PHYSICAL REVIEW B 66, 024412 (2002

Quantum criticalities in a two-leg antiferromagnetic S= 3 ladder induced by a staggered
magnetic field

Y.-J. Wang!? F. H. L. Essler M. Fabrizio? and A. A. Nersesyan
The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy
°Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187, Dresden, Germany
3Department of Physics, University of Warwick, CV4 7AL, Coventry, United Kingdom
4International School for Advanced Studies and INFM, Via Beirut 4, 34014, Trieste, Italy
(Received 13 January 2002; published 2 July 2002

We study a two-leg antiferromagnetic spin-1/2 ladder in the presence of a staggered magnetic field. We
consider two parameter regimes: strdmgeakl coupling along the legs and wegtrong coupling along the
rungs. In both cases, the staggered field drives the Haldane spin-liquid phase of the ladder towards a Gaussian
quantum criticality. In a generalized spin ladder with a non-Haldane, spontaneously dimerized phase, the
staggered magnetic field induces an Ising quantum critical regime. In the vicinity of the critical lines, we derive
low-energy effective field theories and use these descriptions to determine the dynamical response functions,
the staggered spin susceptibility, and the string order parameter.
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[. INTRODUCTION However, recently two beautiful experimental realizations
of staggered magnetic fields in quasi-1D magnetic insulators

The problem of quantum critical poinQCP’9 is one of  have been discovered. The first concerns the spin-1/2 antifer-
the most important issues in the physics of strongly correfomagnetic chain compound copper benzdatBue to the
lated electron systems, in particular in the context of high- ow crystalline symmetry, the magnetic fietticouples to the
superconductivity and heavy-fermion compoundsRe-  effective spins 1/2 through a gyromagnetémsor?
cently this problem attracted much interest also in the con-
text of (_)ne—dimensiona(llD) quantum systems, .such as 1D Hmagnzz > [9§g+(—1)ngitﬁ]HaSﬁ-
interacting electrons and antiferromagnetic spin chains and noap

ladders, where a detailed description of QCP’s is ava"abl%\pplication of a uniform magnetic fiel#d thus induces a

due to the powerful nonperturbative techniques based on ' . L ;
conformal field theory, bosonization, and integrability. It is staggered fieldh in a direction perpendicular . In copper

Il Kk that uni | " £1D ; ‘ benzoate there is a second mechanism that gives rise to a
well known that universal properties o guantum sys emsStaggered internal magnetic field. It derives from the stag-

can be_ des_cribed on the basis of a properly chosen Confoljered Dzyaloshinskii-Moriya(DM) interaction along the
mally invariant theory deformed by a number of perturba-.p4in direction

tions consistent with the structure and symmetry of the un-
derlying microscopic model. Quantum criticalities can then A
emerge due to the competition between to more rel- Hom= 2 (—1)ID-(S§XS11),
evant perturbations which, when acting alone, would drive .
the system to qualitatively different strong-coupling massivewhich, when a uniform fielH is applied, induces a stag-
phases that cannot be smoothly connected by a continuoggred component proportional kbx D.*2 The presence of a
path in the parameter space of the model. An example of ataggered field has been shown to lead to a variety of very
theory of this kind, displaying an Ising quantum criticality, is interesting consequencs’® The staggered field scenario
the so-called double-frequency sine-Gordon mddel. described above is by no means specific to copper benzoate.
In connection with 1D quantum antiferromagnets, a plau-There are at least two other materials,,%b; (Ref. 17 and
sible QCP scenario was anticipated some time ago by AffleckPM- Cu(NG;),- (H,0),],, (Ref. 18, whose properties in a
and Haldan&.They argued that a massive phase of a transmagnetic field are controlled by the same mechanism.
lationally invariant spin-chain Hamiltonian can be pushed A completely different mechanism that leads to the gen-
towards quantum criticality by an external, parity-breakingeration of a staggered field has recently been discovered for
perturbation. Typical examples of such perturbations are ampin-1 Haldane gap compounds of the tyRgBaNiO;,%2°
explicit dimerization, whose role in the formation of QCP’s where R is a magnetic rare earth. In these materials, the
has already been analyzed in several spin-chain and spimare-earth ions are only weakly coupled to the Ni chains, but
ladder modeld; 1% and a staggered magnetic field. While interact strongly with one another. They may be considered
dimerization of quantum spin chains and ladders is quitdo reside on a separate sublattice that undergoesehtie-
realistic because it can originate, for instance, from the spinsition at a rather high temperatuiig,. The effect of the
phonon coupling, the case of a static magnetic field whoseesulting antiferromagnetic order is to induce an effective
sign alternates on a microscopic scale used to be regarded steiggered magnetic field along the ipin-1 Heisenbeig
not achievable in experimental conditions. chains belowT .
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In this paper, we study the effect of an external staggered
magnetic field on the low-energy properties of the spin-1/2
antiferromagnetic two-chain Heisenberg ladder. Although at
present no analogous mechanism for the generation of a stag-
gered field has been found for Heisenberg ladders com-
pounds, in principle either of the two scenarios mentioned
above is possible. One may well expect that a staggered field
will be realized in a ladder compound before long, so that
addressing this problem is not only of academic interest.

The Hamiltonian of the “standard” ladder is

Hstand:J.E E SJn Sj,rH—l"‘JLE S1,n' Sz,n /\/
=12 n n SU(2), line
_ _1\naz FIG. 1. Phase diagram of the generalized spin ladder in a stag-
hazZl,Z ; (=1, @ gered magnetic field in the limit, ,V<J. The SU(2), critical line,

which ath=0 separates the Haldane spin-liquid phase from the
where J and J, are antiferromagnetic exchange coupling spontaneously dimerized phase, is split by the field intb) End Z
constants in the “leg” and “rung” directions, respectively. critical surfaces.
We employ weak-coupling J( <J) and strong-coupling
(J,>J) approaches to show that there exists a critical valu
of the staggered magnetic field=h.(J, ,J), for which the

system cﬂsplays a Ga_ussian(ll)) critic.ality \:Vith. _cellwtral =1/2), where the spontaneous dimerization vanishes and the
chargeC=1, characterized by nonuniversal critical €xpo-giaqqered magnetic susceptibility is logarithmically diver-
nents. Both an<h. andh>h, the spectrum is gapped, and gen;” |n the dimerized phasé€h,) the spin excitation

the spin correlations are commensurate with the underlyingyecirum is entirely incoherent, whereasath,, as in the
lattice. This is different from the spin ladder in a uniform largeh phase of the standard ladder, the cohe@t + 1
magnetic field" which induces a transition from the gapped magnons are recovered.
commensurate phasé{h.) to a gapless incommensurate  The qualitative phase diagram in thé, (;h,V) space is
phase fi>h.). Comparing the results of the weak-coupling shown in Fig. 1. We note that the(l) (GaussianC=1) and
and strong-coupling approaches, we find that near the criticat, (Ising, C=1/2) critical surfaces merge &t=0 into a
point the low-energy properties of the spin ladder are aderitical line, which has been shown earfieto belong to the
equately described in terms ofXaXZ spin-1/2 chain with a  universality class of the SU(2) Wess-Zumino-Novikov-
J- and J, -dependent exchange anisotropy and an effectivgvitten (WZNW) model with central charg€ = 3/2.
staggered magnetic field proportional fte-h,. Hence we The paper is organized as follows. In Sec. I, we study the
expect that the existence of the(ly) QCP is a universal phase diagram of the standard spin-ladder matein the
property of the standard Heisenberg spin-1/2 ladder in a stagveak-coupling limit §, ,h<J). Here we employ a field-
gered field. theoretical approach which represents the low-energy sector
The critical surfaceh.(J, ,J) separates two massive of the spin ladder as an SO(8¥,-symmetric model of four
phases: an anisotropic Haldane spin-liquid phasa<ah,  noncritical 2D Ising systen®:??Integrating out the fast de-
with coherentS’= £ 1 andS’=0 magnon excitations having grees of freedom associated with collective singlet excita-
different, field-dependent, mass gaps, and another massivi@ens, we derive an effective action which describes the trip-
phase ath>h, in which the spin excitation spectrum gt let sector with anisotropy induced by the staggered field. We
~qr still includes coherent transvers&’& +1) magnons, demonstrate the existence of a Gaussian criticality and show
whereas thes’=0 modes transform to an incoherent back-that, close to the critical point, the model is described in
ground. The transition is associated with softening of theerms of a spin-1/2XZ chain with a small anisotropy pa-
7= +1 spin-doublet modes and is characterized by a diverrameter and an effective staggered magnetic figld<h
gent staggered magnetic susceptibility. —h,. In this section we also derive projections of all physi-
We also discuss the properties of a generalized ladder, cal fields onto the low-energy triplet sector.
In Sec. lll we discuss general properties of the dynamical
structure factor, measured in neutron scattering experiments,
H gen=Hstand™ V; (St Sin+)(SenSone1)y (@ 4or quantum spin chains and ladders in a staggered magnetic
field. In Sec. IV we determine the dynamical structure factor
which, apart from the on-rung interchain exchaldge also  of a weakly coupled spin ladder for momentum transfers
includes a four-spin interactiod. This model is interesting along the “leg” direction close tor and 0 in both massive
because it can display non-Haldane, spontaneously dimephases and at criticality. In Sec. V we study the induced
ized massive phases if the biquadratic interactiois suffi-  staggered magnetization and show that at tk® transition
ciently large?” The existence of such interactions in ladderthe staggered susceptibility is divergent with a nonuniversal
compounds is supported by recent neutron scatteringritical exponent.

experiment$® We show that, in the weak-coupling regime,
She staggered magnetic field can drive the non-Haldane
phase to an Ising quantum criticalifwith central chargeC
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In Sec. VI we consider the modéll) in the strong- m=J,\, mg=-—3J /X, (4)
coupling limit (3, ,h>J). Treating the exchang&as a per- ) ) )
turbation and projecting the Hamiltonian onto the subspac¥/here is a nonuniversal constant. The corresponding cor-
of the low-energy states, we arrive at an effective strongl)fe|a“°” lengths in the triplet and singlet sectors of the model
anisotropic spin-1/2 Heisenberg chain model in a staggerefl'®
magnetic fieldh*=h—-J, +J/2+---. As opposed to the
weak-coupling case, in the strong-coupling limit the relation-
ship between the parameters of the original and the effective/hich for a weakly coupled ladder are macroscopically large
low-energy model is known with any desired degree of ac{l, 3> «). The last term in Eq(3) describes a weak interac-
curacy. In Sec. VIl we exploit the exact integrability of the tion between the Majorana fermions,
sine-Gordon model and apply the form factor method to .
achieve a quantitative description of the dynamical proper- 4.4
ties of the model in the strong-coupling limit. This section Hmarg:igl(fR'§L)2+92(§R'§L)(§R§L), (6)
also contains a brief overview of the form factor approach. N

In Sec. VIII, we turn to the generalized ladd@) and ~Wheregi=—g;=zmaJd, . _
describe the Ising transition in the non-Haldane phase, in- FOr the generalized laddep), the low-energy effective
duced by the staggered magnetic field. In Sec. IX we addred@odel is still of the form(3), (6), with the only difference
the topological order of the generalized ladder model in thdhat the triplet and singlet masses
s';aggered field and analyze the field dependence of the [on- m=J A—V\’, mg=—3J,A\—V\’ @)
gitudinal and transverse components of the nonlocal string
order parameter in various parts of the phase diagram show(i\’ is another nonuniversal constanan be varied indepen-
in Fig. 1. dently.

A discussion of the results obtained from the weak- and In the continuum description, the local spin densities of
strong-coupling regimes and our final conclusions are givemhe two Heisenberg chain§;(x)(j=1,2), are contributed by
in Sec. X. The paper is supplemented with four Appendixesow-energy spin-fluctuation modes centered in the momen-
which contain some technical details used in the main text.tum space atj=0 andq= . Accordingly,

|t,s~Ut,s/|mt,s|v (5

IIl. WEAK-COUPLING LIMIT Sj(%) = Jjr0X) + JjL (%) + (= 1)*%on;(x). ®

The chiral components of the vector curredig, (i.e., the

) ] ) ~ smooth parts of the spin densitiesan be exp'ressed locally
In this and next subsections we will be concerned with gp, terms of the Majorana bilinears

weakly coupled spin ladder in a small staggered magnetic
field: J, ,h<<J. We start our discussion with a brief overview

A. Ising-model description of the Heisenberg ladder

i
of the effective field-theoretical model describing universal l,=d1,+32,= = 5(§,X§,), (99)
properties of the spin-liquid state in the antiferromagnetic
H ,22
two-leg Heisenberg laddét: K,=dy,—Jp=i£,&" (v=RL). (9b)

It is well known that a singlé&s=1/2 Heisenberg chain is
critical and has masslesS=1/2 spinons as elementary However, the most strongly fluctuating fields of the spin lad-
excitations?® When a small, is switched on, the spinons of der, the staggered magnetizationgx) and dimerization
the originally decoupled chains get confined to form gappedields €;(x) —(—1)"S; - Sj 1+ 1, all with scaling dimension
triplet and singlet excitationgfor a review see Ref. 26The  1/2, are nonlocal with respect §é&*. These fields, however,
field theory that accounts for the spinon-magnon transmutaadmit a representation in terms of the ordey @nd disorder
tion in the two-leg spin-1/2 ladder represents an(u) operators of the related noncritical Ising modté?2’
0(3)X Z,-symmetric model of four massive re@lajorana

fermions or, equivalently, four noncritical 2D Ising N ~(1/a)(pr1020344,01 1203184, 010 0 L3/04),
models?*?2?7|n the continuum limit, the Hamiltonian den- (109
sity _
N~ ~(la)(o1pop304, k10214304, /L 11420304),
o, | 10b)
Hu=_ 2 | =~ (EaoxéR— 00— ImERe . )
a=123 € ~(Ua)pipopsps, € ~(Ua)oyo,0304,
(100

iv
— 5 (ERixEr— ELoED) —IMGEREl+ Hinag (3) wheren®=n,+n, ande* = e, + ,.
Since the correlation lengths are large, all Ising sys-
describes a degenerate triplet of Majorana fields, tems are slightly noncritical. Whether they occur in the or-
=(§i ,gﬁ,gi) (r=R,L), and a singlet Majorana fiel%l,_. dered or disordered phase depends on the sign of the corre-
The velocitiew s are proportional tda, wherea is a short-  sponding massne(T—T.)/T.. The crucial property of the
distance cutoff of the theory. The triplet and singlet massestandard ladder is that the signs of the triplet and singlet
are given by Majorana masses are alwagpposite This fact, together
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with the known asymptotics of the two-point correlation
functions of a noncritical Ising modé¥,leads to the obser-

vation that the dynamical spin susceptibility of the antiferro-

magnetic Heisenberg laddey,(q,), obtained by Fourier
transforming the correlation functioin™(x,7)-n~(0,0)),
exhibits a coherenS=1 single-magnon peak ab’=(
—q)%v2+m? (with q close tor). Due to multiparticle pro-
cesses, the dynamical spin susceptibif{(q~ =, ) also
displays an incoherent tail with a thresholdeat 3m;. The
singlet mode shows up only at higher energies>2m,

PHYSICAL REVIEW B6, 024412 (2002

B. Effective action in the triplet sector

Turning back to Eq.11), we notice that the magnetic
term contains the disorder operatay of the singlet Ising
system which has zero expectation value and represents
“fast” degrees of freedom of the systefalthough the ratio
|mg|/m;=3 may not seem large enough, it can be signifi-
cantly increased in the generalized mo@lwith the “spin-
liquid” condition mgm, <0 still preserved; see Eqé7)]. We
will therefore integrate the singlet mode out to obtain an
effective action in the triplet sector. The existence of a

+|mg|~5m,. Thus, at low energies, the standard two-chainGaussian criticality will then immediately follow from the
ladder represents a disordered spin liquid, similar to thegtrycture of this action.

Haldane phase of the spin-1 Heisenberg chain with a small \we write the total Euclidean action of the model &s

triplet gap.
Let us now switch on a small staggered magnetic freld

=S+ S+ Sq;, WhereS[ €] andS{ £4] are the contributions
of triplet and singlet sectors, respectively, and

=hz which is assumed to be the same for the both chains of

the ladder. The field couples to the total staggered magneti-

zationn, , and the Hamiltonian density becomes

H="Hy— (ha)o,0p3p4, (11)

with h~h. Here a comment is in order. In spite of the al-
ready mentioned similarity between the antiferromagn®tic

=1/2 ladder and the spin-1 chain, it would be misleading to
think that the role of the staggered field in these two cases

will be similar. A weakly coupled two-le§=1/2 ladder can

1
Sel &.¢'1= ;j d*r[On(r) +Oy(N], (13

Oy=02(&r &) (ERED),

is treated as a perturbation. Here (x,v 7), and for simplic-
ity we ignore the difference between the triplet and singlet
velocities. Integrating oveg* in the partition function

Oh=— (H/a)ffl‘fzﬂslm’

Z=f D[§]D[§4]e*5[§'f41=const><f D[ £]e Serld

be mapped onto a spin-1 chain by formally shifting the sin-yields the effective action in the triplet sector in the form of
glet excitation band to infinity. This implies the substitutions @ cumulant expansion:

pa—{(a)=0, 04— (0,4)#0, in which case thg= 7 com-
ponent of theS=1 spin density is determined by thelative
staggered magnetization of the spin ladder, [see Eq.
(26a)]. So for theS=1 chain the magnetic term has a struc-
ture different from Eq(11):

H%zglzhﬂlﬂsze,- (12
Sincem;>0, in the leading order the interactigh2) gives
rise to an effective magnetic fieft~h( ., ,) applied to the

third Ising system1fo3). The spectrum of th&=1 chain in
a staggered field is therefore always masssee Ref. 28
The existence of a (1) transition in the mode{11) can

be foreseen as follows. Since the triplet of Ising copies ig"

disordered, the magnetic term in E@.1) can be approxi-

mately replaced bynoopu,, Whereh~h(us). Making a
duality transformation in the fourttsingley Ising copy Mg
——Mg, wa0T,), ONE arrives at a system of three disor-
dered Ising models with the underlying U(X Y, symmetry,

coupled by the interactioho;0,0,. This is an Ising-model

representation of an anisotropic spin-1 chain close to the in-

tegrable, multicritical point® with a perturbation represent-
ing a parity-breaking, dimerization field. In the isotropic,
SU(2)-symmetric case, this model is knolh®*'to exhibit
a QCP where it becomes equivalent to 8we1/2 Heisenberg
chain [SU(2); WZNW universality clask A finite easy-

1
Serl £1=SLE+(Ss0s— 5 [(SD)s— (Si]+--+, (14

where(- - - ) means averaging over the free massive fermi-
ons &,
The first-order correction in the expansi@¥) gives rise
to a small renormalization of the triplet mass
1%

)

The cross term proportional tg,h involves the correlator
(1a(ry) Ex(r2) €L (r2))s, which vanishes due to the unbroken
(u——u, érL— —&r) Symmetry of an ordered Ising
odel (see Appendix A In the second order im,, one
obtains terms leading to renormalization of the velocity
and coupling constarg;. Assuming that all these renormal-
izations are already taken into account, we are left with the
following expression for the effective action:

g2
—In

my— m;+ m527Tv

h2
szazf d?ryd?r,01(ry) Oy(r2)

Serl £1=S[£]—

X(a(ry) ma(ra))s, (15

Whel’e(’)tz 010213,
The fourth Ising copy is orderedr(;<0); so the correla-
tion function in Eq.(15) decays exponentially at distances

plane anisotropy transforms this criticality to a Gaussian oner.~ 1 (Ref. 28:
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A(all ) At this point the critical degrees of freedom are represented
(pa(r) j1g(0))e= ——=—e s+ O(e ¥"'s), (16) by a degenerate doublet of massless Majorana fermions with
v2mrils a marginal current-current interactig(h.). This is a typi-

whereA, is a nonuniversal parameter. Under the assumptior(ffal.Gauss'a'ﬁu(l)_] .crltlcall_ty with central Cha@’@: 1. The
that |[mg|//m;>1, the correlation length in the triplet sector, V'Cl'”'gy of the critical point where the Majorana doublet
l;, is much larger than that in the singlet seclqr, There- (¢ g ) becomes very soft IS described by the off-crlt_lcal
fore the produciO,(r) O(r,) in Eq. (15) can be treated by Askin-Teller model or, equwalently, .the quantum sine-
means of the short-distance operator product expansioﬁ’Ordon mode(SGM) for a scalar fieldb:

(OPB.%? Using the fusion rules for two Ising order and dis-

. m
order operatorfsee Appendix A, EqgA7a) and(A7b)], we H,. eﬁ:%[(&xq))er (9,0)2]— — cos\aAmKD. (22)
find that T
_ — Here® is the field dual tob, the parameter
_ ICy( h 200 ¢l gl | £242  £343 2
Seff[f]—st[f]“'j WS dr(€réL + EREL — ERED) K=1—(g)/2mv)+0O(g]) (23
| 2 determines thécoupling-dependeihtompactification radius
"‘Cz(i)(ﬁ) | et of the field® and
+ D30 17) e
ROLISRSLE: In the vicinity of the critical point, the spectral gap scales as
whereC, andC, are positive numerical constants. the renormalized mass of the SGIZR2):
Thus, we arrive at the following effective Hamiltonian for 1(2=K)
the triplet degrees of freedom Mdoc% |m3|a> sgr(my). (24
i
H,. o= — EU(§R~ Ixr— & 0xEL) —IMERER+ )1 31T In Sec. VI, we show[see Eq.(80)] that, in the strong-
coupling limit (J, ,h>J), the effective model describing the
+g, (IRIEHIRID), (18)  low-energy properties of the spin laddertat h, represents

an anisotropic XXZ2) spin-1/2 Heisenberg chain with the
which has the same structure as the field-theoretical modglarameten close to 1/2 and an effective staggered magnetic
suggested by Tsveffk to describe the Heisenberg spin-1 field h* ~h—h,. In the continuum limit, this quantum lat-
chain with a biquadratic term and a single-ion anisotropytice model transforms to the SGK22). The only difference
The staggered magnetic field introduces anisotropy in th@etween the weak-coupling and strong-coupling regimes is
spin ladder and effectively lowers the &Dsymmetry of the  that in the latter case the parameleis close to 3/4.
Majorana triplet down to SO(2j Z, by splitting the masses,  The description of the low-energy part of the spectrum of

the original model11) in terms of the effective anisotropic

v 2 spin-1 chain(18) holds ifh<J, . As follows from Eq.(21),
deml:mZ:mt_Cl(;) (HS) , (193 this condition is satisfied at<h, and also in some region
above the critical field. However, if the field reaches values
o\ )2 h~|mg|, the singlet mpde become_s as important as .the triplet
mz=m,+C; E) (ﬁ) , (19b) ones, and the effective mod€él8) is no longer applicable.
S

This regime is difficult to tackle analytically. On the other
and by renormalizing the coupling constants of the marginal'@nd. if the fieldh is further increased and occurs in the

current-current interaction range|m¢ <h<J, the role of the interchain exchange
becomes subdominant, and the original model reduces to two
| h\? decoupled Heisenberg chains in a weak staggered magnetic
g=0;1+ sz(—s)( ) , (20a field. In this case exact results are available, because in the
af\[mj scaling limit each such chain is described by a SGM with a
I 2 coupling constanB?=2m (see, e.g., Ref. 27, Chap. )22
—Co| = (— 20b
Tl ( [md (200 He 3 M, (29
=1
From Eq. (19) it follows that increasing the staggered
magnetic field increases the masgwhereas the mass of the v A(h)
Majorana doubletmy, decreases and vanishes at a critical HJIE[(ﬁx(@j)ZHﬁx@j)z]— el V27w d;,

value of the field L
where\ (h)~h [see Refs. 15 and 16 for an accurate estima-

1/2 Z
hc“|ms|<z) OCJE/Z/JUZ_ (21) tion of N(h)]. (Technically, this mapping can be achieved
It either directly, i.e., using the rules of Abelian bosonization of
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the S=1/2 Heisenberg chaitf;® or by establishing the cor- Oo(r)—O(r)
respondence between two pairs of the Majorana fields and

two bosonic fields, =Oyp(r)e St
D, =D, =0Oo(r)+ E)]d2r1<(’)o(r)n;(r1)>s+O(h2),
(§11§2)<_>(I)+1 (§3,§4)<—>(I)_, (D:: \/E ’ v
(27)
and using formulagA6a) of Appendix A to bosonize the gnq averaging the first-order term over the fast singlet
magnetic termr; oo apts.) modes. This term is just the low-energy projection we are
looking for (it can be easily checked that the marginal part of
C. Projecting operators onto the low-energy sector the perturbation, given by the operat@y in (13), yields no

mapping onto the low-energy triplet segtomhis is essen-
tially an “integrating-out” procedure but this time applied to
the correlation functions rather than the action itself.

In Appendix B we show that the projection of the total
staggered magnetization onto the whole triplet sector is of

Since the fourth(single) Ising system has the largest en-
ergy gap and stays ordered across the transitia(0), at
energiesw<<|m,| the order operator, can be replaced by
its nonzero expectation valugr,)~ (a/lg)*8. Under this
substitution the relative staggered magnetization and

dimerization fielde ™, defined in Eqs(10b) and (100, be- the form
come projected onto the low-energy, triplet sector of the h\[ls
model described by the effective acti6tv) and (18): n;H(n;>+iAn(W) (Z)(géghgﬁgf— )+,
S
N (all )YEN, (289
_ + h IS 143 3.1
N™~(La)(oipopms, m1023, H1p203); (263 e —1An )l & (EréLH+ERED T -+, (28D
e —(allg¥®E~, E ~(la)oyo,03.  (26b) h\ (1,
_ nyuiAn(ﬁ (—)(§§§f+§§§f)+~w (289
On the other hand, the total staggered magnetizatioand Mg/ \ &

dimerization fielde™ are both proportional to the disorder where(n;) is the average staggered magnetization induced
operato_r,u4 whose correlations are exponentially decaylng atby the field(see Sec. ¥, A, is a numerical constant, and the

short distances; ~I; [see Eq.(16)]. Therefore, one might gjlipses stand for the high-energy parts of the operators. In
conclude that these fields are short ranged and the specti@ly Appendix we also derive the first-order low-energy pro-

weight of their fluctuations is only nonzero in the high-ection of the relative smooth magnetization of the ladder:
energy regiono~|mg|. By the same argument, the smooth

part of the relative magnetizatiok,, Eq. (9b), proportional ) h \[a\Y¥I B
to the singlet Majorana field*, would also appear as a KXH_'AK(W)<|_> (;) d:Ny (293
“high-energy” field. However, this conclusion cannot be cor- S
rect for the following reason. h \[a\Y8 I
It is true that, once the high-energy singlet modes are Ky_>_iAK<m)(l_) (;)(%NX. (290
integrated out, the operator” defined in Eq.(109 has no stiATs
projection onto the lower-energy sector. However, 86 1/8
is the zeroth-orderdefinition of this operator with respect to KZ—>AK(—> (—) l04E ™, (290
the staggered field which couples the high- and low-energy Img| /11
modes. In fact, apart from the always existing short-rangegyhere A is another numerical constant and the fiehis
part, the operaton™ contains a strongly fluctuating piece, andg~ are defined in Eq426).
which originates from a finite admixture of low-energy states
occurring already in the first order im This can .be': easily_ Ill. DYNAMICAL STRUCTURE FACTOR
understood from the fact that reduc_:non o_f the original action IN THE PRESENCE OF A STAGGERED FIELD
of the model to the effective one is equivalent to a unitary
transformation of the quantum Hamiltonian of the system The scattering cross section measured in neutron scatter-
that projects it to the subspace of the low-energy states. Buhg experiments is proportional to the dynamical structure
the same unitary transformation should be applied to physifactor S*#(w,Q). In this section we discuss some general
cal operators to single out their low-energy projections. properties ofS*#(w,Q) in the case where a quantum spin
The low-energy projections of seemingly high-energy op-chain or ladder is subject to parity-breaking external pertur-
erators can be extracted from the second-order perturbativations, such as a staggered magnetic field or explicit dimer-
corrections to the corresponding correlation functionsization.
Equivalently(and more formally, this can be done by fusing Consider first the case of a single Heisenberg chain. The
a local operatoiQy(r), originally defined as a short-ranged dynamical structure factor is defined as the Fourier transform
field with the perturbative part of the total action, of the spin-spin correlation function
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At small g, Fqq, Fqrmqeas Faemgs andF q+ - are the
S*¥(w, A=5-xN 2 " dteetian- M(SADSE0)).  Fourier transforms of the smgothqfunctloﬁsi(n) F,(n),
o (30) F3(n), and F4(n), respectively. Substituting Eq33) into
Eqg. (30) we find that
Here we have set the lattice spaceyg=1. For a translation-
ally invariant, antiferromagnetic spin chain the spin-spin cor-

[

o — Tap
relation function has the following asymptotic structure $*(w,Q)= o0 | |'§7 FQ+2wI,Q+2wI’(“’)' (35)
(S:(1)SE(0))=FB(t,n—m)+(—1)"""F45A(t,n—m), From Eq.(35) it follows that the structure factor is7 peri-

(31 odic in Q. Secondly, the right-hand sid®HS) of Eq. (35)

where F,(t,n) and F,(t,n) are slowly varying functions does not contain off-diagonal matrix elemeitg ., and
of n andt. According to Eq.(8), in the continuum limit Fo QtmQ: implying that mixed correlators do not contribute
these reduce to the correlation functions of the smootho S*(w,Q). Therefore,
and staggered magnetization{J*(t,x)J?(0,0)) and ap .
(n“(t,x)n?(0,0)), and thus determine the dynamical struc- op Fif(0,Q) if Q~0,
ture factor in the vicinity of twadifferentpoints:Q~0 and S, Q)_ 27 | E9h(0,Q—m) if Q=m
Q~m

When a staggered magnetic field is applied to a spiwhere, at smallQ and w, F¢*(®,Q) and F5#(w,Q) are
chain, the situation may seem to be different. Indeed, thgourier transformations of the correlation functions
translational symmetry of the underlying lattice is broken(J«(t,x)J#(0,0)) and{n*(t,x)n?(0,0)), respectively.
and the period of the induced magnetic structure is doubled. The same conclusion can be reached within an equivalent
The spin excitation spectrum is now defined in the reducegut somewhat more appealing picture of diatomic cells. De-
Brillouin zone — m/2<q< /2, with the pointsy=0 andgq fine a magnetic unit cell made of two sitesn21,2n), and
= identified. At the same time, due to the lowered transladenote the corresponding spin operators y=S and

tional symmetry, the asymptotical expressi@1) for the g2 =7 There altogether are four different spin-spin cor-
spin-spin correlation function will contain extra oscillating re|ation functlons

pieces

(36)

gl —1")=(S¢ 5 0
(SHVSE(0))=FA(t,n—m)+(—1)" "F5A(t,n—m) (LI=ID=(STOSuOD),

+(—1)”F§’8(t,n—m) g I_I <Ta(t)Tﬂ(o >
+(—1)"FP(t,n—m), (32) ggﬂ(t,|—|'):<5f(t)7fi(0)>,
whereF;(t,n) andF,(t,n) are smooth functions that trans- ge(t, 1 —1")=(Te(t S,ﬁ, 0))

form in the continuum limit to the mixed correlators
(n*(t,x)JA(0,0)) and(J*(t,x)n?(0,0)), respectively. These whose Fourier transforms
correlators are nonzero in the presence of the staggered field, N2
and the question is whether they contribute to the dynamical
structure factor. Ga(®,q)= 2 f dtexpiwt—ig[2lag])ga(t,!)
The answer to this question is negative. At a formal level,
this can be shown as follows. Note that due to the brokefave the periodicity of the reduced Brillouin zone:
one-site translational symmetry the spin-spin correlation ~ -
function should be expanded in a double Fourier series Ja(®,q+7) =ga(w,q).
1 It then follows from the definitior(30) that
(SiOSH0) = 2 e® MR, (33
Kk s w, Q)——[gﬁ(w Q)+95%(0,Q)
wherek andk’ vary within the paramagnetic Brillouin zone
QZBTK k§ ), and the double per.iodicity requires that +e Qg2h(w,Q) +€'°%g5h(w,Q)].
F . #0 if k=k" or k=k’+ 7. Mapping onto the reduced
K . (37
Brillouin zone yields
This expression shows that, although the spin correlation
a 1 iq(n-m)[Ea functionsg,(w,q) have the periodicity of the reduced Bril-
—— ig(n-m)rgap Jalw,q p y
(SH(DSR(0))= N | E 2 [Faq(t louin zone, the dynamical structure factor does not; it rather
retains the periodicity of the paramagnetic Brillouin zone.
+(—D)"RR O+ (=DFEE (1) Thus, for the dynamical structure fact®(w,Q), the
pointsQ=0 andQ= 7/a, areinequivalenteven in the pres-
+(—1)"FER L (D], (34 ence of a staggered magnetic field.
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The functionsg,(t,l) can be easily expressed in terms of Eq. (263. We therefore start our discussion with the case
the functionsF,(t,n), defined in Eq.(32). Using then Eq. q, == and consider the real-space—imaginary-time correla-
(37) one finds that tion functions

DN =(allg VAN, (NN, (0)) (a=Xxy,2).

N
1 (= S
S*(w, =—f dt >, e'ettiQnEeh(t n . . . .
(.Q) 2m) o nzl r(tn) The corresponding structure factor is obtained by Fourier

\ transformatiorD{)(r)—D{)(q) [g=(q,®,/v)], and sub-
* it +i(Q+ M afB sequent analytical continuation to the upper complex
* J,wdtnz::l € Fa"(tn). w-plane (w,—w+id).
Using the fact thaF ,(t,n) are slowly varying functions af, 1. h<h,

we finally amrive at the resulis6) where For fields smaller tharh, the leading asymptotics of

LN D{7)(r) are given by
Foh(w, :f dt >, elettiPnE2h(t n), 38
a ((0 p) . nzl a ( ) ( ) D(X;)(r)=D§,;)(r)
The generalization to the case of the two-leg ladder is o (Ua®) (@® g 3) Y o (1) wo(r) o1(0) wp(0)),
straightforward. The structure factor is defined by (41

2 N
SHwqa)-— S S [ dtew D)% (LUa?)(all) (o1 rs(0))

47N a,b=1 n,m= —
e (pa(Na(DpaOpa(0),  (41b)

—ig(n—m)—iq, (a—b)/ca

e . <Sa'“(t)S€'m(0)>' with 13~v/ms. Here and in what follows it is assumed that

(39  the third Ising system &) decouples from the doublet
(£*,£%). This assumption is certainly correct in the vicinity
of the critical point and holds on a qualitative level every-
Cyvhere in the massive phaseshat h, .

Using the local bosonic representation of the product
o149, given by Eq.(A6b) of Appendix A, and properly res-
caling the dual fieldd, ®— (1/\/K)®, we find that the cor-
relator on the RHS of Eq(41a reduces to that of vertex

2= w?—q%?, (40) operators of the dual field in the SGK22) which, in turn,
can be estimated by means of the form factor bootstrap
whereq stands for a small momentum deviation either fromapproach®>~—3°
0 or.

where we have introduced a transverse momenjunthat
can take only the two values 0 and Information about the
low-energy part of the spin fluctuation spectrum is containe
in the staggeredq~) and smooth ¢~0) parts of the
structure factor for both values @f, . All these four cases
will be considered separately. Below we adopt the notation

\/; \/; e—Mdr/v
IV. DYNAMICAL STRUCTURE FACTOR <C°S K O(neosyig ®(0)> ~2(K) Mgrlo
IN THE WEAK-COUPLING LIMIT
Inspecting the RHS of Eq41b), we notice that the disorder

In this section we determine the dynamical structure facPPeratorsu, and u, have nonzero expectation values(
tor at low energies in the weak-coupling regime. In Secs=>0)- On the other hand, sincen;>0, the correlator
IV A—IV D it will be assumed that the staggered magnetic{@3()o3(0)) has the asymptotic forri6) with I replaced
field is much smaller than the singlet ghpy. In this case by13. The obta!]ed asymptotics for thg correlation .funct|ons
the relevant correlation functions can be estimated using thB« (r) and D{;)(r) lead to the following expressions for
effective action in the tr|p|et sector and the |OW_energy pro_the transverse and |0ngitudinal Components of the dynamical
jections of the corresponding physical fields, discussed in th&tructure factor:
preceding section. In Sec. IV F we will consider another lim-

+ — _ 2_ 2
iting case|mg<h<J, which will be treated on the basis of S (w,m+q,m)=C,(h)o(s"—My), (429
the model(25). 2 o
S w,m+q,m)=Cy(h)8(s*—m3), (42b)
A. Structure factor at q, ==, g=« where
Of primary importance is the evolution of the coherent C. (h),Cy(h)~(|mgmzM 2)14 (420

triplet peak displayed by the dynamical structure factor of

the Heisenberg ladder under the action of the gradually inwWe note that the incoherent continua that contribute to the
creasing staggered magnetic field. This information is condynamical susceptibilities at higher energy can be calculated
tained in the spectral properties of the relative staggeredly using the results of Ref. 28ee, e.g., Ref. 40 for a similar
magnetizatiom™ whose low-energy projection is given by calculation.
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Thus, the coherent triplet magnon peak of the isotropigu, ,— o4 ,, keeps the correlator in the RHS of E@tla
Heisenberg spin ladder, originally located at the frequencyinchanged. Therefore the cohereBf|=1 magnon peak,
w=my, is split by the field in two peaks: the double®’(  which exists ah<h, and disappears at the critical point, is
=+1) peak ato=My<m; and theS’=0 peak atw=m3;  recovered in thdr>h_ phase. In contrast to this, the asymp-
>m;. Therefore, the phase occurringtat h, represents an totics of D{,(r) is changed, and &t>h, we find
anisotropic spin liquid with coherent longitudinal and trans-
verse magnon excitations having different, field-dependent =) 1 ) l/4e‘2|“"d|”“ e msrlv
mass gaps. D, (1) =—(ImgmzMg) Mo Jmate”

Upon increasing the field, the two peaks move in opposite ve d Mslfv
directions. When the critical field is approached, the backAs a consequence, the Haldane spin liquid loses part of its
ground of multiparticle states with threshold3, 5My, coherent spectral weight at~ 7: the S*=0 magnon is no

. , and the doublet peak merge, and, at criticality, theonger seen in the longitudinal staggered structure factor
four-point Ising correlation functions in Eqé4l) follow a  S*4w,w+q, ) and is replaced by an incoherent continuum
power-law behavior. of states with a threshold ai=2|M 4| + mj:

2. h=h, S w,m+0,7)=C[ (s>~ (2|Mg[+m3)?], (44

As follows from the bosonic representation of the prod-yhere
uctsoqu, andu, i, [See Eqs(A6a) and(A6b) of Appendix
A], at h=h, the four-point Ising correlators in Eq$41) . a\[ a? |1 v
transform to those of vertex operators in a Gaussian model Ci(h~ v (2[My[+mj3)a

and therefore display a power-law decay. One easily finds
that We will show below that, in fact, the coheregt=0 mode

still exists ath>h, but its spectral weight is shifted towards
=) a| VX small momenta@~0) and is very small.
Dxx (r)oc - )

1/2
— ) . (44b
I3

B. Structure factor at q, =, g=0

KI2 o—t/l . .
D) (1) a|e e The structure facto8*“(w,q, ) is determined by corre-
2z r il lations of the relative magnetization
After th_e Fourier transformation and analytic continuation Sin—Sen—K(x),
we obtain
Ka=i(&aep+e8el), a=1,2,3. (45)

2 1-1/4K
S (w,m+ quQ(ﬂ) 6(s’), (439  The projections of the field&? onto the low-energy sector
a's are given by Eqs(29a—(290).
1-K/2 Consider first the longitudinal structure factor. Since the
o(s2—m2) third Ising system remains disordered across the transition
8/ (m3>0), S*{w,q,7) will be nonzero only at frequencies
(43  @=mg. This follows from Eqs.(29¢) and (26b). Note that
the operatoE ™~ in EqQ. (26b) is related toN, , Eq. (268, by
where a duality transformation in the doublet sector. Therefore the
( )( o2 ) 1/4 large-distance asymptotics &~ (r)E "~ (0)) can be obtained
Ci~l—= )

2

SZZ(U_),’IT‘Fq,’IT):Cﬁ m

¢ from those ofD{,’(r), estimated in the preceding subsec-
tion, by interchanging the cashs<h, andh>h.. This leads
)1,4 K/2 to the following results:

1% |S|3

ci~[ ()T

. - . h\?
and 6(x) is the Heaviside step function. Both the transverse Szz(w,q,w)=c”(h)(—) (qlg)?6[s*— (2M 4+ m3)?];
and longitudinal susceptibilities feature incoherent scattering Mg

continua with thresholds at zero energy ang ms, respec- (463

tively. h=h,:

’ (430 h<h,:

3. he<h<|m{| 2 1-K/2

2
At h>h, the masany becomes negative and the doublet Szz(w*q’”)zc,(ﬁ) (qls)z{T_z
of Ising systems occurs in the ordered phase, whereas the s a’(s"=mj)
third Ising system stays disordereai{>>0). The behavior of X 0(s%— m§); (46b)
D&;)(r) is just the same as &t<h, since the duality trans-
formation associated with the sign reversal mof;, i.e., h>h.:

024412-9



WANG, ESSLER, FABRIZIO, AND NERSESYAN PHYSICAL REVIEW B6, 024412 (2002

2 s s tween the Majorana fermiorg and &2 shows up only in the
(qly)°8(s"—m3), (460 mass and velocity renormalization and the interaction-
dependent prefactaty(K):

h
Szz(w.qm)=c||(h)(ms

”n

where the prefactorg, Cﬁ, and C| are given by Egs.

(420), (430), and (44b). We see that ah>h, the coherent S*{w,m+q,0)
“=0 magnon mode is seen in the sm@lpart of the dy- 2 N ETVY
namical structure factor. However, its spectral weight is pro- o izg(K)(L) I_S) NS AMG 0(s2—4M2).
portional to @ls)? and thus small. 2v Img|/ | @ S
Consider now the transverse structure factor. Using the (50)

definitions(299 and(29b) and the known expression for the | . ) ]
structure factorS™ (w,m+q,) obtained in Sec. IVA, we This is confirmed by the calculation done in Sec. VIIE,
find the following: which proceeds from the bosonized correlais),

h#h,: Kg(r)oc(cosy4mKd(r)cos\4mKD(0)),  (51)

h 2 ® 2 . . . . .
- _ R 2 n2y. and automatically takes into account interaction effects in the
SH(w,q,m) Ci(h)(ms) ( ) A(s"=My); (473 doublet sector within the form factor approdth’ to the
SGM (22). In that calculation, the crucial fact is that, in the

S

h=h,: range 3/4&K<1, the spectrum of the SGN22) consists of
b2 of 9\ 1-14K massive quantum solitons) and antisolitons g) with the
Si(w,q,w):q(_) (i) (U_) 0(s?), massM 4, and one soliton-antisoliton bound stdbreather
ms/ \Ms) | s2¢2 with the massM, given by Eq.(91). The latter, however, is

(47b  odd under paritycharge conjugation(A12) and as a result

whereC, andC/ are given by Eqs(420 and (439). Com- the form factor of the parity-symmetric operator G@sr®

paring the resulté42a and(474), we see that at any nonzero between the vacuum and the breather state vanishes. There-
h (except for the transition pc’)i)jtthe coherent transverse fore the main contribution to the structure factor is due to the
(|SZ|:1) magnon mode is seen both in the Stagger@d (SS Scattering continuum with a threshold alt'\/Bd|, where

~a) and smooth @~0) parts of the structure factor Mg is the single-soliton mass. This explains the universality
S*(w,q,), with the ratio of the spectral weights g&=0  Of the square-root behaviof50) of the structure factor

andq~ 7 being of the order off/m¢)3(M4/mg)>. S$*{w,7+0q,0) near the threshold.
The result(50) neglects the contributions of multiparticle

processes with thresholds at higher energid#i(4, 6|M 4|,
g ) . etc). As h—h, (i.e., My4—0), such processes become as
The structure facto$*”(w,w+q,0) is determined by dy-  jmportant as the two-particle ones. Exactly at criticality the

nilminv" correlations of the total staggered magnetizationyjajorana doublet becomes massless, and the interaction in

C. Structure factor at q, =0, g==«

n", whose low-energy projection is given by expressionsthe doublet sector can no longer be ignored. In this case
(289—(280). Kg(r)=(a/r)*¢ and
1. Longitudinal structure factor CK) [ v2 1-K
Z 2
As follows from Eq. (288, S*{w,7+q,0) displays a Sw,m+q,0)= (a232 (s, (52

broad continuum of states with the lowest-energy threshold L oK ea ) )
equal to 2M4|. If |h—h.<h., at frequencies much less WhereC(K)~[2""“%/T'“(K)](h/mg)“(ls/a)".
thanm; only the doublet modes are to be taken into account.
In this case we have 2. Transverse structure factor
) ) The transverse structure fact®™(w, 7+ q,0) can be es-
h | . . o U -
D(”(r):AZ(—) (_S) Ky(r) timated in a similar manner. The main difference is that now
2 Nmg) \a "N we have two Majorana fermionstt and &%) with unequal
masses iy andms;). Treating both fermions as free, simple
Ka(r) =(eq(r)eq(0)), (48 calculations along the lines of Appendix C give

whereeq=i(&héL+ £4£7) is the energy-density operator in oo 23

the doublet sector. A simple calculation, based on the as- SN, m+q o)mg L) (l_s) [s°—m?% (59
sumption that the doublet fermions are free, leads to the re- ' ’ vimg/) e 2—m?’

sult (see Appendix €

2 2 2
s“=maxm; ,m-},
1 s2—4am? ’

ImMK4(q,0+i6)= o s

(490  wherem.. =mg*+my. For different signs of the doublet mass
my~h.—h, the frequency dependence of the structure factor
In fact, the square-root behavior of the structure factor neais qualitatively different(see Fig. 2 At h<h; (my4>0),

the threshold isuniversal the effect of the interaction be- S*(w,w+q,0) follows a square-root increase above the
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2 T T T » h 2 |S 2 SZ_m:Z3 29
S¥w,7+0,0)|ei=C() mg) \a) | 72 |
— my=0 — mg=0 mS a m3
S mg=002 % L my=0.02 | (55a
o | mg=008 ¥ ... m,=0.08
4 where
& 1t ]
%\j’ c( ﬁ)NL(E) 219 (55b)
o __ 217290 (1429) |3
me=1 [/ and
03 ﬁ 1 (I) 1:: ‘2 3 1 1
s 20=§ K+R)_1 (56)

FIG. 2. Transverse structure factor gt m, q, =0. For more
clarity, the casehi<h. (myg>0) andh>h. (my<0) are shown
separately.

is the critical exponent of the single-particle density of states
in a Tomonaga-Luttinger liquid. We see that, due to an “in-
frared catastrophe” caused by the interactions in the doublet

thresholdm, which becomes steeper bs-h.. At h>h,, sector, the thres_hold discontinuity 8w, 7+ q,0) trans-

S%(w,7+q,0) has a square-root singularity at the thresholdorms to a continuous dependgnce. However, due to the

m_ with an amplitude proportional timy|*2. smallness of, _the power-law increase of the transverse
Let us now discuss the role of the so far neglected interStructure factor is very steep.

action between the fermions. As we have mentioned before,

near the critical point th&*=0 collective modes described D. Structure factor at g, =0, g=0

by the field ¢&* asymptotically decouple from th&”= *1 At small q the structure facto8**(w,q,0) is determined
(doubley ones. Hence one can always assume that the M&;y correlations of the smooth part of the total magnetization

jorana fermion¢® is free and massive. Concerning the fer- gensity. In the continuum limit, the latter can be expressed in
mion &2 that belongs to the interacting doublet sector, Weterms of the triplet Majorana fields:

may use the bosonized expressions for the chiral components
of £2 [see Egs(A5)] and employ a form factor expansion in SintSn—1(x),
the model(22) to show that

" 12=—(1/2) €% £péR+ ELE). (57)
z
2 2 — —
(&r(x,7)€R(0,0) =Z(K)Ky([Mqz]) ;) ' 1. Longitudinal structure factor
o The total longitudinal current®= —i¢1£2 involves only
) ) z the doublet Majorana modes which become critical at the
(LM EL(0,0)=Z(K)Ky(IMgZ])| -] transition. If the marginal interaction between these modes
was absent, the structure factor at sneplivould display a
(E4(x,7)£2(0,0)=Z(K)Ko(IMy2]). (54)  broad continuum of states with a thresholeng| (Ref. 24:
Here z=r+ix/v, z=7—ix/v, and K,(X) are the Mac- , 2g°m; -
Donald functions. In Egs(54) only the one-particle form S$4@,9,0~ Ss\/m' (58)

factor has been taken into accoutte first correction in-
volves a contribution of three-particle procegs¥de see that As opposed to the case of the energy-density corre(&tbr
the expression&b4) have the structure of the two-point cor- where the free-fermion approximation correctly captures its
relators of free massive Majorana fermions. The informatioruniversal features, here the interaction in the doublet sector
about the interactions in the doublet sector, i.e., the paranehanges the resu{68) dramatically. As already mentioned,
eterK of the SGM, is contained in the renormalized mitkg  apart from soliton/antisoliton states the spectrum of the SGM
and the constarZ(K). This means that, up to this prefactor, (22) with 2<K<1 also features the first breather state. The
the above resul(53) actually represent the first term of the latter is odd under charge conjugati@ which inverts the
exact form factor expansion and, thus, is universal close tgign of sine-Gordon field® [see Eq(A12)]. As follows from
the threshold as long ds#h,. Eq. (A3) the current operatdr= \K/7d,® is also odd un-
According to Eq.(53), at criticality the free-fermion ap- der C and consequently has a nonzero form factor between
proximation leads to a step functiof(s>—m3). However, the vacuum and the first breather state. This gives rise to a
this result must be revisited becauseMi=0 the single- coherents-function peak appearing below the threshold of
fermion propagatotf £1(x,7) £€1(0,0)) transforms to that of a the two-soliton scattering continuum. Taking into account
spinless Tomonaga-Luttinger liquid. An estimation of only the contributions of the first breatharith massM )
S*(w,m+q,0), quite similar to that done in Appendix D, and the two-particle scattering states, close to the critical
leads to a power-law behavior point we obtain
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N2 2\s?—4AM3 1
4 w,q,0)2 .Wg qza(sZ—M§)+4wq d
sin(7¢) 58 cosh(26y/¢)+coq 7/ €)
inh([ 1 1-cosh cod 2"
. fwdt sinh([1—£&]t)|1—cosh 2 co — -
exp ot sinh(2t)cosht sinh(t§) ' (59
|
where §,=arccosh§/2M ) and The caseq=0 is shown in Fig. 3. Apart from the a7
g decay atw>ms, the behavior ofS*(w,q,0) close to the
B —_— medtt threshold is similar to that o8*(w, 7+ q,0) (cf. Fig. 2).
A=2cogmél2) V2 3|r(7-r§/2)exp( B JO m) Although atq=0 the transverse structure factor is finite
for h<h. (my=0), at arbitrarily smallq it is divergent at
the thresholdsee Fig. 4,
E=———, M;=2Mysin(mél2). (60)
2—K
qZ(mi_mg)l/z 1
This result is valid for any sign oh—h.. We note that S ,q,0)~

2,2 214 [
S*4w,q,0) vanishes ag— 0 because thecomponent of the mZ (m? +¢%)M 5

total magnetizationS; + S5= [ dxI3(x), is conserved. In the 5
o ) Y where(S:w—\/miJrq >0.
limit K— 1 the two-particle contribution to E@59) reduces Forh<h, and atg#0 the curves shown in Fig. 4 display

to the form(58) as it should, if we identi ith my. . .
(58) as i Hic, 1 We | Iy g wi d an interesting feature. The i drop of the structure factor

Exactly at the Gaussian criticalitthE&h;) the longitudi- : : :
nal struc){ure factor is given by t}::eé vxff)ell-knowng “chiral slightly above the threshold is followed by an upturn which
is a property ofS*(w,0,0). The maximum occurs at

anomaly” formula(see, e.g., Ref. 27

S ,9,00=K(alv)(qu)?8(w?—q??). (61 (m3 —m?)g?
o~ .
m,m<

] ) At h>h, (my<0) the singularity at the threshold is of
Now we turn to dynamical correlations of the transversethe form

2. Transverse structure factor

total current,|'=—i£2¢3. As before we will first adopt the

free-fermion approximation and then discuss how the results (M2 —m2)Y5(m?2 +q?)% 1

are affected by the interaction between the doublet modes. S*,q,0)~ —— * 5 — —
After some algebras we find the following expression for mZ Vo

S*(w,q,0) (assuming thatv>0):

a M2g3(s?—m?)+m? (s2+q?)(s>—m?)

S$(®,9,0)

~ 2 4 a2 2\ 22 '
2v s*V(s?=m?3)(s’~m?)
(62)
m.=mg*my, s’=max¥m?,m?}.
1 T I:‘::" T T T
i
— my=0 i
08--- my=-0.01 [}
....... my=-0.04
= -+ My=-0.08 |
2 :
<3
»
m3 =
03 2 1 0
® .
FIG. 4. Transverse structure factor at sngpiith parametera)
FIG. 3. Transverse structure factorgtq, =0. my=0.8m3 and (b) my=0.2mz, my=1.
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S"'“ Szz S+— SZZ
A\ 4 N W q=n

I

o I g0 T U g0

\j

0 n 4 0 T q 0 n d 0 T q

FIG. 5. Structure of low-energy magnetic excitations in the FIG. 6. Structure of low-energy magnetic excitations in the
weak-coupling limit wherh<<h.. weak-coupling limit wherh>h,.

Now it survives the limitq—0 and disappears only at the of the structure factor changes significantly, which of course

critical point. has important consequences for the neutron scattering cross
The free-fermion approximation is reliable as longhas section.

#h.. The derivation of the structure &”*(w,q,0) at criti-

cality is given in Appendix D. Using Eq$D6) and (D7) we F. Structure factor at |m¢<h<€J

find that just above the thresholg= \/q?+m3 the structure

factor S*(w,q,0)| i only differs from the expressiofb653

by an extra factor §%+ q%v?2)/m2,

This is the limit of two decoupled Heisenberg chains in a
staggered magnetic field, described by a pair of Bfe
=21 sine-Gordon Hamiltonian&5). The problem basically
X reduces to the situation studied in Refs. 13—16. The elemen-

29 —_
S ,0,0)|gri=C(9) w’+q%v?| [ s*—mg . (63 tary excitations are soliton®) and antisolitons §) with a
5

m2 mass gapM (which scales asM~h??) and two soliton-
antisoliton “breather” bound stateB; , with gapsM and

The discontinuity of8*(w,q,0) at the threshold, obtained in J3M, respectively. The dynamical structure factor has al-
the free-fermion approximation, is rounded by the interactiof€ady been partially calculated by means of the form factor
in the doublet sector. However, due to the smallnes$,ahe ~ bootstrap approach in Ref. 14. We briefly review some im-
transverse structure factor rapidly increases beyond theortant ingredients of this method in Sec. VI. The leading
threshold and reaches values of the order of 1 exponentiallgontributions to the various components of the structure fac-

close to the thresholdy — \/q%v 2+ ma~ o~ e~ V27, tor are found to be
St (w,m+09,q,)=A, 8s*~M?)+-.., (649
E. Summary of the structure of the magnetic excitation
spectrum at weak coupling Szz(w,ﬂ-%-q,ql):A”é(sz—SM 2) TR (64b)
At this point it would appear to be useful to briefly sum-
marize our results concerning the behavior of the dynamical S" (0,9,9,)=B, (0w’ M?)5(s>~M?)+ ..., (640
structure factor in the weak-coupling regime derived above.
We do this in a simple pictorial way, having in mind to Szz(w,q,qi):B||(q2/M2)5(32—M2)+-~-. (640

illustrate the qualitative changes in the spin excitation spec-
trum associated with the transition induced by the staggeretlere A, | andB, | are constants that can be calculated,
magnetic field. =0,7, and the ellipses denote higher-energy contributions of

In Figs. 5 and 6 curves denote coherent single-particlenultiparticle intermediate states. Bothgat O andg~ 7 the
excitations whereas shaded areas correspond to incoherdransverse structure factor shows a cohegefunction peak
multiparticle scattering continua. The main changes as weue to one-soliton intermediate states. This suggests that
tune the staggered field through the transition concertthere may be a coherent transverse soliton mode throughout
S w,q, ). The coherent mode visible I8 w,q~ 7, ) the whole Brillouin zone. The longitudinal structure factor
below the transition is replaced by an incoherent scatteringxhibits a coheren#-function mode corresponding to the
continuum forh>h;. In the vicinity of q=0 exactly the second breatheB, with gap \/3M in the vicinity of q= .
opposite happens: the incoherent scattering continuurfor small momentum transfer along the chain direction the
present belovh. splits off a coherent mode fdr>h.. The longitudinal structure factor exhibits a cohereffunction
transverse magnon mode visible$i ~(w,q,7) is well de-  peak which is a contribution of the first breatty with gap
fined both below and above the transition. M. However, the spectral weight is very smalld?).

At g, =0 the general structure of the excitation spectrum Let us now compare these results to the ones found above
is similar forh<h, andh>h.. However, the precise form for the weak-coupling limit)/>J, >h>h,.
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g, = m: The transverse structure factor fipr= 7 is similar

to Eq. (64a. The longitudinal structure factor at weak cou-

pling is incoherent whereas fér>J, it is coherent. This is

easily understood: increasing the staggered field eventually
splits off a bound state from the incoherent continuum. Fi-
nally, the structure factors fa~0 have the same general

form as Eqs(64¢ and(64d), respectively.

g, =0: Here the situation at large staggered fiells,
>J, , is different from that found al, >h>h.. The trans-
verse structure factor aroumpg= 7 andq=0 exhibits coher-
ent modes foh>J, , Eqgs. (648 and(64¢), whereas it dis-
plays incoherent scattering continua fod, >h>h,.

However, these continua are singular above the threshold

PHYSICAL REVIEW B6, 024412 (2002

JE(h)
M(h)=/\/l(hc)—§—h

= Mgad Ne) + consth—h| K/ sgnth—h,).
(67)
The staggered susceptibility

. 2(1-K)
Xs(h)~|h_hc| , V= W>O, (68)
is divergent at the transition. The nonuniversal exponent

garies fromgﬁ/m) atJ, <J to values close to 2/5 &k, >J.

and one can thus easily imagine that they are prone to split

off coherent modes onck becomes sufficiently large. An

analogous situation is encountered 8 w,q,0) at smallg.
Finally, a coherents-function peak is found inS*{(w,w
+q,0) both ath>J, andJ, >h>h,.

V. INDUCED STAGGERED MAGNETIZATION

VI. STRONG-COUPLING LIMIT

In this section, we consider the modd) in the strong-
coupling limit J, ,h>J. It will be assumed that the number
of lattice sites is ever\=2M, and periodic boundary con-
ditions are imposed.

In the zeroth-order approximationJ€0), the Hamil-

In this section, we estimate the magnetic field dependencgnian describes a collection of even and odd rungs,

of the induced staggered magnetizatid in the Haldane
spin-liquid phase of the spin ladder. SincehatO correla-
tions of the total staggered magnetizationl)"[S;,+ S5,,]

are short ranged, the dependenieh) will be linear in the
limit h—0:

M(h)=xs(0)h  (h—0), (653

_.1 2 + + J
Xs(o)_;f d r<nz(r)nz (O)>ONE- (65b)

On the other hand, whehis large ©>J,), the transverse

coupling between the tw&=1/2 Heisenberg chains of the

M M-1
Ho= 2 Homt+ X Homi1, (69a
m=1 m=0
where
HO=J,S1n Son—h(— D[S, +S5,]. (69D

The spectrum of the even-rung Hamiltoni#l],,, consists of
four levels,

E+:7r:ha

(70

corresponding to the triplet and singlet states

ladder can be neglected. Each chain is then described at low

energies in terms of th8?=2x SGM (25). This leads to the
result

1/3

) Xstagi h)oech™ 2B, (66)

ha
/\/l(h)oc(

v

To estimate the singular part gé1(h) at |h—h.|—0, it is

1
()=l 1= FITH+INL 1=)=ILL),
~ -
)= ﬁ[lm [11)]-

At h<J, , the singlet stat¢s) is the lowest-energy state. At
h=J, the|+) level crosses with the singlés) and ath

sufficient to know theh dependence of the_ ground-lstatt.-:- en->J becomes the lowest-energy state. Focusing on the vi-
ergy density£(h), of the low-energy effective Hamiltonian. cinjty of the level crossing pointbh—J, |<J,), we will re-
Both in the weak-coupling and strong-coupling limits, the tain two low-energy states on each even rung:

latter has the structure of the SG2R) with the amplitude of

the cosine term proportional th—h|. Using standard scal-

ing arguments, we find that

£(h) = E(hg)~ —|h—he 229,

whereK is given by Eq.(83). Higher-energy degrees of free-
dom which asymptotically decouple from the critical ones

provide a finite contribution toVi(h) ath=h;. So

|ﬂ>2m:|+>2m: |U>2m:|s>2m-

Projecting the even-rung Hamiltonian onto the subspace of
these two states, i.e., imposing the constraintn|+ 1)
x(l}|=1, we obtain

1/J h—J
PHng: - E(%"_h) - Tl{lﬂ>2m<ﬂ|2m_ |U>2m<u|2m}-
(72

(71)
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The spectrum of the odd-rung Hamiltoniah),, ., is ob-
tained from Eq.(70) by inverting the sign ofh, which
amounts to interchanging the states) and|—). Thus the
lowest-energy states on odd rungs are

(73

Mome1=12me1,  [ome1=1")2m+1

and the projected odd-rung Hamiltonian reads

h—J,
+ T{|ﬂ>2m+l<ﬂ|2m+1

1(J
PHgmHP:—E(%Jrh

=) 2m+ 10| om+1} - (74)

Introducing effective spin-1/2 operatofl§, associated with
the nth rung,

1
Tﬁ:§(|ﬂ>n<ﬂ|n_ |U>n<U|n),

T::|ﬂ>n<ulni Tn_:|u>n<ﬂ|n,

we see that, in the zeroth orderJdnthe low-energy Hamil-

(79

PHYSICAL REVIEW B 66, 024412 (2002
Heg=const+J>, (TXTX, ,+ T, +ATZTZ, )
n

—h*> (-1)"TZ, (80)

where
= h*=h-J +J
2 B Lo

Since|A| <1, the model80) has a W1) (Gaussiah critical
line h* =0, i.e.,

A (81)

h=J — %+O(J2/JL). (82

To be sure of this result, we must verify that higher-order
terms (<J2/J,), originating from virtual transitions between
the low-energy and high-energy states, do not introduce rel-
evant perturbations at the(l) criticality but only renormal-

ize the parameters dfl¢ in Eqg. (80). Since the original
Hamiltonian(1) is site-parity symmetric, a bond-alternating

tonian describes a collection of noninteracting spins 1/2 on &rm cannot appear. Small corrections of the orﬂlaﬂL

1D lattice in an effective staggered magnetic fibtd J, :
PHoP=const—(h—J,)>, (—1)"T%. (76)
n

The exchange interaction between the spipds mediated
by the longitudinal(J) part of the Hamiltonian1). In the

cannot make\ greater than 1 and drive th€XZ chain to the
massive Nel phase. Next-nearest-neighbor exchange inter-
actions with small coupling constants are also known to be
marginally irrelevant at low energies. Finally, with the defi-
nitions (71) and (73) of the spin-up and spin-down low-
energy states, the effective model should be invariant under
spin rotations around the staggered magnetic field, which is a

two-dimensional low-energy subspaces of the even and odgroperty of the original model. This rules out a breakdown of

rungs, the original spin operato®; ,(j=1,2) reduce to

z 1 z 1 n
Sj,n_)z Tn+§(—1) ,
+ j+tn 1 =+
Sa— (=D —=T,. (77)

V2

As a result, in the first order id, the interaction between
neighboring rungs, e.g.,@ and 2n+1 is given by

_ X X Yy y _ Z zZ
I TomTome1t TomTome1 5 Tamlom+1]-

It is convenient to make a unitary transformation

T, = (—D)"T,, T:=TZ, (79
under which formulag77) transform to
A vA z 1 n Z Z .
1n+82n_>Tn+§(_1) ’ ln_SZn_>o!
an+ S;n—>0’ SIn_ S;n_’ - \/ET: . (79)

the XY symmetry of the effective Hamiltonian, which would
generate a finite gap. Thus, higher-order terms will slightly
(in the orderd?/J,) modify the parameters of the effective
Hamiltonian (80) and, in particular, the critical ling82),
without affecting the criticality itself. Small corrections to
the zeroth-order parametér=1/2 will keep the W1) criti-
cality far enough from the S@) critical pointA=1.

The picture of the transition emerging in the strong-
coupling case,J, ,h>1J, is in full agreement with the one
obtained in the weak-coupling limif], ,h<J (see Sec. )l
In both cases, the criticality is identified as that of an effec-
tive spin-1/2XXZ chain. We therefore expect that the exis-
tence of the W1) criticality in the antiferromagnetiS=1/2
two-leg ladder in a staggered magnetic field isiraversal
property of this system. The vicinity of the critical field is
described by the SGNR2) with

1

K= (83

1
2( 1— —arccosA
a

However, the equation for the critical line, as well as the
value ofA in the effectiveS=1/2 XXZ chain, are sensitive
to the strength of the interchain couplidg. Being small at
J, <J, A increases witll, and tends to 1/2K—3/4) in the

The low-energy effective Hamiltonian takes the form of anstrong-coupling limit. The scaling law for the critical line,
anisotropic spin-1/2 Heisenberg chain in a staggered mad?pJf’z, valid for a weakly coupled ladder, can be easily

netic field,

obtained by comparing the mass gaps in the limiting cases
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h/J, —0 andJ, /h—0. In the former case the mass gap is A= —cosmy?
linear inJ, (up to logarithmic corrections In the second . . . )
case we have two decoupl&k 1/2 Heisenberg chains in a 1S described by the Gaussian model with Lagrangian
weak staggered magnetic field. Since the staggered magneti-
zation has scaling dimension 1/2, the mass gap scales as £=i(a $)? (85)
h¥(2=d)=h2/ The condition, ~h?3 brings us to Eq(21). 167 #77 "
On increasingl, , the power lawh.~J%? gradually trans-
forms to a linear dependen¢®2), valid atJ, >J where the
transition is governed by level crossing of the lowest-energy ¥2=2/3.
on-rung spin states.

The strong-coupling approach can be applied to the genfhe scaling limit is defined by
eralized ladder modeP) as well, provided thafV|<J, ,h.
The effective low-energy Hamiltonian is again of the form 1—2

In the strong-coupling limit we hava=3 and thus

Y .
(80), but its parameters are modified J—o,  ap—0, Jaozzsinwyz =fixed.  (86)
1— ﬂ In these conventiong, is scaled in such a way that the spin

— V 4] velocity is set to 1. It is easily restored in the final results by

I=J=d=-7, A=—7—7T. dimensional analysis. Following Lukyand¥,we will nor-

2( 1- ﬁ) malize the field¢$ according to the short-distance OPE:

el 7PN =17, |x—y| 47, —v|—o0.
N ] v —[x=y| x=y|—

h*=h-J, + §+ 8" (84) Note that this implies that the lattice spacing must be taken

into account explicitly when relating lattice operators to field

VIl. PHYSICAL PROPERTIES
IN THE STRONG-COUPLING LIMIT

theory ones. For example, for the staggered components of
the spin operators we have

In the v_veak—poupling casé, <J discussed above, the 2T+—>(—1)”agz’2\/Eex;<ii 0),

exact relationship between the parameters of the low-energy n 2

model of four massive Majorana fermions and those charac-

terizing the original lattice spin ladder is unknown. For this 5 1

reason, although the weak-coupling approach correctly cap- 2Th—(—1)"ag® \/ﬂCOS(2—¢)- (87)
tures the universal parts of all physical quantities in the vi- 4

N[

2

cinity of the critical point, the nonuniversal prefactors cannotThe nonuniversal constansand F are known exactly!
be reliably estimated. On the other hand, in the strong-
coupling limit (J, >J), the mapping onto the effectiveXz 52 Y
spin-1/2 chain, Eq(80), is exact in the sense that all its r )
parameters can be found with any desired degree of accuracyF B 1 2-297
in terms of the expansion in powers &J, . Moreover, the 2(1— ?)2 1
projection of the spin-ladder operatdsg, onto those of the 2\al 5
XXZ chain, Ty, given by Egs.(79), does not contain non- 2-2y
universal parameters. Therefore, one can take advantage of = dt sinh( y%t)
the fact that the SGM22), describing the properties of the Xexp( _f _{ _ _ 7,2ezt] )
spin ladder in a staggered magnetic field close to its critical o t|sinht cosht[1—?])
value, is integrable and employ the form factor bootstrap (883
approacf®—8for a quantitativeanalysis of the spectral prop-
erties of the system. 5 1752
For simplicity we only consider the casé=0 but, in Y
view of Egs. (84), the extension to a small nonzekb is 8 (2_272)
straightforward. A=—| ——F—
In what follows we will use normalizations for the SGM m 2\/;1“( 1 )

that are slightly different from those used in, e.g., E2p), 22972
but are more convenient for the calculations we need to carry

out. p{JWdt{ sinh([22—1]t)
X ex

o t | sinh(y2t)cosht[1—y2])
A. Scaling limit
In the scaling limit, theXXZ spin chain with exchange _(2_ i) e 2t (88b)
constant] and anisotropy %
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For y?=2/3 we obtainF ~0.5360 andA~0.4285. When the )Ty = sar(h* ) (a2f42) oA >
staggered field term is added, the Lagrangian density be- (=)o) =sgrh*)(a )\/_<exmﬁ¢)).
comes Expectation values of vertex operators have been determined
1 in Ref. 43, and in particular we have
L=——(d,$)>—2ucosBe, (89 _
16 (n )2 0SB ey O
_ exp(i = : —
where 3=1/(2y)=/3/8 and forh* <0, 16 sinw&)I'(B%)
22
h* o 1 ¢ A
ZM:—?\/ﬂaéﬁ l, I E"‘EF 1_5 -
X M3E.
4\m

. [F 1
2T§ =(- 1)naé/(832) \/; ex;{ *i Ee> ) (95)

Combining Eq.(95) with Egs.(86) and (88b) we obtain

. _
2Ti=—(-1)"ag” V2Acosp ¢. (90) x| |
_1\NTZ\ — *
For h* >0 the signs ofu and of the expression fdf;, need ((=1)"Tw)=0.289%<sgrth )< J ) ' 99

to be inverted. The spectrum of the SGI89) at 82=3/8
consists of soliton and antisoliton with gayy and one C. Dynamical structure factor

soliton-antisoliton bound state called “breather” with gap i i
Our task is now to calculate the Fourier transform of the

Py 3 retarded dynamical correlation functions in the SGM. This is
M,=2Mgsin(m&l2), &= =_. (91 done by going to the spectral representation and then utiliz-
5 ing the integrability of the SGM to determine exactly the

. . matrix elements of the specific operator under consideration
The soliton gap can be expressed in terms of the scabg afn P P

. . etween the ground state and various excited states. This
comparing the results of a thermodynamic Bethe ansatz c 9

X 4 . : : ““Method is known as the form factor bootstrap apprdich.
culation with those of a perturbative calculation valid at h'ghLet us review some of its relevant steps.

A2
energies* In order to utilize the spectral representation, we need to
-, 2-2p2 specify a basis of eigenstates of the Hamiltonian. Such a
= ' )_ [ dﬁ I'([1+¢£1/2) (92) basis is given by scattering states of breathers, solitons, and
7l'(1-B?) 2 T2 antisolitons. To distinguish these, we introduce lali&ls,s.

As usual, for particles with relativistic dispersion it is con-
venient to introduce a rapidity variabketo parametrize en-
ergy and momentum,

Combining Eq.(92) with Egs.(90) we can express the soli-
ton gapMy in terms of the microscopic parameters of the

lattice model:
Mg |h*| |45 Es(#)=Mgycoshf, Py(6)=Mgysinhg,
5= a( 3 ) , (93
Es(#)=Mgycoshd, P4 (0)=Mysinhé,
3 5 4/5 .
3\/§F(1—5) wr<§) J2A Eg(#)=M,coshd, Pg(6)=M;sinhé, (97)
a= ~1.584 24,

N 8 3 where the breather galgl, is given above. A basis of the
2\/;1“(@) 3\/§F<§) scattering states can be constructed by means of the
Zamolodchikov-Faddee(ZF) algebra. The ZF algebra can
o be considered to be an extension of the algebra of creation
B. Staggered magnetization and annihilation operators for free fermion or bosons to the
The staggered magnetization is given by case of interacting particles with factorizable scattering. This
algebra is based on the knowledge of the exact spectrum and
1 1 the scattering matri For the SGM the ZF operatofand
(DS =7+ 5((=1)"Tp). (949 their Hermitian conjugat¢ssatisfy the following algebra:

The point to note here is that, in order to be close to critical- Z€1(60,)Z( 0,) =S 29, — 02)Zf§( 02)261( 0,), (99
ity, the staggered field must be large=J, , and conse- €12
quently, the staggered magnetization is large as well. In the
scaling limit, i.e., in the vicinity of the critical lindn* =0 t t _ St T €] e
Lo . . ' z z =Z, zZ, S12(6,—6,),
we can use the SGM to determine the deviation from 1/4: a(01)26,(02)=2 (02 (00, (61~ 02)
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Z0)Z} (0,)=2,(6,)S? N 6,— 6,)Z°(6y)
2 52 62,61

+(2m) 528(61 6). (99)

Here S:}:?(e) are the(factorizable two-particle scattering
1’72

matrices and;=s,s,B.

Using the ZF generators, a Fock space of states can b

constructed as follows. The vacuum is defined by

Z,(0)[0)=0.

Multiparticle states are obtained by acting with strings of

creation operatorZZ(a) on the vacuum:
0+ 02)e, .., =ZL (60)- - ZL (61)]0).
In term of this basis the resolution of the identity reads

o del . den

2,2 — (27)™n!

n=0 €

Oy Ordereo g™ 001 6ol =1. (99

Inserting Eq.(99) between operators in a two-point correla-

tion function we obtain the following spectral representation:

(O(t,x)07(0,0))

< dé,---dé, o -
_ngo ; a2 exp(le1 (pjXx ejt))
X[(0l0(0,0)|6y- - - 62 ...e, |, (100a

wherep; ande; are given by

pj:MEjsinhaj, ej=Mchosh6j, (100b

and

fo( 01' T en)sl~~~enE<O|O(010)| an' n 01>sn~~~el
(10090

are the form factorgFF's). Our conventions in Eq(100b
are such thail ;= M3g=My4 andMg= M. After carrying out

the double Fourier transform we obtain the following expres-

sion for the dynamical structure factor:
1 (= o S
S9w,q)= Zf dxf dt €et19(O(t,x)07(0,0))

dé,---de
¥|f0(01, ..

(27)™n!

=2w§ >

n=0 €j

q->

]

On) e, e |’

X6

Mejsinhaj) 5( w—; M coshd |.

(101

Let us now evaluate the leading contributions to 8d.1) in
the physically relevant cases.

PHYSICAL REVIEW B6, 024412 (2002

D. Transverse structure factor atg=

To determine the transverse structure factor, we need FF’'s

of the operator
i
exp —40|.
p<4B )

'Qwe lowest-lying states to which it couples are one-soliton
states, and the first nonvanishing FF is a constant:

(0|exp< 4%9(0,0)) |6)_=Z1(0). (1023

In our case we have
) ‘|1/4

4
gex

3 ¢
m(fﬁ

»dt sinht sinh(t[£—1])

Z1(0)= ot sinh(t&)cosHt

72

y e wadt 1
(§ a &X o t|4sinhté)
F -
2
e1+ot_ 1 e
T A sinténcoshtsini([1+ &]t) 2 )

~4.0IM33, (102b

The corresponding contribution to the dynamical structure
factor is

F
$" " (w,mH0)= 7Z1(0)ag (s’ ~ M)

%0.614<

The dynamical susceptibility of the original ladder model
can easily be restored by means of the relati@® between
the T} variables and the original spin operat@s; :

L
J

8/15
) 8(s>~M3). (103

Siagel @, m+0,m) =S (0, 7+0),

Siaddel @, T+0,00=0. (104)

The nice thing about this result is that we are able to
calculate the spectral weight in thefunction exactly This
result is exact up to frequencies=3M 4, where additional

contributions fromsssstates arise. These can, in principle,
be calculated by first determining the corresponding FF’s
from the relevant annihilation pole conditio(see, e.g., Ref.
35 for a similar calculationand then by carrying out the
remaining integrations over the rapidity variables numeri-
cally. The contribution of Eq(103 to the total spectral
weight atq= 7 is proportional to [h*|/J) ~#*> and therefore
diverges as the field* goes to zero. At first sight this may
look strange, but the same is true for the gapkéXE« chain,
where
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SixA @, m)x w2,

with »=1—(1/m)arccosA.

E. Longitudinal structure factor at g=

In order to determine the longitudinal structure factor we
need the FF's of the operator ¢6&. The first nonvanishing

FF is between the vacuum and two-partiskestates. The FF
is given by®
(0|cosBb(0,0)[61,60,) . =GgF (615, (1053
2i cosh( 6/2)
Esinh([ 0+i7]/2¢)

=dt sinf(t[1-i 6/ w])sinh(t[ £~ 1])

F(0)=cot( 7&/2) sinh( 6/2)

<ex]

|

o t sinh Z sinhé&t cosht
(105H
2p2
M“m(z 2/#)
Gs= = ex%.[ f(U)
)
2
2232
sint?(28%) _
f _ _ _ -2 2,2t
® 2 sinh( B2t)sinht cosk[1— B2]t) pre
(1050

where6,,= 6, — 6,. Carrying out the Fourier transformation,

we obtain

S w,m+0q)= —a4’32|gﬂ —\/2—74“:(26’0”2

%1.1% )
(106)

with 6y=arccosh§/2M ). We plot the result in Fig. 7.

Just above the threshold at= \/q2+4Md2 the structure
factor increases in a universal square-root fashion. This
easily seen by considering the limiy<1 of the function
IF(260)[*:

6/5 2

T s\sP- z

L
J

[F(260)|?,

|F(260) |2 (s>~ 4M3)IM3.

Using the relation$79) we finally obtain the longitudinal
structure factor of the original ladder model:

adde(w m+0,0)=Sqw,7+0q),

Shadgel @, 7+0, ) =0. (107

This result is exact for frequencies belaw=4My, where
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° o
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(W/h)"2 $%(w,9)

©
-

4
s/M
FIG. 7. Longitudinal staggered structure factogat=0.

structure factor to the longitudinal one, we see that, in the

latter case, the contribution of thes intermediate states to
the total spectral weight is proportional toht|/J)?° and
thus becomes small at small field$. Thus at low energies
the coherent soliton modes in the transverse structure factor
completely dominate the magnetic response around the anti-
ferromagnetic wave numbey= 7

F. Transverse structure factor at g=0

The smooth components of the transverse spin operators
in the XXZ chain are proportional to

+exp< iL:—EHi iEq&) .
(108

*_ +i_ I'_
J —exp(_4E0 I8¢

We note that the operatqf08 reduces to the sum of the
chiral SU?2) currents in theXXX case. Using the results of
Ref. 39 one can determine the leading contribution to the
transverse structure factor at small energies by means of the
FF approach. The contribution of one soliton intermediate
states is given by

is (J (1,%)T7(0))xKo(Mgr)— Ka(Mgr),
wherer?=x2+v272. Carrying out the Fourier transforma-
tion and analytically continuing we arrive at the following

result for the dynamical structure factor:

2
@ 2_ M2
=const— &(s"—Mg)+ - - -
M
d

S+_(w,q,77) (109

G. Longitudinal structure factor at g=0

The longitudinal structure factor arould=0 can be cal-

additional contributions due to intermediate states with twoculated analogously. The relevant Fourier component of the
solitons and two antisolitons arise. Comparing the transversspin operator is given by
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aoE there exists a soliton-antisoliton bound state which gives rise
Tr=5—0dx. to a coherent 5-function contribution to the longitudinal
2m structure factor around=0. The contribution with the next
highest threshold in energy is due to a soliton-antisoliton
Here d,¢ is the topological charge density in the SGM andscattering continuum. Taking only these two contributions
its FF's are knowri®*>3” As we have mentioned before, into account we obtain

0.0617 ¢? 16 g?VJw?—q?—4Mj} 1
Z P _ 2 2
S )= e TN M e T 2 q) cos20,18) + cos aTE)

JZ
p( det sin([1— &]t)[1—cosh 2cog 26t/ )]
X ex —
0

t sinh(2t)cosht sinh(t¢) ’ (110

where we again have definég=arccosh§/2M ). The rela-  herent spectrum exhausted by pairs of massive dimerization

tion of S*?to the structure factor of the original ladder model kinks 224

is given by Eq.(107) with 7+ q replaced byg. As expected The tendency towards suppression of the spin-liquid

the structure factor vanishes likg asq— 0. This behavior phase upon increasiny is already seen in the strong-

is completely fixed by the Lorentz invariance of the low- coupling limit; see formulag84). Within the weak-coupling

energy effective theory and the fact that the topologicalscheme {§, ,V<J), the transition to the spontaneously

charge density is part of a Lorentz vector. The resif0)  dimerized phase is associated with the sign reversal of the

holds in the small-momentum region and it should be POStriplet mass. From Eqg109 it then follows that, when all

sible to resolve the structure of excitations in terms of the Ising copies are ordere@the casemg,m,<0), the

breather bound state and thescattering continuum by car- ground state is dimerized and doubly degenerate, ¢dth

rying out neutron scattering experiments at small momentum: + €o being the order parameter, whereas the spin excita-

transfer. _ _ tion spectrum represents a broad continuum with thresholds

Our resullts fqr .th_e dynamical structure facto.r in the 5 2lm,| and|my|+|my.

strong-coupling limit imply the structure of low-lying ex- At the transition from the spin-liquid to the spontaneously

cited states shown in Fig. 8. dimerized phase, the Majorana triplétbecomes massless
(m;=0), and the system becomes critical. The criticality be-
longs to the universality class of the levk=2 SU?2)

VIIl. SPONTANEOUSLY DIMERIZED LADDER WZNW model with central charg€=23/2 (see Ref. 22
When a staggered magnetic field is applied, then, in the pa-

Now we turn to the generalized spin-ladder mo@®lin It o .
rameter spacenfs,m;,h), the semi-infinite critical linem,

which the four-spin interactiorV is superimposed on the

antiferromagnetic exchangd (>0) across the rungs. Wis ~ — 0:Ms<0 splits in the direction of the fieltl into two criti-
positive and large enough, the ladder occurs in a noncal surfaces: one corresponding to théllUcriticality with

Haldane, spontaneously dimerized phase with a fully incocentral charg€ =1, already considered in previous sections,
and the other representing the Ising criticality with=1/2

(see Fig. 1 The latter will be discussed in this section.
S S“ The existence of an Ising QCP in the generalized ladder
model can be understood using an argument similar to the
\/ \/ q=n one in Sec. Il. In the spontaneously dimerized phase all Ising
NS copies are ordered(;,ms<0). Then, in the leading order,
' — > the interaction term in Eq(11) can be replaced bfiu s,
O —~ J—
whereh~h({o0,). If the massesn;=m, andm,=mg were
equal, the resulting model would be equivalent to the double-
frequency SGM in which an Ising QCP has already been
\\/ A\ described in much detall* The existence of this transition
0

T q

q=0 can be easily visualized in the strong-coupling lirérge

m 4 h). In this limit, the “relative” Ising degree of freedomy

0 nV‘l

= u3myq, becomes effectively frozen out, while the “total”

FIG. 8. Structure of low-energy magnetic excitations in the degrees of freedom, described, e.g.,/by can be tuned to
strong coupling limit. This picture is valid both &i<h, and h criticality. This argument is still valid if the two Ising sys-
>h,. tems have different mass gaps, provided that they are in the

024412-20



QUANTUM CRITICALITIES IN A TWO-LEG ...

same(in this, case, ordergghase.

Starting from the spontaneously dimerized phase with
m,,m¢<<0, switching on the staggered magnetic field, and

assuming thatmg/>|m,|, we can integrate the singlet mode
out to arrive again at the effective modéB), with the renor-
malized masses still given by Eq4.9). The important dif-

PHYSICAL REVIEW B 66, 024412 (2002

a4

1/4
St (w,m+q,m)* ) 5(Sz—m§), (115b

2
d's'3

describing a massive magnon with the spin projectigf
=1. As in the standard ladder, at-h. the dynamics ok _

ference with the previous case of the standard ladder is th&SO displays a coherent mode with the mpamsg|.

the doublet mass gap now increases wittvhile the mass

Thus, characterization of the massive phase occurring at

m, decreases and vanishes at the same critical value as &= Nc in the spontaneously dimerized ladder coincides with
fore. But since this time only one Majorana mode becomeshat for the standard ladder. This phase occupies the region

massless, the criticality is of the Ising type. The dimerizationSéParated by the (@) and Ising critical surfaces in Fig. 1.

order parameter, which is nonzerotet h., vanishes at the
critical point as

(€7)~(hc—h)"®g(hc—h).

The (statig staggered magnetic susceptibiliy4 h) is con-
stant in the zero-field limit,

Xstad 0)~ (La) (|my|/|m) ¥(|my[ +[m¢)) %, (111

then increases with and becomes logarithmically divergent
at the transition

Xstagih)'\’lndh_hc“hc)- (112

IX. STRING ORDER PARAMETER

den Nijs and Rommel4& and Girvin and Arova¥ have
shown that the Haldane-gapped phase of the spin-1 chain is
characterized by a nonlocal topological string order param-

eter,
o35
[n—m|—c

m—1

iw_E

j=n+1

(0%=lim

(a=x.y,2),

Estimation of the large-distance asymptotics of the correlagnose nonzero value is associated with the breakdown of a
tion functions is similar to what has been done in Sec. V.higden z,x Z, symmetry*® For a weakly coupled S@)-
One only has to keep in mind that the only mass whichsymmetric spin-1/2 Heisenberg ladder, the string order pa-

changes its sign across the transitiomis Here we present
the final results.
In the dimerized phaseh&h.) the dynamical structure

factor is entirely incoherent both in its longitudinal and trans-

verse components:

4 0[s%— (Img| + | mg])]

V= (Img[+]mg))?

~ I3
St (w, T+ q,Tr)OC(l—)

133
S ) (|§)1’49(52—4m§) (113b
w,T+q,mT)c| — —_—.
P A
At the Ising criticality,
az 1/4 9(32_ mg)
+7 — —
S (w,w+q,77)°<(|sld> (D) (1143
1/4
ot qm) 13 ) 6(s2— 4m2) (1148
S a?lg)  ($P—amp)H

In the regionh>h,, the longitudinal staggered spin fluctua-
tions remain incoherent,

1/4

6[s*— (2|mg|+m3)?],

(1153

1215(21,+14)?
4

Szz(w,ﬂ'+q,77)0C<

|

rameter, defined as

m

Onm=11 (—4Si‘j55’,-)=exr{

j=n

in2 <Sf,»+sz>}
(116

was discussed in Refs. 24 and &&e also Ref. 27 The
description of the low-energy degrees of freedom of the spin
ladder in terms of the Ising variables is especially efficient in
this case because the operatbt6) acquires a simpléocal
form in terms of the Ising operatots, ,u, («=1,2,3), and
the hiddenz, X Z, symmetry becomes manifest. In the con-
tinuum limit,*°

lim (O, (%,Y)=(0,)~(050,)+ (mpm,)?

Ix=y[—ee

117)

so that the string order parameter reveals thé2s8ymme-

try and is nonzero both in the Haldane and dimerized phases
just because the degenerate triplet of the Ising systems is
either disordered (,)=0, (u,)#0) or ordered (o,)

#0, (1,)=0).

As we have seen, the staggered magnetic field removes
the SA3) degeneracy of the triplet modes, and in the mas-
sive phase located between the two critical surfaces shown in
Fig. 1 (the caseh>h,), the signs of the masses, =m, and
m; are opposite. As a result, the dependence of the longitu-

(a#B#7v),

whereas the transverse part of the dynamical structure factainal and transverse components of the string order param-

displays a cohereni-function peak,

eter onh becomes qualitatively different.
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A. U(1) transition in the Haldane phase (O)~|h|¥3. (122

Let us start with the longitudinal string order parameterconsider now the transverse components of the string order

O, . In the region of small fields, €h<h., one can adopt parameter(0,)=(0O,). At h<h, the behavior of(0,) is
the picture of three independent triplet Ising copies as thgjmilar to that for(©,):

zero-order approximation and take into account the effect of

the staggered field as a small perturbation. According to Egs.  (O,)(h)=(u,)* us)?
(19 and(20), the latter leads to splitting of the triplet masses

and renormalization of the coupling constants, both being of 1(ls)[C, 9 |my|
the order ofh?. As a result =(0x)(0)| 1~ 4\ o 7+Clw_v m,

(O (N)=(u1)* () P2y —
— x| —1 In[=]+0O(h%|. (123
B Ci/l\[ h — s @
=(0(0) 1~ 2 la)\mg +O(h), Near the critical field, where the doublet of the Ising systems
(118 decouples from the third Ising component of the triplet, one

finds that

where(,)(0)~ (m,a/v)Y2 In vicinity of the critical point, Mo Ua

|h—h¢|<h,, the Ising doublet1,2) becomes very soft and [ Mga Mmoo 1A(2—K _
asymptotically decouples from the rest of the spectrum, be-<0x>(h) ( v ) 6(he—h)~ (he—h) 7 9g(he—h).
ing described in terms of the SGKR2). In this case the (124
operator®, can be bosonize@see Appendix A However,
sinceK# 1, in formulas(A6a) and(A6b) for the products of
Ising operatorg., i, and o0, one should rescale the field
®: &— KD, so that

Thus, due to the fact that At>h, the Ising doublet becomes
ordered (u1)={u,)=0), in the largeh massive phase the
transverse components of the string order parameter vanish.

(O )~(sin 7TKCI>)2+<COS 7TKCI>)2 B. Ising transition in the dimerized phase
2 \ N, :
. e ey SR In the spontaneously dimerized, non-Haldane phase the

Sincemg~he—h, ath<he, (sinyzK®)=0, and Ising doublet remains massive at amyrhe mass gajmy| is

(O,)~(cosTKD)2~MK2~ (h,—h)K/(4-2K), an increasing function dfi and so is the longitudinal string

‘ ¢ (119  order parameter. At<he,
At h>h,, (cos\y7K®)=0, and (O () =(01)% 0,)?
. — T\ 2
(O )~(sinymK®)?~ MG~ (h—h)</(4~20, Ci(li\[ h -
(120 =(0(0)| 1+ — |~ e +0(h%)|.

Formulas(119 and (120) determine the power law accord- (125
ing to which the string order parametg?,) vanishes at the _ _
transition. (O,) grows monotonically withh and at largeh (h>h,)

Upon increasing the field in the regidri-h,, (O,) keeps ~ crosses over to th¢h|** behavior. Ath<h, (O,) is still
growing. In the limit of strong fieldsh>h., the system diven by formula(123), whereas close to the Ising criticality,
represents two identical copies of the Heisenb8rgl/2
chain in a staggered magnetic field, each of them being rep- (0~ (he=h) M 0(he—h). (126
resented in the continuum limit by &=27 SGM with the  The dependence of the string order parameters on the stag-
nonlinear term proportional toh cos\27®,(a=1,2). gered field is schematically shown in Fig. 9.

Clearly, the field® is a symmetric linear combination df,

and®,: ®=(1/\/2)(P,+D,). Therefore, in this limit, X. CONCLUSIONS
(O,)~(cosm2®,)?(cosym/2d,)? In this paper, we have analyzed the properties of the two-
_ i 5 leg antiferromagnetic spin-1/2 ladder in a staggered magnetic
+(sinym/2® ) (siny /2D ,) field. We have considered the spin-liquid phase of the stan-

. dard ladder and the spontaneously dimerized phase of a gen-
/ 2 [ 2
+({cos\m/20,)*(sinym/2®5) eralized spin-ladder model. We have shown that in the

+(sin ’_77/2<D1>2<cos /_77/2<D2>2. (121) former_ case.t.he §taggered fie]d drives the systgm towards a
Gaussian criticality, whereas in the latter case it induces an

The minima of the potential$h cosy27®, are @,)n Ising transition. These two criticalities are associated with a
=2m7(m+1/2) ath>0 and @,),= v27m ath<0, where  softening of the transverses{= +1) and longitudinal &*

m=0,£1,=2,... . Therefore, the last two terms in Eq. =0) collective modes, respectively, and are characterized by
(121) vanish, and for any sign df the z component of the power-law and logarithmic divergencies of the staggered
string order parameter grows as magnetic susceptibility.
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diminishes but the qualitative picture remains unchanged un-
(O > til the field reaches its critical valuk., where we find an
X Ising criticality. Here once again we may think of the el-
ementary excitations in terms of pairs of spinons. The physi-
(OZ> cal properties foh>h, are the same as in the>h, phase
of the standard ladder discussed ab¢see also Fig. 1L In
particular, the coherer8?= =1 modes are recovered. This
(a) identification is confirmed by the behavior of the longitudi-
nal and transverse string order parameters.
As we have seen, the physics of the spin-1/2 ladder in a
he h staggered field is very rich. We think that it would be very
interesting to explore it experimentally. An open question to
analyze the crossover region between weak and strong cou-
pling regimes may be addressed by, e.g., numerical methods.

String Order Parameters

(0
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FIG. 9. String order parameters as functions of the staggered
magnetic field acrosé&) the U1) transition in the Haldane phase
and (b) the Ising transition in the dimerized phase.

APPENDIX A: SOME FACTS ABOUT THE 2D ISING
MODEL

In this appendix we briefly summarize those facts about
the 2D Ising model which are used in the main part of the
per and other appendixes.

Close to criticality,| T—T¢|<T., the scaling properties of
the 2D Ising model are described by a Lorentz-invaridnt

By comparing our results for weaklyJ(/J<1) and
strongly coupled {, /J>1) ladders in a staggered field, we o
can identify certain universal features of the transition. Thep
very existence of the Gaussian criticality is universal. At

crit@calit)_/ the Iow-engrgy dggrees_ O.f freedom can be' de'+1)—dimensional guantum model of a massive rédhjo-

scribed in terms of spin-1/@pinonssimilar to those found in 51 formion 5032 The corresponding 2D Euclidean action

the anisotropic spin-1/2 HeisenbeXgXZ chain. This is in- . . . = .

teresting and shows that the staggered freldads to a de- (written _in complex notationsz=r+ix, z=7-ix, d

stabilization of the magnons that form the low-lying part of =39z, =dldz; v=1) reads"

the spectrum in the absence lofand eventually “decon-

fines” them into pairs of spinons. S:f 022( £, 0€, + ErdEn+iméE Er). (A1)
Close to this criticality the low-energy part of the spec-

trum involves a'dout.)let of interacting trgnsver;e mOdesHeregL and &g are the holomorphi¢left) and antiholomor-

These are described in terms of an effective spindkZ  phic (right) components of the fermionic field. The magni-

chain in a weak staggered field, which vanishefiath..  {,de of the mass,

The transverse modes are identified wifhantum solitons

(with gap My) of an underlying SGM. These solitons to- v\ [T—T.
gether with soliton-antisoliton bound states determine the be- mw(;)( T. )

havior of the dynamical structure factor in both massive
phases li<h, and h>h.). The soliton reveals itself as a (« being a short-distance cutpfidetermines the correlation
coherents-function peak in the transverse staggered struclength in the Ising model,.~v/|m|>a, which diverges at
ture factorS*(w,m+q,q, = m). criticality (m=0), and the sign of the mass indicates
On the other hand, the, =0 part of the spin excitation Wwhether the system is orderean{0) or disordered rfy
spectrum is different in the weak- and strong-coupling cases>0). The set of strongly fluctuating fields of the Ising model
The same hold true for thg, =7 part of the longitudinal (at criticality these are known as primary fields of the con-
structure factor: at weak coupling tf#=0 mode is still formal field theory with central chargé=1/2) includes the
seen in the low-energy part of the spectrum, whereas it ifermion field ¢ _,£g), the mass bilineafor energy density
pushed to very high energies in the strong-coupling regimee =iéré, , and order and disorder fieldsand .. The latter
In the absence of a staggered field the generalized laddéwo fields are nonlocal with respect to each other and also
is spontaneously dimerized and its elementary excitationwith respect to the Majorana field.
can be understood in terms of topological dimerization Two identical noninteracting copies of the 2D Ising mod-
kinks??> When a staggered field is applied the dimerizationels are described by a pair of Majorana fermighsand &2,
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which can be combined into a compléRirac) massive fer-
mion, = (&*+i£2)/\/2. The latter can be bosoniz&dif the

PHYSICAL REVIEW B6, 024412 (2002

used in Sec. Il B. In the same way, from representaifsb)
one derives two more OPE’s

two Ising copies are slightly noncritical, the resulting
bosonic theory represents a quantum sine-Gordon model at
the decouplingor Luther-Emery point 82=41r:

o(2,2) w(w,w)

N \/E y(z—w) 26 (W) + ¥* (2= w) (W)
2

(lz=wl/a)™ ’

1 m
z(ﬁﬂq))z— o cosvdmd|. (A2)

SSGM:J’ d’z
(A8a)
Below we give a list of bosonization rules for two Ising
copies??"*which are used in the main text.
(i) The chiral components of the() current:

m(z,z)o(w,w)

\ﬁ y* (z— W) Y2 (W) + y(z— w) YR(W)
2

(|lz—w|/a) ¥ '

) [

W@D)=iE(DE@D=+—=dd(2), (A3
V (A8b)

B - - wherey=¢e' ™,

Jn(2)=i€X2)E4(2) = — —=dpr(2). Since the SGM(A2) occurs in a topologically ordered,

® ® ® N " massive phase, in the ground state the fields locked in
i . one of the infinitely degenerate minima of the poteniial
(if) The total energy density: =—mcos\47d:

| (A3b)

_ _ 1 _ vac__ P
£1(22) +e(22)= ——cos\And(22).  (Ad) (@)=, it m>0,
)= +1/2), if m<o. A9
(iii) The fermionic fields: (@)= (n . (A9
From Egs.(A6a) it then follows that
1 2)+i 2 7)~ —1/2€—iv“4—7'r¢|_(z), A5a
Sz ez =(ma) (A5 (019=0, {(p12#0, if m>0,
ER(2) +iER(2)=(ma) Mo NITIRD . (ABD) (19#0, (u1=0, if m<0.  (A10)

(iv) Mixed products of the order and disorder operatars Quantum solitons of the SGNA2) are associated with the
more accurate definition of these products includes Kleinvacuum-vacuum transitionsb - ® + /7, ®—O, which
factor$): correspond to the following Z< Z, transformations of the

fermionic fields and Ising operators:

f-—&, & &

o1oo~sinym®,  piup~cosymd,  (A6a)

(a=1,2),

1 ~COSVTO,  pio,~sinymO. (A6b)

O1—=+01, 0y—~F0, M1—~FT Uy, Mo+ M.

(A11)
For any sign ofm, this symmetry is spontaneously broken in
one Ising copy and preserved in the other, leading to the
conclusion that quantum solitons of the mo@&®2) describe
kinks of a single orderetdisordered Ising system that con-
nect opposite values of the ord@lisordej parameters.
Parity (or charge conjugatio) transformations

1 1 2 2
fR,L_’fR,La fR,L_’_fR,L’

d—-—-Pb, 0--0,

In the above formulas,

D(2,2) = pL(2) + dr(2)
is the scalar field of the underlying SGM and

0(2,2)=¢.(2)— Pr(2)

is its dual counterpart.

Using these bosonization rules, one can easily recover all
OPE's for a single Ising model. In particular, fusing the prod-
ucts of Ising operators in Eq§A6a) one derives the OPE'’s

m>0:

. _ 1 o U4 o 010270102, My 142,
a(z,z)o-(w,w)~—(_—) [1—-m|z—w|e(w,w)],
V2llz=w| (AT3 O =01k,  M102— — L1072 (A12)
a
and
_ _ 1 a |14 _ . 1 2 w2
M(Z,Z)M(W,W)~E<m) [1+ 7|z—w|e(w,w)], m<0: &L—&RL: SRL™ T éRL

(A7) O\ Jr—®, O\ 7—0,
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Tr7em o Mk ke (KON ()= (@)oot pslry) B £ ()
O1Mo— = O1fp, M102—> U107 (AL3) . ’
X (EH0) fa(re))s.

keep invariant vacuum expectation values of the ofdes-
ordep parameters ah<<0 (m>0) and therefore serve as a o )
tool to conclude whether a given correlation function in akeeping in mind thams<0, first we note that the correlators
broken-symmetry phase is nonzero. For example, considds(r) za(r1))s are invariant under charge conjugatiaki.3)

the correlation function and, therefore, are nonzero. These correlators are chiral but
otherwise short ranged, decaying exponentially|ratr,|
K(r)={u(r)e(0)) ~Is. Since they serve as integral kernels, a qualitatively cor-

rect estimation of the integral in E¢R7) can be obtained if

for a singleorderedIsing model. For two identical and de- one treats the product

coupled Ising models this correlator can be squared:

Ko ={pa(r) a(e1(0)e2(0)) = KA(D). (6262 + (D END o2, 21 malz1 22)
Under transformationgA13) the producte;e, stays intact
but u1u, changes its sign. Therefore, by the OPE and then confines the integration region to the
) interval 0<|r—r,|<I. To proceed further, one can bosonize
Ka(r)=K(r)=0. (A14)  two local productst*é* and oy g, and then fuse these fields
This fact has been used in Sec. Il B. as those belonging to @ritical) Gaussian model. Since we

are looking for a short-distance OPE, the relative sign of the
Majorana masses); and m, is unimportant, and bosoniza-
tion rules(A6a) and (A6b) are perfectly applicable. We ob-
tain

APPENDIX B: FIELD-INDUCED ADMIXTURE BETWEEN
THE SINGLET AND TRIPLET MODES

In this appendix we consider two, apparently “high-
energy,” operators: the total staggered magnetizatibrand
the smooth part of the relative magnetizatikndefined in i
Egs. (109 and(9b), and find their projections onto the low- J
energy, triplet sector of the model.

[0 (2)— dpr(2)]cos\mO(z1,2))

1( 1 1) I
1. Projecting n* T4mlz—z -2z sinym®(zy,2,)
As follows from the comparison of E@27) with formula
1 Rez—2zy)

(15), the low-energy projection of the operat®y=n, has - i
actually been found in Sec. Il B, and the result is contained 27 |z—z4|? !
in the second-order correction to the effective acti@).
Thus we arrive at Eq(2839).

Consider now the operata®,=n, . Treating all Ising
systems as decoupled, we have

21,21)04(2,2), (B2

and therefore

i 7

(N (NN (r))s=a A pa(no(r)][oar)oa(ry)] (Kx(r)n, (ry))s= —|12Ny‘<r1), (B3)
1

27 [r—r
X[og(r) a(ry) [ ma(r) ma(ry))s.

The correlato u,(r) sa(r1))s is short rangedsee Eq(16)].  WhereNy ~a 1M1‘.72M.3<‘74>s is they component of relative
Hence the products of operators in the square brackets, all §f2ggered magnetization averaged over the high-energy sin-
them defined in the triplet sector, are subject to fusion. Using/let modes. According to the definitid@7),

the fusion rulegA7a), (A8a), and(A8b) and integrating over

the relative coordinatp=r—r,, we arrive at the resu(28h). in
In the same way one obtains the low-energy projection for SK (1) = — 2,,(@ Ny (r—p),
n, given by Eq.(280). 27 J p<gg 2
2. Projecting K where p=r—r;=(pg,p1)=(v7,X). Expanding inp, the

Jowest-order projection ok, onto the triplet sector is found
to be given by formula29a. Quite similarly one arrives at
K=i 44 £ (81)  formula(29b) for the projection ofK, .
(fadrt &1) In the case0y,=K,, we follow the same procedure and
Consider first the cas®y,=K,. The correlator in Eq(27) use Egs.(A6a) to bosonize the produgisuwa. The corre-
reads sponding OPE reads

Here we derive the low-energy projection of the operato
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[£1(2)EX(2) + Ex(2) €m(D) (21, 20) pal21,21)

! = — X,T
~ = [09(2)~ 98(2) Jcos\mb (2, 2,) *x.7) (0.0)
ar
11 1) e |
“arlzoz 7z siny7®(zy,2) FIG. 10. Two-fermion bubble.

| Im(z=2y) ( 7,) ( —) (B4) ImKy4(q w+i5)—iﬂ (Co
= — L 0y(21.21)04(2,2), a(d, = :
27 |g_g 2 T RREA 20 s
and this eventually leads to formula9q) for the low-energy 'S result has been used in H§0).
projection ofK,.
APPENDIX D: TRANSVERSE STRUCTURE FACTOR

APPENDIX C: ENERGY-DENSITY CORRELATIONS AT SMALL MOMENTUM

IN THE DOUBLET SECTOR In this appendix we provide some technical details con-

cerning the smal structure factoS*(w,q,0) at the critical

Here we estimate the Fourier transform of the two-point™=" .
energy-density correlation function in the doublet sector, Point. We start from the real-space representation of the Mat-
subara polarization functioX**(x, 7):

Kd(q,wn)=JdxdrKd(x,T)e“(q*“"nT’, (Cy X¥(x,7) =(T 11(x,7)1%(0,0) =TI G(7,X)G(7,X)].
(D1)

Ky(X, 1) =(T,e4(x, 7)eq(0,0), eq=i E ge H_ereG andg are the Green’s fu_nction matzrices for the mas-
sive and massless Majorana field® and £2, respectively.
Due to the marginal interaction in the doublét (¢2) sector,

. . ; G has the structure of the single-particle Green’s function of
mines the structure fact®w, 7 +q,0). Wewill consider a spinless Tomonaga-Luttinger liquid with the interaction

the c?asemdqﬁo and assume that' the two massive Iyl"juoran%onstantK Using the explicit expressions for these two
fermions are decoupled. In this casg(r)=2detG(r),  Green’s functions,

whereé(r) is the real-space 22 Green'’s function matrix

and find its analytical continuationd,— w+1i4) that deter-

for a free massive fermion in the Nambu representation. We . m;
have(see Fig. 10 Ggrr(2,2)=— 2— Ki(ms|z]), (D2a)
dk de
Kd(q7wn):2f2 2 [GRR( +!8+)GLL(_k*l_8*) o m 7
Cu(zz)==5_|; K1(mg|2]), (D2b)
—Ggru(ky,84)Gr(—k_,—&)], (C2
where 1 |z a (K+1/K)/2
OrR(Z, Z)__Z_ = ? , (D33
é(k )_(GRR(k,S), GRL(kyS))_ ie+kvrg+myr,
T Grlkie), Guke)| g2+t m3 7 a (K+1K)/2
(C3 GLi(z2.2) = 7 , (D3b

andk.=k=*q/2, e =e* w,/2. .
Since the mass bl|lne&fﬁ§|_ is a Lorentz-invariant object, Gr.(2,2)=0, (D30)
Kq(9,w,) depends only om? “+ 2. This makes it sufficient
to estimateK 4(0,w,,) in which case the calculations become We obtain
z z
=+ —-]K;y(mg|z]).
z Z
Introducing two-dimensional real vectorg= (w,,qv) and

especially simple. Integrating overin Eq. (C2) yields

whereE, = kv + md2 Analytically continuing this expres- r=(7,x/v) (with w, the Matsubara frequengywe pass to
sion, then taking the imaginary part, and finally replacisty  the Fourier transfornX*X(q) and, after angular integration,
by §2= w?—0g%v?, we get @>0) obtain

" _) Maa o | (KFLK)2
dk 1 [iwEx—2m3 iwnE+2m3 2,2)= 2\ T2
(0an=- | ( . (2ma)?\[2

27 iw By i w,— 2B iw,+2E, |’
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Lo e 0 Flabiciz)= m 270 parbcr1i
Xxx(q)z_;(m?)a) T (a, ,C,Z)—m (a,b;a —C ;1—2)
I'(c)I'(a+b—c)

* _ |Q| _c—a—-b_ /" \T >

Xfo dxx 21<’K1(x).J2<m—3x , (D4) +(1-2) I'(a)I’(b)
whereJ,(x) is the Bessel function, and XF(c-a,c-bc-a-b+1:1-2),
1 1 and formally treat 1—z=1+q2/m§ as a small parameter.

29= > K+ < 1. (D5) Then in the leading order

Since the expressions for the Tomonaga-Luttinger propaga- _,, . 1 T'(=29) 29 wﬁ_qz q =
tors, Egs.(D3), are asymptotidi.e., valid at|z|>a), the X (q)——; o1+29 (Mza) m2 1+ﬁ
lower integral cutoff must be finite;-msa. On the other 3
hand, the integral in EqD4) is convergent ak—0, if ¢

<1. As follows from Eq.(D5), this condition is satisfied not X
only in the weak-coupling case, whekeis very close to 1,
but also in the strong-coupling regime whete= 3/4 (in the
latter cased~2x 10 2). This justifies the replacement of
the lower integral limit by 0O, in which case the result can be (02+q2+md)2?
expressed in terms of a hypergeometric function

140 1+ . (D6)

2
q

2

3

Performing analytical continuation ¢,— w+i0),

, —|s2—m3|?7[ B(m3—s?) + 6(s>—m3)cog 27 9) ]

1T(2-9T(1-9) w2—q , ,

XHD= =@ (msa)”(r:m—z) —i|s?—m3|276(s?~ m3)sin(2w ) sgn w),
3

and using the relation

q2
XF 1—6,2—1‘};3;——2). T
m _ i -
| ' ' .3 | I'(=29)sin(279Y) F(1+29)" (D7)
To single out the leading singularity at the threshold in the
interacting case, we use the transformation fornfula we arrive at the expressige3) of Sec. IV D 2.
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