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Quantum criticalities in a two-leg antiferromagnetic SÄ 1
2 ladder induced by a staggered

magnetic field
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We study a two-leg antiferromagnetic spin-1/2 ladder in the presence of a staggered magnetic field. We
consider two parameter regimes: strong~weak! coupling along the legs and weak~strong! coupling along the
rungs. In both cases, the staggered field drives the Haldane spin-liquid phase of the ladder towards a Gaussian
quantum criticality. In a generalized spin ladder with a non-Haldane, spontaneously dimerized phase, the
staggered magnetic field induces an Ising quantum critical regime. In the vicinity of the critical lines, we derive
low-energy effective field theories and use these descriptions to determine the dynamical response functions,
the staggered spin susceptibility, and the string order parameter.
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I. INTRODUCTION

The problem of quantum critical points~QCP’s! is one of
the most important issues in the physics of strongly co
lated electron systems, in particular in the context of highTc

superconductivity1 and heavy-fermion compounds.2 Re-
cently this problem attracted much interest also in the c
text of one-dimensional~1D! quantum systems, such as 1
interacting electrons and antiferromagnetic spin chains
ladders, where a detailed description of QCP’s is availa
due to the powerful nonperturbative techniques based
conformal field theory, bosonization, and integrability. It
well known that universal properties of 1D quantum syste
can be described on the basis of a properly chosen con
mally invariant theory deformed by a number of perturb
tions consistent with the structure and symmetry of the
derlying microscopic model. Quantum criticalities can th
emerge due to the competition between two~or more! rel-
evant perturbations which, when acting alone, would dr
the system to qualitatively different strong-coupling mass
phases that cannot be smoothly connected by a contin
path in the parameter space of the model. An example
theory of this kind, displaying an Ising quantum criticality,
the so-called double-frequency sine-Gordon model.3–5

In connection with 1D quantum antiferromagnets, a pla
sible QCP scenario was anticipated some time ago by Affl
and Haldane.6 They argued that a massive phase of a tra
lationally invariant spin-chain Hamiltonian can be push
towards quantum criticality by an external, parity-breaki
perturbation. Typical examples of such perturbations are
explicit dimerization, whose role in the formation of QCP
has already been analyzed in several spin-chain and s
ladder models,7–10 and a staggered magnetic field. Whi
dimerization of quantum spin chains and ladders is qu
realistic because it can originate, for instance, from the s
phonon coupling, the case of a static magnetic field wh
sign alternates on a microscopic scale used to be regard
not achievable in experimental conditions.
0163-1829/2002/66~2!/024412~28!/$20.00 66 0244
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However, recently two beautiful experimental realizatio
of staggered magnetic fields in quasi-1D magnetic insula
have been discovered. The first concerns the spin-1/2 ant
romagnetic chain compound copper benzoate.11 Due to the
low crystalline symmetry, the magnetic fieldH couples to the
effective spins 1/2 through a gyromagnetictensor12

Hmagn5(
n

(
a,b

@gab
u 1~21!ngab

st #HaSn
b .

Application of a uniform magnetic fieldH thus induces a
staggered fieldh in a direction perpendicular toH. In copper
benzoate there is a second mechanism that gives rise
staggered internal magnetic field. It derives from the st
gered Dzyaloshinskii-Moriya~DM! interaction along the
chain direction,

HDM5(
j

~21! jD•~Sj3Sj 11!,

which, when a uniform fieldH is applied, induces a stag
gered component proportional toH3D.13 The presence of a
staggered field has been shown to lead to a variety of v
interesting consequences.13–16 The staggered field scenari
described above is by no means specific to copper benzo
There are at least two other materials, Yb4As3 ~Ref. 17! and
@PM•Cu(NO3)2•(H2O)2#n ~Ref. 18!, whose properties in a
magnetic field are controlled by the same mechanism.

A completely different mechanism that leads to the ge
eration of a staggered field has recently been discovered
spin-1 Haldane gap compounds of the typeR2BaNiO3,19,20

where R is a magnetic rare earth. In these materials,
rare-earth ions are only weakly coupled to the Ni chains,
interact strongly with one another. They may be conside
to reside on a separate sublattice that undergoes a Ne´el tran-
sition at a rather high temperatureTN . The effect of the
resulting antiferromagnetic order is to induce an effect
staggered magnetic field along the Ni~spin-1 Heisenberg!
chains belowTN .
©2002 The American Physical Society12-1
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WANG, ESSLER, FABRIZIO, AND NERSESYAN PHYSICAL REVIEW B66, 024412 ~2002!
In this paper, we study the effect of an external stagge
magnetic field on the low-energy properties of the spin-
antiferromagnetic two-chain Heisenberg ladder. Although
present no analogous mechanism for the generation of a
gered field has been found for Heisenberg ladders c
pounds, in principle either of the two scenarios mention
above is possible. One may well expect that a staggered
will be realized in a ladder compound before long, so t
addressing this problem is not only of academic interest.

The Hamiltonian of the ‘‘standard’’ ladder is

Hstand5J (
j 51,2

(
n

Sj ,n•Sj ,n111J'(
n

S1,n•S2,n

2h (
a51,2

(
n

~21!nSa,n
z , ~1!

where J and J' are antiferromagnetic exchange coupli
constants in the ‘‘leg’’ and ‘‘rung’’ directions, respectively
We employ weak-coupling (J'!J) and strong-coupling
(J'@J) approaches to show that there exists a critical va
of the staggered magnetic field,h5hc(J' ,J), for which the
system displays a Gaussian U~1! criticality with central
chargeC51, characterized by nonuniversal critical exp
nents. Both ath,hc andh.hc the spectrum is gapped, an
the spin correlations are commensurate with the underly
lattice. This is different from the spin ladder in a unifor
magnetic field21 which induces a transition from the gappe
commensurate phase (h,hc) to a gapless incommensura
phase (h.hc). Comparing the results of the weak-couplin
and strong-coupling approaches, we find that near the cri
point the low-energy properties of the spin ladder are
equately described in terms of aXXZ spin-1/2 chain with a
J- and J'-dependent exchange anisotropy and an effec
staggered magnetic field proportional toh2hc . Hence we
expect that the existence of the U~1! QCP is a universa
property of the standard Heisenberg spin-1/2 ladder in a s
gered field.

The critical surfacehc(J' ,J) separates two massiv
phases: an anisotropic Haldane spin-liquid phase ath,hc
with coherentSz561 andSz50 magnon excitations havin
different, field-dependent, mass gaps, and another mas
phase ath.hc in which the spin excitation spectrum atq
;p still includes coherent transverse (Sz561) magnons,
whereas theSz50 modes transform to an incoherent bac
ground. The transition is associated with softening of
Sz561 spin-doublet modes and is characterized by a div
gent staggered magnetic susceptibility.

We also discuss the properties of a generalized ladde

Hgen5Hstand1V(
n

~S1,n•S1,n11!~S2,n•S2,n11!, ~2!

which, apart from the on-rung interchain exchangeJ' , also
includes a four-spin interactionV. This model is interesting
because it can display non-Haldane, spontaneously dim
ized massive phases if the biquadratic interactionV is suffi-
ciently large.22 The existence of such interactions in ladd
compounds is supported by recent neutron scatte
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experiments.23 We show that, in the weak-coupling regim
the staggered magnetic field can drive the non-Hald
phase to an Ising quantum criticality~with central chargeC
51/2), where the spontaneous dimerization vanishes and
staggered magnetic susceptibility is logarithmically dive
gent. In the dimerized phase (h,hc) the spin excitation
spectrum is entirely incoherent, whereas ath.hc , as in the
large-h phase of the standard ladder, the coherentSz561
magnons are recovered.

The qualitative phase diagram in the (J' ,h,V) space is
shown in Fig. 1. We note that the U~1! ~Gaussian,C51) and
Z2 ~Ising, C51/2) critical surfaces merge ath50 into a
critical line, which has been shown earlier22 to belong to the
universality class of the SU(2)2 Wess-Zumino-Novikov-
Witten ~WZNW! model with central chargeC53/2.

The paper is organized as follows. In Sec. II, we study
phase diagram of the standard spin-ladder model~1! in the
weak-coupling limit (J' ,h!J). Here we employ a field-
theoretical approach which represents the low-energy se
of the spin ladder as an SO(3)3Z2-symmetric model of four
noncritical 2D Ising systems.24,22 Integrating out the fast de
grees of freedom associated with collective singlet exc
tions, we derive an effective action which describes the tr
let sector with anisotropy induced by the staggered field.
demonstrate the existence of a Gaussian criticality and s
that, close to the critical point, the model is described
terms of a spin-1/2XXZ chain with a small anisotropy pa
rameter and an effective staggered magnetic fieldh* }h
2hc . In this section we also derive projections of all phys
cal fields onto the low-energy triplet sector.

In Sec. III we discuss general properties of the dynami
structure factor, measured in neutron scattering experime
for quantum spin chains and ladders in a staggered magn
field. In Sec. IV we determine the dynamical structure fac
of a weakly coupled spin ladder for momentum transf
along the ‘‘leg’’ direction close top and 0 in both massive
phases and at criticality. In Sec. V we study the induc
staggered magnetization and show that at the U~1! transition
the staggered susceptibility is divergent with a nonuniver
critical exponent.

FIG. 1. Phase diagram of the generalized spin ladder in a s
gered magnetic field in the limitJ' ,V!J. The SU(2)2 critical line,
which at h50 separates the Haldane spin-liquid phase from
spontaneously dimerized phase, is split by the field into U~1! and Z2

critical surfaces.
2-2
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QUANTUM CRITICALITIES IN A TWO-LEG . . . PHYSICAL REVIEW B 66, 024412 ~2002!
In Sec. VI we consider the model~1! in the strong-
coupling limit (J' ,h@J). Treating the exchangeJ as a per-
turbation and projecting the Hamiltonian onto the subsp
of the low-energy states, we arrive at an effective stron
anisotropic spin-1/2 Heisenberg chain model in a stagge
magnetic fieldh* 5h2J'1J/21••• . As opposed to the
weak-coupling case, in the strong-coupling limit the relatio
ship between the parameters of the original and the effec
low-energy model is known with any desired degree of
curacy. In Sec. VII we exploit the exact integrability of th
sine-Gordon model and apply the form factor method
achieve a quantitative description of the dynamical prop
ties of the model in the strong-coupling limit. This sectio
also contains a brief overview of the form factor approac

In Sec. VIII, we turn to the generalized ladder~2! and
describe the Ising transition in the non-Haldane phase,
duced by the staggered magnetic field. In Sec. IX we add
the topological order of the generalized ladder model in
staggered field and analyze the field dependence of the
gitudinal and transverse components of the nonlocal st
order parameter in various parts of the phase diagram sh
in Fig. 1.

A discussion of the results obtained from the weak- a
strong-coupling regimes and our final conclusions are gi
in Sec. X. The paper is supplemented with four Appendi
which contain some technical details used in the main te

II. WEAK-COUPLING LIMIT

A. Ising-model description of the Heisenberg ladder

In this and next subsections we will be concerned wit
weakly coupled spin ladder in a small staggered magn
field: J' ,h!J. We start our discussion with a brief overvie
of the effective field-theoretical model describing univer
properties of the spin-liquid state in the antiferromagne
two-leg Heisenberg ladder.24,22

It is well known that a singleS51/2 Heisenberg chain is
critical and has masslessS51/2 spinons as elementar
excitations.25 When a smallJ' is switched on, the spinons o
the originally decoupled chains get confined to form gapp
triplet and singlet excitations~for a review see Ref. 26!. The
field theory that accounts for the spinon-magnon transm
tion in the two-leg spin-1/2 ladder represents
O(3)3Z2-symmetric model of four massive real~Majorana!
fermions or, equivalently, four noncritical 2D Isin
models.24,22,27In the continuum limit, the Hamiltonian den
sity

HM5 (
a51,2,3

F2
iv t

2
~jR

a]xjR
a2jL

a]xjL
a!2 imtjR

ajL
aG

2
ivs

2
~jR

4]xjR
42jL

4]xjL
4!2 imsjR

4jL
41Hmarg ~3!

describes a degenerate triplet of Majorana fields,jn

5(jn
1 ,jn

2 ,jn
3) (n5R,L), and a singlet Majorana fieldjR,L

4 .
The velocitiesv t,s are proportional toJa, wherea is a short-
distance cutoff of the theory. The triplet and singlet mas
are given by
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mt5J'l, ms523J'l, ~4!

wherel is a nonuniversal constant. The corresponding c
relation lengths in the triplet and singlet sectors of the mo
are

l t,s;v t,s /umt,su, ~5!

which for a weakly coupled ladder are macroscopically la
( l t,s@a). The last term in Eq.~3! describes a weak interac
tion between the Majorana fermions,

Hmarg5
1

2
g1~jR•jL!21g2~jR•jL!~jR

4jL
4!, ~6!

whereg152g25 1
2 paJ' .

For the generalized ladder~2!, the low-energy effective
model is still of the form~3!, ~6!, with the only difference
that the triplet and singlet masses

mt5J'l2Vl8, ms523J'l2Vl8 ~7!

(l8 is another nonuniversal constant! can be varied indepen
dently.

In the continuum description, the local spin densities
the two Heisenberg chains,Sj (x)( j 51,2), are contributed by
low-energy spin-fluctuation modes centered in the mom
tum space atq50 andq5p. Accordingly,

Sj~x!5JjR~x!1JjL~x!1~21!x/a0nj~x!. ~8!

The chiral components of the vector currentsJj ;R,L ~i.e., the
smooth parts of the spin densities! can be expressed locall
in terms of the Majorana bilinears

I n5J1n1J2n52
i

2
~jn3jn!, ~9a!

Kn5J1n2J2n5 i jnjn
4 ~n5R,L !. ~9b!

However, the most strongly fluctuating fields of the spin la
der, the staggered magnetizationsnj (x) and dimerization
fields e j (x)→(21)nSj ,n•Sj ,n11, all with scaling dimension
1/2, are nonlocal with respect toj,j4. These fields, however
admit a representation in terms of the order (s) and disorder
(m) operators of the related noncritical Ising models:24,22,27

n1;~1/a!~m1s2s3m4 ,s1m2s3m4 ,s1s2m3m4!,
~10a!

n2;~1/a!~s1m2m3s4 ,m1s2m3s4 ,m1m2s3s4!,
~10b!

e1;~1/a!m1m2m3m4 , e2;~1/a!s1s2s3s4 ,
~10c!

wheren65n16n2 ande65e16e2.
Since the correlation lengthsl t,s are large, all Ising sys-

tems are slightly noncritical. Whether they occur in the
dered or disordered phase depends on the sign of the c
sponding massm}(T2Tc)/Tc . The crucial property of the
standard ladder is that the signs of the triplet and sing
Majorana masses are alwaysopposite. This fact, together
2-3
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with the known asymptotics of the two-point correlatio
functions of a noncritical Ising model,28 leads to the obser
vation that the dynamical spin susceptibility of the antifer
magnetic Heisenberg ladder,x9(q,v), obtained by Fourier
transforming the correlation function̂n2(x,t)•n2(0,0)&,
exhibits a coherentS51 single-magnon peak atv25(p
2q)2v t

21mt
2 ~with q close top). Due to multiparticle pro-

cesses, the dynamical spin susceptibilityx9(q'p,v) also
displays an incoherent tail with a threshold atv53mt . The
singlet mode shows up only at higher energies,v.2mt
1umsu;5mt . Thus, at low energies, the standard two-ch
ladder represents a disordered spin liquid, similar to
Haldane phase of the spin-1 Heisenberg chain with a sm
triplet gap.

Let us now switch on a small staggered magnetic fielh
5hẑ which is assumed to be the same for the both chain
the ladder. The field couples to the total staggered magn
zationnz

1 , and the Hamiltonian density becomes

H5HM2~ h̄/a!s1s2m3m4 , ~11!

with h̄;h. Here a comment is in order. In spite of the a
ready mentioned similarity between the antiferromagnetiS
51/2 ladder and the spin-1 chain, it would be misleading
think that the role of the staggered field in these two ca
will be similar. A weakly coupled two-legS51/2 ladder can
be mapped onto a spin-1 chain by formally shifting the s
glet excitation band to infinity. This implies the substitutio
m4→^m4&50, s4→^s4&Þ0, in which case theq5p com-
ponent of theS51 spin density is determined by therelative
staggered magnetization of the spin ladder,n2 @see Eq.
~26a!#. So for theS51 chain the magnetic term has a stru
ture different from Eq.~11!:

H mag
S515hm1m2s3 . ~12!

Sincemt.0, in the leading order the interaction~12! gives
rise to an effective magnetic fieldh̃;h^m1m2& applied to the
third Ising system (h̃s3). The spectrum of theS51 chain in
a staggered field is therefore always massive~see Ref. 29!.

The existence of a U~1! transition in the model~11! can
be foreseen as follows. Since the triplet of Ising copies
disordered, the magnetic term in Eq.~11! can be approxi-
mately replaced byh̃s1s2m4, where h̃;h̄^m3&. Making a
duality transformation in the fourth~singlet! Ising copy (ms
→2ms , m4↔s4), one arrives at a system of three diso
dered Ising models with the underlying U(1)3Z2 symmetry,
coupled by the interactionh̃s1s2s4. This is an Ising-model
representation of an anisotropic spin-1 chain close to the
tegrable, multicritical point,30 with a perturbation represen
ing a parity-breaking, dimerization field. In the isotropi
SU~2!-symmetric case, this model is known7–10,31to exhibit
a QCP where it becomes equivalent to theS51/2 Heisenberg
chain @SU(2)1 WZNW universality class#. A finite easy-
plane anisotropy transforms this criticality to a Gaussian o
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B. Effective action in the triplet sector

Turning back to Eq.~11!, we notice that the magneti
term contains the disorder operatorm4 of the singlet Ising
system which has zero expectation value and repres
‘‘fast’’ degrees of freedom of the system@although the ratio
umsu/mt.3 may not seem large enough, it can be sign
cantly increased in the generalized model~2! with the ‘‘spin-
liquid’’ condition msmt,0 still preserved; see Eqs.~7!#. We
will therefore integrate the singlet mode out to obtain
effective action in the triplet sector. The existence of
Gaussian criticality will then immediately follow from th
structure of this action.

We write the total Euclidean action of the model asS
5St1Ss1Sst , whereSt@j# andSs@j4# are the contributions
of triplet and singlet sectors, respectively, and

Sst@j,j4#5
1

vE d2r@Oh~r!1Og~r!#, ~13!

Oh52~ h̄/a!s1s2m3m4 , Og5g2~jR•jL!~jR
4jL

4!,

is treated as a perturbation. Herer5(x,vt), and for simplic-
ity we ignore the difference between the triplet and sing
velocities. Integrating overj4 in the partition function

Z5E D@j#D@j4#e2S[ j,j4]5const3E D@j#e2Seff[ j]

yields the effective action in the triplet sector in the form
a cumulant expansion:

Seff@j#5St@j#1^Sst&s2
1

2
@^Sst

2 &s2^Sst&s
2#1•••, ~14!

where^•••&s means averaging over the free massive ferm
onsj4.

The first-order correction in the expansion~14! gives rise
to a small renormalization of the triplet mass

mt→mt1ms

g2

2pv
lnS v

umsua
D .

The cross term proportional tog2h involves the correlator
^m4(r1)jR

4(r2)jL
4(r2)&s , which vanishes due to the unbroke

(m→2m, jR,L→2jR,L) symmetry of an ordered Ising
model ~see Appendix A!. In the second order ing2, one
obtains terms leading to renormalization of the velocityv t
and coupling constantg1. Assuming that all these renorma
izations are already taken into account, we are left with
following expression for the effective action:

Seff@j#5St@j#2
h̄2

2v2a2E d2r1d2r2Ot~r1!Ot~r2!

3^m4~r1!m4~r2!&s , ~15!

whereOt5s1s2m3.
The fourth Ising copy is ordered (ms,0); so the correla-

tion function in Eq.~15! decays exponentially at distance
r; l s ~Ref. 28!:
2-4
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QUANTUM CRITICALITIES IN A TWO-LEG . . . PHYSICAL REVIEW B 66, 024412 ~2002!
^m4~r!m4~0!&s.
A1~a/ l s!

1/4

A2pr / l s

e2r / l s1O~e23r / l s!, ~16!

whereA1 is a nonuniversal parameter. Under the assump
that umsu/mt@1, the correlation length in the triplet secto
l t , is much larger than that in the singlet sector,l s . There-
fore the productOt(r1)Ot(r2) in Eq. ~15! can be treated by
means of the short-distance operator product expan
~OPE!.32 Using the fusion rules for two Ising order and di
order operators@see Appendix A, Eqs.~A7a! and~A7b!#, we
find that

Seff@j#5St@j#1
iC1

a
S h̄

ms
D 2E d2r~jR

1jL
11jR

2jL
22jR

3jL
3!

1C2S l s

a D S h̄

ms
D 2E d2r@jR

1jL
1jR

2jL
22~jR

1jL
1

1jR
2jL

2!jR
3jL

3#, ~17!

whereC1 andC2 are positive numerical constants.
Thus, we arrive at the following effective Hamiltonian fo

the triplet degrees of freedom

Ht; eff52
iv
2

~jR•]xjR2jL•]xjL!2 imajR
ajL

a1giI R
3 I L

3

1g'~ I R
1 I L

11I R
2 I L

2!, ~18!

which has the same structure as the field-theoretical m
suggested by Tsvelik33 to describe the Heisenberg spin
chain with a biquadratic term and a single-ion anisotro
The staggered magnetic field introduces anisotropy in
spin ladder and effectively lowers the SO~3! symmetry of the
Majorana triplet down to SO(2)3Z2 by splitting the masses

md[m15m25mt2C1S v
a D S h̄

ms
D 2

, ~19a!

m35mt1C1S v
a D S h̄

ms
D 2

, ~19b!

and by renormalizing the coupling constants of the marg
current-current interaction

gi5g11C2vS l s

a D S h̄

umsu
D 2

, ~20a!

g'5g12C2vS l s

a D S h̄

umsu
D 2

. ~20b!

From Eq. ~19! it follows that increasing the staggere
magnetic field increases the massm3 whereas the mass of th
Majorana doublet,md , decreases and vanishes at a criti
value of the field

hc}umsuS a

l t
D 1/2

}J'
3/2/J1/2. ~21!
02441
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At this point the critical degrees of freedom are represen
by a degenerate doublet of massless Majorana fermions
a marginal current-current interactiongi(hc). This is a typi-
cal Gaussian@U~1!# criticality with central chargeC51. The
vicinity of the critical point where the Majorana double
(j1,j2) becomes very soft is described by the off-critic
Askin-Teller model or, equivalently, the quantum sin
Gordon model~SGM! for a scalar fieldF:

Ht; eff.
v
2

@~]xF!21~]xQ!2#2
md

pa
cosA4pKF. ~22!

HereQ is the field dual toF, the parameter

K512~gi/2pv !1O~gi
2! ~23!

determines the~coupling-dependent! compactification radius
of the fieldF and

md}mt~hc2h!/hc .

In the vicinity of the critical point, the spectral gap scales
the renormalized mass of the SGM~22!:

Md}
v
a S umdua

v D 1/(22K)

sgn~md!. ~24!

In Sec. VI, we show@see Eq.~80!# that, in the strong-
coupling limit (J' ,h@J), the effective model describing th
low-energy properties of the spin ladder ath;hc represents
an anisotropic (XXZ) spin-1/2 Heisenberg chain with th
parameterD close to 1/2 and an effective staggered magne
field h* ;h2hc . In the continuum limit, this quantum lat
tice model transforms to the SGM~22!. The only difference
between the weak-coupling and strong-coupling regime
that in the latter case the parameterK is close to 3/4.

The description of the low-energy part of the spectrum
the original model~11! in terms of the effective anisotropi
spin-1 chain~18! holds if h!J' . As follows from Eq.~21!,
this condition is satisfied ath,hc and also in some region
above the critical field. However, if the field reaches valu
h;umsu, the singlet mode becomes as important as the tri
ones, and the effective model~18! is no longer applicable.
This regime is difficult to tackle analytically. On the othe
hand, if the fieldh is further increased and occurs in th
range umsu!h!J, the role of the interchain exchangeJ'

becomes subdominant, and the original model reduces to
decoupled Heisenberg chains in a weak staggered mag
field. In this case exact results are available, because in
scaling limit each such chain is described by a SGM with
coupling constantb252p ~see, e.g., Ref. 27, Chap. 22!:

H→ (
j 51,2

Hj , ~25!

Hj5
v
2

@~]xQ j !
21~]xF j !

2#2
l~ h̄!

2pa
sinA2pF j ,

wherel(h̄);h̄ @see Refs. 15 and 16 for an accurate estim
tion of l(h̄)]. ~Technically, this mapping can be achieve
either directly, i.e., using the rules of Abelian bosonization
2-5
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WANG, ESSLER, FABRIZIO, AND NERSESYAN PHYSICAL REVIEW B66, 024412 ~2002!
the S51/2 Heisenberg chain,34,6 or by establishing the cor
respondence between two pairs of the Majorana fields
two bosonic fields,

~j1 ,j2!↔F1 , ~j3 ,j4!↔F2 , F65
F16F2

A2
,

and using formulas~A6a! of Appendix A to bosonize the
magnetic terms1s2m3m4.!

C. Projecting operators onto the low-energy sector

Since the fourth~singlet! Ising system has the largest e
ergy gap and stays ordered across the transition (ms,0), at
energiesv!umsu the order operators4 can be replaced by
its nonzero expectation valuês4&;(a/ l s)

1/8. Under this
substitution the relative staggered magnetizationn2 and
dimerization fielde2, defined in Eqs.~10b! and ~10c!, be-
come projected onto the low-energy, triplet sector of
model described by the effective action~17! and ~18!:

n2→~a/ l s!
1/8N2,

N2;~1/a!~s1m2m3 , m1s2m3 , m1m2s3!; ~26a!

e2→~a/ l s!
1/8E2, E2;~1/a!s1s2s3 . ~26b!

On the other hand, the total staggered magnetizationn1 and
dimerization fielde1 are both proportional to the disorde
operatorm4 whose correlations are exponentially decaying
short distances,r; l s @see Eq.~16!#. Therefore, one migh
conclude that these fields are short ranged and the spe
weight of their fluctuations is only nonzero in the hig
energy regionv;umsu. By the same argument, the smoo
part of the relative magnetization,K, Eq. ~9b!, proportional
to the singlet Majorana fieldj4, would also appear as
‘‘high-energy’’ field. However, this conclusion cannot be co
rect for the following reason.

It is true that, once the high-energy singlet modes
integrated out, the operatorn1 defined in Eq.~10a! has no
projection onto the lower-energy sector. However, Eq.~10a!
is thezeroth-orderdefinition of this operator with respect t
the staggered field which couples the high- and low-ene
modes. In fact, apart from the always existing short-ran
part, the operatorn1 contains a strongly fluctuating piece
which originates from a finite admixture of low-energy sta
occurring already in the first order inh. This can be easily
understood from the fact that reduction of the original act
of the model to the effective one is equivalent to a unita
transformation of the quantum Hamiltonian of the syst
that projects it to the subspace of the low-energy states.
the same unitary transformation should be applied to ph
cal operators to single out their low-energy projections.

The low-energy projections of seemingly high-energy o
erators can be extracted from the second-order perturba
corrections to the corresponding correlation functio
Equivalently~and more formally!, this can be done by fusing
a local operatorO0(r), originally defined as a short-range
field with the perturbative part of the total action,
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O0~r!→O~r!

5O0~r!e2Sst

5O0~r!1S h

v D E d2r1^O0~r!nz
1~r1!&s1O~h2!,

~27!

and averaging the first-order term over the fast sing
modes. This term is just the low-energy projection we a
looking for ~it can be easily checked that the marginal part
the perturbation, given by the operatorOg in ~13!, yields no
mapping onto the low-energy triplet sector!. This is essen-
tially an ‘‘integrating-out’’ procedure but this time applied t
the correlation functions rather than the action itself.

In Appendix B we show that the projection of the tot
staggered magnetization onto the whole triplet sector is
the form

nz
1→^nz

1&1 iAnS h

umsu
D S l s

a D ~jR
1jL

11jR
2jL

22jR
3jL

3!1•••,

~28a!

nx
1→ iAnS h

umsu
D S l s

a D ~jR
1jL

31jR
3jL

1!1•••, ~28b!

ny
1→ iAnS h

umsu
D S l s

a D ~jR
2jL

31jR
3jL

2!1•••, ~28c!

where^nz
1& is the average staggered magnetization indu

by the field~see Sec. V!, An is a numerical constant, and th
ellipses stand for the high-energy parts of the operators
that Appendix we also derive the first-order low-energy p
jection of the relative smooth magnetization of the ladde

Kx→2 iAKS h

umsu
D S a

l s
D 1/8S l s

v D ]tNy
2 , ~29a!

Ky→2 iAKS h

umsu
D S a

l s
D 1/8S l s

v D ]tNx
2 , ~29b!

Kz→AKS h

umsu
D S a

l s
D 1/8

l s]xE
2, ~29c!

whereAK is another numerical constant and the fieldsN2

andE2 are defined in Eqs.~26!.

III. DYNAMICAL STRUCTURE FACTOR
IN THE PRESENCE OF A STAGGERED FIELD

The scattering cross section measured in neutron sca
ing experiments is proportional to the dynamical structu
factor Sab(v,Q). In this section we discuss some gene
properties ofSab(v,Q) in the case where a quantum sp
chain or ladder is subject to parity-breaking external pert
bations, such as a staggered magnetic field or explicit dim
ization.

Consider first the case of a single Heisenberg chain.
dynamical structure factor is defined as the Fourier transfo
of the spin-spin correlation function
2-6
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Sab~v,Q!5
1

2pN (
n,m51

N E
2`

`

dteivt2 iQ(n2m)^Sn
a~ t !Sm

b ~0!&.

~30!

Here we have set the lattice spacinga051. For a translation-
ally invariant, antiferromagnetic spin chain the spin-spin c
relation function has the following asymptotic structure

^Sn
a~ t !Sm

b ~0!&5F1
ab~ t,n2m!1~21!n2mF2

ab~ t,n2m!,
~31!

where F1(t,n) and F2(t,n) are slowly varying functions
of n and t. According to Eq.~8!, in the continuum limit
these reduce to the correlation functions of the smo
and staggered magnetization,̂ Ja(t,x)Jb(0,0)& and
^na(t,x)nb(0,0)&, and thus determine the dynamical stru
ture factor in the vicinity of twodifferentpoints:Q'0 and
Q'p.

When a staggered magnetic field is applied to a s
chain, the situation may seem to be different. Indeed,
translational symmetry of the underlying lattice is brok
and the period of the induced magnetic structure is doub
The spin excitation spectrum is now defined in the redu
Brillouin zone 2p/2,q<p/2, with the pointsq50 andq
5p identified. At the same time, due to the lowered trans
tional symmetry, the asymptotical expression~31! for the
spin-spin correlation function will contain extra oscillatin
pieces

^Sn
a~ t !Sm

b ~0!&5F1
ab~ t,n2m!1~21!n2mF2

ab~ t,n2m!

1~21!nF3
ab~ t,n2m!

1~21!mF4
ab~ t,n2m!, ~32!

whereF3(t,n) andF4(t,n) are smooth functions that trans
form in the continuum limit to the mixed correlator
^na(t,x)Jb(0,0)& and ^Ja(t,x)nb(0,0)&, respectively. These
correlators are nonzero in the presence of the staggered
and the question is whether they contribute to the dynam
structure factor.

The answer to this question is negative. At a formal lev
this can be shown as follows. Note that due to the bro
one-site translational symmetry the spin-spin correlat
function should be expanded in a double Fourier series

^Sn
a~ t !Sm

b ~0!&5
1

N (
k,k8

ei (kn2k8m)F̃k,k8
ab

~ t !, ~33!

wherek andk8 vary within the paramagnetic Brillouin zon
(2p,k<p), and the double periodicity requires th
F̃k,k8

ab Þ0 if k5k8 or k5k81p. Mapping onto the reduced
Brillouin zone yields

^Sn
a~ t !Sm

b ~0!&5
1

N (
uqu,p/2

eiq(n2m)@ F̃q,q
ab ~ t !

1~21!n2mF̃q1p,q1p
ab ~ t !1~21!nF̃q1p,q

ab ~ t !

1~21!mF̃q,q1p
ab ~ t !#. ~34!
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At small q, F̃q,q , F̃q1p,q1p , F̃q1p,q , and F̃q,q1p are the
Fourier transforms of the smooth functionsF1(n), F2(n),
F3(n), and F4(n), respectively. Substituting Eq.~33! into
Eq. ~30! we find that

Sab~v,Q!5
1

2p (
l ,l 852`

`

F̃Q12p l ,Q12p l 8
ab

~v!. ~35!

From Eq.~35! it follows that the structure factor is 2p peri-
odic in Q. Secondly, the right-hand side~RHS! of Eq. ~35!

does not contain off-diagonal matrix elementsF̃Q,Q1p and
F̃Q1p,Q , implying that mixed correlators do not contribu
to Sab(v,Q). Therefore,

Sab~v,Q!5
1

2p H F̃1
ab~v,Q! if Q'0,

F̃2
ab~v,Q2p! if Q'p,

~36!

where, at smallQ and v, F̃1
ab(v,Q) and F̃2

ab(v,Q) are
Fourier transformations of the correlation functio
^Ja(t,x)Jb(0,0)& and ^na(t,x)nb(0,0)&, respectively.

The same conclusion can be reached within an equiva
but somewhat more appealing picture of diatomic cells. D
fine a magnetic unit cell made of two sites (2n21,2n), and
denote the corresponding spin operators byS2l

a 5S l
a and

S2l 21
a 5T l

a . There altogether are four different spin-spin co
relation functions

g1
ab~ t,l 2 l 8!5^S l

a~ t !S l 8
b

~0!&,

g2
ab~ t,l 2 l 8!5^T l

a~ t !T l 8
b

~0!&,

g3
ab~ t,l 2 l 8!5^S l

a~ t !T l 8
b

~0!&,

g4
ab~ t,l 2 l 8!5^T l

a~ t !S l 8
b

~0!&,

whose Fourier transforms

g̃a~v,q!5(
l 51

N/2 E
2`

`

dt exp~ ivt2 iq@2la0# !ga~ t,l !

have the periodicity of the reduced Brillouin zone:

g̃a~v,q1p!5g̃a~v,q!.

It then follows from the definition~30! that

Sab~v,Q!5
1

4p
@ g̃1

ab~v,Q!1g̃2
ab~v,Q!

1e2 iQa0g̃3
ab~v,Q!1eiQa0g̃4

ab~v,Q!#.

~37!

This expression shows that, although the spin correla
functionsg̃a(v,q) have the periodicity of the reduced Bri
louin zone, the dynamical structure factor does not; it rat
retains the periodicity of the paramagnetic Brillouin zon
Thus, for the dynamical structure factorSab(v,Q), the
pointsQ50 andQ5p/a0 areinequivalenteven in the pres-
ence of a staggered magnetic field.
2-7
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The functionsga(t,l ) can be easily expressed in terms
the functionsFa(t,n), defined in Eq.~32!. Using then Eq.
~37! one finds that

Sab~v,Q!5
1

2pE2`

`

dt(
n51

N

eivt1 iQnF1
ab~ t,n!

1E
2`

`

dt(
n51

N

eivt1 i (Q1p)nF2
ab~ t,n!.

Using the fact thatFa(t,n) are slowly varying functions ofn,
we finally arrive at the result~36! where

F̃a
ab~v,p!5E

2`

`

dt (
n51

N

eivt1 ipnFa
ab~ t,n!. ~38!

The generalization to the case of the two-leg ladder
straightforward. The structure factor is defined by

Sab~v,q,q'!5
1

4pN (
a,b51

2

(
n,m51

N E
2`

`

dteivt

3e2 iq(n2m)2 iq'(a2b)^Sa,n
a ~ t !Sb,m

b ~0!&,

~39!

where we have introduced a transverse momentumq' that
can take only the two values 0 andp. Information about the
low-energy part of the spin fluctuation spectrum is contain
in the staggered (q'p) and smooth (q'0) parts of the
structure factor for both values ofq' . All these four cases
will be considered separately. Below we adopt the notati

s25v22q2v2, ~40!

whereq stands for a small momentum deviation either fro
0 or p.

IV. DYNAMICAL STRUCTURE FACTOR
IN THE WEAK-COUPLING LIMIT

In this section we determine the dynamical structure f
tor at low energies in the weak-coupling regime. In Se
IV A–IV D it will be assumed that the staggered magne
field is much smaller than the singlet gapumsu. In this case
the relevant correlation functions can be estimated using
effective action in the triplet sector and the low-energy p
jections of the corresponding physical fields, discussed in
preceding section. In Sec. IV F we will consider another li
iting caseumsu!h!J, which will be treated on the basis o
the model~25!.

A. Structure factor at q�Äp, qÉp

Of primary importance is the evolution of the cohere
triplet peak displayed by the dynamical structure factor
the Heisenberg ladder under the action of the gradually
creasing staggered magnetic field. This information is c
tained in the spectral properties of the relative stagge
magnetizationn2 whose low-energy projection is given b
02441
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Eq. ~26a!. We therefore start our discussion with the ca
q'5p and consider the real-space–imaginary-time corre
tion functions

Daa
(2)~r!5~a/ l s!

1/4^Na
2~r!Na

2~0!& ~a5x,y,z!.

The corresponding structure factor is obtained by Fou
transformationDaa

(2)(r)→Daa
(2)(q) @q5(q,vn /v)#, and sub-

sequent analytical continuation to the upper comp
v-plane (ivn→v1 id).

1. hËhc

For fields smaller thanhc the leading asymptotics o
Daa

(2)(r) are given by

Dxx
(2)~r!5Dyy

(2)~r!

}~1/a2!~a2/ l sl 3!1/4^s1~r!m2~r!s1~0!m2~0!&,

~41a!

Dzz
(2)~r!}~1/a2!~a/ l s!

1/4^s3~r!s3~0!&

3^m1~r!m2~r!m1~0!m2~0!&, ~41b!

with l 3;v/m3. Here and in what follows it is assumed th
the third Ising system (j3) decouples from the double
(j1,j2). This assumption is certainly correct in the vicini
of the critical point and holds on a qualitative level ever
where in the massive phases athÞhc .

Using the local bosonic representation of the prod
s1m2, given by Eq.~A6b! of Appendix A, and properly res-
caling the dual fieldQ, Q→(1/AK)Q, we find that the cor-
relator on the RHS of Eq.~41a! reduces to that of vertex
operators of the dual field in the SGM~22! which, in turn,
can be estimated by means of the form factor bootst
approach:35–39

K cosAp

K
Q~r!cosAp

K
Q~0!L ;Z~K !

e2Mdr /v

AMdr /v
.

Inspecting the RHS of Eq.~41b!, we notice that the disorde
operatorsm1 and m2 have nonzero expectation values (md
.0). On the other hand, sincem3.0, the correlator
^s3(r)s3(0)& has the asymptotic form~16! with l s replaced
by l 3. The obtained asymptotics for the correlation functio
Dxx

(2)(r) and Dzz
(2)(r) lead to the following expressions fo

the transverse and longitudinal components of the dynam
structure factor:

S12~v,p1q,p!5C'~h!d~s22Md
2!, ~42a!

Szz~v,p1q,p!5Ci~h!d~s22m3
2!, ~42b!

where

C'~h!,Ci~h!;~ umsum3Md
2!1/4. ~42c!

We note that the incoherent continua that contribute to
dynamical susceptibilities at higher energy can be calcula
by using the results of Ref. 28~see, e.g., Ref. 40 for a simila
calculation!.
2-8
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Thus, the coherent triplet magnon peak of the isotro
Heisenberg spin ladder, originally located at the freque
v5mt , is split by the field in two peaks: the doublet (Sz

561) peak atv5Md,mt and theSz50 peak atv5m3
.mt . Therefore, the phase occurring ath,hc represents an
anisotropic spin liquid with coherent longitudinal and tran
verse magnon excitations having different, field-depend
mass gaps.

Upon increasing the field, the two peaks move in oppo
directions. When the critical field is approached, the ba
ground of multiparticle states with thresholds 3Md , 5Md ,
. . . , and the doublet peak merge, and, at criticality,
four-point Ising correlation functions in Eqs.~41! follow a
power-law behavior.

2. hÄhc

As follows from the bosonic representation of the pro
uctss1m2 andm1m2 @see Eqs.~A6a! and~A6b! of Appendix
A#, at h5hc the four-point Ising correlators in Eqs.~41!
transform to those of vertex operators in a Gaussian mo
and therefore display a power-law decay. One easily fi
that

Dxx
(2)~r!}S a

r D 1/2K

,

Dzz
(2)~r!}S a

r D K/2e2r / l 3

Ar / l 3

.

After the Fourier transformation and analytic continuati
we obtain

S12~v,p1q,p!5C'8 S v2

a2s2D 121/4K

u~s2!, ~43a!

Szz~v,p1q,p!5Ci8F v2

a2~s22m3
2!

G 12K/2

u~s22m3
2!,

~43b!

where

C'8 ;S a

v D S a2

l sl 3
D 1/4

,

Ci8;S a

v D S a

l s
D 1/4S a

l 3
D 1/42K/2

, ~43c!

andu(x) is the Heaviside step function. Both the transve
and longitudinal susceptibilities feature incoherent scatte
continua with thresholds at zero energy andv5m3, respec-
tively.

3. hcËh™zmsz

At h.hc the massmd becomes negative and the doub
of Ising systems occurs in the ordered phase, whereas
third Ising system stays disordered (m3.0). The behavior of
Dxx

(2)(r) is just the same as ath,hc since the duality trans
formation associated with the sign reversal ofmd , i.e.,
02441
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m1,2↔s1,2, keeps the correlator in the RHS of Eq.~41a!
unchanged. Therefore the coherentuSzu51 magnon peak,
which exists ath,hc and disappears at the critical point,
recovered in theh.hc phase. In contrast to this, the asym
totics of Dzz

(2)(r) is changed, and ath.hc we find

Dzz
(2)~r!}

1

va2
~ umsum3Md

2!1/4
e22uMdur /v

uMdur /v
e2m3r /v

Am3r /v
.

As a consequence, the Haldane spin liquid loses part o
coherent spectral weight atq;p: the Sz50 magnon is no
longer seen in the longitudinal staggered structure fac
Szz(v,p1q,p) and is replaced by an incoherent continuu
of states with a threshold atv52uMdu1m3:

Szz~v,p1q,p!5Ci9u@s22~2uMdu1m3!2#, ~44a!

where

Ci9~h!;S a

v D S a2

l sl 3
D 1/4S v

~2uMdu1m3!a D 1/2

. ~44b!

We will show below that, in fact, the coherentSz50 mode
still exists ath.hc but its spectral weight is shifted toward
small momenta (q;0) and is very small.

B. Structure factor at q�Äp, qÉ0

The structure factorSaa(v,q,p) is determined by corre-
lations of the relative magnetization

S1,n2S2,n→K~x!,

Ka5 i ~jR
ajR

41jL
ajL

4!, a51,2,3. ~45!

The projections of the fieldsKa onto the low-energy secto
are given by Eqs.~29a!–~29c!.

Consider first the longitudinal structure factor. Since t
third Ising system remains disordered across the transi
(m3.0), Szz(v,q,p) will be nonzero only at frequencie
v>m3. This follows from Eqs.~29c! and ~26b!. Note that
the operatorE2 in Eq. ~26b! is related toNz

2 , Eq. ~26a!, by
a duality transformation in the doublet sector. Therefore
large-distance asymptotics of^E2(r)E2(0)& can be obtained
from those ofDzz

(2)(r), estimated in the preceding subse
tion, by interchanging the casesh,hc andh.hc . This leads
to the following results:

h,hc :

Szz~v,q,p!5Ci9~h!S h

ms
D 2

~qls!
2u@s22~2Md1m3!2#;

~46a!

h5hc :

Szz~v,q,p!5Ci8S h

ms
D 2

~qls!
2F v2

a2~s22m3
2!

G 12K/2

3u~s22m3
2!; ~46b!

h.hc :
2-9
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Szz~v,q,p!5Ci~h!S h

ms
D 2

~qls!
2d~s22m3

2!, ~46c!

where the prefactorsCi , Ci8 , and Ci9 are given by Eqs.
~42c!, ~43c!, and ~44b!. We see that ath.hc the coherent
Sz50 magnon mode is seen in the small-q part of the dy-
namical structure factor. However, its spectral weight is p
portional to (qls)

2 and thus small.
Consider now the transverse structure factor. Using

definitions~29a! and~29b! and the known expression for th
structure factorS6(v,p1q,p) obtained in Sec. IV A, we
find the following:

hÞhc :

S6~v,q,p!5C'~h!S h

ms
D 2S v

ms
D 2

d~s22Md
2!; ~47a!

h5hc :

S6~v,q,p!5C'8 S h

ms
D 2S v

ms
D 2S v2

s2a2D 121/4K

u~s2!,

~47b!

whereC' andC'8 are given by Eqs.~42c! and ~43c!. Com-
paring the results~42a! and~47a!, we see that at any nonzer
h ~except for the transition point!, the coherent transvers
(uSzu51) magnon mode is seen both in the staggeredq
'p) and smooth (q'0) parts of the structure facto
S6(v,q,p), with the ratio of the spectral weights atq'0
andq'p being of the order of (h/ms)

2(Md /ms)
2.

C. Structure factor at q�Ä0, qÉp

The structure factorSab(v,p1q,0) is determined by dy-
namical correlations of the total staggered magnetizat
n1, whose low-energy projection is given by expressio
~28a!–~28c!.

1. Longitudinal structure factor

As follows from Eq. ~28a!, Szz(v,p1q,0) displays a
broad continuum of states with the lowest-energy thresh
equal to 2uMdu. If uh2hcu!hc , at frequencies much les
thanm3 only the doublet modes are to be taken into accou
In this case we have

Dzz
(1)~r!5An

2S h

ms
D 2S l s

a D 2

Kd~r!,

Kd~r!5^«d~r!«d~0!&, ~48!

where«d5 i (jR
1jL

11jR
2jL

2) is the energy-density operator i
the doublet sector. A simple calculation, based on the
sumption that the doublet fermions are free, leads to the
sult ~see Appendix C!

Im Kd~q,v1 id!5
1

2v

As224md
2

s
. ~49!

In fact, the square-root behavior of the structure factor n
the threshold isuniversal: the effect of the interaction be
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tween the Majorana fermionsj1 andj2 shows up only in the
mass and velocity renormalization and the interactio
dependent prefactorZd(K):

Szz~v,p1q,0!

}
1

2v
Zd

2~K !S h

umsu
D 2S l s

a D 2As224Md
2

s
u~s224Md

2!.

~50!

This is confirmed by the calculation done in Sec. VII
which proceeds from the bosonized correlator~48!,

Kd~r!}^cosA4pKF~r!cosA4pKF~0!&, ~51!

and automatically takes into account interaction effects in
doublet sector within the form factor approach35–37 to the
SGM ~22!. In that calculation, the crucial fact is that, in th
range 3/4<K,1, the spectrum of the SGM~22! consists of
massive quantum solitons~s! and antisolitons (s̄) with the
massMd , and one soliton-antisoliton bound state~breather!
with the massM1 given by Eq.~91!. The latter, however, is
odd under parity~charge! conjugation~A12! and as a result
the form factor of the parity-symmetric operator cosA4pF
between the vacuum and the breather state vanishes. T
fore the main contribution to the structure factor is due to
ss̄ scattering continuum with a threshold at 2uMdu, where
Md is the single-soliton mass. This explains the universa
of the square-root behavior~50! of the structure factor
Szz(v,p1q,0) near the threshold.

The result~50! neglects the contributions of multiparticl
processes with thresholds at higher energies (4uMdu, 6uMdu,
etc.!. As h→hc ~i.e., Md→0), such processes become
important as the two-particle ones. Exactly at criticality t
Majorana doublet becomes massless, and the interactio
the doublet sector can no longer be ignored. In this c
Kd(r ).(a/r )2K and

Szz~v,p1q,0!}
C~K !

v S v2

a2s2D 12K

u~s2!, ~52!

whereC(K);@2122K/G2(K)#(h/ms)
2( l s /a)2.

2. Transverse structure factor

The transverse structure factorSxx(v,p1q,0) can be es-
timated in a similar manner. The main difference is that n
we have two Majorana fermions (j1 and j3) with unequal
masses (md andm3). Treating both fermions as free, simp
calculations along the lines of Appendix C give

Sxx~v,p1q,0!}
a

v S h

umsu
D 2S l s

a D 2As22m1
2

s22m2
2

, ~53!

s2>max$m1
2 ,m2

2 %,

wherem65m36md . For different signs of the doublet mas
md;hc2h, the frequency dependence of the structure fac
is qualitatively different~see Fig. 2!. At h,hc (md.0),
Sxx(v,p1q,0) follows a square-root increase above t
2-10
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QUANTUM CRITICALITIES IN A TWO-LEG . . . PHYSICAL REVIEW B 66, 024412 ~2002!
thresholdm1 which becomes steeper ash→hc . At h.hc ,
Sxx(v,p1q,0) has a square-root singularity at the thresh
m2 with an amplitude proportional toumdu1/2.

Let us now discuss the role of the so far neglected in
action between the fermions. As we have mentioned bef
near the critical point theSz50 collective modes describe
by the field j3 asymptotically decouple from theSz561
~doublet! ones. Hence one can always assume that the
jorana fermionj3 is free and massive. Concerning the fe
mion j2 that belongs to the interacting doublet sector,
may use the bosonized expressions for the chiral compon
of j2 @see Eqs.~A5!# and employ a form factor expansion
the model~22! to show that

^jR
2~x,t!jR

2~0,0!&5Z~K !K1~ uMdzu!S z

z̄
D 1/2

,

^jL
2~x,t!jL

2~0,0!&5Z~K !K1~ uMdzu!S z̄

z
D 1/2

,

^jR
2~x,t!jL

2~0,0!&5Z~K !K0~ uMdzu!. ~54!

Here z5t1 ix/v, z̄5t2 ix/v, and Kn(x) are the Mac-
Donald functions. In Eqs.~54! only the one-particle form
factor has been taken into account~the first correction in-
volves a contribution of three-particle processes!. We see that
the expressions~54! have the structure of the two-point co
relators of free massive Majorana fermions. The informat
about the interactions in the doublet sector, i.e., the par
eterK of the SGM, is contained in the renormalized massMd
and the constantZ(K). This means that, up to this prefacto
the above result~53! actually represent the first term of th
exact form factor expansion and, thus, is universal close
the threshold as long ashÞhc .

According to Eq.~53!, at criticality the free-fermion ap-
proximation leads to a step functionu(s22m3

2). However,
this result must be revisited because atMd50 the single-
fermion propagator̂j1(x,t)j1(0,0)& transforms to that of a
spinless Tomonaga-Luttinger liquid. An estimation
Sxx(v,p1q,0), quite similar to that done in Appendix D
leads to a power-law behavior

FIG. 2. Transverse structure factor atq'p, q'50. For more
clarity, the casesh,hc (md.0) andh.hc (md,0) are shown
separately.
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Sxx~v,p1q,0!ucrit5C~q!S h

umsu
D 2S l s

a D 2S s22m3
2

m3
2 D 2q

,

~55a!

where

C~q!;
~a/v !

2112qG~112q!
S a

l 3
D 2q

~55b!

and

2q5
1

2 S K1
1

K D21 ~56!

is the critical exponent of the single-particle density of sta
in a Tomonaga-Luttinger liquid. We see that, due to an ‘‘
frared catastrophe’’ caused by the interactions in the dou
sector, the threshold discontinuity ofSxx(v,p1q,0) trans-
forms to a continuous dependence. However, due to
smallness ofq, the power-law increase of the transver
structure factor is very steep.

D. Structure factor at q�Ä0, qÉ0

At small q the structure factorSaa(v,q,0) is determined
by correlations of the smooth part of the total magnetizat
density. In the continuum limit, the latter can be expressed
terms of the triplet Majorana fields:

S1,n1S2,n→I ~x!,

I a52~ i /2!eabc~jR
bjR

c 1jL
bjL

c !. ~57!

1. Longitudinal structure factor

The total longitudinal currentI 352 i jn
1jn

2 involves only
the doublet Majorana modes which become critical at
transition. If the marginal interaction between these mo
was absent, the structure factor at smallq would display a
broad continuum of states with a threshold 2umdu ~Ref. 24!:

Szz~v,q,0!;
2q2md

2

s3As224md
2

. ~58!

As opposed to the case of the energy-density correlator~51!
where the free-fermion approximation correctly captures
universal features, here the interaction in the doublet se
changes the result~58! dramatically. As already mentioned
apart from soliton/antisoliton states the spectrum of the SG
~22! with 3

4 <K<1 also features the first breather state. T
latter is odd under charge conjugationC, which inverts the
sign of sine-Gordon fieldF @see Eq.~A12!#. As follows from
Eq. ~A3! the current operatorI 35AK/p]xF is also odd un-
der C and consequently has a nonzero form factor betw
the vacuum and the first breather state. This gives rise
coherentd-function peak appearing below the threshold
the two-soliton scattering continuum. Taking into accou
only the contributions of the first breather~with massM1)
and the two-particle scattering states, close to the crit
point we obtain
2-11
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Szz~v,q,0!}2U pjl

sin~pj!
U2

q2d~s22M1
2!14p

q2As224Md
2

s3

1

cosh~2u0 /j!1cos~p/j!

3expS E
0

`dt

t

sinh~@12j#t !F12cosh 2t cosS 2u0t

p D G
sinh~2t !cosht sinh~ tj!

D , ~59!
l

rs

ul
es
fo

te

y
r
ch

f

whereu05arccosh(s/2Md) and

l52 cos~pj/2!A2 sin~pj/2!expS 2E
0

pj dt t

sint D ,

j5
K

22K
, M152Mdsin~pj/2!. ~60!

This result is valid for any sign ofh2hc . We note that
Szz(v,q,0) vanishes asq→0 because thez component of the
total magnetization,S1

z1S2
z5* dxI3(x), is conserved. In the

limit K→1 the two-particle contribution to Eq.~59! reduces
to the form~58! as it should, if we identifyMd with md .

Exactly at the Gaussian criticality (h5hc) the longitudi-
nal structure factor is given by the well-known ‘‘chira
anomaly’’ formula~see, e.g., Ref. 27!:

Szz~v,q,0!5K~a/v !~qv !2d~v22q2v2!. ~61!

2. Transverse structure factor

Now we turn to dynamical correlations of the transve
total current,I 152 i jn

2jn
3 . As before we will first adopt the

free-fermion approximation and then discuss how the res
are affected by the interaction between the doublet mod

After some algebras we find the following expression
Sxx(v,q,0) ~assuming thatv.0):

Sxx~v,q,0!5
a

2v

m1
2 q2~s22m2

2 !1m2
2 ~s21q2!~s22m1

2 !

s4A~s22m1
2 !~s22m2

2 !
,

~62!

m65m36md , s2>max$m1
2 ,m2

2 %.

FIG. 3. Transverse structure factor atq5q'50.
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The caseq50 is shown in Fig. 3. Apart from the 1/v2

decay atv.m3, the behavior ofSxx(v,q,0) close to the
threshold is similar to that ofSxx(v,p1q,0) ~cf. Fig. 2!.

Although atq50 the transverse structure factor is fini
for h,hc (md>0), at arbitrarily smallq it is divergent at
the threshold~see Fig. 4!,

Sxx~v,q,0!;
q2~m1

2 2m2
2 !1/2

m1
2 ~m1

2 1q2!1/4

1

Ad
,

whered5v2Am1
2 1q2.0.

For h,hc and atqÞ0 the curves shown in Fig. 4 displa
an interesting feature. The 1/Ad drop of the structure facto
slightly above the threshold is followed by an upturn whi
is a property ofSxx(v,0,0). The maximum occurs at

d;
~m1

2 2m2
2 !q2

m1m2
2

.

At h.hc (md,0) the singularity at the threshold is o
the form

Sxx~v,q,0!;
~m2

2 2m1
2 !1/2~m2

2 1q2!3/4

m2
2

1

Ad
.

FIG. 4. Transverse structure factor at smallq with parameter~a!
md50.8m3 and ~b! md50.2m3 , m351.
2-12
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Now it survives the limitq→0 and disappears only at th
critical point.

The free-fermion approximation is reliable as long ash
Þhc . The derivation of the structure ofSxx(v,q,0) at criti-
cality is given in Appendix D. Using Eqs.~D6! and~D7! we
find that just above the thresholdv5Aq21m3

2 the structure
factor Sxx(v,q,0)ucrit only differs from the expression~55a!
by an extra factor (v21q2v2)/m3

2,

Sxx~v,q,0!ucrit5C~q!S v21q2v2

m3
2 D S s22m3

2

m3
2 D 2q

. ~63!

The discontinuity ofSxx(v,q,0) at the threshold, obtained i
the free-fermion approximation, is rounded by the interact
in the doublet sector. However, due to the smallness ofq, the
transverse structure factor rapidly increases beyond
threshold and reaches values of the order of 1 exponent
close to the threshold,v2Aq2v21m3

2;a21e21/2q.

E. Summary of the structure of the magnetic excitation
spectrum at weak coupling

At this point it would appear to be useful to briefly sum
marize our results concerning the behavior of the dynam
structure factor in the weak-coupling regime derived abo
We do this in a simple pictorial way, having in mind t
illustrate the qualitative changes in the spin excitation sp
trum associated with the transition induced by the stagge
magnetic field.

In Figs. 5 and 6 curves denote coherent single-part
excitations whereas shaded areas correspond to incoh
multiparticle scattering continua. The main changes as
tune the staggered field through the transition conc
Szz(v,q,p). The coherent mode visible inSzz(v,q'p,p)
below the transition is replaced by an incoherent scatte
continuum forh.hc . In the vicinity of q50 exactly the
opposite happens: the incoherent scattering continu
present belowhc splits off a coherent mode forh.hc . The
transverse magnon mode visible inS12(v,q,p) is well de-
fined both below and above the transition.

At q'50 the general structure of the excitation spectr
is similar for h,hc and h.hc . However, the precise form

FIG. 5. Structure of low-energy magnetic excitations in t
weak-coupling limit whenh,hc .
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of the structure factor changes significantly, which of cou
has important consequences for the neutron scattering c
section.

F. Structure factor at zmsz™h™J

This is the limit of two decoupled Heisenberg chains in
staggered magnetic field, described by a pair of theb2

52p sine-Gordon Hamiltonians~25!. The problem basically
reduces to the situation studied in Refs. 13–16. The elem
tary excitations are solitons~s! and antisolitons (s̄) with a
mass gapM ~which scales asM;h2/3) and two soliton-
antisoliton ‘‘breather’’ bound statesB1,2 with gapsM and
A3M , respectively. The dynamical structure factor has
ready been partially calculated by means of the form fac
bootstrap approach in Ref. 14. We briefly review some i
portant ingredients of this method in Sec. VI. The leadi
contributions to the various components of the structure f
tor are found to be

S12~v,p1q,q'!5A'd~s22M2!1•••, ~64a!

Szz~v,p1q,q'!5Aid~s223M2!1•••, ~64b!

S12~v,q,q'!5B'~v2/M2!d~s22M2!1•••, ~64c!

Szz~v,q,q'!5Bi~q2/M2!d~s22M2!1•••. ~64d!

HereA',i andB',i are constants that can be calculated,q'

50,p, and the ellipses denote higher-energy contributions
multiparticle intermediate states. Both atq;0 andq;p the
transverse structure factor shows a coherentd-function peak
due to one-soliton intermediate states. This suggests
there may be a coherent transverse soliton mode throug
the whole Brillouin zone. The longitudinal structure fact
exhibits a coherentd-function mode corresponding to th
second breatherB2 with gapA3M in the vicinity of q5p.
For small momentum transfer along the chain direction
longitudinal structure factor exhibits a coherentd-function
peak which is a contribution of the first breatherB1 with gap
M. However, the spectral weight is very small (}q2).

Let us now compare these results to the ones found ab
for the weak-coupling limitJ@J'@h.hc .

FIG. 6. Structure of low-energy magnetic excitations in t
weak-coupling limit whenh.hc .
2-13
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q'5p: The transverse structure factor forq'p is similar
to Eq. ~64a!. The longitudinal structure factor at weak co
pling is incoherent whereas forh@J' it is coherent. This is
easily understood: increasing the staggered field eventu
splits off a bound state from the incoherent continuum.
nally, the structure factors forq'0 have the same gener
form as Eqs.~64c! and ~64d!, respectively.

q'50: Here the situation at large staggered fields,h
@J' , is different from that found atJ'@h.hc . The trans-
verse structure factor aroundq5p andq50 exhibits coher-
ent modes forh@J' , Eqs.~64a! and ~64c!, whereas it dis-
plays incoherent scattering continua forJ'@h.hc .
However, these continua are singular above the thresho
and one can thus easily imagine that they are prone to
off coherent modes onceh becomes sufficiently large. An
analogous situation is encountered forSzz(v,q,0) at smallq.
Finally, a coherentd-function peak is found inSzz(v,p
1q,0) both ath@J' andJ'@h.hc .

V. INDUCED STAGGERED MAGNETIZATION

In this section, we estimate the magnetic field depende
of the induced staggered magnetizationM in the Haldane
spin-liquid phase of the spin ladder. Since ath50 correla-
tions of the total staggered magnetization (21)n@S1n

z 1S2n
z #

are short ranged, the dependenceM(h) will be linear in the
limit h→0:

M~h!5xs~0!h ~h→0!, ~65a!

xs~0!5
1

vE d2r^nz
1~r!nz

1~0!&0;
J

vJ'

. ~65b!

On the other hand, whenh is large (h@J'), the transverse
coupling between the twoS51/2 Heisenberg chains of th
ladder can be neglected. Each chain is then described a
energies in terms of theb252p SGM ~25!. This leads to the
result

M~h!}S ha

v D 1/3

, xstag~h!}h22/3. ~66!

To estimate the singular part ofM(h) at uh2hcu→0, it is
sufficient to know theh dependence of the ground-state e
ergy density,E(h), of the low-energy effective Hamiltonian
Both in the weak-coupling and strong-coupling limits, t
latter has the structure of the SGM~22! with the amplitude of
the cosine term proportional touh2hcu. Using standard scal
ing arguments, we find that

E~h!2E~hc!;2uh2hcu2/(22K),

whereK is given by Eq.~83!. Higher-energy degrees of free
dom which asymptotically decouple from the critical on
provide a finite contribution toM(h) at h5hc . So
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M~h!5M~hc!2
]E~h!

]h

5mstag~hc!1constuh2hcuK/(22K)sgn~h2hc!.

~67!

The staggered susceptibility

xs~h!;uh2hcu2n, n5
2~12K !

22K
.0, ~68!

is divergent at the transition. The nonuniversal exponenn
varies fromgi

c/pv at J'!J to values close to 2/5 atJ'@J.

VI. STRONG-COUPLING LIMIT

.
In this section, we consider the model~1! in the strong-

coupling limit J' ,h@J. It will be assumed that the numbe
of lattice sites is even,N52M , and periodic boundary con
ditions are imposed.

In the zeroth-order approximation (J50), the Hamil-
tonian describes a collection of even and odd rungs,

H05 (
m51

M

H2m
0 1 (

m50

M21

H2m11
0 , ~69a!

where

Hn
05J'S1,n•S2,n2h~21!n@S1,n

z 1S2,n
z #. ~69b!

The spectrum of the even-rung HamiltonianH2m
0 consists of

four levels,

E65
J'

4
7h, E05

J'

4
, Es52

3J'

4
, ~70!

corresponding to the triplet and singlet states

u1&5u↑↑&, u0&5
1

A2
@ u↑↓&1u↓↑&], u2&5u↓↓&,

us&5
1

A2
@ u↑↓&2u↓↑&].

At h,J' , the singlet stateus& is the lowest-energy state. A
h5J' the u1& level crosses with the singletus& and ath
.J' becomes the lowest-energy state. Focusing on the
cinity of the level crossing point (uh2J'u!J'), we will re-
tain two low-energy states on each even rung:

u⇑&2m5u1&2m , u⇓&2m5us&2m . ~71!

Projecting the even-rung Hamiltonian onto the subspace
these two states, i.e., imposing the constraintu⇑&^⇑u1u⇓&
3^⇓u51, we obtain

PH2m
0 P52

1

2 S J'

2
1hD2

h2J'

2
$u⇑&2m^⇑u2m2u⇓&2m^⇓u2m%.

~72!
2-14
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The spectrum of the odd-rung HamiltonianH2m11
0 is ob-

tained from Eq.~70! by inverting the sign ofh, which
amounts to interchanging the statesu1& and u2&. Thus the
lowest-energy states on odd rungs are

u⇑&2m115us&2m11 , u⇓&2m115u2&2m11 , ~73!

and the projected odd-rung Hamiltonian reads

PH2m11
0 P52

1

2 S J'

2
1hD1

h2J'

2
$u⇑&2m11^⇑u2m11

2u⇓&2m11^⇓u2m11%. ~74!

Introducing effective spin-1/2 operatorsTn associated with
the nth rung,

Tn
z5

1

2
~ u⇑&n^⇑un2u⇓&n^⇓un!,

Tn
15u⇑&n^⇓un , Tn

25u⇓&n^⇑un , ~75!

we see that, in the zeroth order inJ, the low-energy Hamil-
tonian describes a collection of noninteracting spins 1/2 o
1D lattice in an effective staggered magnetic fieldh2J' :

PH0P5const2~h2J'!(
n

~21!nTn
z . ~76!

The exchange interaction between the spinsTn is mediated
by the longitudinal~J! part of the Hamiltonian~1!. In the
two-dimensional low-energy subspaces of the even and
rungs, the original spin operatorsSj ,n( j 51,2) reduce to

Sj ,n
z → 1

2 FTn
z1

1

2
~21!nG ,

Sj ,n
6 →~21! j 1n

1

A2
Tn

6 . ~77!

As a result, in the first order inJ, the interaction between
neighboring rungs, e.g., 2m and 2m11 is given by

2JS T2m
x T2m11

x 1T2m
y T2m11

y 2
1

2
T2m

z T2m11
z D .

It is convenient to make a unitary transformation

Tn
6→~21!nTn

6 , Tn
z→Tn

z , ~78!

under which formulas~77! transform to

S1n
z 1S2n

z →Tn
z1

1

2
~21!n, S1n

z 2S2n
z →0;

S1n
1 1S2n

1 →0, S1n
1 2S2n

1 →2A2Tn
1 . ~79!

The low-energy effective Hamiltonian takes the form of
anisotropic spin-1/2 Heisenberg chain in a staggered m
netic field,
02441
a

dd

g-

Heff5const1J(
n

~Tn
xTn11

x 1Tn
yTn11

y 1DTn
zTn11

z !

2h* (
n

~21!nTn
z , ~80!

where

D5
1

2
, h* 5h2J'1

J

2
. ~81!

SinceuDu,1, the model~80! has a U~1! ~Gaussian! critical
line h* 50, i.e.,

h5J'2
J

2
1O~J2/J'!. ~82!

To be sure of this result, we must verify that higher-ord
terms (}J2/J'), originating from virtual transitions betwee
the low-energy and high-energy states, do not introduce
evant perturbations at the U~1! criticality but only renormal-
ize the parameters ofHeff in Eq. ~80!. Since the original
Hamiltonian~1! is site-parity symmetric, a bond-alternatin
term cannot appear. Small corrections of the orderJ2/J'

cannot makeD greater than 1 and drive theXXZ chain to the
massive Ne´el phase. Next-nearest-neighbor exchange in
actions with small coupling constants are also known to
marginally irrelevant at low energies. Finally, with the de
nitions ~71! and ~73! of the spin-up and spin-down low
energy states, the effective model should be invariant un
spin rotations around the staggered magnetic field, which
property of the original model. This rules out a breakdown
theXY symmetry of the effective Hamiltonian, which woul
generate a finite gap. Thus, higher-order terms will sligh
~in the orderJ2/J') modify the parameters of the effectiv
Hamiltonian ~80! and, in particular, the critical line~82!,
without affecting the criticality itself. Small corrections t
the zeroth-order parameterD51/2 will keep the U~1! criti-
cality far enough from the SU~2! critical point D51.

The picture of the transition emerging in the stron
coupling case,J' ,h@J, is in full agreement with the one
obtained in the weak-coupling limit,J' ,h!J ~see Sec. II!.
In both cases, the criticality is identified as that of an effe
tive spin-1/2XXZ chain. We therefore expect that the exi
tence of the U~1! criticality in the antiferromagneticS51/2
two-leg ladder in a staggered magnetic field is auniversal
property of this system. The vicinity of the critical field i
described by the SGM~22! with

K5
1

2S 12
1

p
arccosD D . ~83!

However, the equation for the critical line, as well as t
value ofD in the effectiveS51/2 XXZ chain, are sensitive
to the strength of the interchain couplingJ' . Being small at
J'!J, D increases withJ' and tends to 1/2 (K→3/4) in the
strong-coupling limit. The scaling law for the critical line
hc;J'

3/2, valid for a weakly coupled ladder, can be eas
obtained by comparing the mass gaps in the limiting ca
2-15
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h/J'→0 andJ' /h→0. In the former case the mass gap
linear in J' ~up to logarithmic corrections!. In the second
case we have two decoupledS51/2 Heisenberg chains in
weak staggered magnetic field. Since the staggered mag
zation has scaling dimension 1/2, the mass gap scale
h1/(22d)5h2/3. The conditionJ';h2/3 brings us to Eq.~21!.
On increasingJ' , the power lawhc;J'

3/2 gradually trans-
forms to a linear dependence~82!, valid atJ'@J where the
transition is governed by level crossing of the lowest-ene
on-rung spin states.

The strong-coupling approach can be applied to the g
eralized ladder model~2! as well, provided thatuVu!J' ,h.
The effective low-energy Hamiltonian is again of the for
~80!, but its parameters are modified

J→ J̄5J2
V

4
, D5

12
3V

4J

2S 12
V

4JD ,

h* 5h2J'1
J

2
1

V

8
. ~84!

VII. PHYSICAL PROPERTIES
IN THE STRONG-COUPLING LIMIT

In the weak-coupling caseJ'!J discussed above, th
exact relationship between the parameters of the low-en
model of four massive Majorana fermions and those cha
terizing the original lattice spin ladder is unknown. For th
reason, although the weak-coupling approach correctly c
tures the universal parts of all physical quantities in the
cinity of the critical point, the nonuniversal prefactors cann
be reliably estimated. On the other hand, in the stro
coupling limit (J'@J), the mapping onto the effectiveXXZ
spin-1/2 chain, Eq.~80!, is exact in the sense that all it
parameters can be found with any desired degree of accu
in terms of the expansion in powers ofJ/J' . Moreover, the
projection of the spin-ladder operatorsSj ,n

a onto those of the
XXZ chain,Tn

a , given by Eqs.~79!, does not contain non
universal parameters. Therefore, one can take advantag
the fact that the SGM~22!, describing the properties of th
spin ladder in a staggered magnetic field close to its crit
value, is integrable and employ the form factor bootst
approach35–38for a quantitativeanalysis of the spectral prop
erties of the system.

For simplicity we only consider the caseV50 but, in
view of Eqs. ~84!, the extension to a small nonzeroV is
straightforward.

In what follows we will use normalizations for the SGM
that are slightly different from those used in, e.g., Eq.~25!,
but are more convenient for the calculations we need to c
out.

A. Scaling limit

In the scaling limit, theXXZ spin chain with exchange
constantJ and anisotropy
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D52cospg2

is described by the Gaussian model with Lagrangian

L5
1

16p
~]mf!2. ~85!

In the strong-coupling limit we haveD5 1
2 and thus

g252/3.

The scaling limit is defined by

J→`, a0→0, Ja052
12g2

sinpg2
5fixed. ~86!

In these conventionsa0 is scaled in such a way that the sp
velocity is set to 1. It is easily restored in the final results
dimensional analysis. Following Lukyanov,38 we will nor-
malize the fieldf according to the short-distance OPE:

eigf(x)e2 igf(y)→ux2yu24g2
, ux2yu→0.

Note that this implies that the lattice spacing must be ta
into account explicitly when relating lattice operators to fie
theory ones. For example, for the staggered component
the spin operators we have

2Tn
6→~21!na0

g2/2AF

2
expS 6 i

g

2
u D ,

2Tn
z→~21!na0

1/2g2A2AcosS 1

2g
f D . ~87!

The nonuniversal constantsA andF are known exactly:41

F5
1

2~12g2!2F GS g2

222g2D
2ApGS 1

222g2D G
g2

3expS 2E
0

`dt

t F sinh~g2t !

sinht cosh~ t@12g2# !
2g2e22tG D ,

~88a!

A5
8

p2F GS g2

222g2D
2ApGS 1

222g2D G
1/g2

3expH E
0

`dt

t F sinh~@2g221#t !

sinh~g2t !cosh~ t@12g2# !

2S 22
1

g2D e22tG J . ~88b!
2-16
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For g252/3 we obtainF'0.5360 andA'0.4285. When the
staggered field term is added, the Lagrangian density
comes

L5
1

16p
~]mf!222m cosb̄f, ~89!

whereb̄51/(2g)5A3/8 and forh* <0,

2m52
h*

2
A2Aa0

2b̄221 ,

2Tn
65~21!na0

1/(8b̄2)AF

2
expS 6 i

1

4b̄
u D ,

2Tn
z52~21!na0

2b̄2A2Acosb̄f. ~90!

For h* .0 the signs ofm and of the expression forTn
z need

to be inverted. The spectrum of the SGM~89! at b̄253/8
consists of soliton and antisoliton with gapMd and one
soliton-antisoliton bound state called ‘‘breather’’ with gap

M152Mdsin~pj/2!, j5
b̄2

12b̄2
5

3

5
. ~91!

The soliton gap can be expressed in terms of the scalem by
comparing the results of a thermodynamic Bethe ansatz
culation with those of a perturbative calculation valid at hi
energies:42

m5
G~b̄2!

pG~12b̄2!
FMd

Ap

2

G~@11j#/2!

G~j/2!
G222b̄2

. ~92!

Combining Eq.~92! with Eqs.~90! we can express the sol
ton gapMd in terms of the microscopic parameters of t
lattice model:

Md

J
5aS uh* u

J D 4/5

, ~93!

a5

3A3GS 3

15D
2ApGS 8

10D S pGS 5

8DA2A

3A3GS 3

8D D
4/5

'1.584 24.

B. Staggered magnetization

The staggered magnetization is given by

^~21!nSj ,n
z &5

1

4
1

1

2
^~21!nTn

z&. ~94!

The point to note here is that, in order to be close to critic
ity, the staggered field must be large,h'J' , and conse-
quently, the staggered magnetization is large as well. In
scaling limit, i.e., in the vicinity of the critical lineh* 50,
we can use the SGM to determine the deviation from 1/4
02441
e-

l-

l-

e

^~21!nTn
z&5sgn~h* !~a0

2b̄2
/2!A2A^exp~ i b̄f!&.

Expectation values of vertex operators have been determ
in Ref. 43, and in particular we have

^exp~ i b̄f!&5
~11j!pG~12b̄2!

16 sin~pj!G~b̄2!

3S GS 1

2
1

j

2DGS 12
j

2D
4Ap

D 2b̄222

Md
2b̄2

.

~95!

Combining Eq.~95! with Eqs.~86! and ~88b! we obtain

^~21!nTn
z&50.28973sgn~h* !S uh* u

J D 3/5

. ~96!

C. Dynamical structure factor

Our task is now to calculate the Fourier transform of t
retarded dynamical correlation functions in the SGM. This
done by going to the spectral representation and then ut
ing the integrability of the SGM to determine exactly th
matrix elements of the specific operator under considera
between the ground state and various excited states.
method is known as the form factor bootstrap approac36

Let us review some of its relevant steps.
In order to utilize the spectral representation, we need

specify a basis of eigenstates of the Hamiltonian. Suc
basis is given by scattering states of breathers, solitons,
antisolitons. To distinguish these, we introduce labelsB,s,s̄.
As usual, for particles with relativistic dispersion it is co
venient to introduce a rapidity variableu to parametrize en-
ergy and momentum,

Es~u!5Mdcoshu, Ps~u!5Mdsinhu,

Es̄~u!5Mdcoshu, Ps̄~u!5Mdsinhu,

EB~u!5M1coshu, PB~u!5M1sinhu, ~97!

where the breather gapM1 is given above. A basis of the
scattering states can be constructed by means of
Zamolodchikov-Faddeev~ZF! algebra. The ZF algebra ca
be considered to be an extension of the algebra of crea
and annihilation operators for free fermion or bosons to
case of interacting particles with factorizable scattering. T
algebra is based on the knowledge of the exact spectrum
the scattering matrix.44 For the SGM the ZF operators~and
their Hermitian conjugates! satisfy the following algebra:

Ze1~u1!Ze2~u2!5S
e

18 ,e
28

e1 ,e2~u12u2!Ze28~u2!Ze18~u1!, ~98!

Ze1

† ~u1!Ze2

† ~u2!5Ze
28

†
~u2!Ze

18
†

~u1!Se1 ,e2

e18 ,e28~u12u2!,
2-17
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Ze1~u1!Ze2

† ~u2!5Ze
28

†
~u2!S

e2 ,e
18

e28 ,e1~u22u1!Ze18~u1!

1~2p!de2

e1d~u12u2!. ~98!

Here S
e

18 ,e
28

e1 ,e2(u) are the~factorizable! two-particle scattering

matrices ande j5s,s̄,B.
Using the ZF generators, a Fock space of states ca

constructed as follows. The vacuum is defined by

Ze i
~u!u0&50.

Multiparticle states are obtained by acting with strings
creation operatorsZe

†(u) on the vacuum:

uun•••u1&en•••e1
5Zen

† ~un!•••Ze1

† ~u1!u0&.

In term of this basis the resolution of the identity reads

(
n50

`

(
e i

E
2`

` du1•••dun

~2p!nn!

uun•••u1&en•••e1

e1•••en^u1•••unu51. ~99!

Inserting Eq.~99! between operators in a two-point correl
tion function we obtain the following spectral representatio

^O~ t,x!O †~0,0!&

5 (
n50

`

(
e i

E du1•••dun

~2p!nn!
expS i (

j 51

n

~pjx2ej t !D
3u^0uO~0,0!uun•••u1&en•••e1

u2, ~100a!

wherepj andej are given by

pj5M e j
sinhu j , ej5M e j

coshu j , ~100b!

and

f O~u1•••un!e1•••en
[^0uO~0,0!uun•••u1&en•••e1

~100c!

are the form factors~FF’s!. Our conventions in Eq.~100b!
are such thatMs5Ms̄5Md andMB5M1. After carrying out
the double Fourier transform we obtain the following expr
sion for the dynamical structure factor:

SO~v,q!5
1

2pE2`

`

dxE
2`

`

dt eivt2 iqx^O~ t,x!O †~0,0!&

52p (
n50

`

(
e i

E du1•••dun

~2p!nn!
u f O~u1•••un!e1•••en

u2

3dS q2(
j

M e j
sinhu j D dS v2(

j
M e j

coshu j D .

~101!

Let us now evaluate the leading contributions to Eq.~101! in
the physically relevant cases.
02441
be

f

:

-

D. Transverse structure factor at qÉp

To determine the transverse structure factor, we need F
of the operator

expS i

4b̄
u D .

The lowest-lying states to which it couples are one-soli
states, and the first nonvanishing FF is a constant:39

^0uexpS i

4b̄
u~0,0!D uu&25AZ1~0!. ~102a!

In our case we have

Z1~0!5F4

j
expS E

0

`dt

t

sinht sinh~ t@j21# !

sinh~ tj!cosh2t
D G 1/4

3F ApGS 3

2
1

j

2D
GS j

2D G g2

Md
g2

expS 2E
0

`dt

t F 1

4 sinh~ tj!

1
e(11j)t21

4 sinh~jt !cosht sinh~@11j#t !
2

g2e22t

2 G D
'4.01Md

2/3. ~102b!

The corresponding contribution to the dynamical struct
factor is

S12~v,p1q!5
F

4
Z1~0!a0

2/3d~s22Md
2!

'0.614S uh* u
J D 8/15

d~s22Md
2!. ~103!

The dynamical susceptibility of the original ladder mod
can easily be restored by means of the relations~79! between
the Tn

a variables and the original spin operatorsSn, j
a :

Sladder
12 ~v,p1q,p!5S12~v,p1q!,

Sladder
12 ~v,p1q,0!50. ~104!

The nice thing about this result is that we are able
calculate the spectral weight in thed function exactly. This
result is exact up to frequenciesv53Md , where additional
contributions fromsss̄states arise. These can, in principl
be calculated by first determining the corresponding F
from the relevant annihilation pole conditions~see, e.g., Ref.
35 for a similar calculation! and then by carrying out the
remaining integrations over the rapidity variables nume
cally. The contribution of Eq.~103! to the total spectral
weight atq5p is proportional to (uh* u/J)24/15 and therefore
diverges as the fieldh* goes to zero. At first sight this ma
look strange, but the same is true for the gaplessXXZ chain,
where
2-18
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SXXZ
12 ~v,p!}v221h,

with h512(1/p)arccosD.

E. Longitudinal structure factor at qÉp

In order to determine the longitudinal structure factor
need the FF’s of the operator cosb̄f. The first nonvanishing
FF is between the vacuum and two-particless̄states. The FF
is given by38

^0ucosb̄f~0,0!uu1 ,u2&215Gb̄F~u12!, ~105a!

F~u!5cot~pj/2!
2i cosh~u/2!

j sinh~@u1 ip#/2j!
sinh~u/2!

3expS E
0

`dt

t

sinh2~ t@12 iu/p#!sinh~ t@j21# !

sinh 2t sinhjt cosht D ,

~105b!

Gb̄5F MdApGS 1

222b̄2D
2GS b̄2

222b̄2D G 2b̄2

expS E
0

`dt

t
f ~ t ! D ,

f ~ t !5
sinh2~2b̄2t !

2 sinh~ b̄2t !sinht cosh~@12b̄2#t !
22b̄2e22t,

~105c!

whereu125u12u2. Carrying out the Fourier transformation
we obtain

Szz~v,p1q!.
A

2
a0

4b̄2
uGb̄u2

2

p

1

sAs224Md
2

uF~2u0!u2

'1.13S uh* u
J D 6/5 2

p

1

sAs224Md
2

uF~2u0!u2,

~106!

with u05arccosh(s/2Md). We plot the result in Fig. 7.
Just above the threshold atv5Aq214Md

2 the structure
factor increases in a universal square-root fashion. Thi
easily seen by considering the limitu0!1 of the function
uF(2u0)u2:

uF~2u0!u2}~s224Md
2!/Md

2 .

Using the relations~79! we finally obtain the longitudina
structure factor of the original ladder model:

Sladder
zz ~v,p1q,0!5Szz~v,p1q!,

Sladder
zz ~v,p1q,p!50. ~107!

This result is exact for frequencies belowv54Md , where
additional contributions due to intermediate states with t
solitons and two antisolitons arise. Comparing the transve
02441
is

o
se

structure factor to the longitudinal one, we see that, in
latter case, the contribution of thess̄ intermediate states to
the total spectral weight is proportional to (uh* u/J)2/5 and
thus becomes small at small fieldsh* . Thus at low energies
the coherent soliton modes in the transverse structure fa
completely dominate the magnetic response around the
ferromagnetic wave numberq5p.

F. Transverse structure factor at qÉ0

The smooth components of the transverse spin opera
in the XXZ chain are proportional to

J 65expS 6
i

4b̄
u7 i b̄f D 1expS 6

i

4b̄
u6 i b̄f D .

~108!

We note that the operator~108! reduces to the sum of th
chiral SU~2! currents in theXXX case. Using the results o
Ref. 39 one can determine the leading contribution to
transverse structure factor at small energies by means o
FF approach. The contribution of one soliton intermedi
states is given by

^J 2~t,x!J 1~0!&}K0~Mdr !2
x22v2t2

x21v2t2
K2~Mdr !,

where r 25x21v2t2. Carrying out the Fourier transforma
tion and analytically continuing we arrive at the followin
result for the dynamical structure factor:

S12~v,q,p!5const
v2

Md
2
d~s22Md

2!1•••. ~109!

G. Longitudinal structure factor at qÉ0

The longitudinal structure factor aroundq50 can be cal-
culated analogously. The relevant Fourier component of
spin operator is given by

FIG. 7. Longitudinal staggered structure factor atq'50.
2-19
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Tn
z.

a0b̄

2p
]xf.

Here]xf is the topological charge density in the SGM a
its FF’s are known.36,35,37 As we have mentioned before
e

-
ca

os
th
-
tu

he
-

e

on
co

he

02441
there exists a soliton-antisoliton bound state which gives
to a coherent d-function contribution to the longitudina
structure factor aroundq50. The contribution with the nex
highest threshold in energy is due to a soliton-antisoli
scattering continuum. Taking only these two contributio
into account we obtain
Szz~v,q!.
0.0617

J2

q2

Aq21M1
2
d~v2Aq21M1

2!1
16

27pJ2

q2Av22q224Md
2

~v22q2!3/2

1

cosh~2u0 /j!1cos~p/j!

3expS E
0

`dt

t

sinh~@12j#t !@12cosh 2tcos~2u0t/p!#

sinh~2t !cosht sinh~ tj! D , ~110!
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where we again have definedu05arccosh(s/2Md). The rela-
tion of Szz to the structure factor of the original ladder mod
is given by Eq.~107! with p1q replaced byq. As expected
the structure factor vanishes likeq2 asq→0. This behavior
is completely fixed by the Lorentz invariance of the low
energy effective theory and the fact that the topologi
charge density is part of a Lorentz vector. The result~110!
holds in the small-momentum region and it should be p
sible to resolve the structure of excitations in terms of
breather bound state and thess̄ scattering continuum by car
rying out neutron scattering experiments at small momen
transfer.

Our results for the dynamical structure factor in t
strong-coupling limit imply the structure of low-lying ex
cited states shown in Fig. 8.

VIII. SPONTANEOUSLY DIMERIZED LADDER

Now we turn to the generalized spin-ladder model~2! in
which the four-spin interactionV is superimposed on th
antiferromagnetic exchange (J'.0) across the rungs. IfV is
positive and large enough, the ladder occurs in a n
Haldane, spontaneously dimerized phase with a fully in

FIG. 8. Structure of low-energy magnetic excitations in t
strong coupling limit. This picture is valid both ath,hc and h
.hc .
l

l

-
e

m

-
-

herent spectrum exhausted by pairs of massive dimeriza
kinks.22,45

The tendency towards suppression of the spin-liq
phase upon increasingV is already seen in the strong
coupling limit; see formulas~84!. Within the weak-coupling
scheme (J' ,V!J), the transition to the spontaneous
dimerized phase is associated with the sign reversal of
triplet mass. From Eqs.~10a! it then follows that, when all
four Ising copies are ordered~the casems ,mt,0), the
ground state is dimerized and doubly degenerate, with^e2&
56e0 being the order parameter, whereas the spin exc
tion spectrum represents a broad continuum with thresh
at 2umtu and umtu1umsu.

At the transition from the spin-liquid to the spontaneous
dimerized phase, the Majorana tripletj becomes massles
(mt50), and the system becomes critical. The criticality b
longs to the universality class of the levelk52 SU~2!
WZNW model with central chargeC53/2 ~see Ref. 22!.
When a staggered magnetic field is applied, then, in the
rameter space (ms ,mt ,h), the semi-infinite critical linemt
50,ms,0 splits in the direction of the fieldh into two criti-
cal surfaces: one corresponding to the U~1! criticality with
central chargeC51, already considered in previous section
and the other representing the Ising criticality withC51/2
~see Fig. 1!. The latter will be discussed in this section.

The existence of an Ising QCP in the generalized lad
model can be understood using an argument similar to
one in Sec. II. In the spontaneously dimerized phase all Is
copies are ordered (mt ,ms,0). Then, in the leading order
the interaction term in Eq.~11! can be replaced byh̃m3m4,
whereh̃;h̄^s1s2&. If the massesm35mt andm45ms were
equal, the resulting model would be equivalent to the doub
frequency SGM in which an Ising QCP has already be
described in much detail.3,4 The existence of this transition
can be easily visualized in the strong-coupling limit~large
h̃). In this limit, the ‘‘relative’’ Ising degree of freedom,n
5m3m4, becomes effectively frozen out, while the ‘‘total
degrees of freedom, described, e.g., bym3, can be tuned to
criticality. This argument is still valid if the two Ising sys
tems have different mass gaps, provided that they are in
2-20
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same~in this, case, ordered! phase.
Starting from the spontaneously dimerized phase w

mt ,ms,0, switching on the staggered magnetic field, a
assuming thatumsu@umtu, we can integrate the singlet mod
out to arrive again at the effective model~18!, with the renor-
malized masses still given by Eqs.~19!. The important dif-
ference with the previous case of the standard ladder is
the doublet mass gap now increases withh while the mass
m3 decreases and vanishes at the same critical value a
fore. But since this time only one Majorana mode becom
massless, the criticality is of the Ising type. The dimerizat
order parameter, which is nonzero ath,hc , vanishes at the
critical point as

^e2&;~hc2h!1/8u~hc2h!.

The~static! staggered magnetic susceptibilityxstag(h) is con-
stant in the zero-field limit,

xstag~0!;~1/a!~ umtu/umsu!1/4~ umtu1umsu!21, ~111!

then increases withh and becomes logarithmically diverge
at the transition

xstag~h!; ln~ uh2hcu/hc!. ~112!

Estimation of the large-distance asymptotics of the corre
tion functions is similar to what has been done in Sec.
One only has to keep in mind that the only mass wh
changes its sign across the transition ism3. Here we presen
the final results.

In the dimerized phase (h,hc) the dynamical structure
factor is entirely incoherent both in its longitudinal and tran
verse components:

S12~v,p1q,p!}S l 3

l s
D 1/4u@s22~ umdu1um3u!2#

As22~ umdu1um3u!2
,

~113a!

Szz~v,p1q,p!}S l d
2

l sl 3
D 1/4u~s224md

2!

As224md
2

. ~113b!

At the Ising criticality,

S12~v,p1q,p!}S a2

l sl d
D 1/4 u~s22md

2!

~s22md
2!3/4

, ~114a!

Szz~v,p1q,p!}S l d
3

a2l s
D 1/4

u~s224md
2!

~s224md
2!1/4

. ~114b!

In the regionh.hc , the longitudinal staggered spin fluctu
tions remain incoherent,

Szz~v,p1q,p!}S l d
2l 3~2l 21 l 3!2

l sa
4 D 1/4

u@s22~2umdu1m3!2#,

~115a!

whereas the transverse part of the dynamical structure fa
displays a coherentd-function peak,
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S12~v,p1q,p!}S a4

l d
2l sl 3

D 1/4

d~s22md
2!, ~115b!

describing a massive magnon with the spin projectionuSzu
51. As in the standard ladder, ath.hc the dynamics ofe2

also displays a coherent mode with the massum3u.
Thus, characterization of the massive phase occurrin

h.hc in the spontaneously dimerized ladder coincides w
that for the standard ladder. This phase occupies the re
separated by the U~1! and Ising critical surfaces in Fig. 1.

IX. STRING ORDER PARAMETER

den Nijs and Rommelse46 and Girvin and Arovas47 have
shown that the Haldane-gapped phase of the spin-1 cha
characterized by a nonlocal topological string order para
eter,

^O a&5 lim
un2mu→`

K Sn
aexpS ip (

j 5n11

m21

Sj
aDSm

a L
~a5x,y,z!,

whose nonzero value is associated with the breakdown
hidden Z23Z2 symmetry.48 For a weakly coupled SU~2!-
symmetric spin-1/2 Heisenberg ladder, the string order
rameter, defined as

O n,m
a 5)

j 5n

m

~24S1 j
a S2 j

a !5expF ip(
j 5n

m

~S1 j
a 1S2 j

a !G ,

~116!

was discussed in Refs. 24 and 22~see also Ref. 27!. The
description of the low-energy degrees of freedom of the s
ladder in terms of the Ising variables is especially efficient
this case because the operator~116! acquires a simplelocal
form in terms of the Ising operatorssa ,ma (a51,2,3), and
the hiddenZ23Z2 symmetry becomes manifest. In the co
tinuum limit,49

lim
ux2yu→`

^Oa~x,y!&[^Oa&;^sbsg&21^mbmg&2

~aÞbÞg!, ~117!

so that the string order parameter reveals the SU~2! symme-
try and is nonzero both in the Haldane and dimerized pha
just because the degenerate triplet of the Ising system
either disordered (^sa&50, ^ma&Þ0) or ordered (̂sa&
Þ0, ^ma&50).

As we have seen, the staggered magnetic field remo
the SO~3! degeneracy of the triplet modes, and in the m
sive phase located between the two critical surfaces show
Fig. 1 ~the caseh.hc), the signs of the massesm15m2 and
m3 are opposite. As a result, the dependence of the long
dinal and transverse components of the string order par
eter onh becomes qualitatively different.
2-21
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A. U„1… transition in the Haldane phase

Let us start with the longitudinal string order parame
Oz . In the region of small fields, 0,h!hc , one can adopt
the picture of three independent triplet Ising copies as
zero-order approximation and take into account the effec
the staggered field as a small perturbation. According to E
~19! and~20!, the latter leads to splitting of the triplet mass
and renormalization of the coupling constants, both being
the order ofh2. As a result

^Oz&~h!.^m1&
2^m2&

2

5^Oz&~0!F12
C1

2 S l t

a D S h̄

ms
D 2

1O~ h̄4!G ,

~118!

where^Oz&(0);(mta/v)1/2. In vicinity of the critical point,
uh2hcu!hc , the Ising doublet~1,2! becomes very soft and
asymptotically decouples from the rest of the spectrum,
ing described in terms of the SGM~22!. In this case the
operatorOz can be bosonized~see Appendix A!. However,
sinceKÞ1, in formulas~A6a! and~A6b! for the products of
Ising operatorsm1m2 ands1s2, one should rescale the fiel
F: F→AKF, so that

^O z&;^sinApKF&21^cosApKF&2.

Sincemd;hc2h, at h,hc , ^sinApKF&50, and

^Oz&;^cosApKF&2;Md
K/2;~hc2h!K/(422K).

~119!

At h.hc , ^cosApKF&50, and

^O z&;^sinApKF&2;uM ud
K/2;~h2hc!

K/(422K).
~120!

Formulas~119! and ~120! determine the power law accord
ing to which the string order parameter^Oz& vanishes at the
transition.

Upon increasing the field in the regionh.hc , ^Oz& keeps
growing. In the limit of strong fields,h@hc , the system
represents two identical copies of the HeisenbergS51/2
chain in a staggered magnetic field, each of them being
resented in the continuum limit by ab252p SGM with the
nonlinear term proportional toh cosA2pFa(a51,2).
Clearly, the fieldF is a symmetric linear combination ofF1

andF2 : F5(1/A2)(F11F2). Therefore, in this limit,

^Oz&;^cosAp/2F1&
2^cosAp/2F2&

2

1^sinAp/2F1&
2^sinAp/2F2&

2

1^cosAp/2F1&
2^sinAp/2F2&

2

1^sinAp/2F1&
2^cosAp/2F2&

2. ~121!

The minima of the potentialsh cosA2pFa are (Fa)m

5A2p(m11/2) ath.0 and (Fa)m5A2pm at h,0, where
m50,61,62, . . . . Therefore, the last two terms in Eq
~121! vanish, and for any sign ofh the z component of the
string order parameter grows as
02441
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^O z&;uhu1/3. ~122!

Consider now the transverse components of the string o
parameter,̂ Ox&5^Oy&. At h!hc the behavior of̂ Ox& is
similar to that for^Oz&:

^Ox&~h!.^m2&
2^m3&

2

5^Oz&~0!F12
1

4 S l s

a D S C2

p
1C1

g1

pv
umsu
mt

D
3S h̄

ms
D 2

lnS l t

a D1O~ h̄4!G . ~123!

Near the critical field, where the doublet of the Ising syste
decouples from the third Ising component of the triplet, o
finds that

^Ox&~h!;S Mda

v D 1/4

u~hc2h!;~hc2h!1/4(22K)u~hc2h!.

~124!

Thus, due to the fact that ath.hc the Ising doublet become
ordered (̂m1&5^m2&50), in the large-h massive phase the
transverse components of the string order parameter van

B. Ising transition in the dimerized phase

In the spontaneously dimerized, non-Haldane phase
Ising doublet remains massive at anyh. The mass gapumdu is
an increasing function ofh and so is the longitudinal string
order parameter. Ath!hc ,

^Oz&~h!.^s1&
2^s2&

2

5^Oz&~0!F11
C1

2 S l t

a D S h̄

ms
D 2

1O~ h̄4!G .

~125!

^Oz& grows monotonically withh and at largeh (h@hc)
crosses over to theuhu1/3 behavior. At h!hc ^Ox& is still
given by formula~123!, whereas close to the Ising criticality

^Ox&;~hc2h!1/4u~hc2h!. ~126!

The dependence of the string order parameters on the s
gered field is schematically shown in Fig. 9.

X. CONCLUSIONS

In this paper, we have analyzed the properties of the tw
leg antiferromagnetic spin-1/2 ladder in a staggered magn
field. We have considered the spin-liquid phase of the st
dard ladder and the spontaneously dimerized phase of a
eralized spin-ladder model. We have shown that in
former case the staggered field drives the system towar
Gaussian criticality, whereas in the latter case it induces
Ising transition. These two criticalities are associated wit
softening of the transverse (Sz561) and longitudinal (Sz

50) collective modes, respectively, and are characterized
power-law and logarithmic divergencies of the stagge
magnetic susceptibility.
2-22
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By comparing our results for weakly (J' /J!1) and
strongly coupled (J' /J@1) ladders in a staggered field, w
can identify certain universal features of the transition. T
very existence of the Gaussian criticality is universal.
criticality the low-energy degrees of freedom can be
scribed in terms of spin-1/2spinonssimilar to those found in
the anisotropic spin-1/2 HeisenbergXXZ chain. This is in-
teresting and shows that the staggered fieldh leads to a de-
stabilization of the magnons that form the low-lying part
the spectrum in the absence ofh and eventually ‘‘decon-
fines’’ them into pairs of spinons.

Close to this criticality the low-energy part of the spe
trum involves a doublet of interacting transverse mod
These are described in terms of an effective spin-1/2XXZ
chain in a weak staggered field, which vanishes ath5hc .
The transverse modes are identified withquantum solitons
~with gap Md) of an underlying SGM. These solitons to
gether with soliton-antisoliton bound states determine the
havior of the dynamical structure factor in both mass
phases (h,hc and h.hc). The soliton reveals itself as
coherentd-function peak in the transverse staggered str
ture factorS6(v,p1q,q'5p).

On the other hand, theq'50 part of the spin excitation
spectrum is different in the weak- and strong-coupling cas
The same hold true for theq'5p part of the longitudinal
structure factor: at weak coupling theSz50 mode is still
seen in the low-energy part of the spectrum, whereas
pushed to very high energies in the strong-coupling regim

In the absence of a staggered field the generalized la
is spontaneously dimerized and its elementary excitati
can be understood in terms of topological dimerizat
kinks.22 When a staggered field is applied the dimerizat

FIG. 9. String order parameters as functions of the stagge
magnetic field across~a! the U~1! transition in the Haldane phas
and ~b! the Ising transition in the dimerized phase.
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diminishes but the qualitative picture remains unchanged
til the field reaches its critical valuehc , where we find an
Ising criticality. Here once again we may think of the e
ementary excitations in terms of pairs of spinons. The phy
cal properties forh.hc are the same as in theh.hc phase
of the standard ladder discussed above~see also Fig. 1!. In
particular, the coherentSz561 modes are recovered. Th
identification is confirmed by the behavior of the longitud
nal and transverse string order parameters.

As we have seen, the physics of the spin-1/2 ladder i
staggered field is very rich. We think that it would be ve
interesting to explore it experimentally. An open question
analyze the crossover region between weak and strong
pling regimes may be addressed by, e.g., numerical meth
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APPENDIX A: SOME FACTS ABOUT THE 2D ISING
MODEL

In this appendix we briefly summarize those facts ab
the 2D Ising model which are used in the main part of t
paper and other appendixes.

Close to criticality,uT2Tcu!Tc , the scaling properties o
the 2D Ising model are described by a Lorentz-invariant~1
11!-dimensional quantum model of a massive real~Majo-
rana! fermion.50,32 The corresponding 2D Euclidean actio
~written in complex notationsz5t1 ix, z̄5t2 ix, ]

5]/]z, ]̄5]/] z̄; v51) reads51

S5E d2z~jL]̄jL1jR]jR1 imjLjR!. ~A1!

HerejL andjR are the holomorphic~left! and antiholomor-
phic ~right! components of the fermionic field. The magn
tude of the mass,

m;S v
a D S T2Tc

Tc
D

(a being a short-distance cutoff!, determines the correlation
length in the Ising model,l c;v/umu@a, which diverges at
criticality (m50), and the sign of the mass indicate
whether the system is ordered (m,0) or disordered (m
.0). The set of strongly fluctuating fields of the Ising mod
~at criticality these are known as primary fields of the co
formal field theory with central chargeC51/2) includes the
fermion field (jL ,jR), the mass bilinear~or energy density!
«5 i jRjL , and order and disorder fieldss andm. The latter
two fields are nonlocal with respect to each other and a
with respect to the Majorana field.

Two identical noninteracting copies of the 2D Ising mo
els are described by a pair of Majorana fermionsj1 andj2,

d

2-23
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which can be combined into a complex~Dirac! massive fer-
mion,c5(j11 i j2)/A2. The latter can be bosonized.50 If the
two Ising copies are slightly noncritical, the resultin
bosonic theory represents a quantum sine-Gordon mod
the decoupling~or Luther-Emery! point b254p:

SSGM5E d2zF1

2
~]mF!22

m

pa
cosA4pFG . ~A2!

Below we give a list of bosonization rules for two Isin
copies32,27,4which are used in the main text.

~i! The chiral components of the U~1! current:

JL~z!5 i jL
1~z!jL

2~z!51
i

Ap
]fL~z!, ~A3a!

JR~ z̄!5 i jR
1~ z̄!jR

2~ z̄!52
i

Ap
]̄fR~ z̄!. ~A3b!

~ii ! The total energy density:

«1~z,z̄!1«2~z,z̄!5
1

pa
cosA4pF~z,z̄!. ~A4!

~iii ! The fermionic fields:

jL
1~z!1 i jL

2~z!.~pa!21/2e2 iA4pfL(z), ~A5a!

jR
1~ z̄!1 i jR

2~ z̄!.~pa!21/2e1 iA4pfR( z̄). ~A5b!

~iv! Mixed products of the order and disorder operators~a
more accurate definition of these products includes Kl
factors4!:

s1s2;sinApF, m1m2;cosApF, ~A6a!

s1m2;cosApQ, m1s2;sinApQ. ~A6b!

In the above formulas,

F~z,z̄!5fL~z!1fR~ z̄!

is the scalar field of the underlying SGM and

Q~z,z̄!5fL~z!2fR~ z̄!

is its dual counterpart.
Using these bosonization rules, one can easily recove

OPE’s for a single Ising model. In particular, fusing the pro
ucts of Ising operators in Eqs.~A6a! one derives the OPE’s

s~z,z̄!s~w,w̄!;
1

A2
S a

uz2wu D
1/4

@12puz2wu«~w,w̄!#,

~A7a!

m~z,z̄!m~w,w̄!;
1

A2
S a

uz2wu D
1/4

@11puz2wu«~w,w̄!#,

~A7b!
02441
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used in Sec. II B. In the same way, from representation~A6b!
one derives two more OPE’s

s~z,z̄!m~w,w̄!

;Ap

2

g~z2w!1/2jL~w!1g* ~ z̄2w̄!1/2jR~w̄!

~ uz2wu/a!1/4
,

~A8a!

m~z,z̄!s~w,w̄!

;Ap

2

g* ~z2w!1/2jL~w!1g~ z̄2w̄!1/2jR~w̄!

~ uz2wu/a!1/4
,

~A8b!

whereg5eip/4.
Since the SGM~A2! occurs in a topologically ordered

massive phase, in the ground state the fieldF is locked in
one of the infinitely degenerate minima of the potentialU
52m cosA4pF:

~F!n
vac5Apn, if m.0,

~F!n
vac5Ap~n11/2!, if m,0. ~A9!

From Eqs.~A6a! it then follows that

^s1,2&50, ^m1,2&Þ0, if m.0,

^s1,2&Þ0, ^m1,2&50, if m,0. ~A10!

Quantum solitons of the SGM~A2! are associated with the
vacuum-vacuum transitionsF→F6Ap, Q→Q, which
correspond to the following Z23Z2 transformations of the
fermionic fields and Ising operators:

jL
a→2jL

a , jR
a→2jR

a ~a51,2!,

s1→7s1 , s2→6s2 , m1→6m1 , m2→7m2 .
~A11!

For any sign ofm, this symmetry is spontaneously broken
one Ising copy and preserved in the other, leading to
conclusion that quantum solitons of the model~A2! describe
kinks of a single ordered~disordered! Ising system that con-
nect opposite values of the order~disorder! parameters.

Parity ~or charge conjugationC) transformations

m.0: jR,L
1 →jR,L

1 , jR,L
2 →2jR,L

2 ,

F→2F, Q→2Q,

s1s2→2s1s2 , m1m2→m1m2 ,

s1m2→s1m2 , m1s2→2m1s2 ~A12!

and

m,0: jR,L
1 →jR,L

1 , jR,L
2 →2jR,L

2 ,

F→Ap2F, Q→Ap2Q,
2-24
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s1s2→s1s2 , m1m2→2m1m2 ,

s1m2→2s1m2 , m1s2→m1s2 ~A13!

keep invariant vacuum expectation values of the order~dis-
order! parameters atm,0 (m.0) and therefore serve as
tool to conclude whether a given correlation function in
broken-symmetry phase is nonzero. For example, cons
the correlation function

K~r!5^m~r!«~0!&

for a singleordered Ising model. For two identical and de
coupled Ising models this correlator can be squared:

K2~r!5^m1~r!m2~r!«1~0!«2~0!&5K2~r!.

Under transformations~A13! the product«1«2 stays intact
but m1m2 changes its sign. Therefore,

K2~r!5K2~r!50. ~A14!

This fact has been used in Sec. II B.

APPENDIX B: FIELD-INDUCED ADMIXTURE BETWEEN
THE SINGLET AND TRIPLET MODES

In this appendix we consider two, apparently ‘‘hig
energy,’’ operators: the total staggered magnetizationn1 and
the smooth part of the relative magnetizationK defined in
Eqs.~10a! and ~9b!, and find their projections onto the low
energy, triplet sector of the model.

1. Projecting n¿

As follows from the comparison of Eq.~27! with formula
~15!, the low-energy projection of the operatorO05nz

1 has
actually been found in Sec. II B, and the result is contain
in the second-order correction to the effective action~17!.
Thus we arrive at Eq.~28a!.

Consider now the operatorO05nx
1 . Treating all Ising

systems as decoupled, we have

^nx
1~r!nz

1~r1!&s5a22@m1~r!s1~r1!#@s2~r1!s2~r1!#

3@s3~r!m3~r1!#^m4~r!m4~r1!&s .

The correlator̂ m4(r)m4(r1)&s is short ranged@see Eq.~16!#.
Hence the products of operators in the square brackets, a
them defined in the triplet sector, are subject to fusion. Us
the fusion rules~A7a!, ~A8a!, and~A8b! and integrating over
the relative coordinater5r2r1, we arrive at the result~28b!.
In the same way one obtains the low-energy projection
ny

1 given by Eq.~28c!.

2. Projecting K

Here we derive the low-energy projection of the opera

K5 i ~jRjR
41jLjL

4!. ~B1!

Consider first the caseO05Kx . The correlator in Eq.~27!
reads
02441
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^Kx~r!nz
1~r1!&s5~ i /a!s2~r1!m3~r1! (

n5R,L
jn

1~r!s1~r1!

3^jn
4~r!m4~r1!&s .

Keeping in mind thatms,0, first we note that the correlator
^jn

4(r)m4(r1)&s are invariant under charge conjugation~A13!
and, therefore, are nonzero. These correlators are chira
otherwise short ranged, decaying exponentially atur2r1u
; l s . Since they serve as integral kernels, a qualitatively c
rect estimation of the integral in Eq.~27! can be obtained if
one treats the product

@jL
1~z!jL

4~z!1jR
1~ z̄!jR

4~ z̄!#s1~z1 ,z̄1!m4~z1 ,z̄1!

by the OPE and then confines the integration region to
interval 0,ur2r1u< l s . To proceed further, one can bosoni
two local productsj1j4 ands1m4, and then fuse these field
as those belonging to a~critical! Gaussian model. Since w
are looking for a short-distance OPE, the relative sign of
Majorana massesm1 and m4 is unimportant, and bosoniza
tion rules~A6a! and ~A6b! are perfectly applicable. We ob
tain

1

Ap
@]fL~z!2 ]̄fR~ z̄!#cosApQ~z1 ,z̄1!

;
1

4p S 1

z2z1
1

1

z̄2 z̄1
D sinApF~z1 ,z̄1!

5
1

2p

Re~z2z1!

uz2z1u2
m1~z1 ,z̄1!s4~z,z̄1!, ~B2!

and therefore

^Kx~r!nz
1~r1!&s.

i

2p

t2t1

ur2r1u2
Ny

2~r1!, ~B3!

whereNy
2;a21m1s2m3^s4&s is they component of relative

staggered magnetization averaged over the high-energy
glet modes. According to the definition~27!,

dKx~r!5
ih

2pvEr,js

d2rS r0

r2D Ny
2~r2r!,

where r5r2r15(r0 ,r1)5(vt,x). Expanding in r, the
lowest-order projection ofKx onto the triplet sector is found
to be given by formula~29a!. Quite similarly one arrives a
formula ~29b! for the projection ofKy .

In the caseO05Kz , we follow the same procedure an
use Eqs.~A6a! to bosonize the productm3m4. The corre-
sponding OPE reads
2-25
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@jL
1~z!jL

4~z!1jR
1~ z̄!jR

4~ z̄!#m3~z1 ,z̄1!m4~z1 ,z̄1!

;
1

Ap
@]f~z!2 ]̄f̄~ z̄!#cosApF~z1 ,z̄1!

5
1

4p S 1

z2z1
2

1

z̄2 z̄1
D sinApF~z1 ,z̄1!

52
i

2p

Im~z2z1!

uz2z1u2
s3~z1 ,z̄1!s4~z,z̄1!, ~B4!

and this eventually leads to formula~29c! for the low-energy
projection ofKz .

APPENDIX C: ENERGY-DENSITY CORRELATIONS
IN THE DOUBLET SECTOR

Here we estimate the Fourier transform of the two-po
energy-density correlation function in the doublet sector,

Kd~q,vn!5E dx dtKd~x,t!e2 i (qx2vnt), ~C1!

Kd~x,t!5^Tt«d~x,t!«d~0,0!&, «d5 i (
a51,2

jR
ajL

a ,

and find its analytical continuation (ivn→v1 id) that deter-
mines the structure factorSzz(v,p1q,0). Wewill consider
the casemdÞ0 and assume that the two massive Majora
fermions are decoupled. In this caseKd(r)52 detĜ(r),
whereĜ(r) is the real-space 232 Green’s function matrix
for a free massive fermion in the Nambu representation.
have~see Fig. 10!

Kd~q,vn!52E dk

2p

d«

2p
@GRR~k1 ,«1!GLL~2k2 ,2«2!

2GRL~k1 ,«1!GLR~2k2 ,2«2!#, ~C2!

where

Ĝ~k,«!5S GRR~k,«!, GRL~k,«!

GLR~k,«!, GLL~k,«!
D 52

i«1kvt31mdt2

«21k2v21md
2

,

~C3!

andk65k6q/2, «65«6vn/2.
Since the mass bilinearjRjL is a Lorentz-invariant object

Kd(q,vn) depends only onvn
21q2. This makes it sufficient

to estimateKd(0,vn) in which case the calculations becom
especially simple. Integrating over« in Eq. ~C2! yields

Kd~0,vn!52E dk

2p

1

ivnEk
S ivnEk22md

2

ivn22Ek
2

ivnEk12md
2

ivn12Ek
D ,

whereEk5Ak2v21md
2. Analytically continuing this expres

sion, then taking the imaginary part, and finally replacingv2

by s25v22q2v2, we get (v.0)
02441
t

a

e

Im Kd~q,v1 id!5
1

2v

As224md
2

s
. ~C4!

This result has been used in Eq.~50!.

APPENDIX D: TRANSVERSE STRUCTURE FACTOR
AT SMALL MOMENTUM

In this appendix we provide some technical details co
cerning the small-q structure factorSxx(v,q,0) at the critical
point. We start from the real-space representation of the M
subara polarization functionXxx(x,t):

Xxx~x,t!5^TtI
1~x,t!I 1~0,0!&5Tr@Ĝ~t,x!Ĝ~t,x!#.

~D1!

HereĜ andĜ are the Green’s function matrices for the ma
sive and massless Majorana fieldsj3 and j2, respectively.
Due to the marginal interaction in the doublet (j1,j2) sector,
Ĝ has the structure of the single-particle Green’s function
a spinless Tomonaga-Luttinger liquid with the interacti
constantK. Using the explicit expressions for these tw
Green’s functions,

GRR~z,z̄!52
m3

2p S z

z̄
D 1/2

K1~m3uzu!, ~D2a!

GLL~z,z̄!52
m3

2p
S z̄

z
D 1/2

K1~m3uzu!, ~D2b!

GRR~z,z̄!52
1

2pa S z

z̄
D 1/2S a

uzu D
(K11/K)/2

, ~D3a!

GLL~z,z̄!52
1

2pa
S z̄

z
D 1/2S a

uzu D
(K11/K)/2

, ~D3b!

GRL~z,z̄!50, ~D3c!

we obtain

X~z,z̄!5
m3a

~2pa!2 S a

uzu D
(K11/K)/2S z

z̄
1

z̄

zD K1~m3uzu!.

Introducing two-dimensional real vectors,q5(vn ,qv) and
r5(t,x/v) ~with vn the Matsubara frequency!, we pass to
the Fourier transformXxx(q) and, after angular integration
obtain

FIG. 10. Two-fermion bubble.
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Xxx~q!52
1

p
~m3a!2qS vn

22q2

q2 D
3E

0

`

dxx22qK1~x!J2S uqu
m3

xD , ~D4!

whereJ2(x) is the Bessel function, and

2q5
1

2 S K1
1

K D21. ~D5!

Since the expressions for the Tomonaga-Luttinger propa
tors, Eqs.~D3!, are asymptotic~i.e., valid at uzu.a), the
lower integral cutoff must be finite,;m3a. On the other
hand, the integral in Eq.~D4! is convergent atx→0, if q
,1. As follows from Eq.~D5!, this condition is satisfied no
only in the weak-coupling case, whereK is very close to 1,
but also in the strong-coupling regime whereK53/4 ~in the
latter caseq'231022). This justifies the replacement o
the lower integral limit by 0, in which case the result can
expressed in terms of a hypergeometric function

Xxx~q!52
1

p

G~22q!G~12q!

22(11q)
~m3a!2qS vn

22q2

m3
2 D

3FS 12q,22q;3;2
q2

m3
2D .

To single out the leading singularity at the threshold in
interacting case, we use the transformation formula52
y

B

tt

et

02441
a-

e

F~a,b;c;z!5
G~c!G~c2a2b!

G~c2a!G~c2b!
F~a,b;a1b2c11;12z!

1~12z!c2a2b
G~c!G~a1b2c!

G~a!G~b!

3F~c2a,c2b;c2a2b11;12z!,

and formally treat 12z511q2/m3
2 as a small parameter

Then in the leading order

Xxx~q!52
1

p

G~22q!

2112q
~m3a!2qS vn

22q2

m3
2 D S 11

q2

m3
2D 2q

3F11OS 11
q2

m3
2D G . ~D6!

Performing analytical continuation (ivn→v1 id),

~vn
21q21m3

2!2q

→us22m3
2u2q@u~m3

22s2!1u~s22m3
2!cos~2pq!#

2 i us22m3
2u2qu~s22m3

2!sin~2pq!sgn~v!,

and using the relation

G~22q!sin~2pq!52
p

G~112q!
, ~D7!

we arrive at the expression~63! of Sec. IV D 2.
.M.
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Theory~Springer, Berlin, 1997!.

33A.M. Tsvelik, Phys. Rev. B42, 10 499~1990!.
34A. Luther and I. Peschel, Phys. Rev. B12, 3908~1975!.
35M. Karowski and P. Weisz, Nucl. Phys. B139, 455 ~1978!; H.

Babujian, A. Fring, M. Karowski, and A. Zapletal,ibid. 538, 535
~1999!.

36F.A. Smirnov,Form Factors in Completely Integrable Models
Quantum Field Theory~World Scientific, Singapore, 1992!.

37S. Lukyanov, Commun. Math. Phys.167, 183 ~1995!; A. Fring,
G. Mussardo, and P. Simonetti, Nucl. Phys. B393, 413
~1993!.

38S. Lukyanov, Mod. Phys. Lett. A12, 2911~1997!.
39S. Lukyanov and A.B. Zamolodchikov, Nucl. Phys. B607, 437

~2001!.
40F.H.L. Essler, Phys. Rev. B62, 3264~2000!.
02441
:

41S. Lukyanov, Nucl. Phys. B522, 533 ~1998!; Phys. Rev. B59,
11 163~1999!.

42A.B. Zamolodchikov, Int. J. Mod. Phys. A10, 1125~1995!.
43S. Lukyanov and A.B. Zamolodchikov, Nucl. Phys. B493, 571

~1997!.
44A.B. Zamolodchikov, JETP Lett.25, 468~1977!; H.-J. Thun, T.T.

Truong, and P.H. Weisz, Phys. Lett.67B, 321 ~1977!.
45A.K. Kolezhuk and H.-J. Mikeska, Phys. Rev. Lett.80, 2709

~1998!.
46M. den Nijs and K. Rommelse, Phys. Rev. B40, 4709~1989!.
47S.M. Girvin and D.P. Arovas, Phys. Scr.T27, 156 ~1989!.
48M. Kohmoto and H. Tasaki, Phys. Rev. B46, 3486~1992!.
49The expression~117! for the string operator differs from tha

given in Refs. 24, 22, and 27 in that it is generalized to the c
of a finite coupling between the Ising copies.

50J.B. Zuber and C. Itzykson, Phys. Rev. D15, 2875~1977!.
51We use a different normalization of the fields as compared to

one conventionally assumed in conformal field theory~Ref. 32!.
The OPE’s given in this appendix transform to those of Ref.
under replacements:j→j/A2p, «→«/2p, s→221/4s, m
→221/4m.

52I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series and
Products~Academic, New York, 1980!.
2-28


