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Classical percolation transition in the diluted two-dimensionalS=3; Heisenberg antiferromagnet
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The two-dimensional antiferromagnetie= 1/2 Heisenberg model with random site dilution is studied using
guantum Monte Carlo simulations. Ground-state properties of the largest connected clustet dattices,
with L up to 64, are calculated at the classical percolation threshold. In addition, clusters with a fixed number
N, of spins on an infinite lattice at the percolation density are studieN farp to 1024. The disorder averaged
sublattice magnetization per spin extrapolates to the same nonzero infinite-size value for both types of clusters.
Hence, the percolating clusters, which are fractal with dimension@#t§1/48, have antiferromagnetic long-
range order. This implies that the order-disorder transition driven by site dilution occurs exactly at the perco-
lation threshold and that the exponents are classical. The same conclusion is reached for the bond-diluted
system. The full sublattice magnetization versus site dilution curve is obtained in terms of a decomposition into
a classical geometrical factor and a factor containing all the effects of quantum fluctuations. The spin stiffness
is shown to obey the same scaling as the conductivity of a random resistor network.
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[. INTRODUCTION consequence of the fractal clusterpétbeing quantum criti-
cal (i.e., with algebraically decaying spin-spin correlation

The two-dimensional2D) Heisenberg antiferromagnet on function). This leads to nonclassical critical exponents,
a square lattice can be driven through a quantum phasahich furthermore were found to be nonuniversal, dependent
transitiort? by, e.g., introducing frustrating interactiohsr  on the spinS of the magnetic siteG@pproaching the classical
by dimerizing the latticé. It has also been believed that a values whenS—o). Although such behavior violates the
nontrivial (quantum phase transition could be achieved by standard notions of universality, it cannot be completely ex-
diluting the system, i.e., by randomly removing eithercluded for random systenmi&.However, in another recent
sites° or bonds?1? The site dilution problem is of direct study the spin correlations of the percolating 2D Heisenberg
relevance in the context of antiferromagnetic layered cumodel with S=1/2 were analyzed in greater detHillt was
prates doped with nonmagnetic impuritiés™® Diluted  confirmed thatp,=p*, but, in conflict with the quantum
Heisenberg models are also of more general interest, as sysiticality scenarid,’?%?!strong evidence was presented of a
tems in which the combined effects of disorder and quantuntransition driven solely by percolation. The exponents should
fluctuations can be studied with a variety of analytical andthen be identical to those of classical percolation forsall
numerical methods. The single impurity problem has been This paper presents details of the QMC studies high-
studied extensively and is now rather well understdtBlys-  lighted in Ref. 19 and introduces further evidence that the
tems with a finite concentration of impurities are much moreorder-disorder transition in the diluted 2D Heisenberg model
difficult to treat, both analytically and numerically. The loca- indeed occurs exactly at* and is classical. The stochastic
tion and nature of the phase transition driven by dilution isseries expansiofSSB QMC method? ?*is used to study
therefore still controversial. the ground state of both site- and bond-diluted systems at

An early quantum Monte Carl@MC) study of the tem-  their respective percolation points. Site-diluted systems are
perature dependence of the correlation length gave a bouralso studied for the whole range of hole concentratipns
p.>0.2 for the critical fraction of removed sites above which <p*. Particular emphasis is put on the importance of care-
the long-range order vanishes in the 2D Heisenberg ntodelfully controlling potential sources of systematic errors in the
QMC calculations in the ground state indicateg~0.35°  simulations. In studies of disordered systems these issues are
Various analytical treatments have given resultsgprang-  much more serious than for clean systems, because of the
ing from 0.07 to 0.30:% These estimates for the critical hole necessity to carry out a large number of relatively short
concentration are below the classical percolation thresholdimulations for different sampleg# order to obtain accurate
p* ~0.4071%1® and hence the phase transition would bedisorder averagesProcedures developed to accelerate the
caused by quantum fluctuations. A critical hole density muckequilibration, and to detect possible remaining effects of in-
smaller than the percolation density was also found in thesufficient equilibration and finite temperature, are discussed
bond-diluted Heisenberg modet® here and constitute an important part of the paper.

An unusual type of quantum phase transition in the site  The main physics questions addressed and results ob-
diluted system was recently claimed by Kaball’ They tained are summarized as follows. At the percolation point,
carried out QMC simulations of larger lattices at lower tem-the infinite clusters on a 2D lattice have a fractal dimension-
peratures than in previous works and found evidence of thality, d=91/481° An antiferromagnet at this special point
critical dilution coinciding with the classical percolation could in principle be either classically criticif there is
point, p.= p*. In spite of this, they argued that the transition long-range order on the fractal clustgerguantum critical
is a nontrivial quantum phase transition, which would be a(with power-law decaying spin-spin correlation function on
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the clustery or quantum disordere@ith exponentially de- cases, the Hamiltonian can be written in the form
caying correlations on the clustgrin the last of these cases,

the phase transition would occur at a dilution fraction less N
than the percolation density, whereas it coincides with the _ )
percolation point in the other two cases. In order to deter- H Jbzl S S @

mine which of the three qualitatively different ground states
is realized in the percolating cluster of the standard Heisen;,

berg model, the sublattice magnetization is calculated for thg-' hereb is a bond index corresponding to two interacting
largest cluster orL XL lattices at the percolation density, earest-neighbor spini¢b),j (b) andNj, is the total number

with L up to 64. In addition, clusters of fixed si2e without of bondg on the lattice. On a site-diluted lattice a fraclpnn
boundaR/ imposed shape constraifits., on anzi?]finite 2D of .the sites are gmpt(holes) and the rest are occup|eq by
lattice) are studied foilN, up to 1024. The sublattice magne- SpIns. Bonds exist .between. all occgpled nearest-lje|ghbor
tization is averaged over several thousand samples and eRiies. On a bond-dﬂuted Iatt]ce all snes'z_;\re occupied and
trapolated to infinite size. The same nonzero value is ob€arest neighbors interact with a probabilityNote that a
tained for both types of clusters, showing consistently thafliluted lattice typically contains isolatgéree) spins that are
they are long-range ordered. Self-averaging is demonstratdPt interacting with any other spins. They have to be speci-
by studying sample-to-sample distributions of the sublatticdied in addition to the list of bonds (b),j(b)} in the Hamil-
magnetization. The existence of long-range order on the pefonian(1).
colating clusters implies that the order-disorder transition

driven by dilution occurs exactly at the percolation threshold

and that the critical exponents are classical. The same quali-

tative behavior is found for site and bond dilution, but the For lattices withN=L XL sites and periodic boundary
long-range order is substantially weaker in the bond-dilutectonditions, random magnetic configuratiofsamples are
system. generated by filling each site with probability-Jp. The ac-
~In order to reliably calculate the experimentally interest-tual number of magnetic sites is hence not fixed, but the
ing sublattice magnetizatiod as a function of the site dilu-  fiyctuations in the density decrease ak.IThe percolation

tion fractionp for all 0<p<p*, a decomposition oM(p)  densityp=p* is of special relevance. According to the most
into a classical and a quantum-mechanical factor is used. The,cent simulatiori® p* =0.407 25379(13). Here the value

classical factor, which contains the singular behaviop at
=p*, can be easily evaluated by classical Monte Carlo simu
lations. The critical exponent governing its asymptagpic

A. Diluted lattices

p* =0.407 2538 will be used. The largest cluster of con-
hected magnetic sites is of particular interest and its proper-
" . c _ ties will be studied separately from those of the full lattice.
—p* form is known exactly: The quantum-mechanical fac- The number of spins belonging to the largest cluster is de-
tor is calculated using QMC simulations of the largest cluster, a4 byN,. At p=p*, in the limit L, this cluster is

onL XL lattices. It is only weakly dependent on the dilution. fractal, with the fractal dimensiod known rigorously to be
The wholeM(p) curve is determined to an accuracy of a few 4 91/4815 For largeL the average/N)~L¢, and N, is

percent. _ therefore typically considerably smaller than the total num-
The spin stiffness is also calculag%d. Based on known réper of gpins on the lattice. One can therefore reach larger
sults for the classical Heisenberg modeind the long-range ¢jster sizes in the QMC simulations by removing the spins

order_found here in the percolating clusters, it is argued t'h_ at do not belong to the largest cluster. This will be done

the stiffness should obey the same scaling as the conductiViyere in order to study the clusters foras large as 64. An

of a random resistor network at and close to the percolatiogyample of a diluted lattice and its largest cluster is shown in

threshold. The numerical results are fully consistent with thq:ig_ 1.

known conductivity exponent. _ , The largest cluster on a lattice pt=p* exhibits strong
The outline of the rest of the paper is the following. In gj;e fiyctuations, as shown in Fig. 2. As an alternative to

Sec. Il the various types of diluted Heisenberg lattices ar,,4aching the infinite fractal lattice as a functiorLafith

defined, and the application of the SSE simulation algor'thn}luctuating N., clusters with fixedN. and shapes not re-

to these systems is discussed. The procedures developed Qficted by lattice boundaries will also be studied. Such clus-
controlling potential systematic errors arising from insuffi- %

) J P - ; ers are constructed starting from an infinite 2D lattice with
cient equilibration and finite temperature are also introduce nly a single filled site. The four neighbors of this site are

here. Simu_lation data illustrating the convergence critgria arflled at random with probability + p*. In the next step the
presented in Sec. lll. In Sec. IV the sublattice magnetization,qjghpors of those sites that were filled are in turn filled with
of percolating clusters is studied, both for site- and bond- robability 1— p*, taking into account that sites that were
diluted systems. In Sec. V the full sublattice magnetizatio reviously visited should not be visited again. This proce-
versus site-dilution curve is calculated. Results for the sp@ ure is repeated until no new sites can be filled that are
stiffness are presented in Sec. VI. The paper concludes Witiynnected to the cluster, i.e., the nearest neighbors of all sites
a summary and discussion in Sec. VII. in the cluster have already been visited. If the cluster is com-
pleted before it reaches the desired sitg or if the size
exceedd\., the cluster building is restarted. The process is
The antiferromagneti&= 1/2 Heisenberg model on sev- repeated until a cluster is completed exactly at the Bize
eral types of random 2D lattices will be considered. In allThis method of constructing fixed-size clusters becomes very

II. MODELS AND METHODS
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FIG. 1. A 64X 64 lattice randomly diluted gb=p*. The solid
circles indicate magnetic sites belonging to the largest connecteg
cluster (note that periodic boundary conditions are appliethe
other magnetic sites are shown as open circles.

FIG. 3. A cluster withN.= 1024 sites constructed on an infinite
D lattice at the percolation density.

B. Quantum Monte Carlo algorithm

The SSE approach to QMC simulation of lattice motfels
has been discussed in detail in previous papers. Its applica-
tion to the Heisenberg model is discussed in, e.g., Refs. 23,
24, and 26. Its effectiveness for various ordered and disor-

In the case of bond dilution, the percolation point is ex-qereq systems has recently been documented by several
actly p*=1/2> For LXL lattices this probability can be groups?’3°Here only a very brief summary will be given,

realized for anyL and therefore random lattices with exactly jn order to facilitate the subsequent discussion of procedures
half of the bonds removed will be considered in CalCUlation%evek)ped for efficient equi”bration and ground state conver-
at the percolation threshold. gence for disordered systems.
In order to apply the SSE method to the Heisenberg
model, the Hamiltonianl), with J=1 hereafter, is first writ-

time consuming for largeN., but it works well for sizes
N.=<1024 considered here. An example of this type of clus
ter is shown in Fig. 3.

ten as
Np
40 H=—2 [Hip=Hapl, @
0Ff ] b=1
where the pair interaction has been divided into terms
30 . 1
Hip=7~ S (6)Si(b) - (3
2’
&~ 1 + o - ot
20y T Hab=51Si0)Si0)+ SimySiwy ] (4)
which are diagonal and off diagonal, respectively, in the ba-
10k | sis{|a)}={|S{,S5, .. . .S} used in the simulations. A con-
stant has been added to the diagonal part, and as a result all
nonvanishing matrix elements equal 1/2 and correspond to
operations on antiparallel spins.
0.0 . . ' ot The SSE algorithm is based on importance sampling of

0.0 0.2 0.4 0.6 0.8 1.0
N

FIG. 2. Distribution of the size of the largest cluster on periodic

the terms of the partition functioA=Tr{e #"} written in a
. - n M _ |

LXL lattices forL =16, 32, and 64. The probabilip(N,) of clus- -3 B (M—n)!

ter sizeN, is plotted vsN./LY, showing scaling with the fractal A s M! @

truncated Taylor expansion form,
M
I1 Ha b, > (5)
dimensiond=91/48. Note the structure atC/Ld%O.38, which cor- o

responds to lattices where instead of one dominant large clustethe summation symbol,, refers to a sequence dfl
there are two of approximately half the size. operator-index pairs,
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Sw=[a1,b1],[az,b5], ... [ay,by], (6)  probability 1/2. Further details of the sampling procedures
have been described in Refs. 24 and 26.

) In the computer, an operatpa,b] can be represented by
wherea; {1,2,bie{1, ... Ny}, corresponding to the op- 4 single four-byte integer. In addition, in the cluster update
eratorsH,, p, in Egs.(3) and(4), or [a;,bi]=[0,0], corre-  four integers are needed to store each operator elem&g in
sponding to an identity operatéf,=I. This new operator with their pointers to other elements in the fétThe total
has been introduced in order for the summation oveBgll memory requirement is thus &M bytes®! plus a few ar-
in Eq. (5) to imply summation of the Taylor expansion of rays the sizes of which scale linearly with the system slze
e " up to orderM. The order of a given term corresponds The number of operations needed for carrying out one MC
to the number of nofi0,0] elements inS,,, which is de- step scales aWl, i.e., is proportional tdNg.
noted byn in Eq. (5). It has been assumed that the lattice is  Observables are typically measured after every MC step
bipartite. All the signs arising from the off-diagonal opera- (it is often practical to do the calculations in combination
torsH,p in EQ. (2) then cancel in the nonvanishing terms of with the single-operator updateEstimators for various ex-

Eqg. (5) and the expansion is hence positive definite. Thepectation values of interest in the context of the Heisenberg
cutoff M can be easily adjusted so thamnever reache#/ model have been discussed in Ref. 23. In the present work,
during the simulation. The truncation then does not constithe most important quantity is the staggered structure factor,
tute an approximation, and SSE simulation results are thudefined on the wholé. XL lattice as(for a given disorder
exact to within statistical errors. As will be explained further realization, withS*=0 on the nonmagnetic sites
below, M has to be chosen proportional k3. . N )

For the sampling of the termsx(S,,) an efficient algo- .
rithm with three basic updates has been developed. The first S, )= N< ;1 (= 1)X'+y'siz) > ’ @)
update involves only diagonal operators. The sequ&jces _
scanned fromi=1 to M, and for each elemefiy ,b;] with .an.d.on thg largest cluste® (or the single cluster on the
a,=0 ora;=1 a substitutiofi0,0]~[1,b;] is attempted. The infinite lattice),
Metropolis acceptance probability can be easily calculated 1 2
from Eq. (5), taking into account also that an update in the S(m, )= _< > (_1)Xi+yi5|2) > (8)
— direction is allowed only if the spins at the tentative bond Ne\lise
bj are antiparallel after operation with the previdusl op-  Disorder averaged sublattice magnetizations are defined in
erators. An accepted single-operator update changes the &¢rms of the structure factors according to
pansion powen in Eq. (5) by +1.

The second update is a more complicated cluster-type up- (m?)=(3S(m,m)/N), ©)
date which operates at fixadand simultaneously changes 5
the operator-type index of several elemefits The set{i} (Mg) =(3S( 7, m)/Nc), (10)

forms an “operator loop,” the size of which can be very \here, in the standard wajthe factor 3 accounts for rota-
large. For each the substitutiorf 1,b;]<[2,0;] can be car-  tjona| invariance in spin space. The order parametede-

ried out without changing the configuration weight. Thefined on a cluster will hereafter be referred to as the cluster
whole sequencBy can be uniquely decomposed into a num-magnetization.

ber of operator loops, which can be updated independently of The gpin stiffness will also be discussed. For the nonran-
each other with probability 1/2. Details of this operator-loopgom 2D Heisenberg model with periodic boundary condi-

update are discussed in Ref. 24. tions it is defined a8
Spins in the statéa) that are not acted upon by any
operator inSy, are flipped with probability 1/2. Apart from 3 1 #%Eo(o)
isolated spins on a diluted lattice, such free spins appear ps:ifZqur’ (12)

frequently only at high temperatures. ) ) , . .
With the three updates described above—single operatd¥€ré¢ is a twist under which the interaction on all bonds
(or diagonal, operator loop, and spin flip—the SSE method N ONé lattice direction is modified according to
is. cqmpletely grand canonical, i.e., all magnetization and S-S—S-R($)S, (12)
winding number sectors are sampled. In systems with no _ ] ) )
isolated spins, the spin flip is strictly not needed, but it is stillWhereR is the matrix rotating the three-component spin vec-
useful at high temperatures. tor S; by an anglep around the spirz-axis. The stiffness can
The simulation is started with an arbitrary sthi¢ and a  be expressed in terms of the winding number of the SSE
short index sequence containing ofi;0] elementganyM  configurations. The winding numb&,, a=x.y, is the net
will do—in the work discussed hefd = N,/4 was typically number of times spin currents wrap around the system in the
used. M is adjusted during the equilibration of the simula- lattice directiona, i.e.,
tion, so that it always exceeds the maximameachedby, W =(NR— N")/L (13)
e.g., 20%, and is thereafter kept constant. A Monte Carlo a a armm
step (MC step consists of a full sweep of single-operator whereNE and Ng are the number of events in the propaga-
updates followed by construction and updates of all operatotion with the SSE operator sequengg in which spin is
loops. After this, free spins in the state) are flipped with  transported to the “left” and “right” along thea direction.
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The winding numbers hence take integer valueshormally have to be estimated using only a small subset of

0,£1,=2, .... Thestiffness is given by all Ny disorder realizations. In addition, the individual ex-
pectation valuegA); are not evaluated exactly but are asso-
Ps=§<W§>/B (14) ciated with statistical errors. TypicalA); is a simple op-
2 1

erator expectation valugsuch as the staggered structure

which can be averaged over the two directiansx,y. factor (7) or (8)] \_/vhich has an estimator that is I.inearlly av-
For random systems the situation is complicated by th&raged over the importance sampled QMC configurations. In
fact that the stiffness can vary locally, whereas the windingor'”c'ple’ the most efficient way to estimate the _dlsorder av-

number estimatof14) is a global quantity characterizing the €r2g€(17) would then be to generate only a single QMC
rigidity of the system as a wholé.e., the energy increase configuration for each randomly selected disorder realiza-

due to changed boundary conditiarishis global stiffness is tion, so that each term contains both sources of fluctuations
still an important quantity, however. One can easily prove(S@mple-to-sample and QMC statisticalhe final statistical

that it is equivalent to an average stiffness. In a clean systen?,”or can be estimated in the standard way using data binning
the definition(11) can clearly be replaced by a definition in order to approach a Gaussian distribution from which the

where the twist(12) is only applied on a single boundary standard deviation of the average can be calculatédw-

column (which hasL interacting pairs ever, in practice this approach is not feasible since the simu-
lations have to be properly equilibrated for each disorder

3 1 GEq(D) realization before the QMC configurations can be used for

PsT2 127 292 - (15  averages. If a large number of MC steps are needed for

equilibration it would clearly not be optimal to make use of
The boundary twist here is related to the twist in the firstonly a single configuration. An accurate estimation of the
definition (11) by ®=L¢. If this definition is used for a optimum number of configurations would require detailed
diluted system one still obtains the same expresgldnin  knowledge of equilibration times, autocorrelation times, and
terms of the squared winding number, regardless of whichhe statistical distributions of the estimators. In practice, it is
column is taken as the boundary to whibhis applied. This  rarely worthwhile to investigate these in detéilwould re-
is because the spin currents wrapping around the systeguire an effort rivaling that of the actual simulationg any
have to go through all columns. The number of interacting case, the simulations should be relatively short so that many
pairs on the boundary column can depend on which oLthe disorder realizations can be studied. Furthermore, the simu-
possible columns is used, however, and the currents afations should not be dominated by equilibration. The num-
therefore distributed unequally among the bonds althougher of MC steps used for sampling expectation values should
the same net current passes through all columns. This refleciiserefore be at least of the same order as the number of steps
the local variation in the rigidity of individual bonds. The used for equilibration.
stiffness defined according to the equivalent definiti@is, Another important issue is temperature. In order to study
(15, and (14) is hence the average over all bonds of anground-state properties with the SSE method, a sufficiently
arbitrary column. In the case that there is no cluster wrappingigh inverse temperatug@ must be used. In diluted systems,
around the system in either theor y direction, the corre- especially close to the percolation point, different parts of a
sponding winding number is always zero and the stiffness inarge cluster may be connected only weakly, through essen-
that direction vanishes. Recent discussions of the stiffness affally one-dimensional narrow pathseveral examples of
disordered quantum systems can also be found in Refs. 3ghich can be seen in Figs. 1 anyl Such “weak links” can

and 35. lead to correlations that develop only at very low tempera-
The bond energy, including the constant added in(Bg.  tures. One can therefore expect that in order to reach the
is obtained in SSE simulations according to ground state much higheg values have to be used than for
undepleted 2D systems.
Ep=—(HiptHap)=—(np)/B, (16) Remaining temperature effects and insufficient equilibra-
wheren, is the number of elemenfd b] and[2b] in S,.  tion are two potential sources of systematic errors in the

Hence, the average expansion poWe)‘:lE|B, whereE is simulations, and these have to be controlled very carefully.
the total internal energy. One can also show that the heakthe following scheme has been developed in order to check
capacity C=(n?)—(n)2—(n), and hence the width of the for both equilibration and temperature effects. For each dis-
distribution ofn is ~(n)*? at low temperatures. This is the order realization, simulations are carried out at inverse tem-
reason why the Taylor expansion can be truncatediat Peraturess,=2" n=0,1,... Nma. Starting withn=0 (8
~Ng. =1), a numberN, of MC steps are first carried out for
equilibration. Expectation values are sampled during the fol-
lowing N,,=2N, steps. At the same temperatui, addi-

) ) tional steps are carried out during which no expectation val-

C. Convergence issues

expectation values of the form second segment df,+ N, steps is a direct continuation of
Ng the first one, so that the effective number of equilibration
A)y= i 2 A) 1 steps for the second sampling segment is four times that for
(A 2, (A 17 : .
Nr =1 the first one. A disagreement between the results of the two
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8 - N, steps
B
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! > 5 0.02
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FIG. 4. lllustration of the3-doubling scheme used for equilibra-
tion and convergence to the ground state. The horizontal line seg 0.01
ments represent MC steps carried out at the corresponding invers
temperature@=2". No data are collected during tiN, steps cor-
responding to the unfilled segments. Averages over the two solid
segments of lengtN,, are stored separately for eagh 0.00

1 10 100 1000

p

sampling segments then implies that the simulation at the

level of the first segment is not sufficiently equilibrated, and FIG. 5. Test results for the convergence of the sublattice mag-

the second segment may also be affected. If the results agregtization of the largest cluster on832 lattices ap*. The num-

one can conclude that at least the second segment sholgr of MC steps for averaging data for each point Was=2. The

have equilibration errors that are smaller than the statisticgtPen and solid circles correspond to the first and second data col-

errors (although this should also be verified by comparing'e_Ct'()n segm_ent', respectively. The results are averages over 10

simulations with differenN,,, which will be done beloy disorder realizations.

Since the fluctuations of the results of short simulations are

large, the agreement between the two segments can of course

be checked only in averages over large numbers of simula- In this section, test results for equilibration and ground-

tions of different disorder realizations. state convergence according to tedoubling procedures
The B-doubling scheme is illustrated in Fig. 4. Note that described in the preceding section are presented. Dilution

simulations at subsequently lower temperatures can bfactions close to the percolation point can be expected to be

started using the last SSE configuration generated at the preghe worst with respect to sloy@ convergence. This is be-

vious temperature. An equilibrated configuration@will  cause fop<p* the largest clusters are two dimensional and

have an SSE sequence lenplhapproximately twice that in  more compact than g* (i.e., they have less “weak links?”

the previous run gB/2. Therefore, in order to further accel- and forp>p* the cluster size does not diverge withSite-

erate the equilibration at low temperatures, the starting sediluted systems exactly at the percolation point are consid-

quence used is the previo@g doubled, i.e., ered here.

IIl. CONVERGENCE TESTS

Sm=[as,b1], ... [am.bullam.bul, - .. [as,b1]. A. Equilibration
(18) The equilibration of the simulations will first be illustrated
by results forL =32 systems obtained with differeNt, and
Especially at low temperatures, where the system is almosy,,=2N,. Figure 5 shows results for the disorder averaged
converged to the ground state, the doubled SSE configuratiasluster magnetization when the segments are very sNart,
should be very nearly distributed according to the equilib-=1 andN,,=2. At the highest temperatur@=1, the two
rium distribution at the neyg. With the reversed order of the segments give results that agree within statistical errors, but
second set oM operators in Eq(18), the initial Sy, always as the temperature is lowered the results begin to differ con-
has zero winding number, which can be expetied be a  siderably. At still lower temperatures the results again con-
slightly better starting point than the alternative one withverge and become statistically indistinguishablggat1024
twice the winding numbefin practice, the difference in per- in this case. The good agreement here can be explained by
formance is minor the fact that low-temperature simulations in tAedoubling
Expectation values calculated for all,,,+ 1 values ofg procedure start from configurations that already have a rather
are stored on disk, so that the convergence to the grounidng history at higher temperatures, which in combination
state can be checked. Ideally, the numbergotioublings  with the trick of doubling the SSE operator sequence pro-
should be large enough that there are no statistically signifiduces almost equilibrated initial configurations when the sys-
cant differences between the results ), =2""xand 8  tem is nearly in its ground state.
=2"ma ! Since the asymptotic convergence is exponential, Figure 6 shows how results at an intermediate and low
the results a8, Should then have no detectable tempera-temperature depend on the number of MC steps in the data
ture effects at the level of the statistical errors. collection segments. AB=32, the first data segment con-
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FIG. 7. Distribution of the cluster magnetization of>332 lat-
0.0140 ‘ ‘ . ‘ . tices atp* for different lengths of the data collection segments. The
1 2 3 4 5 6 inverse temperatur@=4096, and 19 disorder realizations were
k

used for eaciN,,.

FIG. 6. Dependence of the calculated cluster magnetization on . o
the number of MC steps in the data collection segméts= 2%, at ~ much smaller than the width of the distribution of the exact

two different inverse temperaturéesults forL =32 lattices ap*,  expectation values. An example of how statistical errors can
averaged over T0samples The open and solid circles correspond distort distributions is shown in Fig. 7, where histograms of
to the first and second data collection segment, respectively. the cluster magnetization are compared for six different
simulation lengths. Both the data collection segments were
verges afteN,;= 16, whereas the second segment appears tased for calculating the individual expectation values, i.e.,
be converged already fod,,=4. At 8=2048, the results for the number of measurements for each realizationNg, 2
the two segments agree statistically for ld}},, and the av- The histograms become significantly narrower as the number
erages show no discernible dependenceNgn Hence, an  of MC steps is increased. The distribution is not completely
agreement between the two segments indeed appears to beanverged even for the longest simulation considered here
good indication of sufficient equilibration. Since the conver-(N,,=64), but the relatively small differences betwellp,
gence is the slowest at intermediate temperatures, a very saf32 and 64 suggest that thé,=64 result is close to the
conservative check of low-temperature equilibration shouldexact distribution. Note that the first moment of the distribu-
be that the two segments agree at all temperatures. For thien, i.e., the linear disorder averag¢fg?), is the same within
final result, the segments can then be averaged in order &atistical errors for alN,, (which was demonstrated #
improve the statistics. However, this typically leads only to a=2048 in Fig. 6.
modest reduction of the error bai., significantly less than In the calculations discussed in the following sectidws,
the reduction by/2 expected for independent dagince the  between 100 and 250 was used to ensure that reliable distri-
statistical errors are dominated by fluctuations between thbutions could be obtained at the percolation point. por
disorder realizations. The fact that sample-to-sample fluctua<p*, where the full distributions are not as important,,
tions dominate can also be seen clearly in Fig. 6, where the-50 was typically used. Since effects of insufficient equili-
error bars decrease much slower than#yfor successively bration are undetectable even in much shorter simulations
higherk. the results should definitely be void of any bias of this na-
The results presented here indicate that even extremelyre.
short simulations give results void of nonequilibration effects
at low temperatures. However, longer runs were used to pro-
duce some of the data presented in this paper. The main
reason for this is that although unbiased disorder averages of Already the results shown in Fig. 5 demonstrate that very
the form (17) can be obtained with short simulations, large low temperatures are required in order to converge the sub-
statistical errors in the individual expectation values can bdattice magnetization to its ground-state value. Eer32, a
problematic when considering nonlinear functions of the ex{8 value higher than 2000 is needed to eliminate temperature
pectation valuegsuch as their typical valug®r their com-  effects within the statistical errors. In order to more accu-
plete statistical distributions. One then has to demand thagtely study remaining effects at low temperatures it is useful
the statistical errors of the individual expectation values argo calculate ratioimﬁ(ﬁi»/(mg(ﬁj)) of the squared cluster

B. Ground-state convergence
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FIG. 8. Cluster magnetization ratios vs inverse temperature for FIG. 9. Magnetization ratios vs inverse temperature for fixed-
L X L lattices. The number of samples used for averaging the resultslusters. The number of samples was 43 000, 15 000, 10 000, 3000,
was 88000, 21000, 9000, and 2500, for8, 16, 32, and 64, and 1100, folN.=64,128,256,512, and 1024, respectively.
respectively.
The B needed for ground-state convergence decreases

magnetization at different temperatures. The relative stansurap'dly away from the percolation point, and therefore the
cal errors are smaller in the ratios than in the absolute value?< p* results forl XL lattices discussed in Secs. V and VI
since the sample-to-sample fluctuations cancel when th%re completely converged even for-64.
same realizations are used at all temperatures. Figure 8
shows results for systems with=8, 16, 32 and 64, which
were simulated withB up t0 Ba,= 256X L. The ratios, with In this section, the ground-state sublattice magnetization
the data at the respectiy&nay in the denominator, were ana- of the percolating cluster is investigated in detail. If it re-
lyzed using the bootstrap methtddn order to obtain accu- mains finite in the thermodynamic limit, the order-disorder
rate estimates of the error bars. Hor=8 andL=16, the transition driven by dilution must necessarily occur exactly
results atBnax and Bna{2 do not differ within statistical  at the classical percolation density. To see this, consider the
errors and hence the result/,, should not have any tem- suyblattice magnetizatiotd) of the dilutedL X L lattice. Its
perature effects left at this precision level. Tlhe 32 and 64 disorder average can be written as a sum of contributions
results are not completely converged to the ground statdrom all the clusterk on the lattices as
however. The exponential low-temperature convergence seen
for all the system sizes indicates that the remaining tempera- )

(M9 =< Z Ngmg ).

IV. LONG-RANGE ORDER IN PERCOLATING CLUSTERS

ture effects atBa should only lead to an error that is (19

smaller than the difference between the ratio3at, and
Bmad2. Hence, the underestimation of the sublattice magnet the thermodynamic limit, only infinite clusters contribute
tization should be less than 0.2% fbr=32 and less than to this sum, and therefore one only needs to consider the
0.5% for L=64. These upper bounds for the systematic erbehavior of the cluster magnetizatiomg for large clusters.
rors are of the same magnitude as the respective statistichithere is long-range order, it is natural to assume that the
errors in(mZ) (which unlike the ratios also include contribu- sublattice magnetization is self-averagifay fact that WI||
tions from sample-to-sample fluctuationdhe remaining also be demonstrated explicitly belpwrhe individual mk
small temperature effects should therefore not substantiallyalues can then be replaced by the infinite-size extrapolated
affect the finite-size scaling of the sublattice magnetizatioraverage for the largest cluster, i.émﬁ), which gives
(to be discussed in the following sectjon

Figure 9 shows magnetization ratios for fixed-clusters, e
with Bmax= 32X N¢. In this case there are small but detect- (m >_ Ek: N (L—o) (20
able differences between the results@at,, and Ba/2 for
all system sizes, except fdd,=1024 where the statistical This expression is identical to the order parameter of a clas-
error is larger than the dlfference Again, the maximum relasical diluted system, up to the fact(m Y which is reduced
tive systematic errors remaining At,., are similar in mag- by quantum fluctuations from its classical value Uidr an
nitude to the statistical fluctuations m?2) and can only Ising model with S*=+1/2). If (m?) remains finite atp
have very minor effects on the finite-size scaling. =p* [which is the condition for Eq(20) to remain valid for
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all p<p*] the only singular behavior is in the classical ex- ' '
pectation value and hence the critical behavior is that of clas- g 14 j
sical percolation.

In general, Eq.(20) holds for any dilution fractionp 0.12
<p., wherep, in principle may be less thgn*. The cluster 2
magnetizatiofm2)*2 will here be determined at percolation, o010 | |
where the infinite clusters are fractal. Dilutions less than the ’
percolation density, where the infinite clusters are two di- , 0.08 |
mensional, will be studied in the following section. e

\%
) T 0.06 .
A. Sublattice magnetization in site-diluted systems

At the percolation point, the average number of spinsin  ¢.04 -
the largest cluster on a dilutédX L lattice scales asymptoti-
cally as(N.)~L%, with d the fractal dimension 91/48.As 002 F l
can be seen in Fig. 2, the full distribution of the size of the
largest cluster also scales &S, i.e., the distribution width 0.00 ) ) .
also diverges ak—o. This is in sharp contrast to the situ- 70.00 0.05 0.10 0.15
ation below the percolation threshold where the size distri- 1", 1/Nc”2

bution approaches 4 function at a size~L2. Note, how- o ) _

ever, that the scaled distribution @t has sharp cutoffs both FIG. 10. F|r_1|te-_5|ze scaling of the disorder averaged squared

at the lower and upper edge, meaning that also the smalle§t!Ster magnetization. The results f?g,ghe largest clustet ari.

and largest clusters grow &€. Hence, finite-size scaling of '2tices (solid circleg are plotted vsL. " and those for fixedN,

<m2) calculated on such fluctuatirgs clusters as a function clusters(open circlegvs N, . Statlstlc_al errors are m_uch smaller
¢/ . ¢ . . __than the symbols. The curves are cubic polynomial fits.

of L is a well defined procedure for extracting the sublattice

magnetization of the infinite fractal cluster. Nevertheless, théavior cannot be excluded, as indeed has been tfoNe.

alternative way of approaching the thermodynamic limit with plausible physical reason for such a crossover has been pre-

fixed-N. clusters on the infinite lattice is also consideredsented, however. With two different boundary conditions for

here. An agreement between the two calculations will prothe clusters giving the same result for the infinite-size ex-

vide additional support to the argumé&hthat the percolating
cluster is ordered.

In the pure 2D Heisenberg model the leading size

correctiorf® to m? is ~N~2 which can be seen clearly in
numerical datd??3In analogy with this, as a scaling hypoth-
esis at percolation, the following leading size corrections ar
tested here for the largest cluster o L lattices and fixed-
N, clusters, respectively:

(mg)=(mg)..+al "2, (21

(M)n,=(m2)..+bN; 2, (22)

Figure 10 shows results fdr up to 64 andN, up to 1024.

trapolated sublattice magnetization, the most natural scenario
must be that the percolating cluster is ordered.

In a disordered system the order parameter is not constant
over the whole system, but depends locally on the structure
of the lattice. One would, however, expect self-averaging,
i.e., the sublattice magnetization averaged over different re-
gions of an infinite cluster should be the same when the size
of the regions is sufficiently large. In finite systems, self-
averaging can be seen in the statistical distributions of the
individual cluster magnetizations. Figure 11 shows results at
the percolation point for severalX L and fixedN, systems.

As discussed in Sec. lll, the histograms can be expected to
be slightly broadened by the statistical fluctuations in the
SSE results for the individuah? values. Such effects should,
however, be minor when the simulations are as long as those

The data are fully consistent with the scaling ansatz, alysed for the data shown herid {= 100 for theL X L lattices

though in order to fit all the points a polynomial cubic in
L9 has to be used in both casés cubic polynomial is

and 250 for the fixedN., clusters. The widths of both types
of distributions decrease with increasing system size, which

needed also to fit high-accuracy data for the clean 20s consistent with vanishing fluctuations in the thermody-

Heisenberg mod&). The infinite-size extrapolated values
for (m?) from the two fits agree very weflvithin statistical

namic limit. It can also be noted that the distributions be-
come more symmetric for larger systems—the weak tails vis-

errorg. The sublattice magnetization is in fact quite large,ible at the high end of the distributions for small clusters
(m¢)=0.15Q2), which is almost precisely half of the value vanish as the system grows. The behavior is hence fully con-
m=0.307 for the clean 2D systetA?? sistent with thes-function distribution expected for a self-

It should be stressed that it is not critical whether or notaveraging quantity in the thermodynamic limit.
the scaling ansatz assumed here to carry out the extrapolation It is also interesting to study how the cluster magnetiza-
of the sublattice magnetization is strictly correct or not. Un-tion depends on the shape of the cluster. A compact cluster is
less the behavior would change dramatically for even largelikely to have a stronger order than one which has many
systems, a slightly different finite-size correction would notnarrow paths. A natural length scale characterizing the over-
significantly affect the extrapolatedm?). One could of all density of the unconstrained fixedi- clusters is the ra-
course argue that a crossover to a qualitatively different bedius of gyration,
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local structures of the two types of lattices. Although the
fractal dimensiond of the cluster is the same for site and
bond percolatiorf? the average number of bonds per spin is
smaller in the bond-diluted case—1.121 vs 1.259. This leads
to stronger quantum fluctuations in the bond-diluted system.

where x; ,y; are the(intege) coordinates of the magnetic
sites. Figure 12 shows scatter plots of the cluster magnetiza-
tion versusk for two cluster sizes. FaN.= 128, one can see
that the most compact clusters, i.e., those with the smatlest
indeed have the largest magnetizations. After an initial rapid
decrease witlR for the smallesR, the average magnetization
only decreases slowly with increasifity however. TheN,
=1024 clusters show a similar behavior. There are of course
in principle clusters with very largR that should have much
smaller magnetizations, but these clusters lack statistical sig,,
nificance. The wealR dependence for the statistically sig-
nificant clusters is another manifestation of a strongly self-
averaging sublattice magnetization.

B. Sublattice magnetization in bond-diluted systems

For the bond-diluted system only simulations lo¥ L
lattices were carried out. Figure 13 shows the results for the
cluster magnetization at the bond percolation poiRt,
=1/2, plotted in the same way as for the site-diluted systems
in Fig. 10. Also in this case the scaling to a finite sublattice
magnetization is evident, but the value of the order param-
eter is smaller than in the site-diluted systeqm,)

A

Eo
\%

The infinite-size energy per bon@vhich reflects the ten-
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FIG. 13. Finite-size scaling of the disorder averaged squared

cluster magnetization of the bond-diluted system at the percolation

=0.08§2). The diference can be explained by the different density. The curve is a cubic polynomial fit.
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] The size dependence of the avera:g%was shown in Fig.

] 10. From these results it is clear that there is an effect that
partially compensates for the growth of the cluster sidgs

in Eqg. (24), namely, mﬁ decreases with increasing cluster
size. Hence, for systems where the relative size corrections
to the cluster magnetization are still significant, as is the case
for all sizes that can currently be reached in numerical simu-
lations, the growth of(, ) with L will be slower than for

a classical system. This explains the slow convergence to-
wards the classical behavior that can be seen in Fig. 14. It
can be noted that the largest cluster completely dominates
the staggered structure factor and the curve shown in Fig. 14
changes only very little if only the largest cluster is included,

{1 e, S(m7)~S(m, 7). 2

10 +

<S(m,7)>

V. DILUTION DEPENDENCE OF THE SUBLATTICE
MAGNETIZATION

100 The doping dependence of the sublattice magnetization of
L antiferromagnetic cuprates can be measured experimentally

FIG. 14. Finite-size scaling of the disorder averaged staggereHSiNg nuclear quadrupole resonangé spin resonance, and

. 13 .
structure factor of the full site dilutet!x L lattice. The line has neutron scattering™* Results for the Heisenberg model
slope 43/24, expected for classical percolation. were recently obtained using an improved spin-wave theory

which, however, breaks down close to the percolation thresh-

dency to nearest-neighbor singlet formatissm —0.3890(1)  old (the critical point is unphysical, located at a hole concen-
and —0.4068(2) for site and bond dilution, respectively.  tration higher than the percolation densjty*** Previous

It can also be noted that for a givénthe average largest QMC calculations of the doping dependence were based on
cluster on the bond-diluted lattice is45% larger than on Ed.(9)."" Use of this formula becomes very difficult close to
the site-diluted lattice. The stronger quantum fluctuations ané€ percolation threshold, however, since the smallness of the
the larger cluster sizes imply that for givéna lower tem-  Sublattice magnetization there is associated with a slow con-
perature has to be used to converge the bond-diluted syste¥grgence to the asymptotic regime in which finite-size scal-

to the ground state. For the largest size studied in this caséd is reliable. Here a different approach will be taken, based
L=32, an inverse temperatuf= 32 768 was used. on the fact that the sublattice magnetization can be decom-

posed into classical and quantum-mechanical factors, which
can be evaluated separately. This decomposition was already
discussed in Sec. IV and was written as E20). Here the

The previous claims of quantum criticality at the percola-notationM =(m?)2 will be used for the disorder averaged
tion point”?! were primarily based on a finite-size scaling sublattice magnetization. Equatié®0) can then be written
analysis of the staggered structure factor. A log-log plot ofas
S(m, ) calculated using SSE simulations including all the
spins of dilutedL X L lattices is shown in Fig. 14. The nu- M(pP)=Mgn(P)M¢(p) (L—c0), (29
merical values agree well with those of Ref. 17. One can
however, expect a barely discernible finaeduction in the
previous L=48 results because the temperature usgd ( M :W (26)
=1000) was not sufficiently low for complete converge to am °’
the ground statésee Fig. 8 and a related discussion in Ref.andM¢ is the classicalgeometrical factor
19).

The scaling seen in Fig. 14 is different from the expected M =£ 2 N2 12 (27)
classical percolation behavior. Given the results presented TN\ K
above for the scaling of the cluster magnetization, the devia- . .
tion from classical behavior for this range of system sizes idn the ordered regime, ®p<p*, only the largest cluster
not surprising, however. Classically, the finite-size scaling offOntributes to this sum in the thermodynamic limit. The clas-
S(, ) is solely the result of the divergence of the size ofSic@l factor can therefore also be obtained as
the connected clusters with. In the quantum-mechanical M= (Ng)/N 28)
case, there is also a factor, the sublattice magnetization of the cf e

cluster, multiplying each cluster size, i.e., Figure 15 shows the size convergence using the two defi-
nitions of the classical factor when the dilution fractipn

1 ok ; _ -
(S(m,m))=— 2 Nﬁmﬁ _ (24) =p*—0.005. Thg single-cluster averg@éS) clearly' con
N\ % verges faster. It is apparent that a reliable extraction of the

C. Scaling of the full staggered structure factor

whereM, is the quantum-mechanical factor
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FIG. 15. Size dependence of the classical magnetization for sys ?‘
tems diluted at one half percent less than the percolation densit)*g- 0.94
(p=p* —0.005). The open circles correspond to the full cluster <°
sum, Eq.27). The solid circles are from the average including only
the largest cluster, Eq28). 0.92
guantum-mechanical sublattice magnetizatdnusing the 0.90 . . . L
structure factor formulé&9) would be impossible in this case, 0.00 0.05 0'1*0 0.15 0.20
since not even the classical magnetization is in the PP

asymptotic scaling regime for the range of system sizes g, 16. Upper panel, classical magnetization vs dilution. The

where QMC simu_lations can be carried owt<100). The  gashed line shows the smallform M., =1—p. Lower panel, the
quantum-mechanicall can be expected to have an evenmagnetization divided byp* — p)5 plotted vsp* — p. The curve

worse scaling behavior, due to effects similar to those foungs a polynomial fit, with parameters given in EG1).

for the staggered structure factor in Sec. IV C. The quantum-

mechanical factoMg,, can be calculated based on much expression describing/l.; in a wider region around*,
smaller system sizes, however. It was evaluated in the exigher-order terms can be addeddg . The following forms
treme cas=p* in Sec. IV, and even there it is as large aswill be used in combination with fits to the quantum-
50% of the value in the other extreme, i.e., the nondilutednechanical factor in order to obtain expressionsNbboth
system p=0). HenceM, is only weakly dependent on the close top=0 andp=p*,

dilution fraction, and most of thp dependence d¥l, includ-

ing the singular behavior gt*, is in the classical factdvl ., . My (p<0.2=1-p, (30
The classical magnetization is known to vanish at the per-
colation threshold with the exponent 5/56,e., M (p* —p=0.2=[0.9102+3.053 p* — p)?
Mei(p— p*)=Ag(p* —p)5=%. (29 —5.642p* —p)°](p* —p)°*.
(31

In the weak dilution limit, one can easily obtain the result
Mg =1-p. Numerical values for €p=<p*—0.002 were Note that it is not claimed here that the higher-order terms in
obtained here by simulations of lattice sizes as largé as the form(31) are the correct subleading terms of the critical
=4096, using the single-cluster estimai@8). In the ex- percolation behavior—the purpose is just to have an expres-
ample illustrated in Fig. 15, the results for the three largession that describes the data well in practice, within the stated
sizes are 0.4364@), 0.4363§3), and0.43 634(2)(for L region.

=512, 1024, and 2048, respectivehnd theL = 2048 result The quantum-mechanical factor can be calculated in the
(which is based on 810° sample can hence be taken as same way as was already explained in the cage=op* in

the infinite-size value oM (p* —0.005). Closer to the per- Sec. lV, i.e., using the SSE method for the largest cluster of
colation thresholdL =4096 lattices were used. Figure 16 connected magnetic sites anx L lattices. HerelL up to 64
shows results for the whole dilution range. The linear smallwas used for dilution fractionsp=p*—4, with &

p form describes the data well fgo up to ~0.2. The =0.05, 0.10,..., 0.35, and 0.38. SSE simulations@t 0
asymptotic form(29) is well reproduced fop* —p=<0.02,  were previously carried out fdr up to 162 and were here
with the constantA;~0.91. In order to have an analytic extended up td.=64. Since the ground-state convergence
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FIG. 17. The quantum-mechanical factoluster magnetization FIG. 18. Sublattice magnetization vs site diluti@olid circles.

vs dilution. The curves are quadratic figsolid for smallp and  The curves are parametrized forms discussed in the text. The inset
dashed for smalp* —p) with parameters given in Eqs32) and  shows the behavior close to the percolation threshold on a more
(33), respectively. detailed scale.

occurs at lowep asé is increased, the simulations are fasteragreement between the full sublattice magnetization shown
than atp* and a larger number of samples could therefore beén Fig. 18 and the corresponding spin-wave result is very
studied. The number of samples wad 0 for L=64 and up  good up top~0.15 (not shown here—see Fig. 10 of Ref.
to 1¢° for smaller lattices. The results were extrapolated to41). For higherp, the spin-wave result falls significantly be-
infinite size using a leading correctienl/L (as in the case low the QMC result until very close to the percolation point,
of the clean 2D syste#). The resultingVl 4(p) is shown in  where the actuaM(p) approaches zero but the spin-wave
Fig. 17, along with two quadratic fits that describe the dataresult remains finité' For p<0.35, the results shown in Fig.
very well over quite wide ranges @ The fitted forms are 18 agree well with those presented previously by Kato
al.}” Their extrapolations closer to the percolation threshold
Mgm(P=0.25=0.3072-0.139-0.51p?, (32  are not reliable, however, since they fitted a different, non-
classical exponent to describe thes p* behavior. The esti-
Mgm(P*—p=0.25=0.151+0.724p*—p)—0.93p* —p)>.  mated accuracy for th#l(p) curve obtained here is better
(33 than 2% over the whole range of dilutiofsgnificantly bet-

The final result for the sublattice magnetization of theter forp=0.1).

site-diluted Heisenberg model is shown in Fig. 18. The solid
circles were obtained by interpolating the numerical results VI SPIN STIFFNESS

for Mg, and My, and multiplying them according to Eq.  As discussed in Sec. 1IB, the spin stiffness can be
(25). Forms describing the results well in quite wide regionsgptained in SSE simulations in terms of the winding number
p=0.25 andp* —p=0.25 can be obtained by multiplying flyctuations, Eq(14). At dilution fractionsp>p* there are
the corresponding expressiof®0),(32) and (31),(33). The o clusters wrapping around the periodie<L lattice for
resulting curves are also shown in the ﬁgure. The initial ”n"arge L, and therefore the stiffness vanishes |dent|ca”y Ex-
ear reductionM(p)/M(0)=1-Bgp, where the coefficient actly at the percolation threshold the wrapping probability in
and its estimated error By=1.44=0.05. At the percolation 3 given direction is approximately 0.52and the stiffness
threshold the leading behavior i1(p)=A,(p*—p)**®*  can then be nonzero for finite. it should vanish in the
with A, =0.137+0.002. thermodynamic limit, however. Fop<p* the wrapping

In Ref. 12, the sublattice magnetization normalized by theyrobability approaches 1 ds—o and in view of the exis-
number of magnetic sited/’(p) =M(p)/(1—p), which is  tence of antiferromagnetic long-range order the stiffness can
equivalent to the quantum-mechanical facig,, for small  then be expected to be nonzero.
p, was calculated using spin-wave theory withTanatrix For the classical diluted Heisenberg model the behavior of
approximation. The initial linear weak-dilution form the stiffnesgor helicity modulugis known?® It scales in the
M’(p)/M'(0)=1-Bgp, with B;=0.691+0.005, was same way as the conductivity of a random resistor network,
found in that approximation. The results obtained here fomwith the conductivity exponerttof percolation*? According
M(p) correspond to a slightly smaller coefficieB;=0.44 to recent simulations, the value of this exponent tis
+0.05. Despite this difference in initial slope, the relative =1.31q1).*® With the long-range order present in the per-
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FIG. 19. Spin stiffness of site diluteldx L systems multiplied FIG. 20. Infinite-size extrapolated spin stiffness vs dilution frac-

v - : o Edi2
by L™". The curve is a quadratic polynomial in"*. tion (circles. The solid line isps(p)=0.1808-0.62p. The dotted

. . curve is the scaling for *—p)~(p*—p)!, and the dashed
colating clusters of the quantum Heisenberg model, as demy e is a nonlineag-morg:asl(?esulit)()Reg.pB). P)

onstrated in Sec. IV, one can expect that the stiffness should
behave as in the classical modigl analogy with the “renor-
malized classical” behavior of the clean 2D Heisenberg
model® and in view of general symmetry argumentScal-

linear ¢ model and percolation theory in Ref. 8. The
o-model approach gives a quantum critical point below the
ing with the conductivity exponent will therefore be tested perco!ation pqint, and the initial falloff is also faster than
here. It can be noted that the elastic moduli of a diluted”Nat iS Seen n the QMC data. Th_e QMC data close to the
classical elastic lattice also obey scaling with the conductivP€rcolation point are not well described by the random resis-
ity exponent, if the force constants are isotroffiawith torlne.two.rk exponent., although the results at thg percolation
nonisotropic forces other scalings have been shown to bgom*t |nd|cate_,- _that th|_s should be the asymptotic formpas
possible, and the critical dilution fraction above which the P’ - The critical region may be very small, howeve*r, mak-
rigidity vanishes can in fact be below the percolationNd it difficult to observe in direct calculations fa<<p*.
density?*®

The elastic moduli of classical percolating lattices have
been studied extensively using numerical metH6d8 The
primary scaling technique used there will be employed here This paper has presented a variety of quantum Monte
as well. If the analogy with the random resistor networkCarlo results showing that the order-disorder transition in the
holds, the disorder averaged stiffness at the percolation poimiluted S= 1/2 Heisenberg model is solely driven by classical
should scale as ~!*,*® where v is the correlation length percolation. This is a consequence of the fractal clusters at
exponent of percolation, which is known exactly=4/31°  the percolation point having long-range antiferromagnetic or-
Figure 19 shows the stiffness of the site-diluted Heisenbergler. The presence of this long-range order was demonstrated
model at the percolation density, multiplied hy”, where by studying the largest cluster dnx L lattices, as well as
t/v=0.9826 was usetf The data extrapolate to a finite clusters of fixed sizé\N, on the infinite 2D lattice. For the
value asL —o0, and hence the results are indeed consisteninfinite-size extrapolated sublattice magnetization, the same
with the conductivity scaling. The average stiffness showmonzero value was obtained for both types of clusters. An
here was calculated by including only nonzero values of theccurate calculation of the sublattice magnetizakibwersus
stiffness in a given lattice direction, and was averaged alssite dilutionp was made possible by taking advantage of a
over the two equivalent directions. The simulations includedactoring into classical and quantum-mechanical functions,
only the largest cluster in the system. The fraction of nonzerevhich were evaluated separately. The classical factor is iden-
stiffnesses is approximately 0.52 for &llin agreement with tical to the magnetization of a classical ferromagnet, and was
the knowrt® wrapping probability of clusters in periodic sys- calculated to high accuracy using lattice sizesp to 4096.
tems. It contains the critical behavior d#l (p) close to the perco-

Figure 20 shows the full dilution dependence of the stiff-lation pointp* . The quantum-mechanical factor is equivalent
ness extrapolated to infinite system size. The behavior is ato the sublattice magnetization of the largest clusterLon
most linear up top~0.15. The fitted linear formpg(p) X L lattices in the limitL— . It remains nonsingular as
=0.1808-0.62p is shown in the figure, along with an ana- — p* and can be reliably extrapolated using relatively small
lytical result containing terms up t? obtained using a non- system sizeghere using-<64). Its infinite-size value grows

VIl. SUMMARY AND DISCUSSION
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only by a factor 2 betweep=p* and p=0. Approximate ' ' T T T
analytical forms describing the numerici#l (p) for all p 4
were also constructed. The spin stiffness at the percolatior  0.10 ]
point was shown to obey the same scaling as the conductiv

ity of a random resistor network.

The conclusions reached in this paper differ from the non-
universal quantum criticality scenario, which has been eluci-
dated in several recent papeéf$€®?According to this sce-
nario, the fractal clusters at the percolation point have power-"g’ 0.05
law decaying spin-spin correlations, which implies that the
scaling exponents differ from those of classical percolation.

It was argued that the exponents depend on the Spifnthe

magnetic sites, so that classical percolation is recovered onl

for S—.17 Several types of scaling analyses have been pre-
sented in support of this unusual behavio?®?tIt can be

noted, however, that only a very small number of system

sizes were used. Temperature effects, although sthaiby 0.02 : . L
also have contributed to making the scaling appear bette 0.01 UL 0.05
than it would be for real =0 data.

The most serious problem with the finite-size scalings car- FIG. 21. The cluster magnetization vs inverse system size on a
ried out in Refs.17, 20, and 21 is that even if the percolatindog-log scale. The statistical errors are smaller than the circles. The
clusters are ordered, as they in fact are, the staggered struae has a slope 0.52, which was previously argded be the
ture factor cannot be expected to show the asymptotic clasiuantum critical scaling exponent.
sical scaling behavior for the range of system sizes (asd
shown in Fig. 14 This is due to the strong size dependencepercolation threshold. With the current results for much
of the sublattice magnetization of the clustérscontrastto  larger lattices at hand, it is clear that state-of-the-art simula-
the classical case, in which the cluster magnetization takes itfons at earlier times were not able to reach sufficiently large
maximum value aff =0 for any system size The classical system sizes for observing the true asymptotic behavior. The
scaling form is valid only for systems sufficiently large for essentially linear extrapolations used to extract the critical
the relative size corrections to be small, which is the cas@oint were therefore misleading. Similar work on the disor-
only for systems much larger than those that are currentlylered half-filled Hubbard model on small lattices also have
accessible to quantum Monte Carlo simulation. This problenindicated that quantum fluctuations destroy the order before
was circumvented here by focusing on tlotuster-size the percolation poirt’ In light of the behavior of the
normalizedsublattice magnetization of the largest cluster ofHeisenberg model, it would be interesting to repeat these
the lattice, which in combination with the known scaling of calculations using larger lattice sizes. For the Hubbard model
the cluster sizes completely determines the asymptotiit is currently not possible to reach system sizes as large as
behavior of the diluted system. for the Heisenberg model, however.

In Ref. 20 it was argued that the previous datar the Experiments on quasi-2D cuprate antiferromagnets doped
cluster magnetization for system sizesup to 48 are also with nonmagnetic impurities have in the past been able to
consistent with the quantum criticality scenario. On a log-logreach only dilution fractionss20%?!! The doping depen-
plot, the last few points were fitted to a straight line, and thedence in this region is in reasonable agreement with
same exponent as that previously extracted from the stagalculations Recently, improved sample preparation tech-
gered structure factor was obtained. The use of only a fewmiques, involving simultaneous doping with Zn and Mg,
system sizes in such a scaling is dangerous, however. It néave enabled studies of 4@uQ, all the way to the percola-
glects the slow curvature that is evident in the ddt/ith  tion threshold® Neutron-scattering measurements of the
one more system size now available=64), as well as temperature dependence of the correlation length and the
increased precision for smaller the failure of the quantum sublattice magnetization indicate that the order persists until
critical scaling can be demonstrated even more clearly. Figp~p*,*® in accord with the behavior of the Heisenberg
ure 21 shows a log-log plot of the cluster magnetizationrmodel discussed here. It can be noted that both the sublattice
along with a line with a slope 0.52, which was previously magnetization and the spin stiffness extracted in the
argued to describe the d&thThe L =64 point does not fall experiments® agree reasonably well with the curves ex-
on the line, and also the smaller systems show deviationsacted hergFigs. 18 and 2Dat weak dilution but fall sig-
beyond the statistical errors. A slow upward curvaturdas nificantly faster to zero as the percolation threshold is ap-
—o is evident. With no indication of a vanishing cluster proached. This is an indication of additional quantum
magnetization on the linear scale in Fig. 10, the log-log ploffluctuation mechanisms weakenifigut not destroyingthe
is clearly not suitable for analyzing the data. long-range order, with likely candidates being frustrating

In earlier Monte Carlo studies of disordered Heisenbergiext-nearest-neighbor interactions and four-spin  ring
model§%it was concluded that the antiferromagnetic orderexchangd® The effects of these interactions are likely more
vanishes in a quantum phase transition before the classicptonounced in the diluted systems. Random lattice distor-

0.10
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tions causing fluctuations in the nearest-neighbor couplingQuantum disordered ground states have also been found in

could also play a role. Heisenberg antiferromagnets on nonrandom fractal lattices,
In a system exhibiting a quantum phase transition as &uch as the Sierpiki gaskef?!

function of some model parameter, e.g., the Heisenberg

bilayer;® certain types of dilution can drive an order-disorder

tr_an;ition before the clz_issical percolatior_1 threshold. If the ACKNOWLEDGMENTS
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