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Generalized Shastry-Sutherland models in three and higher dimensions
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We construct Heisenberg antiferromagnetic models in arbitrary dimensions that have isotropic valence-bond
crystals(VBC's) as their exact ground states. Ttie 2 model is the Shastry-Sutherland model. In the three-
dimensional case we show that it is possible to have a lattice structure, analogous to that $BSgLuy
where the stronger bonds are associated with shorter bond lengths. A dimer mean-field theory becomes exact
atd—oe and a systematic d/expansion can be developed about it. We study thel-N8C transition at large
d and find that the transition is first order in even but second order in odd dimensions.
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Recently there has been a renewed interest in the twdem which naturally generalizes the SSM to arbitrary dimen-
dimensional2D) Shastry-Sutherland mod&sSM) (Ref. 1), sions(see Fig. 2 For simplicity, we will work withh, as in
owing to its physical realization in SrG{BO;),.>* The  Eq.(2) and withs=1/2.
model has an exactly solvable ground state. There exists We will first construct the 3D model and then generalize
some generalized antiferromagnetic Hamiltonians with exacto arbitrary dimensions. We first set up the VBC and then
ground state8-’ build the Hamiltonian around it. We take a simple cubic lat-

The SSM was initially constructed as a 2D generalizatiortice and choose the dimers to lie along the body diagonals.
of the 1D Majumdar-Ghosh mod&IBoth models have a The body diagonals are assigned as follows. The sites are
valence-bond _crysta(}dBC) as the_exact_ground state._Other denoted bW:EizlxuéM- Herex,,’s take integer values and
such models, including a three-dimensional dieyve since éﬂ are three orthogonal unit vectors. The sg(x) is paired

been constructed. .
All the above-mentioned models can be thought of as spet-0 the spinS(y(x)) where

cial cases of the class of models which we will define below y(X)=x+D(X), &)
and refer to as generalized Majumdar-Ghosh models
(GMGM's) (see Fig. 1 Consider Hamiltonians of the form

3

D=2, (~1%te,, @
=

H_; Jnhn @ where we definexz, 1=x;. Two such body diagonals are

shown in Fig. 3.

where the sum is over all possible triangles formed by the Note thatD(y)=—D(x) as it should be, since &(x) is

sites of the latticeJ,’s are arbitrary positive semidefinite paired withS(y), thenS(y) should be paired witts(x). All

couplings, andh,, are given by four body diagonal directions occur in equal numbers and the

VBC has cubic rotational symmetry. It is not parity invariant,

hn=S(r;)- S(rj) + S(rj) - S(r) + S(ry) - S(ry). (20 the other parity choice being given by replacing {)*«+1

by (—1)*+-1in Eq. (4).

HereS(r;), S(rj), andS(r,) are the spins at sites, r;, and We now choose the triangles with nonzero couplings as
i, respectively, and labels the triangle formed by them. A follows. Equation(4) uniquely associates a body diagonal
particularr; can be a part of more than ohg. and hence a unit cube with every dimek,y). We give

It was noted in Ref. 1 that if, in the triangle correspondingnonzero couplings to the six triangles formed by these two
to h,, two of the spins are forming a singlet, then the statesites and each of the other six sites that belong to the cube as
will be a ground state offi,. It was also pointed out thdi, illustrated in Fig. 4. Thus every such triangle has one edge,
could be more general than given above. It could be spimne face diagonal, and the body diagonal containing the
anisotropic, the three terms could have different coefficientglimer. This construction ensures that every triangle has one
and the spin could be arbitrary. In suitable parameter ranges
the dimer state will remain the ground stat€.Thus, if it is Jn
possible to cover the lattice with dimers in such a way that
each of the triangles that appearthwith a nonzero cou-
pling contains a dimer, then the state with singlets on all the
dimers will be a simultaneous ground state of lall and
hence that oH.

The problem of constructing GMGM’s then reduces to the Jn+1+Jn
purely geometric one of assigning th.e nonzero couplings t.o Tt Tret
the triangles such that a dimer covering of the above type is
possible. We will now give a class of solutions to this prob- FIG. 1. A generalized Majumdar-Ghosh chain.
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FIG. 2. Shastry-Sutherland model.

dimer (along the body diagongaland hence is the exact
ground state of Hamiltonians of the form given in Ed).
The Hamiltonian can be explicitly written as

X

3
H:E 21 J(X,M)h(x,,&), (5)
=
where

h(x, ) =S(x) - S(Z(X, )+ S(z(x, 1)) - S(y) + S(y) - S(X)(,6)

FIG. 4. A cube containing diagonal bond. All bonds are shown.

tained in exactly one triangle each, and the other half are not
. contained in any triangle. Thus half the face diagonals have
Z(X, ) =X+ (—1)n+1e,. () bond strengtld and the others have no bonds. Figure 4 illus-

Herez(x, 1) andx form the three edges emanating frarin trates t_he situation. Finally, eac_h triangle contribuﬁt_dee thg _
the direction of the body diagonBX(x) andy is given by Eq. bpdy diagonal. Half the body diagonals are contained in six
(3). HereJ(x, 1) is the coupling associated with the triangle triangles each and hence have bond strengthsaitd the
formed byx, y(x), andz(x, ). other half have no bonds. See Fig. 3.

Consider the simplest case when all the couplings are The generalization to higher dimensions=4.5, ..., is
equal: i.e.J(x,u)=J. The triangle corresponding to(x, u) straightforward. Simply replace 3 yin all formulas from
contributes a strengthito the edge it contains. Each edge is Ed. (3) to Eq. (7). All the 2¢~* body diagonal directions
contained in exactly one triangle. Thus all edges have bondccur in equal numbers in thd-dimensional VBC. The
strengths]. Each triangle contributes a strengkho the face  model is a simple hypercubic lattice with bonds of strenfyth
diagonal that it contains. Half the face diagonals are conalong all the edges and along one of the face diagonals of
each @—1)-dimensional face. There are also bonds of
strength 21J along one of the body diagonals of half the
hypercubes. The construction ensures that the VBC is the
exact ground state of the model.

It can be seen that the model reduces to the SSM at
=2, shown in Fig. 2. The diagonals are given by BJ. The
strength of the bonds along the diagonalsJs Mered=2 is
a special case in that the { 1)-dimensional face diagonals
are also the edges. Thus the strength along the edgek is 2
i.e., the strength of edge bonds is half that of the diagonal
ones. Thus we have recovered the 2D SSM.

Now we come back to thé=3 case. As it stands, it is not
very physically realistic since the stronger bonds are between
spins further apart. The same is true in the case of the 2D
model. However, the structure of magnetic ions in
SrCuy,(B0Os), can be obtained from the original theoretical
lattice by moving the sites along the diagonals that have
bonds. The squares containing the diagonals deform to
rhombi and the body diagonal containing the dimer becomes
shorter than the edges. As we will see, the procedure gener-

FIG. 3. The 3D lattice containing 18 sites, depicting the diago-alizes to 3D and we can obtain an analogous structure where
nals along which dimers are formed. the stronger bonds have shorter bond lengths.
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rhombohedron is then squashed into a hexagon lying in the
plane orthogonal to the body diagonal.

We will now examine the models away from the exact
ground-state point at—o. We put the bond strengths along
the body diagonals equal tdJp/2, along edges equal to
Je/2, and along the face diagonalskg'2. Actually, the VBC
is an exact eigenstate whda=Je=J’ for all Jp.! As we
have shown, it is the ground state wh&h<0.5]y. How-
ever, the ground state is Beordered forJ;.=0=Jy. So
there will be a phase transistion somewhere. The location
and nature of the transition dt=2 have been topics of much
activity.>11-1°

Since the VBC is the exact ground state in some param-
eter range for altl, it is clear that mean-field theory in terms
of the spin variables fails even ds—o. This is because one
of the bond strengths grows asand so the interactions

FIG. 5. A deformed cube. Now the strongest bond is betweerf@nnot be approximated by an average field. However, if we
nearest-neighbor sites. take the dimers—i.e. the two-spin systems—on the body di-

agonals to be the basic units, then each dimer interacts with

We move all sites along the body diagonals with nonzerg™d Of the dimers around it with bonds of strengtfi.. Thus
bond strengths. The new sites are then the mear_1-f|el_d theory in terms of the dlmer_ variables is exact

atd—oo in this class of models. Perturbation theory around
the mean-field Hamiltonian then yields a systematit éx-
R(x)=x+ = D(x), (8) pansion for the ﬂuctuat|ons_. We will now use this mean-field
2 theory to explore the physics at larde
We label the spins aS,,, wherel labels the positions of
wheres is a parameter an®(x) is given by Eq.(4). The the centers of the dimers amd=1,2 label the two spins that
cube shown in Fig. 4 deforms to the rhombohedron shown ifiorm the dimer. The Hamiltonian can be written as
Fig. 5. Before the deformation the sites formed a simple
cubic lattice. The Hamiltonian was, however, only symmet- dJp 1
ric under translations by two units. After deformation, the H=2 T(5|1+S|2)2+§ Z J13pSiaSig, (9
lattice periodicity is also halved. It remains a cubic lattice but ! la,Jp
with eight sites in a unit cell. )

The lengths of the edges, face diagonals, and body diagd!N€"€Ji,3s denote the edge and face diagonal bonds. The
nals can be computed and are plotted as functiossrofig.  mean-field Hamiltonian is
6. As we can see, famore than around 0.7 or so, the edges
and face diagonal, with bonds become almost equal in Jo
length, are longer than the body diagonal with the bond and HMF:Z T(Sl+32)2+,,§ﬁ Ji0,3P10" Sp
shorter than the other face diagonals and body diagonals. '
Whens=1 the body diagonal becomes of zero length. The 1 2

_Ela,\]

5 Jia,38010 Pag- (10

The self consistency equations are then

b1,=(Sa)- 11)

In different parameter regimes, the VBC as well as a va-
riety of other phases is possible. The Bxpansion, which is
valid in all phases, can be used to analyze the phase diagram.

0.5} la In this paper we study the &&VBC transition at larged.
o There is a qualitative difference between odd and even di-
0 02 02 06 08 1 mensions and we treat them separately.
s In even dimensions, the dimer lattice is bipartite and both

FIG. 6. The various bond lengths as functions.dflerel, is the ;[jhe S|t_esdo::_ a glmebr have the shamef parlt_y. Tr%_emlngg of a
length of the edgesd;; that of the face diagonals containing bond, Imer is defined to be same as that of its sites. te

and I, corresponds to face diagonals without bong. is the  is described by the ansaz, = l:’|bAZ, whereP, is +1 on one
length of the diagonals along which dimers are formed,lgndly; ~ Sublattice and-1 on the other. Then the mean-field Hamil-

andl 4, correspond to body diagonals without bonds. tonian is
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dJp the same sublattice in former and on opposite ones in the
HEen=> (T(Sﬁ S12)%+P12dJ'b(Sf;+Sf,) latter. Consequently, the dimer wave function in the VBC
! and in the Nel state have the same valueS{=0) in odd
dimensions whereas in even dimensigf=0 in the VBC
+2db2J’), (120 put S*=+1 (on odd and even sublattideis the Neel state.
Since theS* symmetry is unbroken in both the phases, the
whereJ'=(Jg+Jg)/2. For all values ofa=J'/Jp, all the  mean-field Hamiltonian always conserves it. Thus in even
dimers forming singlets—i.e., the VBC—is a mean-field so-dimensions the VBC state cannot smoothly transit to the
lution with b=0. The state has energy 0. What-1/2, the  Neel state and we get a first-order transition whereas in odd

Neel state is a solution with=1/2 and has energy dimensions it can and we get a second-order transition.
A remark about the scaling of the diagonal bond is in
EN"E'szJD(l—a) (13  Order here. For the dimer mean-field theory to be valid in

4 ' both the phases, the diagonal bond has to scatk ss that

d scales out oH ¢ of Egs.(12) and(15). But numerically,
the critical value of the diagonal bond could be small. For
example, in odd dimensions the critical value of diagonal
bond is proportional t&AJ=[(Jz—Jg)/2] and can be made
célrbitrarily small by suitable choice dfz andJg.

The mean-field equations can be solved in the presence of
an external magnetic field. The mean-field Hamiltonian in

the presence dB=Bz is given by

whereN is the number of sites. However, this solution has
lower energy than the VBC only when>1. Thus we get a
first-order transition atv=1 atd=o.

We have also computed the leading-order correction t
the ground-state energy in the &lephase by treatingH
—Hwue) as a perturbation. We get

al 2«
- gla—1"2

At d=2, the transition now occurs at~0.8. More sophis- HMF:Z TD(541+ 32)2+|2J J1a,38P10" Sip— B|2 S

ticated calculations at=2 (Refs. 3 and 12put this number «Ip “

at 0.69. There are indications that the transition may be sec- 1

ond ordet! or that there may be an intermediate pheisé> ) 2 Jiagbia b (18)
In odd dimensions the two sites of a dimer are not of the P

same parity. By convention, we assigi= 1 for the odd site

and a=2 for the even site. Then the ‘Meansatz isb,,

=(—1)“bz The mean-field Hamiltonian is then given by

o NJ
ENel=—2 . (19

We concentrate on the regime where the VBC is the
ground state, in the absence®fA state in which one of the
dimers is excited to a triplet witB?=1 and the rest are all in

dJp singlets is a self-con_sistent solution of the_ mean.-fielld Hamil-
HOA=">" (T(Sl-‘r Si2)2+2dbAJ(SH — SP) tonian of Eq.(18), with b;,=0 for those dimers in singlets
: andb, ,= 3z for the one in triplets. The energy of this state is
dJp/2—B. Thus as we increase the strength of the magnetic
+2db2AJ), (15  field, whenB>dJp/2, it is energetically favorable to excite
as many dimers as possible into triplets pointing alBngut
whereAJ=(Jg—Jg)/2. In the ground state the dimer wave no two of them being connected by a bond.
function is given by In even dimensions, using the fact that the lattice formed
by the dimers is bipartite, we shall now show that the maxi-
mum fraction of dimers that can be excited without any two
of them being connected by a bond is 1/2.
) ) ] Let us start with isolated dimers with no bonds connecting
where, in|l,m), | is the total spin andhthezcomponentand them. Now we add edge bonds such that every dimer is
sin6=2AJ|b|/[ JJ5+(8AJ|b[)?]. The self-consistency connected to one and only one other dimer. This can be done

6 6
|\P)=cos§|0,0>+sin§|1,0>, (16)

equation(11) reduces to as follows. As mentioned before, both the sites of a dimer
have the same parity. Each coordinate of the two sites will be

4AJ _ differing by +1 or —1. Choose an even dimer and pick out

J%+(8AJ|b|)2 =1. 17) the site with oddk; coordinate. Put the edge bond from this

site in the positivex; direction. This way every even dimer

Thus the transition occurs d5=4AJ. The sublattice mag- can be uniquely connected to one and only one odd dimer.
netization|b| goes continuously to zero at the transition asSuppose these were the only bonds present. Then the con-
~[1—(Jp/4AJ)]1Y2 The interesting thing is that unlike in figuration that maximizes the number of triplets without two
even dimensions, the transition point depends on the differef them being connected is where in every pair of connected
ence ofJg andJg, so the VBC can occur at relatively low dimers one is put in a singlet and the other in a triplet. Now
values ofJp . the original model can be obtained by adding the remaining

The different physics in the even and odd dimensiondbonds. But in the presence of additional bonds also, each of
arises from the fact that the two spins on a dimer belong tgéhe pairs that were initially connected can at the most have
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one triplet. Thus the maximum fraction of dimers that can behat the other fractions are due to longer-range interactions
excited without any two of them being connected by a bondnduced by fluctuations. Thus it is reasonable that only the
is 1/2. This upper bound can be satisfied by putting tripletsl/2 plateau occurs at=cc.

on one of the sublattices and singlets on the other. This state To summarize, we have constructédiimensional mod-

is a mean-field solution with,,=0 for those dimers in sin- els, d=2, which are natural generalizations of the Shastry-
glets andb, ,= 3z for those in triplets. Sutherland model. These are Heisenberg antiferromagnets on

The state with the remaining singlets also being excitechypercubic lattices with bonds of strengildp/2 along half
into triplets is also a mean-field solution and has energyhe body diagonals]g/2 along all the edges, anli/2 along
(N/2)(dJp/2+dJ' —B) above the half-magnetized state. half the [d—1)-dimensional face diagonals. They have iso-
Thus whenB>dJp/2+dJ’ all the remaining dimers are ex- tropic VBC's as their exact ground states 3§=2Jg
cited into triplets and the system becomes fully magnetized=2Jg . A dimer mean-field theory is exact in tle-co limit

Whend is odd, the dimer lattice is not bipartite. We still and a 1d expansion can be developed about it. In this limit,
assign parity to dimers as follows. In every dimer one sitethe Neel-VBC transition is first order in even dimensions and
will be odd and the other even. The parity of the dimer isoccurs ata=1. When leading-order (d) corrections are
defined as the parity of the, coordinate of the even site. It included, the transition shifts ta=0.8 atd=2. In odd di-
can be seen that out of thel4limers that are connected to a mensions the transition is second order and occurdpat
particular dimer only four are of the same parity. Since the=4AJ. In the presence of an external magnetic fiBldin
critical B, at which it is energetically favorable to have iso- both even and odd dimensions, the system has a 1/2 plateau
lated singlets, scales ak this difference between odd and from B=dJp/2 to dJp/2+dJ" and becomes fully magne-
even dimensions is insignificant at larde tized at higher fields.

For both the cases, there is a plateau at 1/2 magnetization At d=3, we have shown that it is possible to have a
for dJp/2<B<dJp/2+dJ’. At stronger fields, the system is crystal structure where the stronger bonds have shorter bond
fully magnetized. The 1/2 plateau corresponds to all thdengths. Moreover, the mean-field theory indicates that the
dimers on even sites in the triplet and the ones on the odttansition to the VBC phase occurs at relatively small values
sites in the singlet state. A=, the dimers have only of Jp. Thus a physical realization of such a system seems
nearest-neighbor interactions. Previous WdfK® indicates feasible.
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