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Dynamic surface critical behavior of isotropic Heisenberg ferromagnets: Boundary conditions,
renormalized field theory, and computer simulation results
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The dynamic critical behavior of isotropic Heisenberg ferromagnets with a planar free surface is investigated
by means of field-theoretic renormalization group techniques and high-precision computer simulations. An
appropriate semi-infinite extension of the stochastic mddgkonstructed. The relevant boundary terms of the
action of the associated dynamic field theory are identified, the implied boundary conditions are derived, and
the renormalization of the model <6 bulk dimensions is clarified. Two distinct renormalization schemes
are utilized. The first is a massless one based on minimal subtraction of dimensional poles and the dimension-
ality expansion abouti=6. To overcome its problems in going belal*4 dimensions, a massive one for
fixed dimensiongl<4 is constructed. The resulting renormalization grémpCallan-Symanzikequations are
exploited to obtain the scaling forms of surface quantities like the dynamic structure factor. In conjunction with
boundary operator expansions scaling relations follow that relate the critical indices of the dynamic and static
infrared singularities of surface quantities to famil&atic bulk and surface exponents. To test the predicted
scaling forms and scaling-law expressions for the critical exponents involved, accurate computer-simulation
data are presented for the dynamic surface structure factor. These are in conformity with our predictions.
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[. INTRODUCTION surfaceuniversality classes as local changes of the dynamics
at the surface can be relevant,

A cornerstone of the modern theory of critical phenomena Unfortunately, the number of detailed theoretical investi-
is the arrangement of microscopically different systems ingations of dynamic surface critical behavior performed until
universality classes of equivalent critical behatidi few ~ now is rather limited*? Furthermore, they focused more or
basic properties, such as the spatial dimensiothe order- €ss exclusively on models with purely relaxational dynam-
parameter symmetry, and gross features of the interactiori§s- On the experimental side, the situation is worse: strin-
determine to which universality class for static bulk critical 98Nt experimental checks of the theoretical predictions for
behavior a particular system belongs. These universalitflynamic surface critical behavior, though urgently needed,
classes can be represented by simple continuum models sud still lacking. One obvious reason for this is the difficulty

as theg* model, which are minimal in the sense that drop-o such experiments. The impressive progress made during

ping any of the Hamiltonian’s terms implies a change of thethe past two decades in the perfection of surface-sensitive

. : . . scattering techniques has so far led only to accurate experi-
universality class. An important alternative way of represent g q y P

ng the uni ity cl 's throuah standard lafis ‘mental investigations of static surface critical behatiot®
ing the universality classes is through standard latspin) Demonstrating that similarly conclusive data can also be ob-

models such as the Ising model, which lend themselves begljneq for dynamic surface critical behavior remains a major
for precise Monte Carlo simulations. _ experimental challenge, albeit such experiments are expected
A similar classification scheme exists for dynamic bulk {5 hecome feasible in the near future. According to the recent
critical behavior: The associated universality classes—calledrgg a design report! the x-ray free electron laser offers a
dynamic bulk Universality classes henCEfOfth—additiona”ygreat potentia| for such experiments_
depend on basic properties of the dynamics such as conser- Theoretical progress can play an important role in stimu-
vation laws, and since distinct dynamics may have the samiating such experiments. We believe that theoretical advances
equilibrium distribution, eackstatic universality class gener- in two directions are essential for achieving this goal. On the
ally splits up intoseveral dynamiones. The latter are rep- one hand, models representing other bulk dynamic universal-
resented by stochastic models called, . .. ,J.3 ity classes must be considered, generalized to systems with
Research over the past 25 years has revealed the existertmgundaries, and carefully investigated to find out what kinds
of analogous universality classes for static surface criticabf dynamic surface critical behavior can occur, i.e., which
behavior of semi-infinite systems at bulk critical poifitsSTo  dynamic surface universality classes exist. On the other
which static surface universality class a given system behand, detailed theoretical predictions should be worked out
longs is decided by its static bulk universality class and adfor experimentally accessible quantities such as structure
ditional relevant surface properties. Hence each static surfadanctions, etc.
universality class as well as each dynamic bulk universality Pursuing these goals, we will investigate the dynamic sur-
class usually splits up into separate dynamic surface univefface critical behavior of isotropic Heisenberg ferromagnets
sality classes. Furthermore, systems belonging to the sanie this paper. Well-known characteristic features of the dy-
static surfaceuniversality class and the samgnamic bulk  namics of such magnets are the presence of nondissipative
universality class may be representativedadtinct dynamic ~ (mode-coupling terms and the conservation of the order pa-
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rameter. We shall employ two different lines of approachestinuum model also involves the specification of appropriate
(i) analytic work based on the field-theoretic renormalizationboundary conditions. We discuss this question first on a heu-
group (RG) and (i) computer-simulation studies of the dy- ristic basis(Sec. Il B 3. Going over to the path-integral for-
namic surface structure function. A brief account of parts ofmulation of this model in Sec. Il B 4, we then show in Sec.
our work has been given elsewhéfe. I B 5 how the boundary conditions for both the order param-
In our RG work we utilize an appropriate semi-infinite eter ¢ and the auxiliaryMartin-Siggia-Rosgfield 2, can be
extension of the usual stochastic bulk modgi*®~**which  justified in a systematic manner and derived from the bound-
represents the dynamic bulk universality class of the isotroary part of the dynamic action functional. Section 1B 6
pic Heisenberg ferromagnet, without energy conservation. Ayriefly recalls the fluctuation-dissipation theorem and dis-
familiar problem one is faced with is the following. Whereas cusses the meaning of some of the boundary conditions in
the upper critical dimension of this dynamic modeld$ this context. Section Il is devoted to the RG analysis of the
=6, the one of its steady-state distribution, described by theontinuum model. After giving the free response and corre-
usual | ¢|* model with ann=3 vector field ¢, is d*=4. lation propagators in Sec. Il A, we explicate in Sec. Il B the
Thus the small parameter in which a dimensionality expanrenormalization of the theory, describe the massless renor-
sion can be made in the dynamic caseeis=6—d rather malization scheme on which our subsequent RG analysis in
than e,=4—d, whered is the bulk dimension. For 4d  6— €¢ dimensions is based. To overcome the limitations of
<6, the static critical behavior is given by mean-field theorythis scheme, we construct in Sec. Ill D a massive RG scheme
and associated with thighen infrared stab)eGaussian fixed for fixed dimensiongl with 2<<d=<4. The resulting Callan-
point of the|¢|* theory, even though the dynamic critical Symanzik equations are given in Sec. lll E and utilized to
behavior is described by a nontrivial fixed point that is char-derive the scaling forms of the correlation and response func-
acterized by a nonzero valii& of the mode-coupling vertex tions. Details of our Monte Carlo spin dynamics simulation
and accessible to the; expansion. are described in Sec. IV. Its results are presented and ana-
Unfortunately, this expansion is not tailored to capture thdyzed in Sec. V. Section VI contains a brief summary and
nontrivial static critical exponents that emerge dasirops  concluding remarks. Finally, in the Appendix arguments are
below 4. Therefore it is of somewhat limited use in thegiven as to why the lattice model we study belongs to the
physically interesting three-dimensional case or, more genetniversality class of our semi-infinite modgleven though it
ally, for d=4. In order to find out which scaling laws exist differs from the latter by conserving additional energy.
relating the critical exponents of dynamic bulk and surface
guantities to known bulk and surface critical indices, it is Il. MODELS
essential to formulate the field-theoretic RG for fixed values
of d<4. We do this by extending existing massive RG
schemes for semi-infinite systef$® to dynamics. This The lattice model we consider is a classical isotropic
yields RG (Callan-Symanzik equations whose exploitation Heisenberg ferromagnet ordedimensional simple cubic lat-
in  conjunction with known boundary operator tice whose sites=(iq, ...,q), with i,=0,...L—1 for
expansions?’?® reveals that the dynamic bulk and surfacex=1, ... d, are occupied by spin§=(S*,a=1,2,3) of
critical exponents can be expressed completely in terms déngth|S|=1. Free boundary conditions apply along ihe
known static ones, besides giving the scaling forms of quandirection and periodic ones along the remainihg 1 ones,
tities such as the surface structure function. so that the layers;=0 andigq=L—1 are free surfaces. The
In order to check these findings we have performed highHamiltonian of the model reads
precision computer simulations of a semi-infinite lattice
model of classical Heisenberg spins whose dynamics is de- B
fined via the deterministic nondissipative equations of mo- Hia=—J <IEJ> S §-% <|2]> S5, @
tion implied by their Poisson bracket relations. The advan- igorjg#oL—1 ig=jg=0L-1

tage of this simple dynamics without noise is that recently,here the summations run over the specified sets of nearest-

developed extremely efficient spin dynamics algoritfii® neighbor(NN) bonds(i j). The bulk and surface NN inter-

can be employed to compute the temporal development fromion constantd andJ, are ferromagnetic and measured in

given initial spin configurations, which we choose from aemnerature unitksT. The dynamics is defined by the equa-
thermal equilibrium distribution generated via a Monte Carlos;o < of motion

A. Semi-infinite lattice Heisenberg model

simulation.
It should be emphasized that this lattice model differs in dS  IHa
an important aspect from the continuum model we consider: at - S ) 2

unlike the latter, it conserves the energy. Nevertheless, both

models belong to the same universality class, as we intend thich describe the precession of the spfsin the local

show. magnetic fieldsH;x—dH,/dS . They conserve both total
The remainder of this paper is organized as follows. Inspin ;S (in the here assumed absence of external magnetic

Sec. Il both the semi-infinite lattice mod@dtudied by simu- fields) as well as total energl =M.l S(t)].

lations as well as the semi-infinite extension of the con- Conservation of magnetic energy is not normally consid-

tinuum model (utilized in our RG analysjsare introduced, ered a property of real ferromagnets since the spin system

and their dynamics specified. The definition of the con-can loose energy by processes not taken into account by Egs.
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(1) and(2) such as coupling to phonons. In fact, in the con-whether the surface enhancement variatyes larger than,
tinuum modeld employed in our RG analysis, only the order equal to, or less than a critical valungp.“'5 For d=3, the
parameter but not the energy is conserved. Arguments as gurface cannot spontaneously order at the bulk critical tem-
why both models represent nevertheless the same universgeratureT,>0 because of the presumed continudé3)
ity class are given in the Appendix. symmetry of the Hamiltoniari6). Hence only theordinary

In our computer simulations, &= 3 dimensional version transition remains in this case. Analogous statements apply
of the above model is investigated. The equations of motiono the lattice mode(1), for whosed>3 variant the role of
(2) are numerically integrated for a given set of at least 70Ghe variable—c, is played by the “surface enhancement”
initial spin configurations generated by a Monte Carlo simu{J,/J)—(J;/J)s,, Where (,/J),is the critical value of the
lation of the thermal equilibrium state associated withratio J,/J pertaining to the special transition.
Hamiltonian(1).2°~3! Details of this simulation are explained
in Sec. IV. 2. Langevin equations

Quantities of primary importance for the interpretation of

. ! . _ Next we turn to the task of formulating an appropriate
scattering experiments are the spin-spin cumulant

semi-infinite extension of the standard bulk modelFor
@B pemy o h 41\ B0\ cum reasons expounded elsewhéfeywe may assume that the
C¥(rz, 2" t-t)=(S(1) Sy (1")) surface-induced modifications of both the interactions as
—(s(t) SP(t)) = (SUOWSE (1! well as the dynamics are restricted to the immediate vicinity
(SO SN =(SOKS ) of the boundary3. Consequently, we use the stochastic bulk
3 equation

and its Fourier transform

A1) =Ng (A Hyt Fo HgX d)+LX,1) (7)
éaﬁ(p;zlzr;w):f di-1r g p~rfw dt et fo'r all pointsx with z>0. Hereg is a Gaussian random force
—o with average(g)=0 and variance
XC*(r;z,2';t—t"). (4 (L9 EP(X 1)) = — 2N 8%PA S(x—X') S(t—t').
Herer=(i;—i1, ..., ig-1—ig_1), while z=i; andz' =i}, ®

respectively. Further, andt’ are times to which the initial Further,{, stands for the part of the functional derivative
spin configuration at=0 has evolved according to E(R). SH
The_avera_lge(~ --) is taken over the distribution of initial (D) =H (X, 1)+ 8(2) (Co— ) B(X,1) (9)
configurations. o

Specifically, we v_wII be concerned with the dynamic sur- that remains away from the boundary plafienamely,
face structure function

C5f(p)=CH(pi0,00). ® Moo= ~atmr 2lg2g. 0

Before embarking on a discussion of its scaling propertiesye geriyatived, in Eq. (9) is along the inner normal, i.e.,
and presenting our simulation results, it is useful to mtroduceﬁ —9. onB "
n z "

first the continuum model on which our RG analysis is In order to extend the model to the semi-infinite case, we

based. must specify whether and how Eqg&) and (8) are to be
o modified in the vicinity of 3. Owing to our locality assump-
B. Semi-infinite modelJ tion mentioned at the beginning of this subsubsection, this
1. Hamiltonian of the thermal equilibrium state should amount to a choice of boundary conditionsdoi~or

the sake of simplicity, we assume that the conservation of the

The dynamic model we are going to consider is requirétyger parameter isot violated by boundary contributions.
to satisfy detailed balanté®?and to ensure relaxation to a This is physically reasonable since we took all baikd

steady-state distribution corresponding to a thermal equilibgrf5ce terms of the Hamiltoniai6) to haveO(3) symme-
i —H i iltoni : : : :
rium statexe” "4 with the Hamiltonian try, as is appropriate for a Heisenberg magnet whose inter-
actions are isotropic even at the surface.
"-|
5

Here the integrations extend OVHﬂE{(XH ,z) e RYz=0},
the d-dimensional half-space, arg its (d—1)-dimensional
boundary plane az=0, respectively. The order-parameter
density ¢=(¢“) is a three vector. _

Above d=3 bulk dimensions, this static model is known In$=Cod (D
to undergo at the bulk critical point so-called ordinary, spe-which ensures the vanishing of the contributiod(z) of the
cial, and extraordinary surface transitions, depending offunctional derivative(9).

1 ) UO
§(V¢)2+ §¢2+ﬂ|¢|4

Co
+ IBE )

3. Boundary conditions for¢

Building on previous work on modes,”® we can now
easily anticipate the proper boundary conditions. One bound-
ary condition for¢> should be the usual static one
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The other one is entailed by the required order-parameter The measuree*j[a""’]D[&, ¢] which appears in the
conservation. This becomes clear if we rewrite EQ.as @  equivalent functional-integral formulati®h??33 of the
continuity equation theory can now easily be inferred. To this end, let us first

recall which form the action/] ¢, ¢»] must have to ensure

HE+ V. (i(@)+ila)y= . . oo
PV (JU+]7)=0. (12 detailed balance and relaxation to the chosen equilibrium
Here state. For the here considered case in which the noise has a
Gaussian probability distribution, this’{&">2
= —=No(VH gat o e*PY$PV $7) (13 . -
o - . o ~ R
are the deterministic parts of the currents, and the noise parts jzf dtf [ | p+R- (%— )—5—¢ ] (29
e Jx

satisfy
where a prepoint discretization of time is understood to be
employed.

The action of the bulk mode) is known to be of this
e%}rm, with the reaction operatd® being given by Eq(18).

we accept the boundary conditior{¢1) and (16), then
contributions to the action that are localized on the surface
vanish. Consequently this result for the action must also hold
in the semi-infinite case we considered, wijth interpreted
as the volume integrejl]ﬁi.

Conversely, one can start from an action of foi18) and
derive the boundary conditions in a systematic fasttion
along the lines followed in Refs. 7 and 8. The various gen-
%ral assumptions we have madeonsistency with bulk

(= =V-ig. (14
To ensure conservation of the total order parameter, n
currents must leave the system. Hence the normal compon
of the currents should vanish,
jg"‘)zn~j(”‘)=0,

a=12,3. (15)

If spin anisotropies were present at the surfagbich is not
uncommon, the conservation would be violated at the sur-
face for some, if not all, components ¢f.

Both boundary condition$l11l) and (15) are valid in an
operator sense, i.e., hold inside of averages over the initi
values and the noisgielding correlation and response func- o qel J, only local modifications of the dynamics at the
tions). Note that the validity of the fprmer has two immediate surface, absence of nonconservative surface terms,oaic.
consequences: The surface contributions to the currents opg, combined with relevancelirrelevance considerations to
would expect from thes-function term of Eq(9) upon using  gnclude that the reaction operator reads
the definitionj(®)= —\ o V 6H/ 8¢ rather than Eq(13) dis-
appears. Furthermore, substitution of the boundary condition
(12) into Eq.(15) shows that the precession term’s contribu-
tions («f,) to the current§(®, @=1,2,3, vanish, so that
these latter boundary conditions become

7‘%:)\0(5&’366_'“) Ea,B)/ ¢)’), (20)

whereV acts to the left. This is identical to EQLY) up to the
replacement of the Laplacian by the symmetric expression
VV.

The substitution of this form ofR into Eq. (19 and an
integration by part$making no use of the boundary condi-

The probability distribution of the noise clearly must also tions (11) and(16)] yields
comply with the presumed order-parameter conservation. We foo
dt

u
InHg=0n| — A+ 7o+ 2|2 | p=0. (16)

prefer to discuss the consequences within the framework of7=
the functional-integralre)formulation of the theorg}22:3233
where they manifest themselves as boundary conditions for

fRd {b-(d—NofoeHyX ) —No(Hy— D) AP}

the auxiliary or Martin-Siggia-Rosé (MSR) field ¢ intro-
duced below.

4. Functional-integral formulation

The Langevin equation&) can be rewritten as

: oH
d(x,H)=—| R- | (X,) + LX), 17
o¢
where R = (R *#) denotes the reaction operator
RP=—\o(5PA+Toe®Pr 7). (18

Since this operator acts dt,,, which according to Eq.16)

satisfies a Neumann boundary condition, the Laplacian it in-

volves is self-adjoint on an appropriate spacésuffficiently
smooth functions satisfying this boundary condition.

—AOJB{(A%-(CO—&“)¢+[H¢— b+ 8(2) (Co—dn) &

—fo X ¢]~o7n¢})- (21
The singular piece:5(z=0) present in the boundary inte-
gral [z is familiar from Refs. 7-9. It results from the coin-
cidence of twoé functions. This singularity can be cured by
replacing one of the5 functions by a smeared-out smooth
analog such a$g(z)=B e BZ with a large positive but fi-
nite value ofB.

5. Boundary conditions as boundary equations of motion

Starting from the action19), we can now obtain the

boundary conditions for both¢p and ¢ in a standard
mannef® as “boundary contributions to the equations of
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motion.” This works as follows. We add source terms
jj['g?), @] to the action and consider the generating functional

P — ~ _‘7_] .
ZL1=/DL &, (.l’] e wherej stands for the set of all and for convenience, we have introduced the field
sources considered, including eventual ones localized on the

surface. That is, the source part of the action can be written
as

u
U§ﬁ= Togaﬁ+€0(5aﬂ+ 2¢%¢P), (33

B=R"- p=\o(—Ad+fohX ¢), (34
where RT denotes the transposed reaction operator, i.e.,

~ " : - Tyab=T Be, hall refer to® as response fielgsince
[ &, dl=— dtf Kok+f o,, (2 (R)P=R"™. We sha P
JLé.¢] f—oo [ Hil 8 ”} 22 this is its known physical significante??[as can be read off
hereO . — O (xt 40 =0 ¢ local functional again from our Eqgs(41) and(42) below]; it should not be
whereO,=0,(x,t) and0,=0,(x 1) are local functionals ¢\ with the auxiliary field.

of ¢ and . From the invariance of the generating functional ~ g, simplicity, let us include here in the source part of the
Z[j] with respect to a change of variablegs— ¢+ §¢ and

¢— P+ 5¢ with arbitrary (smooth functions 5¢p and 8¢
we may then conclude that

action merely bulk source¥{(x,t) andJ(x,t) as well as sur-
face sources);(x|,t) andJ;(x;,t) which couple toe, &,
¢z, and ZbB, respectively. Owing to the arbitrariness &

(6J+ 67;);=0. (23 and ¢, it follows from the above results that the “equations
Here .7 and 6} are the implied changes of first orderdigp of motion
and 8¢ of the action.7 and its source patf;, respectively, Tsx,1)=JI(x1), Xxe&B, (35
and(-); denotes the average in the presence of sources.
Explicitly, we have THx,0)=J(x1), x¢B, (36)

- _ - and the "boundary equations of motion”
s | [ fRd[J¢a¢+ T561+ fB[J¢Ba¢+ T3P -
+ T, 0= 31X, 1) 8, g, I1(X, 1) 8, G

+ T 600D+ T; 50,00+ Tag ASP - - -
nd i (A9 p= b, D5, Inh I b (A )5, (A D) 5, (37)

+ T3 AS] (24)  hold inside of averages with the actigft+7,. From the
b latter and Eqs(27)—(32), we get the previously given bound-
ary conditions for¢, Egs.(11) and(16), and two additional

with ~
ones for¢, namely,
Ty= = b= Mol ~A+Uz]A = Nof o[ A(hX ) 5 B0 39
n
Tp=0ip—NoA(Hg=2h) —NofoHgX b, (26) (90— Co) D= (d—Co)No( —Ad+fohpX )=0. (39)
T p,=(Co— 37)®— No[ Uy +Co8(0)],,+ Nof o b 6. Fluctuation-dissipation theorem
2 The significance of the boundary conditiai@8) and(39)
X (Co=dn) . 27 can be understood as follows. Let us ad@passibly time-
- dependentmagnetic field term to the Hamiltonigl), mak-
T4~ Nodn(2—Hp) + NofopX 9 eb, (28)  ing the replacement
T 4=N05(0)dn o, (29 H—Hp=H— f Jh-o, (40)
RS
T5,6=N06(0)(dn—Co) &, (30 where we assumie(x,t) to have support only off the surface.
This induces the change
‘7(A¢)B: )\Oan(b, (31) _
and ==~ fﬁi h-® 4
T2 d),=No(dn=Co) . (32)  of the dynamic action. Hence we recover the usual corre-

spondencéknown from the bulk casd
The subscript3 at local quantities indicates their restriction
to the boundary. Furthel), is the matrix of second deriva- =
tives of the| ¢|* potential Sh(x,1t) — P (42)
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between functional derivatives with respectx), taken at cum

N M M
h=0, and insertions of the response operator on the right- GgMNVM_( TT ] ¢«]] B[] @b

hand side. =1 k=1 m=1 n=1 B
Furthermore, the fluctuation-dissipation relation (49
_ 0(t—t’)(¢“(x,t)¢ﬂ(x’,t’))=<¢“(x,t)$ﬁ(x’,t’)) We normally suppress the tensorial indices, . . .,By of

43) these functions, but give their space and timemomentum

. ) ) and frequencycoordinategsuppressed aboyahen dealing
can be derived as in Refs. 21, 22, 24, and 32, owing to thgith specific ones.

form (19) of the action.

The significance of the boundary conditit89) becomes
clear if we letx’ in Eq. (43) approach a point on the bound-
ary planeB: it ensures the consistency of the fluctuation-
dissipation theorent43) with the boundary conditiorill).

To understand the Neumann boundary conditid8), note
first that according to Eq19), the reaction operator couples

V¢ to the current operator AoV 8H/S8¢. This boundary
condition ensures that the reaction operator is self-adjoint. Irwa representatiofwherepe R9~ is a (d— 1)-dimensional

addition, it can be combined with E28) to see that the wave-vector conjugate tg while o denotes the Fourier fre-

boundary equation of motio(87) for p= ¢y leads back 10 quency variable associated with the free response propa-
the boundary conditiongl6) for the currents. gator reads

The reason for considering the functiotgM:N-L:M.M)
should be clear: aside from multipoint cumulants of the basic

fields ¢ and ¢, insertions of the composite operatdix ¢

are needed because it appears in the fluctuation-dissipation
relation (43). The free response propagator and free cor-
relator one needs to compute tthéand G functions defined
above are the same as for modi&], and for the caser

>0, may be gleaned from any of the Refs. 7-9. In a mixed

Ill. RG ANALYSIS OF THE SEMI-INFINITE MODEL ~ J "~ 1 (TO _ w)_llz(
2Nl 4

+i— —[e r-lz—1
A. Preliminaries 4 Ao [
We now turn to the RG analysis of the semi-infinite model —f_e -t _g e (x-2txi2)]
J introduced in the previous section. To this end, two RG
schemes will be used: a massless one based on minimal sub- B 1 [e*"+|2*~z|—f o x4 (2+2)
traction of poles and the expansion about six dimensions, 2K *
called RS, and a massive one for fixed dimensions @
<4, called RS. —g+e_("+z+"2)]} (50)
Before embarking on a discussion of either one of these,
we must set up some notation. Let us define the generatin\%ith

functionals of(connecteficorrelation and response functions

W[j,J,K;jl,Jl]:In(e(a*:ﬁ)*(J"”)*(K':f’X¢)+(31*‘7’B)+(Jl"/’B)) fo=f.(ks,k5:C0,K)

(44 _KtKI(K?:_KZI)_CO[Ki(KZ_K?:)"'KI(KZ_KZI)]

and ko (K2 K2)(Cot Ks)— ke (K2— K2)(Co+ K2)

G[3,3;3,,3,]=In(eC-®+ Q.9+ A8 +01.40)) (45 (51)

where we have introduced the convenient short hands and

Oo=| dtf @y sy @g 9S00 i)

2CoK+ (k2= k%)

and = .
Ko (kP K?:)(Co+ Ke)— Kz (k2= K%)(CO"' K+)
(J1,¢p)= J7 dtJdeilXH.Jl(X” 1) - d)B(X” ). (47) (52)
Here
For the cumulants generated by these functionals we write
- - K=+ p2+ 70, (53)
W(N,N,L;M,M)
B _ and k.. denote the roots with positive real parts of the equa-
N B N L M _ M cum tlon
=<H [l oI (@x ey 1 Pl of , _
=1 ke =t m=1 = n=1 Ko =pPP+ (7ol2) £[(7o/2)%+i(w/\o) ]2 (54
48 The free correlatolC 5*#=(p*$P)“™ can be expressed in
and terms of the free response propagator as
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plitude renormalization o# is not required either4z=1).

A (bulk) counterterm ¢b- A ¢ is ruled out forug=0. If ug
b, 2.a ~ did not vanish, th&(ug) contribution to such a counterterm
X(p*=3)G(—pz",.z;—w). (59  would diverge as\* for d=6 within a theory regularized by
a cutoff A.

Owing to the presume®(3) symmetry of the Hamilto- We assert that the following counterterms are sufficient to
nians (1) and (6) of our lattice and continuum models, the renormalize the generating function@l: aside from those
only surface transition that is possible in three dimensions ismplied by the reparametrizations
the ordinary transition. We can benefit from the fact that its
asymptotic critical behavior can be studied by taking the No=p 4Z,(f2,d)\ (58)
limit co—« (see, e.g., Ref. 5 and belpwThe simplified and
expressions for the free response propagator and correlator
which then apply correspond to the replacements of the co- fo= 8- D2[Z, (£2,d)] "1, (59)
efficientsf. andg. by

C(p;z,z’;w)=2)\OJ dzG(p;z,z; )
0

only a counterterm of the fornﬁdtfR(iK-ATt) is required,

2= 1lim f. (ks ks CoK)=— (56) whereu is an arbitrary momentum scale. More precisely, we

o Kit K= claim that the cumulants generated by the functional
and Wied 3,3,K;31,3:1=WMJ,3.K; 3,31
B - 2K+ —(Z)\—l)f_l,u_(ﬁ_d)/z
g:=CL|Tw9:(K¢,K:,Co,K)——m, (57) B 3
xf dtde-Agb (60
respectively. -» JRS
areUV finite when expressed in terms afandf (andc, or
B. Massless renormalization scheme near six dimensions its dimensionless equivalent=cy/u).

(RS) This conclusion is based on the following observations.
We here restrict ourselves to bulk dimensionsdi<g.  The detailed-balance form of the acti¢h9) in conjunction
Then the static critical behavior is described by Landau/Vith the constraints imposed by the conservation of the order
theory. The Gaussian fixed poin,= 0, of the| ¢|* theory is parameter and power counting restricts t_he pQSS|bIe bulk
infrared stable. In part of the calculation therefore can be  counterterms to those included in H§O). Using this result
set to zero. This is possible as long as we consider quantiti€d> INPUt, one can consider the renormalization of the bulk

that have a nonsingular and nonvanishing limjt-0. How- ana_log of the fluctuatio_n-diss_ipation relati_(m3_). For con-
ever, we must keep in mind that the linear scaling field Venience we employ dimensional regularization and fix the

associated withu, is dangerous irrelevaRt® Quantities counterterms by minimal subtraction of polesdat 6. From

such as the free energy density or the spontaneous magnetfi"-e UV finiteness of the correlation function of the renormal-
zation vary as inverse powers of~u for u,—0, and hy- ized function on the left-hand side of this equation two con-

perscaling is broken. Accordingly, already a full scaling de_clusions may the'n be drawn: the renormalization factorg of
scription of the static bulk critical behavior requires the o @ndAo are reciprocal to each other, and the renormaliza-
tion function of theK-dependent counterterm is relatedzp

inclusion of a second, so-called thermodynamic, length be* ; X )
sides the bulk correlation length. Finally, in applying tech-iN the stated fashioff. The result means that insertions of the

niques of renormalized field theory, we must remember thafeSPONse field34) renormalize just ag, requiring no addi-

both the static as well as the dynamic theories are not renoHonal counterterms. _
malizable ford>4 if uy#0. Single insertions of the local A final step remains to complete the argument: we must
operator to whichu, couples can be renormalized, but the show that no further surface counterterms are needed. Given

additional counterterms to which it gives rise are not suffi-the causal structure of the thediccording to which at least

cient for curing the additional ultraviolét)V) singularities ~0ne ¢ must occur in any monomial of the actiorpower
produced by multiple insertions. counting restricts the possible candidates for such counter-

We now consider th&V functions(49), where we restrict terms ind=6 dimensions to boundary contributions to the
the temperatur@ to values above the critical temperatdig  action involving monomials of the formg¢?, Ao¢- ¢, and

and SetUOZO .tempOI’al’”y. Since the Ham|lt0n|a(ﬁ) be- ) AOF(}“(;bB(ﬁV (as well as similar ones with derivati\besvhere
comes Gaussian far,=0, there are no static UV singulari- the coefficients have momentum dimensions 1, 3, and 0,

ties to cure. Hence no amplitude renormalization of the ordefespectively. Now the cubic nonlinearity of the bare action
parameter is required, i.eZ,=1. By power counting one can pe rewritten as

finds that counterterms of the forﬁdtf]ﬁi:{)- ¢ are also not
needed. .Sin_ce this implies that the Br(_)duct_ of amplitude jmcv:)\ofoeﬂ’.gyf dtf d(vaa)(ﬁﬁvqu (61)
renormalization factor& ,Z7, for ¢ and ¢ is unity, an am- e JRy
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upon integrating by parts and utilizing the boundary condi- Grod3,3,K:31,3,1=G13,3,K:3,,34] (64)
tion (11). Thus eachg leg of the vertexx f, comes with a
derivative V. This reduces the superficial degree of diver-

gence of such UV boundary singularities with tadegs by
two, making it negativéUV superficially convergent By a
similar argument, surface counterterms involving &mnd
two ¢ fields are ruled out. Hence we are left with surface
countertermsx ¢- V¢ and analogous ones with up to two
additional derivatives. Utilizing the results of the previous subsection, one can
To proceed we follow Ref. 22 and perform the integralPerform a RG analysis of quantities that are finite and non-

J”.dt of the fluctuation-dissipation relatiq@3). This yields ~ 2€ro forup,=0. This criterion is satisfied by both thw and
the G functions forry>0, as can be checked via perturbation

@ By’ \\St— _ TV T @ theory inf,. Since such a RG analysis is standard we can be
(#7007 0)) MA(BOO XD )u=0T Mol ol #°X) et ang just state its principal results.

when expressed in terms kfandf (as well asry andcg or
their dimensionless equivalentss 7/ u? andc=c,/u) fol-
lows as a simple corollary from the fact that the response

field ® renormalizes just ag (namely, trivially).

C. RG analysis in 6— e dimensions

(DX B)BX)). o, 62 To one-loop order the renormalization functiafy is
(¢ ¢) ( )>w 0 ( ) given b)?g
where the superscript “st” indicates a static quantity while 2
the subscriptw at the expectation values on the right-hand Z.(f)=1- +O(f4). 65)

side means their Fourier transform with respect to the time 19273 6—d
differencet—t’. We multiply this equation from the right by

the inverse of the static propagator on the right-hand side anfgduation(59) implies that the beta function

: O~ :38
from the left with the vertex functioi'.4s. The result ig Bi(1)=pa,|of (66)
Iags(X,X";0=0)=No(— A"+ 79)[ —AS(X—X') can be written in terms of the exponent function
fy=wad,|olnZ,, 6
+fol GosGx XX ;0=0)], (63 D= udufdnz, (©7
namely,

T—m(f)

wherel ja. G« 4# Means a vertex functions with a singlé

leg and an insertion of the composite operatgx(¢)~. Bi(f)=—f
Owing to the operator- A’ + 74 (inverse static propagator
on the right-hand side, the UV behavior of possible primitivewheres |, denotes the derivative at fixed bare coupling con-
local divergences of the vertex function on the left-hand sidestantsf,, 7, andc,. The infrared-stable fixed poirit* for
is improved by two powers aok. This is sufficient to ensure 4<d<6 is given by the nontrivial root of the equation
that no additional surface counterterms with ah@nd one  B;(f*)=0. From Eq.(68) we find for the value of the ex-
¢ leg are needed. Since the vertex functlope. 5« s has  ponent functionyy at the fixed pointf* the result
an explicit V acting on the external leg, it has a primitive
logarithmic bulk singularity that is cured by the subtraction gt = (F%)= E 69)
provided by the bulk countertermK- A ¢. On dimensional Mo 2
grounds one might anticipate logarithmically divergent sur,hich we insert into the general expression
face counterterms of the forma{e)-(ro—A)¢ and ¢
-dn(7o—A) ¢, but these are annihilated by the boundary 3=4— 1) (70
co_nd_itions(38_) an_d (16), respecti_vely. Note also that the re- for the dynamic critical exponerg. Since the correlation
striction tow=0 is unproblematic here because each faCtorexponentn is zero ford=4, the final resulg=(d+2)/2 for
of w (|.e._, each time derivatiyereduces the superficial de- 4<d=6 is consistent with the established va{i@34°
gree of divergence by four.

A further comment is appropriate here. Field theories for d+2—17
systems with boundaries are known to have the following = 2<d=6. (71
feature. In addition to the one-particliereducible (1PI)
graphs, one-particleeducible (1IPR ones may also require The latter result is known to follow most easily from the
“final subtractions” and hence contribute to renormalization observation that the characteristic frequency of isotropic fer-
functions(see Sec. 11.B.6 of Ref.)5Nevertheless our above romagnets forT>T,. is the Larmor frequency and hence
reasoning based on 1PI graphs is conclusive since the powscales as théstatig bulk magnetic fielch.*%*
counting would not be changed if we contracted 1PR graphs Next we turn to the analysis of the critical behavior of
whose external free legs are amputated to a point. Hence thsairfacequantities. We restrict the following discussion to the
counterterms included i/, are indeed sufficient to cure case of theordinary transition, the only surface transition at
the UV singularities of th&V functions(48). The UV finite-  bulk criticality that remains in the physically interesting
ness of theG functions generated by three-dimensional cadé*® The surface enhancement vari-

, (68)
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ablec=c,/u transforms as—c(l)=c/l under scale trans- and its counterpart involving® and 4,® should hold as«
formations u— ul and hence approaches the fixed-point=(x;,z) approaches the surface poiy=(x;,0). (We have
valuecg = in the infrared limitl—0, provided its initial ~suppressed contributions proportional to the operaior
value is positive. In this case we can sgt= from the  which occur when the averagep) does not vanish?®*)
outset. Surface quantities involving the surface figfgsor ~ Equation(75) implies that cumulants involving the surface
ﬁ)B then vanish. operatorsd, ¢ and 4, ® give access to surface correlation
Let F,, be any of the two renormalized functions functions. We refrain from doing this within the framework
WINNLMM) g0 GINNMM) generated by the functionals of the e5 expansion and turn directly to Rhe massive RG

g il 2 A scheme
(60) and(64) for ug=0 andr=7y/u“=0. The invariance of '
the regularized bare functions with respect to a change of
implies the RG equation D. Massive renormalization scheme for Zd<4 (RS,)

Our aim here is to extend the massive RG scheme for
[0+ Bids =270+ (4= m)Ndy—CI]Fen=0. (72 semi-infinite systems developed by one of us and SApdt
to the dynamic theory of the modélaction(21). We assume

This may be u.t|I|zed in a familiar manner to obtain the that 2<d=4 and give up the restrictiony=0, i.e., bothu,
asymptotic scaling forms of these functions. The result onég

obtains for the pair correlation functiorC%= §*fC andf, are assumed to be nonzero,
(=G(0200) 4t T=T, agrees with the more general one pre- The scheme can be extended for general values,of
[

dicted in our previous paptr However, as we are primarily interested in the dynamic sur-
P P face critical behavior at therdinary transition ind=3 bulk
dimensions, we can simplify the analysis by settoyg o
from the outset. The advantage of doing this is considerable:
if the classical valuep=0 and the implied ong=(d  for general values of,, the renormalization factors associ-

+2)/2 are substitute¢as is appropriate for 4d<6). Here ated with surface operatofsalled “surface renormalization
we have suppressed the variabjesand \, setting both to factors” for shor} depend on the renormalized coupling con-

unity. The variablec does not appear on the right-hand sideStantu (to be defined beloyandthe ratioc/m, wherec and
because the scaling functiovi is a property of thec=c  Mare the renormalized anafBpf the bare surface enhance-

fixed point. Deviations of from the valuec=o produce MeNtco and the renormalized mass (to be introduced be-
corrections to the displayed leading infrared contribution. 0W), respectively. This additional dependence on the mass

The derivation of the scaling form of the surface correla-"atio ¢/m makes the RG analysis rather cumbersome. If we
tion function setco=0, we focus directly on the asymptotic regiraém

= and avoid this difficulty because the surface renormal-
Cyy(rit)=C(r;0,01) (74) ization factorgwhich are of purely static origjncan then be
’ T chosen to depend merely en

C(r;z,z";t)~r2=977Y (z/r,z'Ir;tr %), (73

is not quite so straightforward becau&d._.. vanishes _ o _
wheneverz=0 or z' =0, as a consequence of the Dirichlet 1. Static bulk renormalization functions

boundary condition into which Eq11) turns forco=. One LetT{" be the static bulk vertex function witk legs of

ossibility to cope with this difficulty is to study the behavior stb . - .
gf Cn in};he Iimpit c—». As is expgunded els)elwhe?’é‘g'44 type ¢ and| insertions of¢)’/2, andI'("(q,Q) the Fourier

. . Co transform of this(translationally invariantfunction, up to

this can be achieved by an expansion in powers of.1/ . d
. " the momentum-conserving factor£2°6(=q+ Q). Hereq
According to the boundary conditiond1) and (39), the ; "
~ 1 andQ are theN andl momenta conjugate to the positioxs

boundary operatorgh; and® can be replaced byo “dnbs  andX of the legs and the inserted operators, respectively. We
and c,'9,®5, respectively. From previous detailed write
investigation$®44 of the 1t, expansion it is therefore clear

how the scaling forms that the correlation and response func- To=M?+ Sm?, (76)
tions involving these boundary operators take at the ordinary

transition can be determined: making the replacemeis ¢=[Z¢(u)]1’2¢ren, (77
—dpp and @y— 9, D5, one studies the so-obtained ana- , T

logs of these functions, with, set to. & =[Z42(W)] [P ]ren: (78)

An alternative strategy, which leads to equivalent results
is to use the boundary operator expangiBOE). According
to Egs.(11) and(39), both~the order parameter densipyas Up=Z,(uym*~du, (79
well as the response fiel® satisfy Dirichlet boundary con-
ditions if co= <. In analogy with the static casé’a BOE of  Which introduce the renormalized mass the renormalized
the form densities e, and [ ¢?],en, and the renormalized coupling

constantu.
d(x,t) =~ D(Z,t)dp(Xg,t)+ - - - (75) The mass shifsm? and the renormalizatiott Z” ) factors
70 are fixed via the familiar normalization conditions

and
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T8 faum)|go=m?, (80 proportional tol';). | 5, chosen in conformity with the mul-
tiplicative renormallzatlor(86).
Our second remark concerns the renormalizationpgf,
I reddiu,m)|g-o=1 (81 andf in Egs. (85 and(88). The fact that no primitive UV
singularities involving a counterterm proportional ¢¢ ¢*
fbl)rer(q Qu,m)|g—0-0=1, (82)  occur implies that the renormalization factor @f,, is given

by Z ;"% (up to a UV finite factoy. This result means that the
and latter product of operators transforms according to its engi-
neering dimension under RG transformations and is related
to the conservation of the order paraméter.

The form of the renormalization factor &fZ; *Z}?, fol-
lows from the fluctuation-dissipation theordiB); it teIIs us
1 70,Ug) that */®“ is a RG invariant. As a direct consequence, a

(84)  relation generalizing Eq68) holds between the beta func-

tion B¢ and exponent functions, which now are defined via

fgﬁ%,ren({%}?U,m)|{qi=o}=m“‘du (83
for the renormalized static bulfb) vertex functions

T M) =[Z, (W) IV Z 42(u) ] TR (-

with (N,1)#(0,1),(0,2).

2. Dynamic bulk renormalization functions Bi(u,F)=mdg|of,  Bu(U)=mMdpy|ou (90)
We introduce renormalized auxiliary and response fieldsand
bren and D, a dynamic bulk renormalization factét, ,
and the renormalized bulk variablesandf such that 7.U,H)=miloinZ,., Kk=\,¢,¢? (91

D=1Z4(1)] Y2hren, (85)  respectively. We have

b= Vg 6—d

()] [Zz/)(u)] 2‘I’renv (86) Bf(uyf):_f T_n)\(u’f)+7]¢z(u) . 92)
No=m~*Z,(u,)\, 87)

Since 7= 74(u*), whereu* is the nontrivial zero of8,,,
this form ensures that the established re§td) for the dy-
(88) namic exponenj is obtained if the value

and

fo=m® D Z, (u, )] HZ ().

To fix the functionz, , we choose the normalization condi- 6—d+7
tion 7y =m(u*, )= — (93
i (b.ren) — _om-—4y saf pertaining to the infrared-stable fixed point*(,f*) is sub-
f —pe0=—2 - .
&qz ¢“¢ﬂ(q’ U, ’)"m)|q“”‘° m=x 8%, stituted into Eq.(70).

(89

Finally, let us note that the renormalization factarg,

(®, ren) Z42, Z,, Z) introduced above are all UV finite fal<4,
whereF 4oge denotes a renormalized dynamic bulk Vertexalthough they are logarithmically divergent in the UVdf
function in the momentum-frequencgd) representation. =4 (i.e., they have pole terms dt=4). In other words, if

Let us add a few clarifying remarks. Note, first, that thed<4, then the UV singularities of thestatic and dynamic
renormalization functions introduced above are sufficient tdulk theory are absorbed by the mass shift?.
absorb the UV singularities of the vertex functions with ar-
bitrary numbersN andN of ¢ and$ legs of the dynamic
bulk theory for d=4. Hence the above reparametrizations
also yield UV finite renormalized functions when applied to

the bulk analogs of thBl+N point cumulants wittN ¢ and  the G functions(49) that result from these when the bound-
N ¢ fields, ie., to the bulk analogs of the functions g, operatorsbB and ¢;; are replaced by the normal deriva-

N N,0;0,0
Wl ) defined in Eq(48). The same remark applies 10 e 9,® and 9, ¢, respectively. We denote these functions
the bulk analogs of th& functions(49).

as

The meaning of the multiplicative renormalizability of the
response fieldP with respect to the renormalization of the
N-+N point bulk vertex functions with an insertion of the

3. Static surface renormalization functions

In order to generalize the above approach {R® the
semi-infinite case, we sep =0 and consider the analogs of

(N,N; M, M)

o]

composite operatogx ¢ has been discussed elsewlféfé N N Moo oM eum
and need not be reiterated here: it implies, in particular, that H H 1__[1 &n@ﬁmﬂl I (94)
the renormalization oﬂ“ (¢X¢)B involves a subtraction B - " "~ Co=>
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Following Refs. 25 and 26, we introduce the static surface

renormalization factoZ, ..(u) and the renormalized surface
operator @) en Via

(9n¢:[Z¢(U)Zl,w(u)]llz((gnd’)ren- (95

PHYSICAL REVIEW B6, 024408 (2002

N+N+M+M  M+M )
2 1ot 5

Dt N1 Goo,ren

(102

with
Next we take the normal derivative on both sides of the

fluctuation-dissipation relatiof#3) with respect tox’ and set
t’=0. The result reads

- 9(t><¢“(x,t>an¢ﬁ(xg,0>>=<¢a(x,t>an?f)ﬁ<x3,0>>,(%)

which suggests to renormaliﬂgﬁ) in complete analogy with
Eq. (95) by

In®=[Z 5(U)Z1 (W) ]"H 3, D) e (97)

This definition ensures that the modified fluctuation-

dissipation relation(96) carries over to the renormalized

theory. Moreover, it establishes consistency with the renor-
malization of the corresponding static correlation function in

Ref. 26, provided we fix; ..(u) as in Eqs(7.108—(10b) of
that reference. To this end we define the renormaliZed
functions via

G&Nré\lnM M) _ Zg;(KHNJrI’(/I+M)IZZI’°(CM+M)/2G§JN,N;K/I,M),
(98)
if (N,N;M,M)#(0,0;1,1). The excluded function
GO P, w)=[Z4Z1.] G U p,w)
-G %000, (99

J Jd J
Dp=m——+Buo+Bior —(4=mINdy (103

and

(N,N;M,M)
o, ren

EZ;(NH\HKA+M)/221—(M+M)/2(ma G(N,N;I\N/I,M)

m|0TO) ‘970 o

= (2= ny)m?[ 3, GINMMT (104

Here the exponent function, ..(u) is defined by settinge
=(1>) in Eq. (91). Just as the other static functions
7u(u), 74(u), 742(u), it depends only om (andd), but not
on the dynamic coupling constaftand is precisely the same
as in Ref. 26. The |nhomogene|t|$'\‘r2‘nM ‘M involve renor-
malized functions with an insertion effddx¢2/2 given by

[, GINMM
:Z:/)(KHN+IVI+M)IZZI’O(OIT/I+M)/22¢2&TOG:(>OIN\J,N;IT/I,M).
(109
We proceed along lines similar to those followed, for ex-

ample, in Refs. 50 and 51, in order to derive the asymptotic
scaling forms of the response and correlation functions from

requires an additive counterterm, which we choose such thdbe CS equationgl02). The deviationdr, of the bare vari-

the normalization condition

GO P, )lp=u=0=0 (100
holds. To specifyZ, .., we require that
G011 1
2 Gren )(piw)|p w=0"" “om” (10D

p

Equations(100) and (101) are equivalent to the normal-
ization conditions(7.10g and (7.10h of Ref. 26; together
with Eq. (99) they imply thatG(®%% requires a subtraction
and the renormalization factdf,.. is the same as in the
static case.

E. Callan-Symanzik equations
The Callan-SymanzikCS) equations can now be derived
in a standard fashion. We take a derivat'm% of the bare

(dimensionally regularizeds., functions(94) at fixed values
of the other bare interaction constamntg and f,. Using the

able 7, from its bulk critical valuery. depends on the tem-
perature difference=(T—T.)/T. according to
(106

OTQ=To— Toe™ T,

which holds if 7 is sufficiently small. Near criticality the
massm-—i.e., the invers& ™! of the (second-momeitbulk

correlation lengtié—behaves as

with  v=(2+ 77;2)*1. (107
Furthermore, integration of Eq$91) and (90) gives the
asymptotic dependence

m~| 79— 7oc|”

Zo~m7, k=¢,d N, (1), (1089

for (u,f)—(u*,f*) or m—0. We insert this result fok
=\ into Eq. (87), substitute expressio®3) for 7} , and
arrive at

A~mi\, (109
0

above reparametrizations and definitions of the beta and exvherej is the dynamic bulk exponeri7l). With the aid of

ponent functions then yields

these results, it is straightforward to deduce the scaling forms
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G&N’N?M'M)({X},t; To,Ug,To,Ng)
ord

N+ N)B+ (W +M) B ELECN'N;M'M)({mX},)\Otm?’).

(110

Here B=(v/2)(d—2+ 7) is a standard bulk critical index,

while g is its surface counterpart for thadinary transi-

PHYSICAL REVIEW B 66, 024408 (2002

IV. MONTE CARLO SPIN DYNAMICS SIMULATION

The Monte Carlo spin dynamics simulation works as fol-
lows: A Monte Carlo simulation of the lattice model with the
Hamiltonian (1) yields a spin configuration that is used as
initial condition for the integration of the equations of mo-
tion (2). When the integration is completed, the time evolu-
tion of the spin configuration is analyzed for position and

tion. (For recent estimates of the numerical value of the lattefime displaced correlations. The correlation functions are

atd=3, see Ref. 26, its references, and Ref) The set{x}

then stored in arrays, and a new initial condition is generated

comprises all position coordinates on which the respectivq}_,y the Monte Carlo simulation. Typically, this is repeated

function depends. The cas8l(N;M,M)=(0,0;1,1) is spe-
cial in that the termd(t—t) 8(x;— X)) G®%*p=0,0=0),
which results from the subtraction in E9), should be
subtracted on the left-hand side of E410). We have sup-
pressed this term, because we cons{@ér® 1Y here not as a
distribution, but as a function far—t>0.

Let us chooseN,N;:M,M)=(0,2;0,0) in Eq.(110 and
consider the case of the spin-spin cumul&)t If we set

700 to 1000 times. The correlation functi®@f?(r;z,z’;|t
—t'|) [see Eq(3)] is finally obtained by averaging over the
individual measurements.

The Monte Carlo algorithm is chosen as a hybrid scheme
consisting of Metropolis sweeps, Wolff single cluster
updates? and over-relaxation sweep$Typically, one hy-
brid Monte Carlo step involves 10 individual steps, each of
which can be one of the updates listed above. Both the Me-

No=1 for convenience, we obtain the scaling form given bytropolis and the Wolff algorithm work in the standard way,

Eq. (73) in the limit m—0.
The scaling form of the surface structure functigd) at

where the reduced coordination number of the lattice at the
surfaces and the modified surface couplingnust be taken

the ordinary transition can be derived from the expansion oft0 account. The acceptance probabifityf a proposed spin

G(99%02)in powers ofc, ! [see Eq(110)]. Alternatively, we
can combine the CS equatioft02) with Eq. (110 and the
BOE (75) (applied to the renormalized thegrio conclude

that the coefficient functio(z,t) asymptotically satisfies

the CS equation

N1
2

Dy D(z,t)=0. (112

In the limit m— 0, Eq.(11)) yields a leading short-distance

singularity of the form

D(z,t) ~ Dozt * 72,
z—0

(112

where the exponenyy . can be expressed in terms pfand
the surface correlation indenﬁ”d=2+ n+ 7. It follows
that the scaling functio®y” in Eq. (73) must behave as
ord
Y(z,z';t) =~ (z-2)7 ~D2Y (1.

z,z’ -0

(113

This in turn implies that the Fourier transformed surface

structure functiorC,4(p,w) at T, can be written as

Cll(p,w)~p”ﬁrd_l_z’o(wp_f’). (114

flip in the Metropolis algorithm is defined by(AE)
=11exp@AFE/kgT)+1], wherekg is Boltzmann’s constant and
AE is the change in configurational energy of the proposed
move.

The over-relaxation part of the algorithm performs a mi-
crocanonical update of the configuration by sequentially ro-
tating each spin in the lattice such that its contribution to the
energy of the whole configuration remains constant. The
implementation of this update scheme is straightforward. To
see this, note that the energy of a spin with respect to its
neighborhood has the functional form of a scalar product
according to Eq(1). Therefore, a spin can be rotated about
the direction of the local field generated by its neighbors
without changing the local energy. The angle of rotation can
be chosen randomly for each spin. However, in order to have
minimal autocorrelation times, a reflection—i.e., a rotation
of a spin by 180°—turns out to be the most efficient over-
relaxation move. In one over-relaxation sweep this update is
applied in sequence to every spin of the lattice.

Typically, a hybrid Monte Carlo step consists of two
sweeps of the whole lattice via the Metropolis algorithm
(M), four sweeps of the whole lattice by means of the over-
relaxation algorithm(O) described above, and four single
cluster updates according to the Wolff algorithi@)( The
individual updates are mixed automatically in the program so
as to generate the update sequeRbt®@COCMOCOC As
our random number generator, we have utilized the shift-
register generator R1279 defined by the recursion relation

The limit p—0 exists. By consistency, we must therefore X =X, &X,_, for (p,q)=(1279,1063). Generators such

have

C11(0,w)=constw 61~ s,

(115

In the next section, we will check the predictiofisl4) and

as this one are among the fastest available. However, they
are known to cause systematic errors in combination with the
Wolff algorithm>* For lags ,q) as large as the ones used
here, these errors are much smaller than typical statistical
errors. The hybrid nature of the algorithm reduces them

(115 by means of accurate Monte Carlo spin dynamicsfurther®®

simulations.

Using this Monte Carlo scheme, we have investigated lat-
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tice sized. betweernL =12 andL=72. The integrated corre- munication among the processes is determined by the trans-
lation time of the hybrid algorithm is determined by the au-fer of initial configurations from the master to the slaves at
tocorrelation function of the energy or, equivalently, by thethe beginning of the simulation, and by the transfer of the
autocorrelation function of the modulus of the magnetiza-correlation data from the slaves to the master for the final
tion. Either quantity isD(3) symmetric, and for sufficiently evaluation and output. IN processors in parallel are used in
long times, the decay of the corresponding autocorrelatioithis way, the speedup is very close to the theoretical limit
functions is governed by the same autocorrelation time. Thi®\—1 for sufficiently large integration times,. We have
time scale characterizes the slowest mode of the Wolff algoimplemented the master-slave version of the spin dynamics
rithm, so it also determines the correlation time of our hybridalgorithm on the Alpha Linux cluster ALICE at thiestitut
Monte Carlo algorithm. Note that the autocorrelation time offur angewandte Informatikt the Bergische Universit&Vup-
the Metropolis algorithm is determined by the decay of thepertal, using up to 32 processors in parallel for the largest
autocorrelation function of therder parameter which de-  systems. Communication between the processors is facili-
cays particularly slowly near the critical poifdritical slow-  tated by the MP(message passing interfa@@mmunication
ing down. For the hybrid scheme described above, the aukbrary.
tocorrelation time does not exceed 10 hybrid Monte Carlo A well-known major problem one is faced with in any
steps for the largest lattice size B&=T,. In order not to computer simulation study of critical behavior is how to ex-
obtain too strongly correlated initial conditions for the equa-tract the asymptotic critical behavior from the data. This is
tion of motion, an initial condition is generated every tenthparticularly challenging in our case since we have to cope
hybrid Monte Carlo step. with two additional complicationssurfacecritical behavior

The integration procedure for the equations of motion isanddynamics In the asymptotic critical regime the value of
completely separated from the Monte Carlo part of the prothe ratior,=J,/J does not matter iti=3 because surfaces
gram. The second-order sublattice decomposition integrata@¥f three-dimensional isotropic Heisenberg ferromagnets are
described in Ref. 29 is used here. Long-time stability is pro-always disordered in the absence of external fields. Thus
vided by the exact conservation of enefgge Eq.2)] and  such systems always belong to the ordinary surface univer-
spin normalization. The magnetization is only conservedsality class. However, to what extent the asymptotic scaling
within the accuracy of the discretization, i.e., to second ordegan actually be observed in a computer simulation on finite
in the time step. Typical time stepk used here range from systems is a completely different issue.
5t=0.040 to 6t=0.080, depending on the size of the sys-  The experience made in a previous study of the static case
tem. For the largest systeni£72), the total integration by one of us' suggests that it should be possible to avoid
time is 7,=81920; in this casest=0.080 was used. Note €xtended crossover regimes by a careful choice of the ratio
that the decomposition integratb¢st) has the exact time 1. In order to find out which value af; is optimal in the
inversion propertyl (— 8t)=1"%(5t). This guarantees that Sense of giving the largest asymptotic regime, we proceed as
the time evolution of discretization errors, such as those afin Ref. 31: We consider the magnetization profile in thermal
fecting the conservation of the magnetization, does not corequilibrium, determine ; in such a way that a discrete ver-
tain systematic drift&® sion of the Dirichlet boundary condition holds, and then

If the algorithm is implemented on a single processor maverify that this choice suppresses corrections to the
chine, the major part of the CPU time is consumed by theasymptotic behavior, making the asymptotic regime larger
integration of the equations of motion. This fraction in- than for alternative values of.. Let us explain this in detail.
creases with system size because the CPU time needed fbhe equilibrium profile is
the integration scales agL3, whereas that of a hybrid
Monte Carlo step scales as’. If Wolff updates are used
exclusively, the average scaling is reducedl 6 7.5? For the
purposes of the present investigation the integration time
has to be chosen such that the slowest spin wave or spMhere M,=2,S is the total magnetization, whilg=ij
diffusion modes in the system can be identified. B¢ T, +1/2 withiz=0, ... L—1 indicates a lattice plane parallel
this means that,~L? [see Eq.(71)]. Below T, one must to the surfacefsee Eq(1)]. Note that according to this defi-
haver,~L? for an isotropic ferromagnet in order to resolve nition of z, the “boundary planesz=1/2 andz=L—1/2 of
the slowest spin-wave mode. Abovi,, the dynamics is the system are located half a lattice constant away from the
dominated by spin diffusion, which also requirgs-L? for ~ first and last lattice layers, respectively. With this convention,
the resolution of the slowest modes. It is therefore very dethe lattice model defined by Eql) may be viewed as a
sirable to distribute the integration task of the simulationdiscrete versionof the Ginzburg-Landau Hamiltoniaf6),
over several processors on a parallel machine. where the order parameter of the numerical ce# repre-

A simple and very efficient implementation on a parallel sented by the spify at its center
machine with at least four processors can be constructed ac- The bulk magnetizatiom, can be approximated by the
cording to the following master-slave idea: The master provalue of the magnetization in the center layer of the system,
cess runs the Monte Carlo part of the simulation to providd.e., my=m(zy,;q) with z,4=L/2 when the number of layers
initial conditions on demand, and the slave processes intd= is odd. For evenL, znq,=(L—1)/2 and zmjg,=(L
grate the equations of motion for different initial conditions +1)/2 are equivalent choices fag,q; in this case,my
in parallel and analyze the correlations. The amount of com=[m(z,iq 1) + M(Zng2) 1/2 is interpreted as the bulk magne-

L-1
tot

m(z)={ —-7-
( ) |Mtot| i1,i,=0

Stiy.igig) | (116
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FIG. 1. Structure functiorC,4(0,w) for r;=J;/3=0.3(X), FIG. 2. Scaling functiorr(x) according to Eq(114). Data ob-

0.73(+), and 1.0(*). Error bars (one standard deviatipnare  tained forr,;=J,/J=0.73 andp=(n=/36,0,0), withn=1, ...,5,

smaller than the symbol sizes. The solid lines indicate the theoretiare shown. Error baréne standard deviatiprare smaller than the

cally expected power layl15) for w—0. symbol sizes. The data follow E¢120) up tox=1. The data for
x=1 are outside the scaling regime.

tization. The ratian(z)/m, then depends only arlL, which  gc51e5 generally depends on microscopic details, and is there-

motivates us to define the scaling function fore a nonuniversal propertysee the discussion in Sec.
I1.C.9 of Ref. 5.
M(z/L)=m(z)/my, (117 On the level of a mesoscopic description via our con-

tinuum model, a Dirichlet boundary condition can be en-
gorced on the mesoscopic length scales on which such a de-
scription makes sensgeveral lattice constantdy setting

the enhancement variabtg to the fixed-point valuet .

For valuescy<, the Dirichlet boundary condition doemt

hold on mesoscopic scales, neither for the regularized nor for
the renormalized theory. In other wordsc@dependent ex-
trapolation parametezy# 0 occurs. This deviation from the

to a remarkable accuracy. Hefg=2z,/L is the scaled ex- pjrichlet boundary condition corresponds to a correction to
trapolation parameter. In analyzing the data we have acscqjing: It is irrelevant inasmuch as it vanishes in the limit

iepted thef es;imateﬁzo.ﬁQG% ?1'002|5 and ”:0'707?; zo/z—0. Choosing a particular valug =r{? for the ratio
+0.0035 of Ref. 56, and utilized the valyy =0.834(6) o of interaction constants such thgf=0 is an appealing way

Ref. 31. . L "
i . to mimic the Dirichlet boundary condition of thgy=c con-
From a least square .ﬂt of EL13 to thg data for Varnous  inyum theory on a lattice. As we know already for the static
sygtem slzes we Obtam the extrapolaﬂpn paramegem case from Ref. 31, and will verify for the dynamic theory
units of t_he lattice spacing. For the ch0|caals/_J=0.3 and below, this choice of ; suppresses corrections to scaling and
1.0, we findzo= _.0'34 a_nd_2020.46, _re_spectlvely. Qn the hence enlarges the regime in which the asymptotic scaling
other handz, vanisheswithin the statistical errors if;/J behavior is observed.

_ 31 N -
=0.73"" To put these findings in pe[jspfgaqt!ve, some e>t<)plana— The optimal value which yields a vanishing extrapolation
tions are necessary. Owing to our definitionzdigiven be- 5 2 meters, for temperatures sufficiently close @, and

low Eq. (118)], a fit curve (118 with scaled extrapola_tlon moderately large lattice dimensiohss r(lD)=0.73. For val-
parameter{,=0 means that the measured magnetization, . . ose to this optimal one, we have

profile extrapolates to zero half a lattice constant away from ’
the outermost layers;=0 and i;=L—1 of our lattice zo=a(r—r{P)+0[(r;—r{P)?], (119
model. In this sense, the profile satisfies a Dirichlet boundar h is a factor of ord itv. This behavi read
condition on the scale of the lattice constant in this specia ereais a tactor ot oraer unity. This beéhavior was already
case. obtained in Ref. 31, where crossover effgcts and th_e behavior

Let us emphasize that such a boundary condition on f the order parameter profile as a functiorr pfwere inves-

microscopic scale must not be confused with the Dirichle Igated in more detail for the static case. The present work

boundary condition which the order parameter satisfies at th(éonﬁrms these findings: Our results for the dynamic surface

ordinary transition on long scales, irrespective of the precis<§trUCture function presented in the next section are fully con-

value of the ratia ;=J,/J. The latter is an asymptotic long- sistent with them.

s_cale property, associated with the_correspondlng ordlnaryv THE DYNAMIC SURFACE STRUCTURE EUNCTION

fixed point of the RG, and hence universal. By contrast, the

boundary condition that the order-parameter profile of a Our simulation results are displayed in Figs. 1-4. They
given microscopic model is found to satisfy on microscopicwere obtained foilT=T., L=72, and the total integration

where T=T, is assumed. The analysis of the data reveal
that the scaling functiodM ({=z/L) can be represented by
the simple fit formula

M(Q)=Bul({+ ) (1= L+ {)]P P (118
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1 - - s tization profile vanishegsee Eq(119]. The deviations from
e .. 2;2 . the power law(115 for r;#0.73 can apparently be attrib-
n=3 x uted to dynamic surface-induced corrections to the
ox) n=4o asymptotic behavior that originate from the nonzero,
n=5m .
r,-dependent value of the extrapolation parameger
0.1 . Figure 2 shows a scaling plot oE;(p,»), where p
/T =0.3 =(n#/36,0,0) is oriented along the surface. As one sees, the
k& - scaling regime irx shrinks as the mode indexis increased
from 1(X) to 5(H). For x<1, the shape of the scaling
function in Eq.(114) is described surprisingly well by the fit
0.01 . . . function'®
0.001 0.01 0.1 1 10
x=op” T(X) = ao[ 1+ (x/x0) ] 3~ D/, (120

FIG. 3. Scaling plot of the surface structure function far S
—3,/1J=03 and||o:g(r[1)qr/36 0.0) wlthhnzl ! gErrcl)Jr be:rs(othe which is inspired by the known zero-loop resli?. The ex-

standard deviationare smaller than the symbol sizes. The data doPON€Nt at the square bracket is chosen so as to reproduce Eq.
not follow Eq. (120. (115 in the limit x— (p—0 at fixedw#0). The ampll-
tude oy and the crossover parametey are used as fit pa-
rameters.

The agreement between the data displayed in Figs. 1 and
) A ) 2 and the scaling form&l14) and (115 is quite satisfactory.

_In Fig. 1 the structure functioi€,4(0,w) is shown for  However, on closer inspection small deviations are found to
different values ofr, in comparison with Eq(119. The  remain. Note that as pointed out at the end of the previous
exponent {+1— 7)/; has the value 0.8560.005 that fol-  section and in analogy with the results of Ref. 31 for the
lows from the estimatg(d=3)=2.482:0.002 obtained by equilibrium case, the choiag =0.73 yields indeed the larg-
the substitution,(d=3)=0.036-0.004 (Ref. 56 in EQ.  est regime in which asymptotic scaling holdg®e Fig. 1
(71) and the current estimate of the surface correlation expo- Hence we expect the choice=0.73 to be optimal also
nent 7?"(d=3)=1.3580.012 (Ref. 3] of the ordinary for the surface structure factor fittite momentum transfep.
transition. Our results for;=0.3 andr,;=1.0 depicted in Figs. 3 and 4

The dependence dt,,(0,w) onr, is particularly inter- ~ confirm this expectation. Figure 3 shows that the data for
esting. Ifr, is small ¢,=0.3,X), our simulation data ap- ri=0.3 approach the scaling functier(x) of Fig. 2 mono-
proach the asymptotic power lai#i15 from above whereas tonically frombelowas the mode numberis increased from
for larger values of ; (r;=1,*), the asymptotic power law 1to 5. The nonasymptotic surface-induced corrections are so
is approached from below. In the latter case, the data evelarge that the data for differemt (i.e., momentum transfers
remain outside the asymptotic regime for the frequency p) are well separated even on a logarithmic scale. In other
range shown in Fig. 1. The best agreement with @45  words, no data collapse nearly as nice as in Fig. 2 occurs,
over the largest frequency range is obtained for the choicalthough the crossover paramexgrappears to be consistent
r,=0.73(+), which has already been identified as optimal inwith the results displayed there.

time 7,=81920. For the smallest accessible frequency
omin= 2/ 7, finite-size effects turned out to be negligible.

the sense that the extrapolation paramegefor the magne- Our results forr; = 1.0 (see Fig. 4 show a similar behav-
ior, except that the scaling functian(x) now is monotoni-
10 : : : cally approached fromabove as the mode numben in-
n=1~x creases. The crossover paramedgis again consistent with
L o e Z:g . our findings in Figs. 2 and 3. The nonasymptotic surface-
n=4o induced corrections are as large as in Fig. 3 but have oppo-
TF |n=5" site sign.

From these results a consistent numerical picture of dy-
namic surface scaling emerges. For the optimal choice
=0.73, our simulation data for the dynamic structure func-
tion bear out quite convincingly the asymptotic behavior we
predicted on the basis of our RG work. For valuesr pf

deviating significantly from 0.73, the data exhibit pro-
0-08 001 5 '01 0'1 1 10 nounced corrections to scaling. These entail that our data for
) ' o values like r;=1 and 0.3 do not exhibitdirectly the
x=@p asymptotic scaling form and power law of the surface struc-

FIG. 4. Scaling plot of the surface structure function fgr ~ ture function Cua(p,w) for nonzero and zero parallel mo-
=1.0 andp=(n=/36,0,0), withn=1, . . . ,5.Error bars(one stan- ~mentump, respectively. Yet they seem to be consistent both
dard deviatioh are smaller than the symbol sizes. The data do nowith the theoretically predicted asymptotic behavior as well
follow Eq. (120). as with the one extracted from our simulation data ffor

c(x)

g/ = 1.0

0.1 ¢f
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=0.73 because the observed deviations appear to be attribut-2=(d—2+ #)/2, which is=0.5 in three dimensions, the

able to corrections to scaling. ratio approaches indeed zero, albeit with a considerably
In order to demonstrate universality, it would clearly be smaller power than in the case of modelwhere the value

very desirable to verify the approach to the asymptotic criti-of this exponent is 2 7=2).

cal behavior also for unfavorable valuesrgfsuch as 1.0 and Hence two conclusions may be drawn: First, in order to

0.3. One conceivable way of trying to reach this goal is byobtain the asymptotic critical behavior of order parameter

means of brute-force numerical means. However, in view otymulants we can take the limit/A©—0. If one sets

the enormous numerical effort that was necessary to producgy (9—=q from the outset, the energy density relaxes instan-

the above simulation results, we do not consider this to be ?aneously, This means that the effects produced by the cou-

promising strategy at present. ling to the energy density correspond to a change of the
We believe that a better strategy would be the incorporapI 9 9y o P 9

. . . . ) eparameters of the original mod&| up to corrections due to
tion of nonasymptotic correction terms in the analysis of th .
|]rrelevant operators. In other words, the energy conservation

simulation data. Unfortunately, there are various sources 0 hould not affect the asvmptotic critical behavior. so that our

such corrections, and detailed knowledge about their for t del should b)I/ P 0 th . lit ’I ¢

and strength is either scarce or not available. A systemati@ Ice model shoud belong o the universaiily class of our
semi-infinite modeld. Second, we cannot rule out that the

investigation of the various kinds of nonasymptotic correc- . ) -
tions of static and dynamic origin that might play a role in corrections to the asymptotic behavior induced by the con-

the analysis of the surface critical behavior we are concernedervation of the energy are less important for an improved
with here evidently requires more numerical and analyticaRnalysis of the numerical data presented above than the pre-
work, and is beyond the scope of this paper. Let us therefor®iously mentioned corrections to scaling. To assess the rela-

simply discuss some possible sources of deviations fronive importance of the various types of corrections to scaling
scaling, beginning with the ones that do not correspond tgéeems difficult without reliable additional information based

corrections to scaling. on detailed calculations.

Two obvious sources of this latter kind are insufficient The corrections to scaling we have just considered are
momentum and frequency resolution. By virtue of the rela-associated with irrelevartiulk variables and hence are not
tion dp=2=/L the momentum resolutiodp is intimately  specific to systems with surfaces. Analogous ones are in-
linked to the system sizé, which despite formidable duced by irrelevansurfacevariables. A well-known example
progress in simulation techniques and computational reare the corrections-| resulting from deviations of &} (the
sources still is a serious |Imltlng factor. The frequency reSOTeciproca| surface enhancement Variab'mm the fixed-
lution w=2m/7, is limited by the total integration time, . point value 1¢%,,=0. One evident consequence of such cor-
From our data folCyy(p,t) (not shown we conclude that,  rections(which is, however, not the only one when Landau
IS smifPuent.Iy Iong. The frequency resolutiodw/J=7.7 _theory is not valid is that the Dirichlet boundary condition
X10"" that is available here rivals that of neutron scattering,o order-parameter density satisfies at the ordinary fixed

. O . . .
expenmgnté. The momentum resolution is given bjp oint ceases to hold. In view of the two observations made
=0.087 in units of the inverse lattice constant for our larges bove—namely(i) that the choice ;=0.73 suppresses cor-
systems, and is therefore much more restrictive. rections to scaling both in the case of the dynamic structure

One familiar type of corrections to scaling are those in-¢,nctions as well as in static quantit?ésand (i) that the
duced by deviations of the coupling constaritom its fixed  yeyiations from scaling according to Figs. 3 and 4 have op-
point valueu*. Just as in the static case, they are governe%osite signs depending on whether is bigger or smaller
by the Wegner exponeni, = 5,(u*) whose value is<0.8  than the optimal value 0.73—the corrections to scaling

sult from the RG flow of the mode-coupling interaction con- rgje.

stantf. Upon linearizing the flow about the infrared-stable
fixed point U*,f*), one obtains in addition te, a second

. K — * f%

correction-to-scaling — exponent, w=(3B/of)(u”.1*), VI. SUMMARY AND CONCLUSIONS

which in contrast to the former is of purely dynamic origin.

We are not aware of any reliable estimatesvgffor d=3.%’ We have presented a detailed study of the surface critical

Other potentially dangerous corrections might be causetiehavior of isotropic Heisenberg ferromagnets at the ordi-
by a previously mentioned important difference of the dy-nary transition, using both sophisticated analytical tools as
namics of the simulated lattice model and the semi-infinitewell as high-precision Monte Carlo spin dynamics simula-
continuum modelJ: that the former conserves the energytions. In theanalytical partof our work a continuum model
while the latter does not. In the Appendix we generalizethat represents the corresponding universality class of bulk
modelJ for the bulk case by incorporating energy conserva-and surface critical behavior—namely, an appropriate semi-
tion. The resulting model is analogous to mo@elwith n infinite extension of model—has been formulated and its
=3 components and reduces to this when the mode-field theory constructed. To this end we have determined the
coupling interaction constaritis set to zero. We show that relevant boundary contributions to the dynamic action func-
the ration/A(© of transport coefficientéwherex©) denotes  tional which are compatible with the general featufgam-
the analog of\ for the energy density) transforms under metries, detailed balance, locality assumptions, conservation
the RG asl*” 2 in the long lengthscale limit—0. Since; laws, etc) of this class of systems. These were shown to
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correspond to boundary conditions for the resulting dynamidur angewandte Informatikt the Bergische Universit&vup-

field theory. pertal for providing access to the parallel cluster ALICE.
In order to investigate the critical behavior of this semi- Partial support by DFGfor M.K. via the Heisenberg pro-

infinite model J, we have employed two distinct RG gram under Grant No. Kr 1322/2-1, for H.K. and H.W.D. via

schemes. The first is a massless one based on the expanstbe Leibniz program Di 378/2-1 and SFB 238 gratefully

about the upper critical dimensiali =6. To avoid the dif- acknowledged.

ficulties it has in handling the problem adequately below the

upper critical dimensiond* =4 of thestatictheory, we have APPENDIX: THE IRRELEVANCE OF ENERGY

designed and utilized an appropriate extension of the mas- CONSERVATION

sive RG scheme for bounded systems of Diehl and

Shpot?®?® As usual, this works in fixed dimensions, and . . ;

avoids the dimensionality expansion. By combining the re-/'a the equations of motiof®), conserves the energy. Our

sulting RG equations with the boundary operator expansioﬁ1Im here is to show that this feature does not change the

(75), we have been able to obtain detailed predictions for th%hnlversqh_tyf_cl_etlss, V\:jhénCh ShTUId ;herefor; ge tr eé)rels:enttid by
scaling behavior of the surface structure functi@y. The € semi-infinite moded employed in our study. For the

involved critical exponents which govern power laws such asls;?kle \?frf'mp“fc'ti’]’ v;/e restrr:ct g/urt?erllv?srtct)hdergolzstratlng_lt_rklle

Eq. (115 are related to known static bulk and surface critical ex?eis?orfetoothg seer%)i/-iﬁ:‘)in;g c:sg shgul d Ee gbvigize. €

exponents. In particular, there is no independent new dy- . : .
Conservation of energy means that the energy density

namic exponent associated with the surféte. e d densit dh | bl
We have checked our predictions by means of extensivg(x’ ) is a conserved density and hence a slow variable

Monte Carlo spin dynamics simulations. Our results depicteefvhICh should be retained in a coarse-grained description on

in Figs. 1 and 2 corroborate the predicted dynamic scalin es?scgpm tlrgelicaldes. N(:W’ for(‘j;/;n;shmtg mo%g-c?rl:pllng
behavior. In order to obtain such a good manifestation o onstanto, modelJ reduces to moddd. How to modify the

scaling, we have found it helpful and necessary to choose thlgtter to account for energy conservation is well known and

3 .
ratior,=J,/J of the surface and bulk exchange integrdls eads o ”_‘Ode_D- We can a_dapt the dy_namlcs O.f. mo_d]al
and J such that corrections to scaling are suppressed. Tglong similar I!nes. The obvious result is a mod|f|_c_at|on of
achieve this objective we have optimized the value ,0by tthdfelJ th?t dlffgrs froml_mo?eD thflf)hugrll_ the at_:jdmon ct)_f
requiring that the Monte Carlo data yield an equilibrium € formers mode-coupling terms. fhe Langevin equations

order-parameter profile which satisfies a Dirichlet boundar)Pf this two-density model, which we calf’, read
condition on the scale of the lattice constant in the sense ) SH' SH'
described in Sec. IV. d(x,t)= )\0( A5—¢+ f06—¢ Xp|+Lxt) (Al

According to our results displayed in Figs. 1-4, this pro-
cedure is quite effective: Far,=0.73 and values inside a and
narrow range around this optimal one, the simulation data for
the dynamic structure functions exhibit clear evidence of dy-
namic scaling in conformity with our predictions. On the
other hand, for values of; outside this regime, the data

. . ; . where

collapse is poor and the asymptotic behavior cannot be iden-
tified in a convincing fashion. These observations are in con- 1 o Uo 1 Yo
formity with those made in a previous Monte Carlo investi- M’ =J d[E(Vl!))ZJr < O*+ gyl el 587+ SEg?
gation of the static surface critical behavior by one ofus. (A3)
However, in the study of static quantities one is in a much - o ) o
better position because the scaling regimes can be reaché&ithe familiar Hamiltonian employed in the definition of
reasonably well even for nonoptimal valuesrgf This fact ~modelsC, D, andE (for the here considered case of an
lends support to our belief that the dynamic scaling behavio=3 component order parametg). Both £ as well as are
seen forr;=0.73 can be trusted. Gaussian random forces with zero average; their variances

Finally, let us note that we have not taken into accounte given by Eq(8) and
any dipolar forces in our study. To check our result by ex- Lo , ,
periments (as should become feasible in the near future (DDA 1))= =20 ASx—x) S(t =), (Ad)
thanks to facilities such as the x-ray free electron Hger respectively.
one must choose systems for which such forces are negli- In the absence of coupling between the order paranskter
gible. Since even weak dipolar forces lead to the formatiorand the energy densit, i.e., for y,=0, the dynamic expo-
of domains, one must also make sure that single domains argent of £ takes its Gaussian value
investigated.

The dynamics of the lattice model we simulated, defined

!

. SH
g(x,t):xg%5—5+ﬂ(x,t), (A2)

3e=2, (A5)

ACKNOWLEDGMENTS corresponding to oro_linary cjiffusion. It is not difficqlt to see
that this result remains valid foyy# 0. Ford>4, this fol-
We are grateful to K. Wiese for discussions during thelows immediately from the observation thgg is irrelevant
beginning phase of this work. M.K. is indebted to thstitut  in the RG sense.
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In studying the more interesting cade 4, we can benefit function ByzEm&m|072 at these fixed points are given by
from well-known results for the static theory described by — a/v and /v, respectively.
the Hamiltonian(A3), which is equivalent to thep* Hamil- Sincea< 0 in the three-component case we are concerned
tonian (6) except for a changay—U,=uy— 373 of the in-  with (a=—0.12 for d=3, according to Ref. 56 the
teraction constanfsee, for example, Refs. 59 and 3, and theinfrared-stable fixed point isU,y) = (u*,0). The results of
references therein As a consequence, the correspondingRef. 59 imply that the running coupling constant associated
static renormalization functions can be expressed in terms ofith y tends to zero am™ %" in the limit m— 0. Thus the
those of thep? theory. In particular, the renormalized analog energy density decouples asymptotically from the order pa-
U of U, can be introduced in analogy to E/9) via U, rameter, so that the resuylA5) applies.
=Z7,(U)m*~9U, whereZ,(u) is the renormalization func- We can introduce the renormalized transport coefficient
tion of Sec. Il D 3. Likewise, the renormalization factor A(9 via )\89=m‘225)\(5), whereZ,, the static renormaliza-
Z,(U,y?) which relatesy,=m“ 927y to its renormal- tion factor of the energy density, takes the value 1 at the
ized counterparty can be expressed in terms of known infrared-stable fixed point. The ratio of transport coefficients
renormalization functions of thé* theory.[lt is a product of ~ A/A(9) has the asymptotic scale dependercey 3. If we
Z42(U) and a factor linear in’> whoseU-dependent coeffi- substitute the valug§1) and(A5) for 3 andz., the exponent
cient derives from the additive counterterm that thebecomesg—j;s=(d—2— 7)/2. Since this is positive in three
H*-vertex functionl ;2,42 requires>’] dimensions, the ratio approaches zero in the long-scale limit

The resulting RG flow otJ andy has two nontrivial fixed m—0. The upshot is that the critical dynamics of the order
points atU=u*: one aty* =0, and another one at{)?  parameter remains unaffected by the coupling to the energy
=consta/v. The slopes 088,2(U=u*,y?)/dy? of the beta  density, as claimed.
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