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Generalized Shastry-Sutherland models in three and higher dimensions
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~Received 22 April 2002; published 10 July 2002!

We construct Heisenberg antiferromagnetic models in arbitrary dimensions that have isotropic valence-bond
crystals~VBC’s! as their exact ground states. Thed52 model is the Shastry-Sutherland model. In the three-
dimensional case we show that it is possible to have a lattice structure, analogous to that of SrCu2(BO3)2,
where the stronger bonds are associated with shorter bond lengths. A dimer mean-field theory becomes exact
at d→` and a systematic 1/d expansion can be developed about it. We study the Ne´el-VBC transition at large
d and find that the transition is first order in even but second order in odd dimensions.
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w

is
a

io

er

p
ow
e

th
e

A

ng
at

p
n
g

ha

th

he

e
b

n-

ze
en
t-

als.
are

e

the
t,

as
al

wo
e as
ge,
the
one
Recently there has been a renewed interest in the t
dimensional~2D! Shastry-Sutherland model~SSM! ~Ref. 1!,
owing to its physical realization in SrCu2(BO3)2.2,3 The
model has an exactly solvable ground state. There ex
some generalized antiferromagnetic Hamiltonians with ex
ground states.4–7

The SSM was initially constructed as a 2D generalizat
of the 1D Majumdar-Ghosh model.8 Both models have a
valence-bond crystal~VBC! as the exact ground state. Oth
such models, including a three-dimensional one,9 have since
been constructed.

All the above-mentioned models can be thought of as s
cial cases of the class of models which we will define bel
and refer to as generalized Majumdar-Ghosh mod
~GMGM’s! ~see Fig. 1!. Consider Hamiltonians of the form

H5(
n

Jnhn , ~1!

where the sum is over all possible triangles formed by
sites of the lattice,Jn’s are arbitrary positive semidefinit
couplings, andhn are given by

hn5S~r i !•S~r j !1S~r j !•S~r k!1S~r k!•S~r i !. ~2!

HereS(r i), S(r j ), andS(r k) are the spins at sitesr i , r j , and
r k , respectively, andn labels the triangle formed by them.
particularr i can be a part of more than onehn .

It was noted in Ref. 1 that if, in the triangle correspondi
to hn , two of the spins are forming a singlet, then the st
will be a ground state ofhn . It was also pointed out thathn
could be more general than given above. It could be s
anisotropic, the three terms could have different coefficie
and the spin could be arbitrary. In suitable parameter ran
the dimer state will remain the ground state.1,10 Thus, if it is
possible to cover the lattice with dimers in such a way t
each of the triangles that appear inH with a nonzero cou-
pling contains a dimer, then the state with singlets on all
dimers will be a simultaneous ground state of allhn and
hence that ofH.

The problem of constructing GMGM’s then reduces to t
purely geometric one of assigning the nonzero couplings
the triangles such that a dimer covering of the above typ
possible. We will now give a class of solutions to this pro
0163-1829/2002/66~2!/024415~5!/$20.00 66 0244
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lem which naturally generalizes the SSM to arbitrary dime
sions~see Fig. 2!. For simplicity, we will work withhn as in
Eq. ~2! and withs51/2.

We will first construct the 3D model and then generali
to arbitrary dimensions. We first set up the VBC and th
build the Hamiltonian around it. We take a simple cubic la
tice and choose the dimers to lie along the body diagon
The body diagonals are assigned as follows. The sites
denoted byx5(m51

3 xmêm . Herexm’s take integer values and

êm are three orthogonal unit vectors. The spinS(x) is paired
to the spinS„y(x)… where

y~x!5x1D~x!, ~3!

D~x!5 (
m51

3

~21!xm11êm , ~4!

where we definex311[x1. Two such body diagonals ar
shown in Fig. 3.

Note thatD(y)52D(x) as it should be, since ifS(x) is
paired withS(y), thenS(y) should be paired withS(x). All
four body diagonal directions occur in equal numbers and
VBC has cubic rotational symmetry. It is not parity invarian
the other parity choice being given by replacing (21)xm11

by (21)xm21 in Eq. ~4!.
We now choose the triangles with nonzero couplings

follows. Equation~4! uniquely associates a body diagon
and hence a unit cube with every dimer, (x,y). We give
nonzero couplings to the six triangles formed by these t
sites and each of the other six sites that belong to the cub
illustrated in Fig. 4. Thus every such triangle has one ed
one face diagonal, and the body diagonal containing
dimer. This construction ensures that every triangle has

FIG. 1. A generalized Majumdar-Ghosh chain.
©2002 The American Physical Society15-1



t

le

a

is
on

on

not
ave
s-

six

h
s of
of
e
the

t

s
2

nal

t
een
2D
in
al
ve
to
es

ner-
hereo

n.

NAVEEN SURENDRAN AND R. SHANKAR PHYSICAL REVIEW B66, 024415 ~2002!
dimer ~along the body diagonal! and hence is the exac
ground state of Hamiltonians of the form given in Eq.~1!.
The Hamiltonian can be explicitly written as

H5(
x

(
m51

3

J~x,m!h~x,m!, ~5!

where

h~x,m!5S~x!•S„z~x,m!…1S„z~x,m!…•S~y!1S~y!•S~x!,
~6!

z~x,m!5x1~21!xm11êm . ~7!

Herez(x,m) andx form the three edges emanating fromx in
the direction of the body diagonalD(x) andy is given by Eq.
~3!. HereJ(x,m) is the coupling associated with the triang
formed byx, y(x), andz(x,m).

Consider the simplest case when all the couplings
equal: i.e.,J(x,m)5J. The triangle corresponding toh(x,m)
contributes a strengthJ to the edge it contains. Each edge
contained in exactly one triangle. Thus all edges have b
strengthsJ. Each triangle contributes a strengthJ to the face
diagonal that it contains. Half the face diagonals are c

FIG. 2. Shastry-Sutherland model.

FIG. 3. The 3D lattice containing 18 sites, depicting the diag
nals along which dimers are formed.
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tained in exactly one triangle each, and the other half are
contained in any triangle. Thus half the face diagonals h
bond strengthJ and the others have no bonds. Figure 4 illu
trates the situation. Finally, each triangle contributesJ to the
body diagonal. Half the body diagonals are contained in
triangles each and hence have bond strengths 6J and the
other half have no bonds. See Fig. 3.

The generalization to higher dimensions,d54,5, . . . , is
straightforward. Simply replace 3 byd in all formulas from
Eq. ~3! to Eq. ~7!. All the 2d21 body diagonal directions
occur in equal numbers in thed-dimensional VBC. The
model is a simple hypercubic lattice with bonds of strengtJ
along all the edges and along one of the face diagonal
each (d21)-dimensional face. There are also bonds
strength 2dJ along one of the body diagonals of half th
hypercubes. The construction ensures that the VBC is
exact ground state of the model.

It can be seen that the model reduces to the SSM ad
52, shown in Fig. 2. The diagonals are given by Eq.~3!. The
strength of the bonds along the diagonals is 4J. Hered52 is
a special case in that the (d21)-dimensional face diagonal
are also the edges. Thus the strength along the edges isJ;
i.e., the strength of edge bonds is half that of the diago
ones. Thus we have recovered the 2D SSM.

Now we come back to thed53 case. As it stands, it is no
very physically realistic since the stronger bonds are betw
spins further apart. The same is true in the case of the
model. However, the structure of magnetic ions
SrCu2(BO3)2 can be obtained from the original theoretic
lattice by moving the sites along the diagonals that ha
bonds. The squares containing the diagonals deform
rhombi and the body diagonal containing the dimer becom
shorter than the edges. As we will see, the procedure ge
alizes to 3D and we can obtain an analogous structure w
the stronger bonds have shorter bond lengths.

-

FIG. 4. A cube containing diagonal bond. All bonds are show
5-2
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We move all sites along the body diagonals with nonz
bond strengths. The new sites are then

R~x!5x1
s

2
D~x!, ~8!

where s is a parameter andD~x! is given by Eq.~4!. The
cube shown in Fig. 4 deforms to the rhombohedron show
Fig. 5. Before the deformation the sites formed a sim
cubic lattice. The Hamiltonian was, however, only symm
ric under translations by two units. After deformation, t
lattice periodicity is also halved. It remains a cubic lattice b
with eight sites in a unit cell.

The lengths of the edges, face diagonals, and body dia
nals can be computed and are plotted as functions ofs in Fig.
6. As we can see, fors more than around 0.7 or so, the edg
and face diagonal, with bonds become almost equa
length, are longer than the body diagonal with the bond
shorter than the other face diagonals and body diagon
Whens51 the body diagonal becomes of zero length. T

FIG. 5. A deformed cube. Now the strongest bond is betw
nearest-neighbor sites.

FIG. 6. The various bond lengths as functions ofs. Herel e is the
length of the edges,l f 1 that of the face diagonals containing bon
and l f 2 corresponds to face diagonals without bonds.l d1 is the
length of the diagonals along which dimers are formed, andl d2 , l d3

and l d4 correspond to body diagonals without bonds.
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rhombohedron is then squashed into a hexagon lying in
plane orthogonal to the body diagonal.

We will now examine the models away from the exa
ground-state point atd→`. We put the bond strengths alon
the body diagonals equal todJD/2, along edges equal to
JE/2, and along the face diagonals toJF/2. Actually, the VBC
is an exact eigenstate whenJE5JF[J8 for all JD .1 As we
have shown, it is the ground state whenJ8<0.5JD . How-
ever, the ground state is Ne´el ordered forJF505JD . So
there will be a phase transistion somewhere. The loca
and nature of the transition atd52 have been topics of muc
activity.3,11–15

Since the VBC is the exact ground state in some para
eter range for alld, it is clear that mean-field theory in term
of the spin variables fails even asd→`. This is because one
of the bond strengths grows asd and so the interactions
cannot be approximated by an average field. However, if
take the dimers—i.e. the two-spin systems—on the body
agonals to be the basic units, then each dimer interacts
;d of the dimers around it with bonds of strength;1. Thus
the mean-field theory in terms of the dimer variables is ex
at d→` in this class of models. Perturbation theory arou
the mean-field Hamiltonian then yields a systematic 1/d ex-
pansion for the fluctuations. We will now use this mean-fie
theory to explore the physics at larged.

We label the spins asSIa , whereI labels the positions of
the centers of the dimers anda51,2 label the two spins tha
form the dimer. The Hamiltonian can be written as

H5(
I

dJD

4
~SI11SI2!21

1

2 (
Ia,Jb

JIa,JbSIa•SJb , ~9!

whereJIa,Jb denote the edge and face diagonal bonds. T
mean-field Hamiltonian is

HMF5(
I

dJD

4
~SI11SI2!21 (

Ia,Jb
JIa,JbbIa•SJb

2
1

2 (
Ia,Jb

JIa,JbbIa•bJb . ~10!

The self consistency equations are then

bIa5^SIa&. ~11!

In different parameter regimes, the VBC as well as a
riety of other phases is possible. The 1/d expansion, which is
valid in all phases, can be used to analyze the phase diag
In this paper we study the Ne´el-VBC transition at larged.
There is a qualitative difference between odd and even
mensions and we treat them separately.

In even dimensions, the dimer lattice is bipartite and b
the sites of a dimer have the same parity. The parity o
dimer is defined to be same as that of its sites. The Ne´el state
is described by the ansatzbIa5PIbẑ, wherePI is 11 on one
sublattice and21 on the other. Then the mean-field Ham
tonian is

n

5-3
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HMF
even5(

I
S dJD

4
~SI11SI2!21PI2dJ8b~SI1

z 1SI2
z !

12db2J8D , ~12!

whereJ8[(JE1JF)/2. For all values ofa[J8/JD , all the
dimers forming singlets—i.e., the VBC—is a mean-field s
lution with b50. The state has energy 0. Whena.1/2, the
Néel state is a solution withb51/2 and has energy

ENéel5
NdJD

4
~12a!, ~13!

whereN is the number of sites. However, this solution h
lower energy than the VBC only whena.1. Thus we get a
first-order transition ata51 at d5`.

We have also computed the leading-order correction
the ground-state energy in the Ne´el phase by treating (H
2HMF) as a perturbation. We get

ENéel5
NJD

4 Fd~12a!2
a

4 S 2a

4a21
1

1

2D G . ~14!

At d52, the transition now occurs ata'0.8. More sophis-
ticated calculations atd52 ~Refs. 3 and 12! put this number
at 0.69. There are indications that the transition may be
ond order11 or that there may be an intermediate phase.13–15

In odd dimensions the two sites of a dimer are not of
same parity. By convention, we assigna51 for the odd site
and a52 for the even site. Then the Ne´el ansatz isbIa

5(21)abẑ. The mean-field Hamiltonian is then given by

HMF
odd5(

I
S dJD

4
~SI11SI2!212dbDJ~SI1

z 2SI2
z !

12db2DJD , ~15!

whereDJ[(JE2JF)/2. In the ground state the dimer wav
function is given by

uC&5cos
u

2
u0,0&1sin

u

2
u1,0&, ~16!

where, inu l ,m&, l is the total spin andm thez component and
sinu52DJubu/@AJD

2 1(8DJubu)2#. The self-consistency
equation~11! reduces to

4DJ

AJD
2 1~8DJubu!2

51. ~17!

Thus the transition occurs atJD54DJ. The sublattice mag-
netizationubu goes continuously to zero at the transition
;@12(JD/4DJ)#1/2. The interesting thing is that unlike in
even dimensions, the transition point depends on the dif
ence ofJE andJF , so the VBC can occur at relatively low
values ofJD .

The different physics in the even and odd dimensio
arises from the fact that the two spins on a dimer belong
02441
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the same sublattice in former and on opposite ones in
latter. Consequently, the dimer wave function in the VB
and in the Ne´el state have the same value ofSz(50) in odd
dimensions whereas in even dimensionSz50 in the VBC
but Sz561 ~on odd and even sublattices! in the Néel state.
Since theSz symmetry is unbroken in both the phases, t
mean-field Hamiltonian always conserves it. Thus in ev
dimensions the VBC state cannot smoothly transit to
Néel state and we get a first-order transition whereas in
dimensions it can and we get a second-order transition.

A remark about the scaling of the diagonal bond is
order here. For the dimer mean-field theory to be valid
both the phases, the diagonal bond has to scale asd, so that
d scales out ofHMF of Eqs.~12! and ~15!. But numerically,
the critical value of the diagonal bond could be small. F
example, in odd dimensions the critical value of diagon
bond is proportional toDJ[@(JE2JF)/2# and can be made
arbitrarily small by suitable choice ofJE andJF .

The mean-field equations can be solved in the presenc
an external magnetic fieldB. The mean-field Hamiltonian in
the presence ofB5Bẑ is given by

HMF5(
I

dJD

4
~SI11SI2!21 (

Ia,Jb
JIa,JbbIa•SJb2B(

Ia
SIa

z

2
1

2 (
Ia,Jb

JIa,JbbIa•bJb . ~18!

We concentrate on the regime where the VBC is
ground state, in the absence ofB. A state in which one of the
dimers is excited to a triplet withSz51 and the rest are all in
singlets is a self-consistent solution of the mean-field Ham
tonian of Eq.~18!, with bIa50 for those dimers in singlets
andbIa5 1

2 ẑ for the one in triplets. The energy of this state
dJD/22B. Thus as we increase the strength of the magn
field, whenB.dJD/2, it is energetically favorable to excit
as many dimers as possible into triplets pointing alongB, but
no two of them being connected by a bond.

In even dimensions, using the fact that the lattice form
by the dimers is bipartite, we shall now show that the ma
mum fraction of dimers that can be excited without any tw
of them being connected by a bond is 1/2.

Let us start with isolated dimers with no bonds connect
them. Now we add edge bonds such that every dime
connected to one and only one other dimer. This can be d
as follows. As mentioned before, both the sites of a dim
have the same parity. Each coordinate of the two sites wil
differing by 11 or 21. Choose an even dimer and pick o
the site with oddx1 coordinate. Put the edge bond from th
site in the positivex1 direction. This way every even dime
can be uniquely connected to one and only one odd dim
Suppose these were the only bonds present. Then the
figuration that maximizes the number of triplets without tw
of them being connected is where in every pair of connec
dimers one is put in a singlet and the other in a triplet. N
the original model can be obtained by adding the remain
bonds. But in the presence of additional bonds also, eac
the pairs that were initially connected can at the most h
5-4
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one triplet. Thus the maximum fraction of dimers that can
excited without any two of them being connected by a bo
is 1/2. This upper bound can be satisfied by putting tripl
on one of the sublattices and singlets on the other. This s
is a mean-field solution withbIa50 for those dimers in sin-
glets andbIa5 1

2 ẑ for those in triplets.
The state with the remaining singlets also being exci

into triplets is also a mean-field solution and has ene
(N/2)(dJD/21dJ82B) above the half-magnetized stat
Thus whenB.dJD/21dJ8 all the remaining dimers are ex
cited into triplets and the system becomes fully magnetiz

Whend is odd, the dimer lattice is not bipartite. We st
assign parity to dimers as follows. In every dimer one s
will be odd and the other even. The parity of the dimer
defined as the parity of thex1 coordinate of the even site. I
can be seen that out of the 4d dimers that are connected to
particular dimer only four are of the same parity. Since
critical B, at which it is energetically favorable to have is
lated singlets, scales asd, this difference between odd an
even dimensions is insignificant at larged.

For both the cases, there is a plateau at 1/2 magnetiza
for dJD/2,B,dJD/21dJ8. At stronger fields, the system i
fully magnetized. The 1/2 plateau corresponds to all
dimers on even sites in the triplet and the ones on the
sites in the singlet state. Atd5`, the dimers have only
nearest-neighbor interactions. Previous work3,11,16 indicates
n.
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that the other fractions are due to longer-range interacti
induced by fluctuations. Thus it is reasonable that only
1/2 plateau occurs atd5`.

To summarize, we have constructedd-dimensional mod-
els, d>2, which are natural generalizations of the Shast
Sutherland model. These are Heisenberg antiferromagne
hypercubic lattices with bonds of strengthdJD/2 along half
the body diagonals,JE/2 along all the edges, andJF/2 along
half the (d21)-dimensional face diagonals. They have is
tropic VBC’s as their exact ground states atJD>2JE
52JF . A dimer mean-field theory is exact in thed→` limit
and a 1/d expansion can be developed about it. In this lim
the Néel-VBC transition is first order in even dimensions a
occurs ata51. When leading-order (1/d) corrections are
included, the transition shifts toa50.8 atd52. In odd di-
mensions the transition is second order and occurs atJD
54DJ. In the presence of an external magnetic fieldB, in
both even and odd dimensions, the system has a 1/2 pla
from B5dJD/2 to dJD/21dJ8 and becomes fully magne
tized at higher fields.

At d53, we have shown that it is possible to have
crystal structure where the stronger bonds have shorter b
lengths. Moreover, the mean-field theory indicates that
transition to the VBC phase occurs at relatively small valu
of JD . Thus a physical realization of such a system see
feasible.
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