the spinSof the
magnetic sites, so that classical percolation is recovered
for S→`.17 Several types of scaling analyses have been
sented in support of this unusual behavior.17,20,21 It can be
noted, however, that only a very small number of syst
sizes were used. Temperature effects, although small,19 may
also have contributed to making the scaling appear be
than it would be for realT50 data.

The most serious problem with the finite-size scalings c
ried out in Refs.17, 20, and 21 is that even if the percolat
clusters are ordered, as they in fact are, the staggered s
ture factor cannot be expected to show the asymptotic c
sical scaling behavior for the range of system sizes used~as
shown in Fig. 14!. This is due to the strong size dependen
of the sublattice magnetization of the clusters~in contrast to
the classical case, in which the cluster magnetization take
maximum value atT50 for any system size!. The classical
scaling form is valid only for systems sufficiently large f
the relative size corrections to be small, which is the c
only for systems much larger than those that are curre
accessible to quantum Monte Carlo simulation. This probl
was circumvented here by focusing on thecluster-size
normalizedsublattice magnetization of the largest cluster
the lattice, which in combination with the known scaling
the cluster sizes completely determines the asympt
behavior of the diluted system.

In Ref. 20 it was argued that the previous data19 for the
cluster magnetization for system sizesL up to 48 are also
consistent with the quantum criticality scenario. On a log-
plot, the last few points were fitted to a straight line, and
same exponent as that previously extracted from the s
gered structure factor was obtained. The use of only a
system sizes in such a scaling is dangerous, however. I
glects the slow curvature that is evident in the data.20 With
one more system size now available (L564), as well as
increased precision for smallerL, the failure of the quantum
critical scaling can be demonstrated even more clearly. F
ure 21 shows a log-log plot of the cluster magnetizat
along with a line with a slope 0.52, which was previous
argued to describe the data.20 The L564 point does not fall
on the line, and also the smaller systems show deviat
beyond the statistical errors. A slow upward curvature aL
→` is evident. With no indication of a vanishing clust
magnetization on the linear scale in Fig. 10, the log-log p
is clearly not suitable for analyzing the data.

In earlier Monte Carlo studies of disordered Heisenb
models6,10 it was concluded that the antiferromagnetic ord
vanishes in a quantum phase transition before the clas
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percolation threshold. With the current results for mu
larger lattices at hand, it is clear that state-of-the-art simu
tions at earlier times were not able to reach sufficiently la
system sizes for observing the true asymptotic behavior.
essentially linear extrapolations used to extract the crit
point were therefore misleading. Similar work on the dis
dered half-filled Hubbard model on small lattices also ha
indicated that quantum fluctuations destroy the order be
the percolation point.47 In light of the behavior of the
Heisenberg model, it would be interesting to repeat th
calculations using larger lattice sizes. For the Hubbard mo
it is currently not possible to reach system sizes as large
for the Heisenberg model, however.

Experiments on quasi-2D cuprate antiferromagnets do
with nonmagnetic impurities have in the past been able
reach only dilution fractions&20%.11 The doping depen-
dence in this region is in reasonable agreement w
calculations.8 Recently, improved sample preparation tec
niques, involving simultaneous doping with Zn and M
have enabled studies of La2CuO4 all the way to the percola-
tion threshold.13 Neutron-scattering measurements of t
temperature dependence of the correlation length and
sublattice magnetization indicate that the order persists u
p'p* ,13 in accord with the behavior of the Heisenbe
model discussed here. It can be noted that both the subla
magnetization and the spin stiffness extracted in
experiments13 agree reasonably well with the curves e
tracted here~Figs. 18 and 20! at weak dilution but fall sig-
nificantly faster to zero as the percolation threshold is
proached. This is an indication of additional quantu
fluctuation mechanisms weakening~but not destroying! the
long-range order, with likely candidates being frustrati
next-nearest-neighbor interactions and four-spin r
exchange.48 The effects of these interactions are likely mo
pronounced in the diluted systems. Random lattice dis

FIG. 21. The cluster magnetization vs inverse system size o
log-log scale. The statistical errors are smaller than the circles.
line has a slope 0.52, which was previously argued20 to be the
quantum critical scaling exponent.
8-15



ng

s
e
e
th
an
a

s
a

m
.

d in
es,

.
and
he

e
ys-
SA

ANDERS W. SANDVIK PHYSICAL REVIEW B66, 024418 ~2002!
tions causing fluctuations in the nearest-neighbor coupli
could also play a role.

In a system exhibiting a quantum phase transition a
function of some model parameter, e.g., the Heisenb
bilayer,49 certain types of dilution can drive an order-disord
transition before the classical percolation threshold. If
dilution leads to magnetic moment formation the phase tr
sition is destroyed, however, since the moments interact
order even in the gapped phase.28 In the bilayer, dilution of
interlayer dimers~two adjacent spins on opposite layer!
does not lead to moment formation, and a quantum ph
transition can occur before the percolation threshold~as a
function of the dilution fraction or the interlayer coupling!. A
multicritical point, where the percolating cluster is quantu
critical, has recently been demonstrated in this system50
et

et

ev

W.

ev
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Quantum disordered ground states have also been foun
Heisenberg antiferromagnets on nonrandom fractal lattic
such as the Sierpin´ski gasket.51
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