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Dynamic surface critical behavior of isotropic Heisenberg ferromagnets: Boundary conditions,
renormalized field theory, and computer simulation results

H. W. Diehl, M. Krech,* and H. Karl
Fachbereich Physik, Universita¨t Essen, D-45117 Essen, Federal Republic of Germany

~Received 1 March 2002; published 28 June 2002!

The dynamic critical behavior of isotropic Heisenberg ferromagnets with a planar free surface is investigated
by means of field-theoretic renormalization group techniques and high-precision computer simulations. An
appropriate semi-infinite extension of the stochastic modelJ is constructed. The relevant boundary terms of the
action of the associated dynamic field theory are identified, the implied boundary conditions are derived, and
the renormalization of the model ind,6 bulk dimensions is clarified. Two distinct renormalization schemes
are utilized. The first is a massless one based on minimal subtraction of dimensional poles and the dimension-
ality expansion aboutd56. To overcome its problems in going belowd54 dimensions, a massive one for
fixed dimensionsd<4 is constructed. The resulting renormalization group~or Callan-Symanzik! equations are
exploited to obtain the scaling forms of surface quantities like the dynamic structure factor. In conjunction with
boundary operator expansions scaling relations follow that relate the critical indices of the dynamic and static
infrared singularities of surface quantities to familiarstatic bulk and surface exponents. To test the predicted
scaling forms and scaling-law expressions for the critical exponents involved, accurate computer-simulation
data are presented for the dynamic surface structure factor. These are in conformity with our predictions.

DOI: 10.1103/PhysRevB.66.024408 PACS number~s!: 75.10.Hk, 68.35.Rh, 64.60.Ht, 05.70.Jk
n
i

io
a
li
su
p

th
n

be

lk
le
ll
s
m

-
-

te
ica

be
ad
fa
lit
ve
am

ics

ti-
til
r

m-
rin-
for
ed,
lty
ring
itive
eri-

ob-
jor
cted
ent
a

u-
ces

the
sal-
with
ds
ch
her
out
ture

ur-
ets
y-

ative
a-
I. INTRODUCTION

A cornerstone of the modern theory of critical phenome
is the arrangement of microscopically different systems
universality classes of equivalent critical behavior.1,2 A few
basic properties, such as the spatial dimensiond, the order-
parameter symmetry, and gross features of the interact
determine to which universality class for static bulk critic
behavior a particular system belongs. These universa
classes can be represented by simple continuum models
as thef4 model, which are minimal in the sense that dro
ping any of the Hamiltonian’s terms implies a change of
universality class. An important alternative way of represe
ing the universality classes is through standard lattice~spin!
models such as the Ising model, which lend themselves
for precise Monte Carlo simulations.

A similar classification scheme exists for dynamic bu
critical behavior.3 The associated universality classes—cal
dynamic bulk universality classes henceforth—additiona
depend on basic properties of the dynamics such as con
vation laws, and since distinct dynamics may have the sa
equilibrium distribution, eachstatic universality class gener
ally splits up intoseveral dynamicones. The latter are rep
resented by stochastic models calledA,B, . . . ,J.3

Research over the past 25 years has revealed the exis
of analogous universality classes for static surface crit
behavior of semi-infinite systems at bulk critical points.4,5 To
which static surface universality class a given system
longs is decided by its static bulk universality class and
ditional relevant surface properties. Hence each static sur
universality class as well as each dynamic bulk universa
class usually splits up into separate dynamic surface uni
sality classes. Furthermore, systems belonging to the s
static surfaceuniversality class and the samedynamic bulk
universality class may be representative ofdistinct dynamic
0163-1829/2002/66~2!/024408~19!/$20.00 66 0244
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surfaceuniversality classes as local changes of the dynam
at the surface can be relevant.6–9

Unfortunately, the number of detailed theoretical inves
gations of dynamic surface critical behavior performed un
now is rather limited.7–12 Furthermore, they focused more o
less exclusively on models with purely relaxational dyna
ics. On the experimental side, the situation is worse: st
gent experimental checks of the theoretical predictions
dynamic surface critical behavior, though urgently need
are still lacking. One obvious reason for this is the difficu
of such experiments. The impressive progress made du
the past two decades in the perfection of surface-sens
scattering techniques has so far led only to accurate exp
mental investigations of static surface critical behavior.13–16

Demonstrating that similarly conclusive data can also be
tained for dynamic surface critical behavior remains a ma
experimental challenge, albeit such experiments are expe
to become feasible in the near future. According to the rec
TESLA design report,17 the x-ray free electron laser offers
great potential for such experiments.

Theoretical progress can play an important role in stim
lating such experiments. We believe that theoretical advan
in two directions are essential for achieving this goal. On
one hand, models representing other bulk dynamic univer
ity classes must be considered, generalized to systems
boundaries, and carefully investigated to find out what kin
of dynamic surface critical behavior can occur, i.e., whi
dynamic surface universality classes exist. On the ot
hand, detailed theoretical predictions should be worked
for experimentally accessible quantities such as struc
functions, etc.

Pursuing these goals, we will investigate the dynamic s
face critical behavior of isotropic Heisenberg ferromagn
in this paper. Well-known characteristic features of the d
namics of such magnets are the presence of nondissip
~mode-coupling! terms and the conservation of the order p
©2002 The American Physical Society08-1
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rameter. We shall employ two different lines of approach
~i! analytic work based on the field-theoretic renormalizat
group ~RG! and ~ii ! computer-simulation studies of the dy
namic surface structure function. A brief account of parts
our work has been given elsewhere.18

In our RG work we utilize an appropriate semi-infini
extension of the usual stochastic bulk modelJ,3,19–24which
represents the dynamic bulk universality class of the iso
pic Heisenberg ferromagnet, without energy conservation
familiar problem one is faced with is the following. Where
the upper critical dimension of this dynamic model isdJ*
56, the one of its steady-state distribution, described by
usual ufu4 model with ann53 vector fieldf, is d* 54.
Thus the small parameter in which a dimensionality exp
sion can be made in the dynamic case ise6562d rather
than e4542d, where d is the bulk dimension. For 4,d
<6, the static critical behavior is given by mean-field theo
and associated with the~then infrared stable! Gaussian fixed
point of the ufu4 theory, even though the dynamic critic
behavior is described by a nontrivial fixed point that is ch
acterized by a nonzero valuef * of the mode-coupling vertex
and accessible to thee6 expansion.

Unfortunately, this expansion is not tailored to capture
nontrivial static critical exponents that emerge asd drops
below 4. Therefore it is of somewhat limited use in t
physically interesting three-dimensional case or, more ge
ally, for d<4. In order to find out which scaling laws exis
relating the critical exponents of dynamic bulk and surfa
quantities to known bulk and surface critical indices, it
essential to formulate the field-theoretic RG for fixed valu
of d,4. We do this by extending existing massive R
schemes for semi-infinite systems25,26 to dynamics. This
yields RG ~Callan-Symanzik! equations whose exploitatio
in conjunction with known boundary operato
expansions5,27,28 reveals that the dynamic bulk and surfa
critical exponents can be expressed completely in term
known static ones, besides giving the scaling forms of qu
tities such as the surface structure function.

In order to check these findings we have performed hi
precision computer simulations of a semi-infinite latti
model of classical Heisenberg spins whose dynamics is
fined via the deterministic nondissipative equations of m
tion implied by their Poisson bracket relations. The adv
tage of this simple dynamics without noise is that recen
developed extremely efficient spin dynamics algorithms29,30

can be employed to compute the temporal development f
given initial spin configurations, which we choose from
thermal equilibrium distribution generated via a Monte Ca
simulation.

It should be emphasized that this lattice model differs
an important aspect from the continuum model we consid
unlike the latter, it conserves the energy. Nevertheless, b
models belong to the same universality class, as we inten
show.

The remainder of this paper is organized as follows.
Sec. II both the semi-infinite lattice model~studied by simu-
lations! as well as the semi-infinite extension of the co
tinuum modelJ ~utilized in our RG analysis! are introduced,
and their dynamics specified. The definition of the co
02440
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tinuum model also involves the specification of appropri
boundary conditions. We discuss this question first on a h
ristic basis~Sec. II B 3!. Going over to the path-integral for
mulation of this model in Sec. II B 4, we then show in Se
II B 5 how the boundary conditions for both the order para
eterf and the auxiliary~Martin-Siggia-Rose! field f̃ can be
justified in a systematic manner and derived from the bou
ary part of the dynamic action functional. Section II B
briefly recalls the fluctuation-dissipation theorem and d
cusses the meaning of some of the boundary condition
this context. Section III is devoted to the RG analysis of t
continuum model. After giving the free response and cor
lation propagators in Sec. III A, we explicate in Sec. III B th
renormalization of the theory, describe the massless re
malization scheme on which our subsequent RG analysi
62e6 dimensions is based. To overcome the limitations
this scheme, we construct in Sec. III D a massive RG sche
for fixed dimensionsd with 2,d<4. The resulting Callan-
Symanzik equations are given in Sec. III E and utilized
derive the scaling forms of the correlation and response fu
tions. Details of our Monte Carlo spin dynamics simulati
are described in Sec. IV. Its results are presented and
lyzed in Sec. V. Section VI contains a brief summary a
concluding remarks. Finally, in the Appendix arguments
given as to why the lattice model we study belongs to
universality class of our semi-infinite modelJ, even though it
differs from the latter by conserving additional energy.

II. MODELS

A. Semi-infinite lattice Heisenberg model

The lattice model we consider is a classical isotro
Heisenberg ferromagnet on ad-dimensional simple cubic lat
tice whose sitesi5( i 1 , . . . ,i d), with i k50, . . . ,L21 for
k51, . . . ,d, are occupied by spinsSi5(Si

a ,a51,2,3) of
length uSiu51. Free boundary conditions apply along thei d
direction and periodic ones along the remainingd21 ones,
so that the layersi d50 andi d5L21 are free surfaces. Th
Hamiltonian of the model reads

Hlat52J (̂
i,j&

i d or j dÞ0,L21

Si•Sj2J1 (̂
i,j&

i d5 j d50,L21

Si•Sj , ~1!

where the summations run over the specified sets of nea
neighbor~NN! bonds^ i,j&. The bulk and surface NN inter
action constantsJ andJ1 are ferromagnetic and measured
temperature unitskBT. The dynamics is defined by the equ
tions of motion

dSi

dt
5

]Hlat

]Si
3Si , ~2!

which describe the precession of the spinsSi in the local
magnetic fieldsHi}2]Hlat /]Si . They conserve both tota
spin ( iSi ~in the here assumed absence of external magn
fields! as well as total energyElat[Hlat@S(t)#.

Conservation of magnetic energy is not normally cons
ered a property of real ferromagnets since the spin sys
can loose energy by processes not taken into account by
8-2
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~1! and~2! such as coupling to phonons. In fact, in the co
tinuum modelJ employed in our RG analysis, only the ord
parameter but not the energy is conserved. Arguments a
why both models represent nevertheless the same unive
ity class are given in the Appendix.

In our computer simulations, ad53 dimensional version
of the above model is investigated. The equations of mo
~2! are numerically integrated for a given set of at least 7
initial spin configurations generated by a Monte Carlo sim
lation of the thermal equilibrium state associated w
Hamiltonian~1!.29–31Details of this simulation are explaine
in Sec. IV.

Quantities of primary importance for the interpretation
scattering experiments are the spin-spin cumulant

Cab~r;z,z8;t2t8![^Si
a~ t ! Si8

b
~ t8!&cum

5^Si
a~ t ! Si8

b
~ t8!&2^Si

a~ t !&^Si8
b
~ t8!&

~3!

and its Fourier transform

Ĉab~p;z,z8;v!5E dd21r e2 i p•rE
2`

`

dt eivt

3Cab~r;z,z8;t2t8!. ~4!

Here r5( i 12 i 18 , . . . ,i d212 i d218 ), while z5 i 3 and z85 i 38 ,
respectively. Further,t and t8 are times to which the initia
spin configuration att50 has evolved according to Eq.~2!.
The averagê •••& is taken over the distribution of initia
configurations.

Specifically, we will be concerned with the dynamic su
face structure function

Ĉ11
ab~p,v![Ĉab~p;0,0;v!. ~5!

Before embarking on a discussion of its scaling proper
and presenting our simulation results, it is useful to introdu
first the continuum model on which our RG analysis
based.

B. Semi-infinite modelJ

1. Hamiltonian of the thermal equilibrium state

The dynamic model we are going to consider is requi
to satisfy detailed balance3,7,32 and to ensure relaxation to
steady-state distribution corresponding to a thermal equ
rium state}e2H[ f] with the Hamiltonian

H5E
R1

d F1

2
~“f!21

t0

2
f21

u0

4!
ufu4G1E

B

c0

2
f2. ~6!

Here the integrations extend overR1
d [$(xi ,z)PRduz>0%,

the d-dimensional half-space, andB, its (d21)-dimensional
boundary plane atz50, respectively. The order-paramet
densityf5(fa) is a three vector.

Above d53 bulk dimensions, this static model is know
to undergo at the bulk critical point so-called ordinary, sp
cial, and extraordinary surface transitions, depending
02440
-

to
al-

n
0
-

f

s
e

d

-

-
n

whether the surface enhancement variablec0 is larger than,
equal to, or less than a critical valuecsp.4,5 For d53, the
surface cannot spontaneously order at the bulk critical te
peratureTc.0 because of the presumed continuousO(3)
symmetry of the Hamiltonian~6!. Hence only theordinary
transition remains in this case. Analogous statements a
to the lattice model~1!, for whosed.3 variant the role of
the variable2c0 is played by the ‘‘surface enhancemen
(J1 /J)2(J1 /J)sp, where (J1 /J)sp is the critical value of the
ratio J1 /J pertaining to the special transition.

2. Langevin equations

Next we turn to the task of formulating an appropria
semi-infinite extension of the standard bulk modelJ. For
reasons expounded elsewhere,7,8 we may assume that th
surface-induced modifications of both the interactions
well as the dynamics are restricted to the immediate vicin
of the boundaryB. Consequently, we use the stochastic bu
equation

ḟ~x,t !5l0 ~D Hf1 f 0 Hf3f!1z~x,t ! ~7!

for all pointsx with z.0. Herez is a Gaussian random forc
with averagê z&50 and variance

^za~x,t !zb~x8,t8!&522l0 dabD d~x2x8!d~ t2t8!.
~8!

Further,Hf stands for the part of the functional derivative

dH
df

~x,t !5Hf~x,t !1d~z! ~c02]n! f~x,t ! ~9!

that remains away from the boundary planeB, namely,

Hf~x,t !5S 2D1t01
u0

6
ufu2Df. ~10!

The derivative]n in Eq. ~9! is along the inner normal, i.e.
]n5]z on B.

In order to extend the model to the semi-infinite case,
must specify whether and how Eqs.~7! and ~8! are to be
modified in the vicinity ofB. Owing to our locality assump-
tion mentioned at the beginning of this subsubsection,
should amount to a choice of boundary conditions forf. For
the sake of simplicity, we assume that the conservation of
order parameter isnot violated by boundary contributions
This is physically reasonable since we took all bulkand
surface terms of the Hamiltonian~6! to haveO(3) symme-
try, as is appropriate for a Heisenberg magnet whose in
actions are isotropic even at the surface.

3. Boundary conditions forf

Building on previous work on modelB,7–9 we can now
easily anticipate the proper boundary conditions. One bou
ary condition forf should be the usual static one

]nf5c0f, ~11!

which ensures the vanishing of the contribution}d(z) of the
functional derivative~9!.
8-3



et

a

n
n

ur

iti
c-
te
o

tio
u
t

so
W

k

f

in

rst

ium
as a

be

ace
old

n
n-

e

to

ion

i-

-
-
y
th

of
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The other one is entailed by the required order-param
conservation. This becomes clear if we rewrite Eq.~7! as a
continuity equation

ḟa1“•~ j(a)1 jz
(a)!50. ~12!

Here

j(a)52l0~“H fa1 f 0 eabgfb
“fg! ~13!

are the deterministic parts of the currents, and the noise p
satisfy

za52“• jz
(a) . ~14!

To ensure conservation of the total order parameter,
currents must leave the system. Hence the normal compo
of the currents should vanish,

j n
(a)[n• j(a)50, a51,2,3. ~15!

If spin anisotropies were present at the surface~which is not
uncommon!, the conservation would be violated at the s
face for some, if not all, components off.

Both boundary conditions~11! and ~15! are valid in an
operator sense, i.e., hold inside of averages over the in
values and the noise~yielding correlation and response fun
tions!. Note that the validity of the former has two immedia
consequences: The surface contributions to the currents
would expect from thed-function term of Eq.~9! upon using
the definitionj(a)52l0 “dH/dfa rather than Eq.~13! dis-
appears. Furthermore, substitution of the boundary condi
~11! into Eq. ~15! shows that the precession term’s contrib
tions (} f 0) to the currentsj(a), a51,2,3, vanish, so tha
these latter boundary conditions become

]nHf[]nS 2D1t01
u0

6
ufu2Df50. ~16!

The probability distribution of the noise clearly must al
comply with the presumed order-parameter conservation.
prefer to discuss the consequences within the framewor
the functional-integral~re!formulation of the theory,21,22,32,33

where they manifest themselves as boundary conditions
the auxiliary or Martin-Siggia-Rose34 ~MSR! field f̃ intro-
duced below.

4. Functional-integral formulation

The Langevin equations~7! can be rewritten as

ḟ~x,t !52SR•

dH
dfD ~x,t !1z~x,t !, ~17!

whereR5(R ab) denotes the reaction operator

R ab52l0~dabD1 f 0eabgfg!. ~18!

Since this operator acts onHf , which according to Eq.~16!
satisfies a Neumann boundary condition, the Laplacian it
volves is self-adjoint on an appropriate space of~sufficiently
smooth! functions satisfying this boundary condition.
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The measuree2J[ f̃,f]D@f̃,f# which appears in the
equivalent functional-integral formulation21,22,32,33 of the
theory can now easily be inferred. To this end, let us fi
recall which form the actionJ@f̃,f# must have to ensure
detailed balance and relaxation to the chosen equilibr
state. For the here considered case in which the noise h
Gaussian probability distribution, this is7,21,32

J5E
2`

`

dtE
x
H f̃•F ḟ1RJ •S dH

df
2f̃D2

dRJ
df

G J , ~19!

where a prepoint discretization of time is understood to
employed.

The action of the bulk modelJ is known to be of this
form, with the reaction operatorRJ being given by Eq.~18!.
If we accept the boundary conditions~11! and ~16!, then
contributions to the action that are localized on the surf
vanish. Consequently this result for the action must also h
in the semi-infinite case we considered, with*x interpreted
as the volume integral*R

1
d .

Conversely, one can start from an action of form~19! and
derive the boundary conditions in a systematic fashio35

along the lines followed in Refs. 7 and 8. The various ge
eral assumptions we have made~consistency with bulk
model J, only local modifications of the dynamics at th
surface, absence of nonconservative surface terms, etc.! can
be combined with relevance/irrelevance considerations
conclude that the reaction operator reads

RJ 5l0 ~dab ¹Q “
W 2 f 0 eabg fg!, ~20!

where“Q acts to the left. This is identical to Eq.~18! up to the
replacement of the Laplacian by the symmetric express
¹Q “W .

The substitution of this form ofRJ into Eq. ~19! and an
integration by parts@making no use of the boundary cond
tions ~11! and ~16!# yields

J5E
2`

`

dtS E
R1

d
$f̃•~ḟ2l0f 0Hf3f!2l0~Hf2f̃!Df̃%

2l0EB
$~Df̃!•~c02]n!f1@Hf2f̃1d~z! ~c02]n!f

2 f 0 f3f̃#•]nf̃% D . ~21!

The singular piece}d(z50) present in the boundary inte
gral *B is familiar from Refs. 7–9. It results from the coin
cidence of twod functions. This singularity can be cured b
replacing one of thed functions by a smeared-out smoo
analog such asdB(z)[B e2B z, with a large positive but fi-
nite value ofB.

5. Boundary conditions as boundary equations of motion

Starting from the action~19!, we can now obtain the
boundary conditions for bothf and f̃ in a standard
manner7,8 as ‘‘boundary contributions to the equations
8-4
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motion.’’ This works as follows. We add source term
Jj@f̃,f# to the action and consider the generating functio
Z@ j #[*D@f̃,f# e2J2Jj , where j stands for the set of al
sources considered, including eventual ones localized on
surface. That is, the source part of the action can be wri
as

Jj@f̃,f#52E
2`

`

dtF E
R1

d
j k Ok1E

B
j r OrG , ~22!

whereOk5Ok(x,t) andOr5Or(xi ,t) are local functionals
of f andf̃. From the invariance of the generating function
Z@ j # with respect to a change of variablesf→f1df and
f̃→f̃1df̃ with arbitrary ~smooth! functions df and df̃
we may then conclude that

^dJ1dJj& j50. ~23!

HeredJ anddJj are the implied changes of first order indf

anddf̃ of the actionJ and its source partJj , respectively,
and ^•& j denotes the average in the presence of sources

Explicitly, we have

dJ5E
2`

` H E
R1

d
@Jfdf1Jf̃df̃#1E

B
@JfBdf1Jf̃Bdf̃

1J]nf]ndf1J]nf̃]ndf̃1J(Df)BDdf

1J(Df̃)BDdf̃#J ~24!

with

Jf52] tf̃2l0@2D1U2#Df̃2l0f 0@D~f̃3f!

1f̃3Hf#, ~25!

Jf̃5] tf2l0D~Hf22f̃!2l0f 0Hf3f, ~26!

JfB5~c02]n!F̃2l0@U21c0d~0!#]nf̃1l0f 0f̃

3~c02]n!f, ~27!

Jf̃B5l0]n~2f̃2Hf!1l0f 0f3]nf, ~28!

J]nf5l0d~0!]nf̃, ~29!

J]nf̃5l0d~0!~]n2c0!f, ~30!

J(Df)B5l0]nf̃, ~31!

and

J(Df̃)B5l0~]n2c0!f. ~32!

The subscriptB at local quantities indicates their restrictio
to the boundary. Further,U2 is the matrix of second deriva
tives of theufu4 potential
02440
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ab5t0dab1

u0

6
~dab12fafb!, ~33!

and for convenience, we have introduced the field

F̃[RT
•f̃5l0~2Df̃1 f 0f̃3f!, ~34!

whereRT denotes the transposed reaction operator,
(R T)ab5R ba. We shall refer toF̃ as response fieldsince
this is its known physical significance21,22 @as can be read of
again from our Eqs.~41! and ~42! below#; it should not be
confused with the auxiliary fieldf̃.

For simplicity, let us include here in the source part of t
action merely bulk sourcesJ(x,t) and J̃(x,t) as well as sur-
face sourcesJ1(xi ,t) and J̃1(xi ,t) which couple tof, f̃,
fB , andf̃B , respectively. Owing to the arbitrariness ofdf

anddf̃, it follows from the above results that the ‘‘equation
of motion’’

Jf~x,t !5J~x,t !, x¹B, ~35!

Jf̃~x,t !5 J̃~x,t !, x¹B, ~36!

and the ‘‘boundary equations of motion’’

Jr~xi,t !5J1~xi ,t !dr,fB1 J̃1~xi ,t !dr,f̃B,

r5fB ,f̃B ,]nf,]nf̃,~Df!B ,~Df̃!B , ~37!

hold inside of averages with the actionJ1Jj . From the
latter and Eqs.~27!–~32!, we get the previously given bound
ary conditions forf, Eqs.~11! and ~16!, and two additional
ones forf̃, namely,

]nf̃50 ~38!

and

~]n2c0!F̃5~]n2c0!l0~2Df̃1 f 0f̃3f!50. ~39!

6. Fluctuation-dissipation theorem

The significance of the boundary conditions~38! and~39!
can be understood as follows. Let us add a~possibly time-
dependent! magnetic field term to the Hamiltonian~6!, mak-
ing the replacement

H→Hh5H2E
R1

d
h•f, ~40!

where we assumeh(x,t) to have support only off the surface
This induces the change

J→Jh5J2E
R1

d
h•F̃ ~41!

of the dynamic action. Hence we recover the usual co
spondence~known from the bulk case22!

d

dh~x,t !
↔F̃~x,t ! ~42!
8-5
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between functional derivatives with respect toh(x), taken at
h50, and insertions of the response operator on the rig
hand side.

Furthermore, the fluctuation-dissipation relation

2u~ t2t8!^ḟa~x,t !fb~x8,t8!&5^fa~x,t !F̃b~x8,t8!&
~43!

can be derived as in Refs. 21, 22, 24, and 32, owing to
form ~19! of the action.

The significance of the boundary condition~39! becomes
clear if we letx8 in Eq. ~43! approach a point on the bound
ary planeB: it ensures the consistency of the fluctuatio
dissipation theorem~43! with the boundary condition~11!.
To understand the Neumann boundary condition~38!, note
first that according to Eq.~19!, the reaction operator couple
¹f̃ to the current operator2l0¹dH/df. This boundary
condition ensures that the reaction operator is self-adjoin
addition, it can be combined with Eq.~28! to see that the
boundary equation of motion~37! for r5f̃B leads back to
the boundary conditions~16! for the currents.

III. RG ANALYSIS OF THE SEMI-INFINITE MODEL J

A. Preliminaries

We now turn to the RG analysis of the semi-infinite mod
J introduced in the previous section. To this end, two R
schemes will be used: a massless one based on minimal
traction of poles and the expansion about six dimensio
called RS1, and a massive one for fixed dimensions 2,d
<4, called RS2.

Before embarking on a discussion of either one of the
we must set up some notation. Let us define the genera
functionals of~connected! correlation and response function

W@ J̃,J,K; J̃1 ,J1#5 ln^e( J̃,f̃)1(J,f)1(K,f̃3f)1( J̃1 ,f̃B)1(J1 ,fB)&
~44!

and

G@ J̃,J; J̃1 ,J1#5 ln^e( J̃,F̃)1(J,f)1( J̃1 ,F̃B)1(J1 ,fB)&, ~45!

where we have introduced the convenient short hands

~J,f![E
2`

`

dtE
R1

d
ddxJ~x,t !•f~x,t ! ~46!

and

~J1 ,fB![E
2`

`

dtE
B
dd21xiJ1~xi ,t !•fB~xi ,t !. ~47!

For the cumulants generated by these functionals we wr

W(Ñ,N,L;M̃ ,M )

5K )
j 51

Ñ

f̃ã j )
k51

N

fak)
l 51

L

~f̃3f!g l )
m51

M̃

f̃B
b̃m)

n51

M

fB
bnL cum

~48!

and
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G(Ñ,N;M̃ ,M )5K )
j 51

Ñ

F̃ã j )
k51

N

fak )
m51

M̃

F̃B
b̃m)

n51

M

fB
bnL cum

.

~49!

We normally suppress the tensorial indicesã1 , . . . ,bM of
these functions, but give their space and time~or momentum
and frequency! coordinates~suppressed above! when dealing
with specific ones.

The reason for considering the functionsW(Ñ,N,L;M̃ ,M )

should be clear: aside from multipoint cumulants of the ba
fields f̃ and f, insertions of the composite operatorf̃3f
are needed because it appears in the fluctuation-dissipa
relation ~43!. The free response propagator and free c
relator one needs to compute theW andG functions defined
above are the same as for modelBB , and for the caset0
.0, may be gleaned from any of the Refs. 7–9. In a mix
pzv representation@wherepPRd21 is a (d21)-dimensional
wave-vector conjugate toxi while v denotes the Fourier fre
quency variable associated witht#, the free response propa
gator reads

Ĝ~p;z,z̃;v!5
1

2l0
S t0

4
1 i

v

l0
D 21/2H 1

2k2
@e2k2uz2 z̃u

2 f 2e2k2(z1 z̃)2g2e2(k2z1k1z̃)#

2
1

2k1
@e2k1uz2 z̃u2 f 1e2k1(z1 z̃)

2g1e2(k1z1k2z̃)#J ~50!

with

f 6[ f 6~k6 ,k7 ;c0 ,k!

5
k6k7~k6

2 2k7
2 !2c0@k6~k22k6

2 !1k7~k22k7
2 !#

k6~k22k6
2 !~c01k7!2k7~k22k7

2 !~c01k6!

~51!

and

g6[g6~k6 ,k7 ;c0 ,k!

5
2c0k6~k22k7

2 !

k6~k22k6
2 !~c01k7!2k7~k22k7

2 !~c01k6!
.

~52!

Here

k[1Ap21t0, ~53!

andk6 denote the roots with positive real parts of the equ
tion

k6
2 5p21~t0/2!6@~t0/2!21 i ~v/l0!#1/2. ~54!

The free correlatorCdab5^fafb&cum can be expressed in
terms of the free response propagator as
8-6
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Ĉ~p;z,z8;v!52l0E
0

`

dz̃Ĝ~p;z,z̃;v!

3~p22] z̃
2
!Ĝ~2p;z8,z̃;2v!. ~55!

Owing to the presumedO(3) symmetry of the Hamilto-
nians ~1! and ~6! of our lattice and continuum models, th
only surface transition that is possible in three dimension
the ordinary transition. We can benefit from the fact that i
asymptotic critical behavior can be studied by taking
limit c0→` ~see, e.g., Ref. 5 and below!. The simplified
expressions for the free response propagator and corre
which then apply correspond to the replacements of the
efficients f 6 andg6 by

f 6
` [ lim

c0→`

f 6~k6 ,k7 ;c0 ,k!52
k62k7

k61k7
~56!

and

g6
` [ lim

c0→`

g6~k6 ,k7 ;c0 ,k!52
2k6

k61k7
, ~57!

respectively.

B. Massless renormalization scheme near six dimensions
„RS1…

We here restrict ourselves to bulk dimensions 4,d<6.
Then the static critical behavior is described by Land
theory. The Gaussian fixed point,u050, of theufu4 theory is
infrared stable. In part of the calculationu0 therefore can be
set to zero. This is possible as long as we consider quant
that have a nonsingular and nonvanishing limitu0→0. How-
ever, we must keep in mind that the linear scaling fieldu
associated withu0 is dangerous irrelevant.2,36 Quantities
such as the free energy density or the spontaneous mag
zation vary as inverse powers ofu0;u for u0→0, and hy-
perscaling is broken. Accordingly, already a full scaling d
scription of the static bulk critical behavior requires the
inclusion of a second, so-called thermodynamic, length
sides the bulk correlation length. Finally, in applying tec
niques of renormalized field theory, we must remember t
both the static as well as the dynamic theories are not re
malizable ford.4 if u0Þ0. Single insertions of the loca
operator to whichu0 couples can be renormalized, but th
additional counterterms to which it gives rise are not su
cient for curing the additional ultraviolet~UV! singularities
produced by multiple insertions.

We now consider theW functions~49!, where we restrict
the temperatureT to values above the critical temperatureTc
and setu050 temporarily. Since the Hamiltonian~6! be-
comes Gaussian foru050, there are no static UV singular
ties to cure. Hence no amplitude renormalization of the or
parameter is required, i.e.,Zf51. By power counting one
finds that counterterms of the form*dt*R

1
d f̃•ḟ are also not

needed. Since this implies that the product of amplitu
renormalization factorsZfZf̃ for f and f̃ is unity, an am-
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plitude renormalization off̃ is not required either (Zf̃51).
A ~bulk! counterterm}f•Df̃ is ruled out foru050. If u0
did not vanish, theO(u0) contribution to such a counterterm
would diverge asL4 for d56 within a theory regularized by
a cutoff L.

We assert that the following counterterms are sufficien
renormalize the generating functionalW: aside from those
implied by the reparametrizations

l05m24Zl~ f 2,d!l ~58!

and

f 05m~62d!/2@Zl~ f 2,d!#21f , ~59!

only a counterterm of the form*dt*R
1
d K•Df̃ is required,

wherem is an arbitrary momentum scale. More precisely,
claim that the cumulants generated by the functional

Wren@ J̃,J,K; J̃1 ,J1#5W@ J̃,J,K; J̃1 ,J1#

2~Zl21! f 21m2(62d)/2

3E
2`

`

dtE
R1

d
K•Df̃ ~60!

areUV finite when expressed in terms ofl and f ~andc0 or
its dimensionless equivalentc[c0 /m).

This conclusion is based on the following observatio
The detailed-balance form of the action~19! in conjunction
with the constraints imposed by the conservation of the or
parameter and power counting restricts the possible b
counterterms to those included in Eq.~60!. Using this result
as input, one can consider the renormalization of the b
analog of the fluctuation-dissipation relation~43!. For con-
venience we employ dimensional regularization and fix
counterterms by minimal subtraction of poles atd56. From
the UV finiteness of the correlation function of the renorm
ized function on the left-hand side of this equation two co
clusions may then be drawn: the renormalization factors
f 0 andl0 are reciprocal to each other, and the renormali
tion function of theK-dependent counterterm is related toZl

in the stated fashion.37 The result means that insertions of th
response field~34! renormalize just asf, requiring no addi-
tional counterterms.

A final step remains to complete the argument: we m
show that no further surface counterterms are needed. G
the causal structure of the theory~according to which at leas
one f̃ must occur in any monomial of the action!, power
counting restricts the possible candidates for such coun
terms ind56 dimensions to boundary contributions to th
action involving monomials of the forml0f̃2, l0f̃•f, and
l0f̃afbfg ~as well as similar ones with derivatives!, where
the coefficients have momentum dimensions 1, 3, and
respectively. Now the cubic nonlinearity of the bare acti
can be rewritten as

Jmcv5l0f 0eabgE
2`

`

dtE
R1

d
~“f̃a!fb

“fg ~61!
8-7



di

er

ce
o

ra

ile
nd
im

a

ve
id

e
on

ur

ry
-
to
-

fo
in

on
e
ow
ph

t
e

se

an
on-

n
be

n-

n

e
fer-
e

of
e
t
g
i-

H. W. DIEHL, M. KRECH, AND H. KARL PHYSICAL REVIEW B 66, 024408 ~2002!
upon integrating by parts and utilizing the boundary con
tion ~11!. Thus eachf̃ leg of the vertex} f 0 comes with a
derivative“. This reduces the superficial degree of div
gence of such UV boundary singularities with twof̃ legs by
two, making it negative~UV superficially convergent!. By a
similar argument, surface counterterms involving onef̃ and
two f fields are ruled out. Hence we are left with surfa
counterterms}f•“f̃ and analogous ones with up to tw
additional derivatives.

To proceed we follow Ref. 22 and perform the integ
*2`

` dt of the fluctuation-dissipation relation~43!. This yields

^fa~x!fb~x8!&st52l0D8^fa~x!f̃b~x8!&v501l0f 0^f
a~x!

3~f̃3f!b~x8!&v50 , ~62!

where the superscript ‘‘st’’ indicates a static quantity wh
the subscriptv at the expectation values on the right-ha
side means their Fourier transform with respect to the t
differencet2t8. We multiply this equation from the right by
the inverse of the static propagator on the right-hand side
from the left with the vertex functionGf̃afb. The result is38

Gf̃afb~x,x8;v50!5l0~2D81t0!@2Dd~x2x8!

1 f 0Gf̃a;(f̃3f)b~x,x8;v50!], ~63!

whereGf̃a;(f̃3f)b means a vertex functions with a singlef̃a

leg and an insertion of the composite operator (f̃3f)b.
Owing to the operator2D81t0 ~inverse static propagator!
on the right-hand side, the UV behavior of possible primiti
local divergences of the vertex function on the left-hand s
is improved by two powers ofL. This is sufficient to ensure
that no additional surface counterterms with onef̃ and one
f leg are needed. Since the vertex functionGf̃a;(f̃3f)b has
an explicit“ acting on the external leg, it has a primitiv
logarithmic bulk singularity that is cured by the subtracti
provided by the bulk counterterm}K•Df̃. On dimensional
grounds one might anticipate logarithmically divergent s
face counterterms of the form (]nf̃)•(t02D)f and f̃
•]n(t02D)f, but these are annihilated by the bounda
conditions~38! and ~16!, respectively. Note also that the re
striction tov50 is unproblematic here because each fac
of v ~i.e., each time derivative! reduces the superficial de
gree of divergence by four.

A further comment is appropriate here. Field theories
systems with boundaries are known to have the follow
feature. In addition to the one-particleirreducible ~1PI!
graphs, one-particlereducible ~1PR! ones may also require
‘‘final subtractions’’ and hence contribute to renormalizati
functions~see Sec. II.B.6 of Ref. 5!. Nevertheless our abov
reasoning based on 1PI graphs is conclusive since the p
counting would not be changed if we contracted 1PR gra
whose external free legs are amputated to a point. Hence
counterterms included inWren are indeed sufficient to cur
the UV singularities of theW functions~48!. The UV finite-
ness of theG functions generated by
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Gren@ J̃,J,K; J̃1 ,J1#5G@ J̃,J,K; J̃1 ,J1# ~64!

when expressed in terms ofl and f ~as well ast0 andc0 or
their dimensionless equivalentst[t0 /m2 andc[c0 /m) fol-
lows as a simple corollary from the fact that the respon
field F̃ renormalizes just asf ~namely, trivially!.

C. RG analysis in 6Àe dimensions

Utilizing the results of the previous subsection, one c
perform a RG analysis of quantities that are finite and n
zero foru050. This criterion is satisfied by both theW and
theG functions fort0.0, as can be checked via perturbatio
theory in f 0. Since such a RG analysis is standard we can
brief and just state its principal results.

To one-loop order the renormalization functionZl is
given by39

Zl~ f !512
1

192p3

f 2

62d
1O~ f 4!. ~65!

Equation~59! implies that the beta function

b f~ f ![m]mu0f ~66!

can be written in terms of the exponent function

hl~ f ![m]mu0ln Zl , ~67!

namely,

b f~ f !52 f F62d

2
2hl~ f !G , ~68!

where]mu0 denotes the derivative at fixed bare coupling co
stantsf 0 , t0, andc0. The infrared-stable fixed pointf * for
4<d,6 is given by the nontrivial root of the equatio
b f( f * )50. From Eq.~68! we find for the value of the ex-
ponent functionhl* at the fixed pointf * the result

hl* [hl~ f * !5
62d

2
, ~69!

which we insert into the general expression

z542hl* ~70!

for the dynamic critical exponentz. Since the correlation
exponenth is zero ford>4, the final resultz5(d12)/2 for
4<d<6 is consistent with the established value19–23,40

z5
d122h

2
, 2,d<6. ~71!

The latter result is known to follow most easily from th
observation that the characteristic frequency of isotropic
romagnets forT.Tc is the Larmor frequency and henc
scales as the~static! bulk magnetic fieldh.40,41

Next we turn to the analysis of the critical behavior
surfacequantities. We restrict the following discussion to th
case of theordinary transition, the only surface transition a
bulk criticality that remains in the physically interestin
three-dimensional case.42,43 The surface enhancement var
8-8
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ablec[c0 /m transforms asc→ c̄( l )5c/ l under scale trans
formations m→m l and hence approaches the fixed-po
valuecord* 5` in the infrared limit l→0, provided its initial
value is positive. In this case we can setc05` from the
outset. Surface quantities involving the surface fieldsfB or
F̃B then vanish.

Let F ren be any of the two renormalized function

Wren
(Ñ,N,L;M̃ ,M ) and Gren

(Ñ,N;M̃ ,M ) generated by the functional
~60! and~64! for u050 andt[t0 /m2>0. The invariance of
the regularized bare functions with respect to a change om
implies the RG equation

@m]m1b f] f22t]t1~42hl!l]l2c]c#F ren50. ~72!

This may be utilized in a familiar manner to obtain th
asymptotic scaling forms of these functions. The result o
obtains for the pair correlation functionCab5dabC
(5G(0,2;0,0)) at T5Tc agrees with the more general one pr
dicted in our previous paper18

C~r;z,z8;t !'r 22d2hY~z/r ,z8/r ;tr 2z!, ~73!

if the classical valueh50 and the implied onez5(d
12)/2 are substituted~as is appropriate for 4,d,6). Here
we have suppressed the variablesm and l, setting both to
unity. The variablec does not appear on the right-hand si
because the scaling functionY is a property of thec5`
fixed point. Deviations ofc from the valuec5` produce
corrections to the displayed leading infrared contribution

The derivation of the scaling form of the surface corre
tion function

C11~r;t ![C~r;0,0;t ! ~74!

is not quite so straightforward becauseCuc5` vanishes
wheneverz50 or z850, as a consequence of the Dirichl
boundary condition into which Eq.~11! turns forc05`. One
possibility to cope with this difficulty is to study the behavi
of C11 in the limit c→`. As is expounded elsewhere,5,7–9,44

this can be achieved by an expansion in powers of 1c0.
According to the boundary conditions~11! and ~39!, the
boundary operatorsfB andF̃B can be replaced byc0

21]nfB
and c0

21]nF̃B , respectively. From previous detaile
investigations5,8,44 of the 1/c0 expansion it is therefore clea
how the scaling forms that the correlation and response fu
tions involving these boundary operators take at the ordin
transition can be determined: making the replacementsfB
→]nfB and F̃B→]nF̃B , one studies the so-obtained an
logs of these functions, withc0 set to`.

An alternative strategy, which leads to equivalent resu
is to use the boundary operator expansion~BOE!. According
to Eqs.~11! and~39!, both the order parameter densityf as
well as the response fieldF̃ satisfy Dirichlet boundary con
ditions if c05`. In analogy with the static case,5,45 a BOE of
the form

f~x,t ! '
z→0

D~z,t !]nf~xB ,t !1••• ~75!
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and its counterpart involvingF̃ and ]nF̃ should hold asx
5(xi ,z) approaches the surface pointxB5(xi,0). ~We have
suppressed contributions proportional to the operator1,
which occur when the averagêf& does not vanish.5,46,47!
Equation~75! implies that cumulants involving the surfac
operators]nf and ]nF̃ give access to surface correlatio
functions. We refrain from doing this within the framewor
of thee6 expansion and turn directly to RS2, the massive RG
scheme.

D. Massive renormalization scheme for 2ËdÏ4 „RS2…

Our aim here is to extend the massive RG scheme
semi-infinite systems developed by one of us and Shpot25,26

to the dynamic theory of the model-J action~21!. We assume
that 2,d<4 and give up the restrictionu050, i.e., bothu0
and f 0 are assumed to be nonzero.

The scheme can be extended for general values ofc0.
However, as we are primarily interested in the dynamic s
face critical behavior at theordinary transition ind53 bulk
dimensions, we can simplify the analysis by settingc05`
from the outset. The advantage of doing this is considera
for general values ofc0, the renormalization factors assoc
ated with surface operators~called ‘‘surface renormalization
factors’’ for short! depend on the renormalized coupling co
stantu ~to be defined below! and the ratioc/m, wherec and
m are the renormalized analog48 of the bare surface enhance
mentc0 and the renormalized massm ~to be introduced be-
low!, respectively. This additional dependence on the m
ratio c/m makes the RG analysis rather cumbersome. If
setc05`, we focus directly on the asymptotic regimec/m
5` and avoid this difficulty because the surface renorm
ization factors~which are of purely static origin! can then be
chosen to depend merely onu.

1. Static bulk renormalization functions

Let Gst,b
(N,I ) be the static bulk vertex function withN legs of

type f and I insertions off2/2, andǦst,b
(N,I )(q,Q) the Fourier

transform of this~translationally invariant! function, up to
the momentum-conserving factor (2p)dd((q1(Q). Hereq
andQ are theN and I momenta conjugate to the positionsx
andX of the legs and the inserted operators, respectively.
write

t05m21dm2, ~76!

f5@Zf~u!#1/2fren, ~77!

f25@Zf2~u!#21@f2# ren, ~78!

and

u05Zu~u!m42du, ~79!

which introduce the renormalized massm, the renormalized
densitiesfren and @f2# ren, and the renormalized couplin
constantu.

The mass shiftdm2 and the renormalization~‘‘ Z’’ ! factors
are fixed via the familiar normalization conditions
8-9
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Ǧst,b,ren
(2) ~q;u,m!uq505m2, ~80!

]

]q2
Ǧst,b,ren

(2) ~q;u,m!uq5051, ~81!

Ǧst,b,ren
(2,1) ~q,Q;u,m!uq5Q5051, ~82!

and

Ǧst,b,ren
(4) ~$qi%;u,m!u$qi50%5m42du ~83!

for the renormalized static bulk~b! vertex functions

Gst,b,ren
(N,I ) ~•;m,u!5@Zf~u!#N/2@Zf2~u!# IGst,b

(N,I )~•;t0 ,u0!
~84!

with (N,I )Þ(0,1),(0,2).

2. Dynamic bulk renormalization functions

We introduce renormalized auxiliary and response fie
f̃ren and F̃ren, a dynamic bulk renormalization factorZl ,
and the renormalized bulk variablesl and f such that

f̃5@Zf~u!#21/2f̃ren, ~85!

F̃5@Zf~u!#1/2F̃ren, ~86!

l05m24Zl~u, f !l, ~87!

and

f 05m(62d)/2@Zl~u, f !#21@Zf~u!#1/2f . ~88!

To fix the functionZl , we choose the normalization cond
tion

]

]q2
Ǧf̃af̃b

(b,ren)
~q,v;u, f ,l,m!uq5v50522m24ldab,

~89!

where Ǧf̃af̃b
(b,ren) denotes a renormalized dynamic bulk vert

function in the momentum-frequency (qv) representation.
Let us add a few clarifying remarks. Note, first, that t

renormalization functions introduced above are sufficien
absorb the UV singularities of the vertex functions with a
bitrary numbersN and Ñ of f and f̃ legs of the dynamic
bulk theory for d<4. Hence the above reparametrizatio
also yield UV finite renormalized functions when applied
the bulk analogs of theÑ1N point cumulants withÑ f̃ and
N f fields, i.e., to the bulk analogs of the function
W(Ñ,N,0;0,0) defined in Eq.~48!. The same remark applies t
the bulk analogs of theG functions~49!.

The meaning of the multiplicative renormalizability of th
response fieldF̃ with respect to the renormalization of th
N1Ñ point bulk vertex functions with an insertion of th
composite operatorf̃3f has been discussed elsewhere22,24

and need not be reiterated here: it implies, in particular,
the renormalization ofGf̃a;(f̃3f)b

(b) involves a subtraction
02440
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proportional toGf̃a;Dfb
(b) , chosen in conformity with the mul-

tiplicative renormalization~86!.
Our second remark concerns the renormalization off̃ren

and f in Eqs. ~85! and ~88!. The fact that no primitive UV
singularities involving a counterterm proportional tof̃aḟb

occur implies that the renormalization factor off̃ren is given
by Zf

21/2 ~up to a UV finite factor!. This result means that th
latter product of operators transforms according to its en
neering dimension under RG transformations and is rela
to the conservation of the order parameter.49

The form of the renormalization factor off, Zl
21Zf

1/2, fol-
lows from the fluctuation-dissipation theorem~43!; it tells us
that ḟa/F̃a is a RG invariant. As a direct consequence
relation generalizing Eq.~68! holds between the beta func
tion b f and exponent functions, which now are defined v

b f~u, f ![m]mu0f , bu~u![m]mu0u ~90!

and

hk~u, f ![m]mu0ln Zk , k5l,f,f2, ~91!

respectively. We have

b f~u, f !52 f F62d

2
2hl~u, f !1

hf~u!

2 G . ~92!

Since h5hf(u* ), whereu* is the nontrivial zero ofbu ,
this form ensures that the established result~71! for the dy-
namic exponentz is obtained if the value

hl* [hl~u* , f * !5
62d1h

2
~93!

pertaining to the infrared-stable fixed point (u* , f * ) is sub-
stituted into Eq.~70!.

Finally, let us note that the renormalization factorsZf ,
Zf2, Zu , Zl introduced above are all UV finite ford,4,
although they are logarithmically divergent in the UV ifd
54 ~i.e., they have pole terms atd54). In other words, if
d,4, then the UV singularities of the~static and dynamic!
bulk theory are absorbed by the mass shiftdm2.

3. Static surface renormalization functions

In order to generalize the above approach (RS2) to the
semi-infinite case, we setc05` and consider the analogs o
the G functions~49! that result from these when the boun
ary operatorsF̃B andfB are replaced by the normal deriva
tives ]nF̃ and]nf, respectively. We denote these functio
as

G`
(Ñ,N;M̃ ,M )

[K )
j 51

Ñ

F̃ã j )
k51

N

fak )
m51

M̃

]nF̃b̃m)
n51

M

]nfbnL
c05`

cum

. ~94!
8-10
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DYNAMIC SURFACE CRITICAL BEHAVIOR OF ISOTROPIC . . . PHYSICAL REVIEW B66, 024408 ~2002!
Following Refs. 25 and 26, we introduce the static surfa
renormalization factorZ1,̀ (u) and the renormalized surfac
operator (]nf)ren via

]nf5@Zf~u!Z1,̀ ~u!#1/2~]nf!ren. ~95!

Next we take the normal derivative on both sides of
fluctuation-dissipation relation~43! with respect tox8 and set
t850. The result reads

2u~ t !^ḟa~x,t !]nfb~xB,0!&5^fa~x,t !]nF̃b~xB,0!&,
~96!

which suggests to renormalize]nF̃ in complete analogy with
Eq. ~95! by

]nF̃5@Zf~u!Z1,̀ ~u!#1/2~]nF̃!ren. ~97!

This definition ensures that the modified fluctuatio
dissipation relation~96! carries over to the renormalize
theory. Moreover, it establishes consistency with the ren
malization of the corresponding static correlation function
Ref. 26, provided we fixZ1,̀ (u) as in Eqs.~7.10a!–~10b! of
that reference. To this end we define the renormalizedG`

functions via

G`,ren
(Ñ,N;M̃ ,M )5Zf

2(Ñ1N1M̃1M )/2Z1,̀
2(M̃1M )/2G`

(Ñ,N;M̃ ,M ) ,
~98!

if ( Ñ,N;M̃ ,M )Þ(0,0;1,1). The excluded function

Ĝ`,ren
(0,0;1,1)~p,v!5@ZfZ1,̀ #21@Ĝ`

(0,0;1,1)~p,v!

2Ĝ`
(0,0;1,1)~0,0!#, ~99!

requires an additive counterterm, which we choose such
the normalization condition

Ĝ`,ren
(0,0;1,1)~p,v!up5v5050 ~100!

holds. To specifyZ1,̀ , we require that

]

]p2
Ĝren

(0,0;1,1)~p,v!up5v5052
1

2m
. ~101!

Equations~100! and ~101! are equivalent to the norma
ization conditions~7.10a! and ~7.10b! of Ref. 26; together
with Eq. ~99! they imply thatG(0,0;1,1) requires a subtraction
and the renormalization factorZ1,̀ is the same as in the
static case.

E. Callan-Symanzik equations

The Callan-Symanzik~CS! equations can now be derive
in a standard fashion. We take a derivative]t0

of the bare

~dimensionally regularized! G` functions~94! at fixed values
of the other bare interaction constantsu0 and f 0. Using the
above reparametrizations and definitions of the beta and
ponent functions then yields
02440
e

e
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at

x-

FDm1
Ñ1N1M̃1M

2
hf1

M̃1M

2
h1,̀ GG`,ren

(Ñ,N;M̃ ,M )

5R`,ren
(Ñ,N;M̃ ,M ) ~102!

with

Dm5m
]

]m
1bu

]

]u
1b f

]

] f
2~42hl!l]l ~103!

and

R`,ren
(Ñ,N;M̃ ,M )

[Zf
2(Ñ1N1M̃1M )/2Z1,`

2(M̃1M )/2~m]mu0t0!]t0
G`

(Ñ,N;M̃ ,M )

5~22hf!m2@]t0
G`

(Ñ,N;M̃ ,M )# ren. ~104!

Here the exponent functionh1,̀ (u) is defined by settingk
5(1,̀ ) in Eq. ~91!. Just as the other static function
hu(u),hf(u),hf2(u), it depends only onu ~andd), but not
on the dynamic coupling constantf, and is precisely the sam

as in Ref. 26. The inhomogeneitiesR`,ren
(Ñ,N;M̃ ,M ) involve renor-

malized functions with an insertion of2*ddxf2/2, given by

@]t0
G`

(Ñ,N;M̃ ,M )# ren

5Zf
2(Ñ1N1M̃1M )/2Z1,̀

2(M̃1M )/2Zf2]t0
G`

(Ñ,N;M̃ ,M ) .

~105!

We proceed along lines similar to those followed, for e
ample, in Refs. 50 and 51, in order to derive the asympto
scaling forms of the response and correlation functions fr
the CS equations~102!. The deviationdt0 of the bare vari-
ablet0 from its bulk critical valuet0c depends on the tem
perature differencet[(T2Tc)/Tc according to

dt0[t02t0c;t, ~106!

which holds if t is sufficiently small. Near criticality the
massm–i.e., the inversej21 of the ~second-moment! bulk
correlation lengthj –behaves as

m;ut02t0cun with n5~21hf2* !21. ~107!

Furthermore, integration of Eqs.~91! and ~90! gives the
asymptotic dependence

Zk;mhk* , k5f,f2,l,~1,̀ !, ~108!

for (u, f )→(u* , f * ) or m→0. We insert this result fork
5l into Eq. ~87!, substitute expression~93! for hl* , and
arrive at

l;mzl0 , ~109!

wherez is the dynamic bulk exponent~71!. With the aid of
these results, it is straightforward to deduce the scaling fo
8-11
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G`
(Ñ,N;M̃ ,M )~$x%,t;t0 ,u0 , f 0 ,l0!

'm(Ñ1N)b1(M̃1M )b1
ord

J`
(Ñ,N;M̃ ,M )~$mx%,l0tmz!.

~110!

Here b5(n/2)(d221h) is a standard bulk critical index
while b1

ord is its surface counterpart for theordinary transi-
tion. ~For recent estimates of the numerical value of the la
at d53, see Ref. 26, its references, and Ref. 31.! The set$x%
comprises all position coordinates on which the respec
function depends. The case (Ñ,N;M̃ ,M )5(0,0;1,1) is spe-
cial in that the termd(t2 t̃ )d(xi2 x̃i)Ĝ

(0,0;1,1)(p50,v50),
which results from the subtraction in Eq.~99!, should be
subtracted on the left-hand side of Eq.~110!. We have sup-
pressed this term, because we considerG(0,0;1,1) here not as a
distribution, but as a function fort2 t̃ .0.

Let us choose (Ñ,N;M̃ ,M )5(0,2;0,0) in Eq.~110! and
consider the case of the spin-spin cumulant~3!. If we set
l051 for convenience, we obtain the scaling form given
Eq. ~73! in the limit m→0.

The scaling form of the surface structure function~74! at
the ordinary transition can be derived from the expansion
G(0,0;0,2) in powers ofc0

21 @see Eq.~110!#. Alternatively, we
can combine the CS equations~102! with Eq. ~110! and the
BOE ~75! ~applied to the renormalized theory! to conclude
that the coefficient functionD(z,t) asymptotically satisfies
the CS equation

FDm2
h1,̀

2 GD~z,t !50. ~111!

In the limit m→0, Eq. ~111! yields a leading short-distanc
singularity of the form

D~z,t ! '
z→0

D0z11h1,̀* /2, ~112!

where the exponenth1,̀* can be expressed in terms ofh and
the surface correlation indexh i

ord521h1h1,̀* . It follows
that the scaling functionY in Eq. ~73! must behave as

Y~z,z8;t! '
z,z8→0

~z•z8!(h i
ord

2h)/2Y0~ t!. ~113!

This in turn implies that the Fourier transformed surfa
structure functionĈ11(p,v) at Tc can be written as

Ĉ11~p,v!'ph i
ord

212zs~vp2z!. ~114!

The limit p→0 exists. By consistency, we must therefo
have

Ĉ11~0,v!5constv2(z112h i
ord)/z. ~115!

In the next section, we will check the predictions~114! and
~115! by means of accurate Monte Carlo spin dynam
simulations.
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IV. MONTE CARLO SPIN DYNAMICS SIMULATION

The Monte Carlo spin dynamics simulation works as f
lows: A Monte Carlo simulation of the lattice model with th
Hamiltonian ~1! yields a spin configuration that is used
initial condition for the integration of the equations of m
tion ~2!. When the integration is completed, the time evo
tion of the spin configuration is analyzed for position a
time displaced correlations. The correlation functions
then stored in arrays, and a new initial condition is genera
by the Monte Carlo simulation. Typically, this is repeat
700 to 1000 times. The correlation functionCab(r;z,z8;ut
2t8u) @see Eq.~3!# is finally obtained by averaging over th
individual measurements.

The Monte Carlo algorithm is chosen as a hybrid sche
consisting of Metropolis sweeps, Wolff single clust
updates,52 and over-relaxation sweeps.53 Typically, one hy-
brid Monte Carlo step involves 10 individual steps, each
which can be one of the updates listed above. Both the M
tropolis and the Wolff algorithm work in the standard wa
where the reduced coordination number of the lattice at
surfaces and the modified surface couplingJ1 must be taken
into account. The acceptance probabilityp of a proposed spin
flip in the Metropolis algorithm is defined byp(DE)
51/@exp(DE/kBT)11#, wherekB is Boltzmann’s constant and
DE is the change in configurational energy of the propos
move.

The over-relaxation part of the algorithm performs a m
crocanonical update of the configuration by sequentially
tating each spin in the lattice such that its contribution to
energy of the whole configuration remains constant. T
implementation of this update scheme is straightforward.
see this, note that the energy of a spin with respect to
neighborhood has the functional form of a scalar prod
according to Eq.~1!. Therefore, a spin can be rotated abo
the direction of the local field generated by its neighbo
without changing the local energy. The angle of rotation c
be chosen randomly for each spin. However, in order to h
minimal autocorrelation times, a reflection—i.e., a rotati
of a spin by 180°—turns out to be the most efficient ov
relaxation move. In one over-relaxation sweep this updat
applied in sequence to every spin of the lattice.

Typically, a hybrid Monte Carlo step consists of tw
sweeps of the whole lattice via the Metropolis algorith
(M ), four sweeps of the whole lattice by means of the ov
relaxation algorithm~O! described above, and four sing
cluster updates according to the Wolff algorithm (C). The
individual updates are mixed automatically in the program
as to generate the update sequenceMOCOCMOCOC. As
our random number generator, we have utilized the sh
register generator R1279 defined by the recursion rela
Xn5Xn2p% Xn2q for (p,q)5(1279,1063). Generators suc
as this one are among the fastest available. However,
are known to cause systematic errors in combination with
Wolff algorithm.54 For lags (p,q) as large as the ones use
here, these errors are much smaller than typical statis
errors. The hybrid nature of the algorithm reduces th
further.55

Using this Monte Carlo scheme, we have investigated
8-12
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tice sizesL betweenL512 andL572. The integrated corre
lation time of the hybrid algorithm is determined by the a
tocorrelation function of the energy or, equivalently, by t
autocorrelation function of the modulus of the magneti
tion. Either quantity isO(3) symmetric, and for sufficiently
long times, the decay of the corresponding autocorrela
functions is governed by the same autocorrelation time. T
time scale characterizes the slowest mode of the Wolff a
rithm, so it also determines the correlation time of our hyb
Monte Carlo algorithm. Note that the autocorrelation time
the Metropolis algorithm is determined by the decay of
autocorrelation function of theorder parameter, which de-
cays particularly slowly near the critical point~critical slow-
ing down!. For the hybrid scheme described above, the
tocorrelation time does not exceed 10 hybrid Monte Ca
steps for the largest lattice size atT5Tc . In order not to
obtain too strongly correlated initial conditions for the equ
tion of motion, an initial condition is generated every ten
hybrid Monte Carlo step.

The integration procedure for the equations of motion
completely separated from the Monte Carlo part of the p
gram. The second-order sublattice decomposition integr
described in Ref. 29 is used here. Long-time stability is p
vided by the exact conservation of energy@see Eq.~2!# and
spin normalization. The magnetization is only conserv
within the accuracy of the discretization, i.e., to second or
in the time step. Typical time stepsdt used here range from
dt50.04/J to dt50.08/J, depending on the size of the sy
tem. For the largest system (L572), the total integration
time is t I58192/J; in this casedt50.08/J was used. Note
that the decomposition integratorI (dt) has the exact time
inversion propertyI (2dt)5I 21(dt). This guarantees tha
the time evolution of discretization errors, such as those
fecting the conservation of the magnetization, does not c
tain systematic drifts.29

If the algorithm is implemented on a single processor m
chine, the major part of the CPU time is consumed by
integration of the equations of motion. This fraction i
creases with system size because the CPU time neede
the integration scales ast IL

3, whereas that of a hybrid
Monte Carlo step scales asL3. If Wolff updates are used
exclusively, the average scaling is reduced toL22h.52 For the
purposes of the present investigation the integration timet I
has to be chosen such that the slowest spin wave or
diffusion modes in the system can be identified. AtT5Tc
this means thatt I;Lz @see Eq.~71!#. Below Tc , one must
havet I;L2 for an isotropic ferromagnet in order to resolv
the slowest spin-wave mode. AboveTc , the dynamics is
dominated by spin diffusion, which also requirest I;L2 for
the resolution of the slowest modes. It is therefore very
sirable to distribute the integration task of the simulati
over several processors on a parallel machine.

A simple and very efficient implementation on a paral
machine with at least four processors can be constructed
cording to the following master-slave idea: The master p
cess runs the Monte Carlo part of the simulation to prov
initial conditions on demand, and the slave processes i
grate the equations of motion for different initial conditio
in parallel and analyze the correlations. The amount of co
02440
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munication among the processes is determined by the tr
fer of initial configurations from the master to the slaves
the beginning of the simulation, and by the transfer of t
correlation data from the slaves to the master for the fi
evaluation and output. IfN processors in parallel are used
this way, the speedup is very close to the theoretical li
N21 for sufficiently large integration timest I . We have
implemented the master-slave version of the spin dynam
algorithm on the Alpha Linux cluster ALiCE at theInstitut
für angewandte Informatikat the Bergische Universita¨t Wup-
pertal, using up to 32 processors in parallel for the larg
systems. Communication between the processors is fa
tated by the MPI~message passing interface! communication
library.

A well-known major problem one is faced with in an
computer simulation study of critical behavior is how to e
tract the asymptotic critical behavior from the data. This
particularly challenging in our case since we have to co
with two additional complications:surfacecritical behavior
anddynamics. In the asymptotic critical regime the value o
the ratior 1[J1 /J does not matter ifd53 because surface
of three-dimensional isotropic Heisenberg ferromagnets
always disordered in the absence of external fields. T
such systems always belong to the ordinary surface uni
sality class. However, to what extent the asymptotic sca
can actually be observed in a computer simulation on fin
systems is a completely different issue.

The experience made in a previous study of the static c
by one of us31 suggests that it should be possible to avo
extended crossover regimes by a careful choice of the r
r 1. In order to find out which value ofr 1 is optimal in the
sense of giving the largest asymptotic regime, we procee
in Ref. 31: We consider the magnetization profile in therm
equilibrium, determiner 1 in such a way that a discrete ve
sion of the Dirichlet boundary condition holds, and th
verify that this choice suppresses corrections to
asymptotic behavior, making the asymptotic regime lar
than for alternative values ofr 1. Let us explain this in detail.
The equilibrium profile is

m~z![K Mtot

uMtotu
• (

i 1 ,i 250

L21

S( i 1 ,i 2 ,i 3)L , ~116!

where Mtot[( iSi is the total magnetization, whilez[ i 3
11/2 with i 350, . . . ,L21 indicates a lattice plane paralle
to the surfaces@see Eq.~1!#. Note that according to this defi
nition of z, the ‘‘boundary planes’’z51/2 andz5L21/2 of
the system are located half a lattice constant away from
first and last lattice layers, respectively. With this conventio
the lattice model defined by Eq.~1! may be viewed as a
discrete versionof the Ginzburg-Landau Hamiltonian~6!,
where the order parameter of the numerical celli is repre-
sented by the spinSi at its center.

The bulk magnetizationmb can be approximated by th
value of the magnetization in the center layer of the syste
i.e., mb[m(zmid) with zmid5L/2 when the number of layer
L is odd. For evenL, zmid,15(L21)/2 and zmid,25(L
11)/2 are equivalent choices forzmid ; in this case,mb
[@m(zmid,1)1m(zmid,2)#/2 is interpreted as the bulk magne
8-13
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tization. The ratiom(z)/mb then depends only onz/L, which
motivates us to define the scaling function

M ~z/L ![m~z!/mb , ~117!

where T5Tc is assumed. The analysis of the data reve
that the scaling functionM (z[z/L) can be represented b
the simple fit formula

M ~z!5BM@~z1z0!~12z1z0!# (b12b)/n ~118!

to a remarkable accuracy. Herez05z0 /L is the scaled ex-
trapolation parameter. In analyzing the data we have
cepted the estimatesb50.366260.0025 andn50.7073
60.0035 of Ref. 56, and utilized the valueb150.834(6) of
Ref. 31.

From a least square fit of Eq.~118! to the data for various
system sizes we obtain the extrapolation parameterz0 in
units of the lattice spacing. For the choicesJ1 /J50.3 and
1.0, we findz0.20.34 andz0.0.46, respectively. On the
other hand,z0 vanisheswithin the statistical errors ifJ1 /J
50.73.31 To put these findings in perspective, some expla
tions are necessary. Owing to our definition ofz @given be-
low Eq. ~116!#, a fit curve ~118! with scaled extrapolation
parameterz050 means that the measured magnetizat
profile extrapolates to zero half a lattice constant away fr
the outermost layersi 350 and i 35L21 of our lattice
model. In this sense, the profile satisfies a Dirichlet bound
condition on the scale of the lattice constant in this spe
case.

Let us emphasize that such a boundary condition o
microscopic scale must not be confused with the Dirich
boundary condition which the order parameter satisfies at
ordinary transition on long scales, irrespective of the prec
value of the ratior 1[J1 /J. The latter is an asymptotic long
scale property, associated with the corresponding ordin
fixed point of the RG, and hence universal. By contrast,
boundary condition that the order-parameter profile o
given microscopic model is found to satisfy on microsco

FIG. 1. Structure functionĈ11(0,v) for r 1[J1 /J50.3(3),
0.73(1), and 1.0(*). Error bars ~one standard deviation! are
smaller than the symbol sizes. The solid lines indicate the theo
cally expected power law~115! for v→0.
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scales generally depends on microscopic details, and is th
fore a nonuniversal property~see the discussion in Sec
III.C.9 of Ref. 5!.

On the level of a mesoscopic description via our co
tinuum model, a Dirichlet boundary condition can be e
forced on the mesoscopic length scales on which such a
scription makes sense~several lattice constants! by setting
the enhancement variablec0 to the fixed-point value1`.
For valuesc0,`, the Dirichlet boundary condition doesnot
hold on mesoscopic scales, neither for the regularized no
the renormalized theory. In other words, ac0-dependent ex-
trapolation parameterz0Þ0 occurs. This deviation from the
Dirichlet boundary condition corresponds to a correction
scaling: It is irrelevant inasmuch as it vanishes in the lim
z0 /z→0. Choosing a particular valuer 15r 1

(D) for the ratio
of interaction constants such thatz0.0 is an appealing way
to mimic the Dirichlet boundary condition of thec05` con-
tinuum theory on a lattice. As we know already for the sta
case from Ref. 31, and will verify for the dynamic theo
below, this choice ofr 1 suppresses corrections to scaling a
hence enlarges the regime in which the asymptotic sca
behavior is observed.

The optimal value which yields a vanishing extrapolati
parameterz0 for temperatures sufficiently close toTc and
moderately large lattice dimensionsL is r 1

(D)50.73. For val-
ues close to this optimal one, we have

z05a~r 12r 1
(D)!1O@~r 12r 1

(D)!2#, ~119!

wherea is a factor of order unity. This behavior was alrea
obtained in Ref. 31, where crossover effects and the beha
of the order parameter profile as a function ofr 1 were inves-
tigated in more detail for the static case. The present w
confirms these findings: Our results for the dynamic surf
structure function presented in the next section are fully c
sistent with them.

V. THE DYNAMIC SURFACE STRUCTURE FUNCTION

Our simulation results are displayed in Figs. 1–4. Th
were obtained forT5Tc , L572, and the total integration

ti-

FIG. 2. Scaling functions(x) according to Eq.~114!. Data ob-
tained for r 1[J1 /J50.73 andp5(np/36,0,0), withn51, . . . ,5,
are shown. Error bars~one standard deviation! are smaller than the
symbol sizes. The data follow Eq.~120! up to x.1. The data for
x>1 are outside the scaling regime.
8-14
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DYNAMIC SURFACE CRITICAL BEHAVIOR OF ISOTROPIC . . . PHYSICAL REVIEW B66, 024408 ~2002!
time t I58192/J. For the smallest accessible frequen
vmin52p/t I , finite-size effects turned out to be negligible

In Fig. 1 the structure functionĈ11(0,v) is shown for
different values ofr 1 in comparison with Eq.~115!. The
exponent (z112h i

ord)/z has the value 0.85660.005 that fol-
lows from the estimatez(d53)52.48260.002 obtained by
the substitutionh(d53)50.03660.004 ~Ref. 56! in Eq.
~71! and the current estimate of the surface correlation ex
nent h i

ord(d53)51.35860.012 ~Ref. 31! of the ordinary
transition.

The dependence ofĈ11(0,v) on r 1 is particularly inter-
esting. If r 1 is small (r 150.3,3), our simulation data ap
proach the asymptotic power law~115! from above, whereas
for larger values ofr 1 (r 151,*), the asymptotic power law
is approached from below. In the latter case, the data e
remain outside the asymptotic regime for the frequenc
range shown in Fig. 1. The best agreement with Eq.~115!
over the largest frequency range is obtained for the cho
r 150.73(1), which has already been identified as optimal
the sense that the extrapolation parameterz0 for the magne-

FIG. 3. Scaling plot of the surface structure function forr 1

[J1 /J50.3 andp5(np/36,0,0), withn51, . . . ,5.Error bars~one
standard deviation! are smaller than the symbol sizes. The data
not follow Eq. ~120!.

FIG. 4. Scaling plot of the surface structure function forr 1

51.0 andp5(np/36,0,0), withn51, . . . ,5.Error bars~one stan-
dard deviation! are smaller than the symbol sizes. The data do
follow Eq. ~120!.
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tization profile vanishes@see Eq.~119!#. The deviations from
the power law~115! for r 1Þ0.73 can apparently be attrib
uted to dynamic surface-induced corrections to th
asymptotic behavior that originate from the nonze
r 1-dependent value of the extrapolation parameterz0.

Figure 2 shows a scaling plot ofĈ11(p,v), where p
5(np/36,0,0) is oriented along the surface. As one sees,
scaling regime inx shrinks as the mode indexn is increased
from 1(3) to 5(j). For x,1, the shape of the scalin
function in Eq.~114! is described surprisingly well by the fi
function18

s~x!5s0@11~x/x0!4# (h i
ord

2z21)/4z, ~120!

which is inspired by the known zero-loop result.7–9 The ex-
ponent at the square bracket is chosen so as to reproduc
~115! in the limit x→` (p→0 at fixedvÞ0). The ampli-
tude s0 and the crossover parameterx0 are used as fit pa
rameters.

The agreement between the data displayed in Figs. 1
2 and the scaling forms~114! and~115! is quite satisfactory.
However, on closer inspection small deviations are found
remain. Note that as pointed out at the end of the previ
section and in analogy with the results of Ref. 31 for t
equilibrium case, the choicer 150.73 yields indeed the larg
est regime in which asymptotic scaling holds~see Fig. 1!.

Hence we expect the choicer 150.73 to be optimal also
for the surface structure factor atfinite momentum transferp.
Our results forr 150.3 andr 151.0 depicted in Figs. 3 and 4
confirm this expectation. Figure 3 shows that the data
r 150.3 approach the scaling functions(x) of Fig. 2 mono-
tonically frombelowas the mode numbern is increased from
1 to 5. The nonasymptotic surface-induced corrections ar
large that the data for differentn ~i.e., momentum transfers
p) are well separated even on a logarithmic scale. In ot
words, no data collapse nearly as nice as in Fig. 2 occ
although the crossover parameterx0 appears to be consisten
with the results displayed there.

Our results forr 151.0 ~see Fig. 4! show a similar behav-
ior, except that the scaling functions(x) now is monotoni-
cally approached fromabove as the mode numbern in-
creases. The crossover parameterx0 is again consistent with
our findings in Figs. 2 and 3. The nonasymptotic surfa
induced corrections are as large as in Fig. 3 but have op
site sign.

From these results a consistent numerical picture of
namic surface scaling emerges. For the optimal choicer 1
50.73, our simulation data for the dynamic structure fun
tion bear out quite convincingly the asymptotic behavior
predicted on the basis of our RG work. For values ofr 1
deviating significantly from 0.73, the data exhibit pr
nounced corrections to scaling. These entail that our data
values like r 151 and 0.3 do not exhibitdirectly the
asymptotic scaling form and power law of the surface str
ture function Ĉ11(p,v) for nonzero and zero parallel mo
mentump, respectively. Yet they seem to be consistent b
with the theoretically predicted asymptotic behavior as w
as with the one extracted from our simulation data forr 1

o

t
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50.73 because the observed deviations appear to be attr
able to corrections to scaling.

In order to demonstrate universality, it would clearly
very desirable to verify the approach to the asymptotic cr
cal behavior also for unfavorable values ofr 1 such as 1.0 and
0.3. One conceivable way of trying to reach this goal is
means of brute-force numerical means. However, in view
the enormous numerical effort that was necessary to prod
the above simulation results, we do not consider this to b
promising strategy at present.

We believe that a better strategy would be the incorpo
tion of nonasymptotic correction terms in the analysis of
simulation data. Unfortunately, there are various source
such corrections, and detailed knowledge about their fo
and strength is either scarce or not available. A system
investigation of the various kinds of nonasymptotic corre
tions of static and dynamic origin that might play a role
the analysis of the surface critical behavior we are concer
with here evidently requires more numerical and analyti
work, and is beyond the scope of this paper. Let us there
simply discuss some possible sources of deviations f
scaling, beginning with the ones that do not correspond
corrections to scaling.

Two obvious sources of this latter kind are insufficie
momentum and frequency resolution. By virtue of the re
tion dp52p/L the momentum resolutiondp is intimately
linked to the system sizeL, which despite formidable
progress in simulation techniques and computational
sources still is a serious limiting factor. The frequency re
lution dv52p/t I is limited by the total integration timet I .
From our data forC11(p,t) ~not shown! we conclude thatt I
is sufficiently long. The frequency resolutiondv/J.7.7
31024 that is available here rivals that of neutron scatter
experiments.30 The momentum resolution is given bydp
.0.087 in units of the inverse lattice constant for our larg
systems, and is therefore much more restrictive.

One familiar type of corrections to scaling are those
duced by deviations of the coupling constantu from its fixed
point valueu* . Just as in the static case, they are gover
by the Wegner exponentvu[bu8(u* ) whose value is.0.8
in d53 dimensions.56 Analogous corrections to scaling re
sult from the RG flow of the mode-coupling interaction co
stant f. Upon linearizing the flow about the infrared-stab
fixed point (u* , f * ), one obtains in addition tovu a second
correction-to-scaling exponent, v f[(]b f /] f )(u* , f * ),
which in contrast to the former is of purely dynamic origi
We are not aware of any reliable estimates ofv f for d53.57

Other potentially dangerous corrections might be cau
by a previously mentioned important difference of the d
namics of the simulated lattice model and the semi-infin
continuum modelJ: that the former conserves the ener
while the latter does not. In the Appendix we general
modelJ for the bulk case by incorporating energy conser
tion. The resulting model is analogous to modelD ~with n
53 components!, and reduces to this when the mod
coupling interaction constantf is set to zero. We show tha
the ratiol/l (E) of transport coefficients~wherel (E) denotes
the analog ofl for the energy densityE) transforms under
the RG asl z22 in the long lengthscale limitl→0. Sincez
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225(d221h)/2, which is.0.5 in three dimensions, th
ratio approaches indeed zero, albeit with a considera
smaller power than in the case of modelD ~where the value
of this exponent is 22h.2).

Hence two conclusions may be drawn: First, in order
obtain the asymptotic critical behavior of order parame
cumulants we can take the limitl/l (E)→0. If one sets
1/l (E)50 from the outset, the energy density relaxes inst
taneously, This means that the effects produced by the c
pling to the energy density correspond to a change of
parameters of the original modelJ, up to corrections due to
irrelevant operators. In other words, the energy conserva
should not affect the asymptotic critical behavior, so that o
lattice model should belong to the universality class of o
semi-infinite modelJ. Second, we cannot rule out that th
corrections to the asymptotic behavior induced by the c
servation of the energy are less important for an improv
analysis of the numerical data presented above than the
viously mentioned corrections to scaling. To assess the r
tive importance of the various types of corrections to scal
seems difficult without reliable additional information bas
on detailed calculations.

The corrections to scaling we have just considered
associated with irrelevantbulk variables and hence are no
specific to systems with surfaces. Analogous ones are
duced by irrelevantsurfacevariables. A well-known example
are the corrections; l resulting from deviations of 1/c0 ~the
reciprocal surface enhancement variable! from the fixed-
point value 1/cord* 50. One evident consequence of such c
rections~which is, however, not the only one when Land
theory is not valid! is that the Dirichlet boundary condition
the order-parameter density satisfies at the ordinary fi
point ceases to hold. In view of the two observations ma
above—namely,~i! that the choicer 150.73 suppresses cor
rections to scaling both in the case of the dynamic struct
functions as well as in static quantities31 and ~ii ! that the
deviations from scaling according to Figs. 3 and 4 have
posite signs depending on whetherr 1 is bigger or smaller
than the optimal value 0.73—the corrections to scal
which the finiteness ofc0 induces appear to play a majo
role.

VI. SUMMARY AND CONCLUSIONS

We have presented a detailed study of the surface crit
behavior of isotropic Heisenberg ferromagnets at the o
nary transition, using both sophisticated analytical tools
well as high-precision Monte Carlo spin dynamics simu
tions. In theanalytical partof our work a continuum mode
that represents the corresponding universality class of b
and surface critical behavior—namely, an appropriate se
infinite extension of modelJ—has been formulated and it
field theory constructed. To this end we have determined
relevant boundary contributions to the dynamic action fu
tional which are compatible with the general features~sym-
metries, detailed balance, locality assumptions, conserva
laws, etc.! of this class of systems. These were shown
8-16
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correspond to boundary conditions for the resulting dyna
field theory.

In order to investigate the critical behavior of this sem
infinite model J, we have employed two distinct RG
schemes. The first is a massless one based on the expa
about the upper critical dimensiondJ* 56. To avoid the dif-
ficulties it has in handling the problem adequately below
upper critical dimensiond* 54 of thestatic theory, we have
designed and utilized an appropriate extension of the m
sive RG scheme for bounded systems of Diehl a
Shpot.25,26 As usual, this works in fixed dimensions, an
avoids the dimensionality expansion. By combining the
sulting RG equations with the boundary operator expans
~75!, we have been able to obtain detailed predictions for
scaling behavior of the surface structure function~5!. The
involved critical exponents which govern power laws such
Eq. ~115! are related to known static bulk and surface critic
exponents. In particular, there is no independent new
namic exponent associated with the surface.58

We have checked our predictions by means of exten
Monte Carlo spin dynamics simulations. Our results depic
in Figs. 1 and 2 corroborate the predicted dynamic sca
behavior. In order to obtain such a good manifestation
scaling, we have found it helpful and necessary to choose
ratio r 15J1 /J of the surface and bulk exchange integralsJ1
and J such that corrections to scaling are suppressed.
achieve this objective we have optimized the value ofr 1 by
requiring that the Monte Carlo data yield an equilibriu
order-parameter profile which satisfies a Dirichlet bound
condition on the scale of the lattice constant in the se
described in Sec. IV.

According to our results displayed in Figs. 1–4, this p
cedure is quite effective: Forr 150.73 and values inside
narrow range around this optimal one, the simulation data
the dynamic structure functions exhibit clear evidence of
namic scaling in conformity with our predictions. On th
other hand, for values ofr 1 outside this regime, the dat
collapse is poor and the asymptotic behavior cannot be id
tified in a convincing fashion. These observations are in c
formity with those made in a previous Monte Carlo inves
gation of the static surface critical behavior by one of us31

However, in the study of static quantities one is in a mu
better position because the scaling regimes can be rea
reasonably well even for nonoptimal values ofr 1. This fact
lends support to our belief that the dynamic scaling beha
seen forr 150.73 can be trusted.

Finally, let us note that we have not taken into acco
any dipolar forces in our study. To check our result by e
periments ~as should become feasible in the near futu
thanks to facilities such as the x-ray free electron laser17!,
one must choose systems for which such forces are n
gible. Since even weak dipolar forces lead to the format
of domains, one must also make sure that single domains
investigated.

ACKNOWLEDGMENTS

We are grateful to K. Wiese for discussions during t
beginning phase of this work. M.K. is indebted to theInstitut
02440
ic

sion

e

s-
d

-
n
e

s
l
y-

e
d
g
f

he

o

y
e

-

r
-

n-
-

h
ed

r

t
-
e

li-
n
re

für angewandte Informatikat the Bergische Universita¨t Wup-
pertal for providing access to the parallel cluster ALiC
Partial support by DFG~for M.K. via the Heisenberg pro-
gram under Grant No. Kr 1322/2-1, for H.K. and H.W.D. v
the Leibniz program Di 378/2-1 and SFB 237! is gratefully
acknowledged.

APPENDIX: THE IRRELEVANCE OF ENERGY
CONSERVATION

The dynamics of the lattice model we simulated, defin
via the equations of motion~2!, conserves the energy. Ou
aim here is to show that this feature does not change
universality class, which should therefore be represented
the semi-infinite modelJ employed in our RG study. For th
sake of simplicity, we restrict ourselves to demonstrating
irrelevance of energy conservation for the bulk case. T
extension to the semi-infinite case should be obvious.

Conservation of energy means that the energy den
E(x,t) is a conserved density and hence a slow varia
which should be retained in a coarse-grained description
mesoscopic time scales. Now, for vanishing mode-coup
constantf 0, modelJ reduces to modelB. How to modify the
latter to account for energy conservation is well known a
leads to modelD.3 We can adapt the dynamics of modelJ
along similar lines. The obvious result is a modification
model J that differs from modelD through the addition of
the former’s mode-coupling terms. The Langevin equatio
of this two-density model, which we callJ8, read

ḟ~x,t !5l0S D
dH8

df
1 f 0

dH8

df
3fD1z~x,t ! ~A1!

and

Ė~x,t !5l0
(E)D

dH8

dE 1q~x,t !, ~A2!

where

H85E
Rd

F1

2
~“f!21

t0

2
f21

u0

4!
ufu41

1

2
E 21

g0

2
Ef2G

~A3!

is the familiar Hamiltonian employed in the definition o
modelsC, D, and E ~for the here considered case of ann
53 component order parameterf). Both z as well asq are
Gaussian random forces with zero average; their varian
are given by Eq.~8! and

^q~x,t !q~x8,t8!&522l0
(E)Dd~x2x8!d~ t2t8!, ~A4!

respectively.
In the absence of coupling between the order parametef

and the energy densityE, i.e., for g050, the dynamic expo-
nent ofE takes its Gaussian value

zE52, ~A5!

corresponding to ordinary diffusion. It is not difficult to se
that this result remains valid forg0Þ0. For d.4, this fol-
lows immediately from the observation thatg0 is irrelevant
in the RG sense.
8-17
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In studying the more interesting cased<4, we can benefit
from well-known results for the static theory described
the Hamiltonian~A3!, which is equivalent to thef4 Hamil-
tonian ~6! except for a changeu0→U0[u023g0

2 of the in-
teraction constant~see, for example, Refs. 59 and 3, and t
references therein!. As a consequence, the correspondi
static renormalization functions can be expressed in term
those of thef4 theory. In particular, the renormalized analo
U of U0 can be introduced in analogy to Eq.~79! via U0
5Zu(U)m42dU, whereZu(u) is the renormalization func-
tion of Sec. III D 3. Likewise, the renormalization facto
Zg(U,g2) which relatesg05m(42d)/2Zgg to its renormal-
ized counterpartg can be expressed in terms of know
renormalization functions of thef4 theory.@It is a product of
Zf2(U) and a factor linear ing2 whoseU-dependent coeffi-
cient derives from the additive counterterm that t
f4-vertex functionGf2f2 requires.59#

The resulting RG flow ofU andg has two nontrivial fixed
points atU5u* : one atg* 50, and another one at (g* )2

5consta/n. The slopes of]bg2(U5u* ,g2)/]g2 of the beta
k,
u
e

,

of
d

e

02440
e
g
of

function bg2[m]mu0g2 at these fixed points are given by
2a/n anda/n, respectively.

Sincea,0 in the three-component case we are concer
with (a.20.12 for d53, according to Ref. 56!, the
infrared-stable fixed point is (U,g)5(u* ,0). The results of
Ref. 59 imply that the running coupling constant associa
with g tends to zero asm2a/2n in the limit m→0. Thus the
energy density decouples asymptotically from the order
rameter, so that the result~A5! applies.

We can introduce the renormalized transport coeffici
l (E) via l0

(E)5m22ZEl (E), whereZE , the static renormaliza
tion factor of the energy density, takes the value 1 at
infrared-stable fixed point. The ratio of transport coefficie
l/l (E) has the asymptotic scale dependence;mz2zE. If we
substitute the values~71! and~A5! for z andzE , the exponent
becomesz2zE5(d222h)/2. Since this is positive in three
dimensions, the ratio approaches zero in the long-scale l
m→0. The upshot is that the critical dynamics of the ord
parameter remains unaffected by the coupling to the ene
density, as claimed.
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