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Quantum spin models with exact dimer ground states

Brijesh Kumar*
Department of Physics, Indian Institute of Science, Bangalore-560012, India

~Received 5 February 2002; published 28 June 2002!

Inspired by the exact solution of the Majumdar-Ghosh model, a family of one-dimensional, translationally
invariant spin Hamiltonians is constructed. The exchange coupling in these models is antiferromagnetic, and
decreases linearly with the separation between the spins. The coupling becomes identically zero beyond a
certain distance. It is rigorously proved that the dimer configuration is an exact, superstable ground-state
configuration of all the members of the family on a periodic chain. The ground state is twofold degenerate, and
there exists an energy gap above the ground state. The Majumdar-Ghosh Hamiltonian with a twofold degen-
erate dimer ground state is just the first member of the family. The scheme of construction is generalized to two
and three dimensions, and illustrated with the help of some concrete examples. The first member in two
dimensions is the Shastry-Sutherland model. Many of these models have exponentially degenerate, exact dimer
ground states.
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I. INTRODUCTION

The studies of quantum spin models are of great cur
interest. These studies help us in getting some understan
of the magnetic properties of the real, physical syste
Studies of the magnetic properties described by the dime~or
valence bond! configurations has been a subject of contin
ing research activities, and has been of particular inte
recently. A recent example is the Shastry-Sutherland1,2 type
models used in understanding the physical properties
SrCu2(BO3)2.3 This system is a magnetic insulator wi
dimer ground state, which is topologically equivalent to th
of the Shastry-Sutherland~SS! model. Then there are studie
related to thekagome´ antiferromagnet,4,5 where magnetic ex-
citations are gapped, and this gap is filled with a large nu
ber of low-lying singlet excitations whose number grows
exponential in the number of sites. It is believed that
low-energy physics of the Heisenberg antiferromagnet on
kagome´ lattice is of the resonating valence bond~RVB! type.
The quantum dimer models have been applied to study a
ferromagnets on triangular lattices.6 Again, the idea em-
ployed is that of resonating dimer coverings of the latti
The idea of doping the RVB ground state to achieve sup
conductivity has been the subject of great consideration
the context of high-Tc superconductors.7,8 Though the low-
temperature behavior of the undoped high-Tc materials does
not show up RVB-like magnetic properties, the idea is s
interesting, and motivates the search for a doped R
superconductor.9 All these studies clearly show the impo
tance of understanding the physics governed by vale
bond configurations. It makes the search for and the stu
of models with dimer ground state particularly desirable.

The Majumdar-Ghosh~MG! model10,11 is a one dimen-
sional quantum spin model with the nearest- and ne
nearest-neighbor exchange interactions. It is exactly solv
for a particular ratio of these exchange couplings, and ha
twofold degenerate dimer ground state. Though this mo
has been studied for anisotropic exchange and general spS,
we will consider only isotropic exchange and theS51/2
case. The exact solution of the MG model guides us in c
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structing models with exact dimer ground states which is
subject of the present work. The Hamiltonian for the M
model is written as

HMG5J(
i 51

L

~2Si•Si 111aSi•Si 12!, ~1!

where J.0, and L is the number of sites in a one
dimensional~1D! lattice with periodic boundary condition
~PBC!. It is a well studied model, and shows a quantu
phase transition from an ordered phase to a disordered, s
liquid-like phase asa is increased from zero to some valu
greater than 0.482.12 At a51, and for L being even, the
bond-singlet~dimer! configurations, as shown in Figs. 1~a!
and 1~b!, form an exact, twofold degenerate ground su
space. Let us refer to these dimer configurations asuc1& and
uc2& which are given below:

uc1&5@1,2# ^ @3,4# ^ @5,6# ^ •••^ @L21,L#, ~2!

uc2&5@2,3# ^ @4,5# ^ @6,7# ^ •••^ @L,1#, ~3!

where@ l ,m#5(u↑ l↓m&2u↓ l↑m&)/A2 is the singlet state of a
pair of spins, sitting at sitesl and m, representing a double
bond in the chemical sense. The ground-state energy, in u
of the nearest-neighbor exchange (2J), is 2(3/8)L.

In the following sections, we will discuss briefly wh
HMG is exactly solvable for its ground state ata51. It will

FIG. 1. ~a! and~b! are two exact ground-state configurations
the family of 1D models with linear exchange coupling, as d
cussed in the text. The solid line joining two lattice points rep
sents a singlet state between spins sitting at corresponding s
These ground-state configurations are referred to asuc1& and uc2&
in the text.~c! is one of the singlet configurations which is not a
eigenconfiguration of the Hamiltonian given by Eq.~4!.
©2002 The American Physical Society06-1
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BRIJESH KUMAR PHYSICAL REVIEW B66, 024406 ~2002!
guide us in constructing the general family of spin models
a 1D lattice with PBC. It will be rigorously proved that th
dimer configurations,uc1& and uc2&, form an exact, twofold
degenerate ground subspace for the whole family. Vari
features of this family of 1D models will be discussed
some detail. Then, the generalization to two and three sp
dimensions will be discussed. Our scheme allows us to c
struct higher dimensional models with exact knowledge
the ground state. The exponential degeneracy in the gro
subspace of such models will be discussed. Finally, we
conclude with some general discussion and remarks.

II. LESSONS FROM THE MG HAMILTONIAN’S
SOLUTION

On a chain with PBC, and fora51, the MG Hamiltonian
can be rewritten as:HMG5J( i 51

L (Si•Si 111Si•Si 121Si 11

•Si 12)5J( i 51
L hi . The Hamiltonianhi5Si•Si 111Si•Si 12

1Si 11•Si 12, is that of a block of three spins, thei th spin
and its next two neighbors, coupled to each other identica
Let us refer to these blocks asB3 whereB stands for a block
of completely connected spins, and the subscript 3 refer
the number of spins in the block. Spins within a block a
understood to be identically coupled, unless specified.
minimum eigenvalue ofhi , ei

min523/4, for S51/2. This is
easy to see if we rewritehi as 1

2 @(Si1Si 111Si 12)22Si
2

2Si 11
2 2Si 12

2 #. The minimum-energy spin configuration fo
B3 has one free spin and the other two spins form a sing
For example,@ i ,i 11# ^ u↑ i 12& is one such eigenconfigura
tion. There are two linearly independent ways of formi
such configurations for which the totalB3 spin is 1/2.

Since the MG chain is made up ofB3 units, the ground
configuration of the MG chain can be constructed in suc
way that it is also the lowest energy eigenconfiguration
B3. This is not possible in general. Interestingly, this is po
sible for the MG chain because the minimum-energy c
figuration ofB3 has strictly one bond singlet and afreespin.
This ‘‘free’’ spin is free in the sense that it can bond with t
‘‘outside’’ world, and the new composite configuration is st
the eigenconfiguration of the block Hamiltonian with ener
23/4, provided the other two spins of the block form a s
glet. Since every spin on the MG chain has identical
change connectivity, the above considerations imply that
ground-state configuration ofHMG is the one where every
three neighboring spins share exactly one bond singlet.
key observation to make is the fact that the fundame
block has an odd number of spins, and its minimum-ene
configuration contains exactly one free spin while the r
form a singlet. All this straightforwardly leads to the exa
solution of the ground state of the MG chain, already m
tioned in the Introduction, and can be proved rigorously
ing the inequality ^fuHMGuf&>Eg>J( i 51

L ei
min(B3)

52(3J/4)L and the identitiesSk•(Sl1Sm)@ l ,m#50 ; k
Þ l andm; Sl•Sm@ l ,m#52S(S11)@ l ,m#. If uf& is such an
eigenstate of the Hamiltonian that the upper bound of
inequality equals the lower bound, thenuf& is also the
ground state of the Hamiltonian. In other words, this inequ
ity ensures that an eigenstate of the Hamiltonian, which
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also the ground state of the basic building blocks, is
ground state of the Hamiltonian. In the next section, we w
construct a general family of one-dimensional spin Hamil
nians, and show thatuc1& anduc2& are the exact ground-stat
configurations for the whole family.

III. FAMILY OF 1D MODELS WITH DIMER GROUND
STATE

The model. Let us consider a blockB2n11 of identically
and completely connected (2n11) spins wheren is a posi-
tive integer. The identical and complete connectedn
of spins means that every spin in a block is coupled to ev
other, with the same strength~which is taken to be unity!,
as shown in Fig. 2 forn51 and 2. On a spin chain
any sitei and its next 2n neighbors will form aB2n11 unit
once they are identically and completely coupled. T
Hamiltonian corresponding to thei th such block on a 1D
lattice is written as:hi(B2n11)5$Si•(Si 111•••1Si 12n)
1 Si 11 • (Si 12 1•••1 Si 12n) 1•••1 Si 12n22 • (Si 12n21
1Si 12n)1Si 12n21•Si 12n%. Adding all such block Hamilto-
nians gives the total Hamiltonian for the spin chain made
of B2n11 units. There are exactly 2n number of first-
neighbor ~nearest-neighbor! pairs, (2n21) number of
second-neighbor pairs, and so on, within eachB2n11 unit.
Therefore the total Hamiltonian for aB2n11 spin chain with
PBC is

H@B2n11#5J(
i 51

L

@2nSi•Si 111~2n21!Si•Si 12

1•••12Si•Si 12n211Si•Si 12n#

5J(
i 51

L

(
j 51

2n

~2n112 j !Si•Si 1 j . ~4!

Thus, on aB2n11 spin chain, thei th spin is coupled to nex
2n neighbors with linearly decreasing exchange coupli
Note that the Hamiltonian corresponding ton51 is just the
MG Hamiltonian with dimer ground state. We will show th
H@B2n11#, for anyn, has the same ground state. Thereforen
can be regarded as the label for the members in our famil
1D spin models with twofold degenerate dimer ground sta

The ground state. In order to find the ground-state energ
and the corresponding eigenconfigurations ofH@B2n11#,
consider the minimum-energy configurations for aB2n11

FIG. 2. TheB2n11 blocks forn51 and 2, in one, two, and thre
dimensions. The dashed coupling in 2D blocks is unity while
solid one isa. In the 3D block, the coupling of theapex to the
squareface is unity while the coupling within the face isa.
6-2
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QUANTUM SPIN MODELS WITH EXACT DIMER GROUND . . . PHYSICAL REVIEW B66, 024406 ~2002!
unit. Rewriting hi(B2n11) as 1
2 @(Si1Si 111•••1Si 12n)2

2(Si
21Si 11

2 1•••1Si 12n
2 )# tells us that the total spin

( j 50
2n Si 1 j being minimum corresponds to the lowest ener

of the block. ForS51/2, the minimum energy is23n/4, and
the corresponding spin configurations are such that ther
exactly one free spin while the remaining 2n spins form a
block singlet. A block singlet can be described in terms of t
bond singlets~valence bond or dimers, as we often c
them!. Since there are many, independent ways of doing t
a block singlet has an intrinsic degeneracy of valence b
configurations. For example,B5’s minimum-energy configu-
ration consists of a free spin, and a block singlet of fo
spins. ForS51/2, there are exactly two linearly independe
valence bond configurations for a block singlet of four spi
We will see later that in certain other models, this intrins
degeneracy leads to a ground-state with exponential de
eracy, and hence finite entropy density in the ground state
the following, we try to construct the exact ground state c
figurations ofH@B2n11#, for all values ofn.

If we can find a configuration where every block of su
cessive (2n11) spins share exactly one block singlet of 2n
spins, then it is the ground state configuration ofH@B2n11#.
This is ensured by the inequality

^fuH@B2n11#uf&>Eg>(
i 51

L

ei
min~B2n11!. ~5!

The following identities are used in establishing the fact t
such a construction will form an eigenconfiguration of t
H@B2n11#:

~Si 1
1•••1Si 2n

!•Si 2n11
@ i 1 ,i 2 , . . . ,i 2n#50, ~6!

(
j 151

2n21

(
j 2. j 1

2n

Si j 1
•Si j 2

@ i 1 ,i 2 , . . . ,i 2n#52
3

4
n. ~7!

In Eq. ~6!, i 2n11Þ$ i 1 ,i 2 , . . . ,i 2n%. The above identities are
straightforward generalizations of what were used in find
the exact ground state for the MG model forS51/2. For
general spinS, the right-hand side of Eq.~7! will be
2nS(S11). The notation@ i 1 ,i 2 , . . . ,i 2n# denotes a block
singlet of 2n spins. Just to illustrate this notation, consid
four sites labeled 1, 2, 3, and 4. Then@1,2,3,4# denotes all the
singlet configurations made up of spins sitting at these s
Thus @1,2,3,4#5@1,2# ^ @3,4# or @2,3# ^ @4,1#. The indices
$ i 1 ,i 2 , . . . ,i 2n11% take the values from the set$ i ,i
11, . . . ,i 12n% while considering thei th B2n11 block on a
spin chain. Also, each one of the indices,$ i 1 ,i 2 , . . . ,i 2n11%,
is distinct. Among the allowed dimer representations
@ i 1 ,i 2 , . . . ,i 2n#, one is simply@ i ,i 11# ^ @ i 12,i 13# ^ •••

^ @ i 12n22,i 12n21#. This is like the dimers we have a
ready seen. There are many different types of them. S
will be of the type, say,@ i ,@ i 11,i 12#,i 13# ^ @ i 14,i 15#
^ •••^ @ i 12n22,i 12n21#. Here, the notation@ i ,@ i 11,i
12#,i 13# refers to a configuration whereSi andSi 13 pair
up to form a singlet whileSi 11 andSi 12 do the same. Each
of these dimer representations for a 2n-spin block singlet
contains exactlyn dimers. The fact that every site has ide
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tical exchange connectivity suppresses the choices allo
by the intrinsic degeneracy of block singlets. The only co
figurations which satisfy the condition that every block
neighboring (2n11) spins on a chain has exactlyn dimers
are uc1& and uc2&. In fact, the other configurations are n
even the eigenconfigurations ofH@B2n11#. One such con-
figuration is shown in Fig. 1~c!. This is so because suc
configurations always find some building blocks who
minimum-energy configuration is not satisfied, whereasuc1&
and uc2& sastisfy all building blocks’ minimum-energy con
figurations. Thereforeuc1& and uc2& are the exact ground
state configurations of the family of spin Hamiltonians giv
in Eq. ~4!, and the ground-state energy is2(3nJ/4)L.

In the following, we give another proof ofuc1& and uc2&
being the ground-state configurations ofH@B2n11# for all
values ofn, despite the fact that we have already shown
This proof gives an independent existence to the Ham
tonian H@B2n11#. The proof is based on the principle o
mathematical induction, and brings out an interesting pr
erty of superstability13 which the dimer configurations pos
sess. An eigenstateuf& of some HamiltonianH is called
superstable if it is also the eigenstate of the operatorH1V,
for a certain operatorV where the commutator@H,V#Þ0. To
make a definitive statement about the superstability,
should clearly understand the relationship between suc
sive Hamiltonians of the family. The proof by induction
based on the understanding of such relationships, and h
illustrates the superstability of the dimer configurations
the ground state of our family of Hamiltonians, in a rigoro
way.

Proof by induction. For n51, the Hamiltonian operato
is H@B3#5HMG . It is known that HMGuc1,2&
52(3J/4)Luc1,2& with uc1,2& being the ground-state con
figuration. Here,uc1,2& refers touc1& and uc2&. Assume that
uc1,2& is the eigenconfiguration of the (n21)th member of
the family, with eigenenergyEn21 ~for the sake of this proof
ignore the fact that we have already proved it!!. That is,
H@B2n21#uc1,2&5En21uc1,2&. Now, we check for thenth
member. The Hamiltonian for thenth member, wheren.1,
can be rewritten in the following way:

H@B2n11#5J(
i 51

L

(
j 51

2n

~2n112 j !Si•Si 1 j

5H@B2n21#1J(
i 51

L H Si•Si 12n12 (
j 51

2n21

Si•Si 1 j J
5H@B2n21#1HMG1J(

i 51

L

$Si•Si 12

12Si•~Si 131•••1Si 12n21!1Si•Si 12n%

5H@B2n21#1HMG

1J(
i 51

L

~Si1Si 11!•~Si 131•••1Si 12n!. ~8!

Clearly, from Eq. ~8!, H@B2n11#uc1,2&5@En21
2(3J/4)L#uc1,2&, as one can easily show that
6-3
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BRIJESH KUMAR PHYSICAL REVIEW B66, 024406 ~2002!
(
i 51

L

~Si1Si 11!•~Si 131•••1Si 12n!uc1,2&50. ~9!

This proves thatuc1& anduc2& are the eigenconfigurations o
the nth member of the family, with eigenenergyEn5En21
2(3J/4)L for any n.1 @with E152(3J/4)L]. This gives
En52(3nJ/4)L. Since theEn we get here is same as th
lower bound of the inequality@Eq. ~5!#, theuc1& anduc2& are
also the ground states, and not just the eigenstates. Ther
we have been able to prove that the dimer configurati
uc1& anduc2& form a superstable, twofold degenerate grou
subspace of the whole family ofH@B2n11#, parametrized by
n, on a one-dimensional lattice with PBC.

The summary of our findings, in the context of on
dimensional spin systems, is the following:

• A family of spin models with exact dimer ground state
constructed. The ground subspace is twofold degenera

• The general Hamiltonian of the family is:H@B2n11#
5J( i 51

L ( j 51
2n (2n112 j )Si•Si 1 j . Here,J.0, n is a posi-

tive integer, andB2n11 refers to the fundamental buildin
blocks for different members of the family. Note that th
Hamiltonian has translational invariance, the exchan
coupling decreases linearly with distance between
coupled neighbors, and for a givenn, every spin is coupled
only up to 2nth neighbor, starting from the nearest one

• The ground-state energy, in units of the strongest excha
coupling~the nearest-neighbor coupling 2nJ), is 2 3

8 L, for
all members of the family.

• The dimer statesuc1& and uc2& are superstable ground
state configurations with respect to all members of
family.

Having described in detail the construction, and the ex
ground state of this family of one-dimensional spin mode
let us briefly discuss the nature of elementary excitations
the same.

Energy gap in the excitation spectrum. The MG model
has gap in the excitation spectrum with respect to the di
ground state. This was illustrated by a variational calculat
of the dispersion of the defect~the dangling spin as shown i
Fig. 3! boundary between two exact ground-sta
configurations.14 Later, it was exactly proved that there is a
energy gap in the excitation above the exact dimer gro
states of the MG model.15 A method to calculate the lowe
bound for the energy gap was also developed, and applie
certain quantum antiferromagnets.16 We have calculated the
dispersion relation for the propagating defect, variationa
for B5 andB7 chains. We find that the energy gap towar
such solitonic excitations exists for each of these member

FIG. 3. This is one of the defect configurations with dangli
spin being↑, at site 2r . One is allowed to have defect configur
tions with dangling spin polarization being↓ without affecting the
dispersion relation.
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the family, and seems to increase monotonically for hig
members in the family. The dispersion relation forH@B3#
~the MG model! is E3(k)5 5

4 1cos(2k). This is already
known from Ref. 14. Here, the lattice parametera is taken to
be unity, and2p/2<k<p/2. The single defect-boundar
excitation energies for the next two members of the fam
that isH@B5# andH@B7#, are the following:

E5~k!521
3

4
cos~2k!2

1

2
cos~4k!, ~10!

E7~k!5
11

4
1

3

4
cos~2k!2

3

8
cos~4k!1

1

4
cos~6k!. ~11!

Here, E2n115^ku(H@B2n11#2En)uk&/^kuk&. En52 3
4 nN;

N is the total number ofB2n11 units forming a finite chain
of L sites.N5L for a chain with PBC, andN5L22n for an
open chain. Actually, we have considered the chains with
odd number of spins,L54M11, in order to find the defect’s
dispersion relation, and taken the limitM→`. The ket,uk& is
defined as

uk&5
1

A2M11
(

r 52M

M

eikru2r &. ~12!

The ket, u2r &, is a configuration where there is a danglin
spin at 2r th site, and the rest forming the dimer configurati
of uc1& type on one side of the dangling spin and ofuc2&
type on the other side, as shown in Fig. 3. The dangling s
can have either↑ polarization or↓ polarization. These defec
configurations are nonorthogonal. Since$u2r &% do not form a
complete set of states, the propagating defect stateuk& is only
a variational choice. Nevertheless, it gives us some idea
the nature of excitations above the ground state. From
dispersion relations for the defect, we find that the ene
gap for B3 , B5, and B7 chains, in units of the neares
neighbor exchange, is 1/8, 3/16, and 11/48, respectiv
Presently, we are unable to identify any simple relation
tween the members of the family and the corresponding
ergy gaps, nonetheless, we see that there is a gap, a
seems to be increasing as we go up in the hierarchy. One
also consider the case where there are many such dan
spins in the dimer background, and consider the possib
of the bound states. We will not do it here.

Connection with the Coulomb problem in one dimensi.
It is important to observe that the exchange coupling of
models constructed in the present work,Ji j }(R2u i 2 j u), is
exactly like the Coulomb interaction in one dimension, alb
with a rangeR.17 From theRth neighbor onwards, the ex
change coupling is zero. But there is no restriction on
rangeR, and it can be anything. Hence what we have fou
essentially, is a quantum spin analog of the Coulomb pr
lem in one dimension which was studied exactly by Lena
and Baxter long ago.18 It is an interesting and unexpecte
connection. Analogous to the Coulomb problem, one wo
expect plasmonlike gapped excitations in a spin model w
infinitely long-ranged, linear exchange coupling. For antif
romagnetic exchange coupling, as we saw just now, the
6-4
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QUANTUM SPIN MODELS WITH EXACT DIMER GROUND . . . PHYSICAL REVIEW B66, 024406 ~2002!
ergy gap increases withR. But the analogy has interestin
consequences for the spin models with ferromagnetic lin
exchange coupling.

The Hamiltonian for the ferromagnetic case is written
H52J( i 51

L (m51
R21(R2m)Si•Si 1m . Here, J.0, andR can

be even as well as odd unlike the antiferromagnetic c
discussed in the present work. The ground-state energy
general spinS is Eg52JS2R(R21)L/2. And the exact one
magnon dispersion with respect to the ground-state energ
E(k)5JS$R22@12cos(Rk)#/@12cos(k)#%, k52np/L,
where isn is an integer. The wave numberk takes values
between2p andp. For any finiteR, E(k)→0 quadratically,
ask→0. Hence the excitations are gapless. In order to c
sider the analog of Coulomb problem,R should be of the
order of L, and let L go to infinity. We putR5L/2, and
rescaleJ to J/R2 ~as the ground state as well as the magn
excitation energy goes asR2 for large R). Then, E(k)
5JS$124@12(2)n#/L2@12cos(k)#%. Therefore, in the
thermodynamic limit, the magnon excitation has a gap
valueJS, and a totally flat dispersion. Hence a ferromag
with infinite ranged linear exchange coupling is gapp
Next, we discuss another type of 1D spin models where
dimer ground state is exponentially degenerate. These m
els are also constructed ofB2n11 units.

1D models with exponentially degenerate dimer grou
state. As mentioned earlier, the block singlets made up
four or more spins always have degenerate dimer repre
tations. This intrinsic degeneracy at the block level, howev
could not be greatly exploited in our previous construct
which led to the class of linear exchange spin models o
chain. The dimer ground state of this class of models is o
twofold degenerate. Now, we construct another type of s
model, on a closed chain, whose ground state has an e
nentially large number of degenerate dimer configuratio
Here, the degeneracy of the ground state is exponential in
number of lattice sitesL. To illustrate this class of model, w
describe a particular construction usingB5 units.

Consider a closed chain with even number of sites. C
nect spins at the 1st, 2nd, 3rd, and 4th sites identic
among themselves with exchange couplingaJ. Then connect
each of these four spins to the spin at the 5th site with
change couplingJ, as shown in Fig. 4. Again, connect spin
from the 5th to 8th site identically with couplingaJ, and
then connect these four spins to the spin at 9th site w
coupling J. Repeat this procedure for further spins, start
with the 13th site, the 17th, and so on. Thus we constru
spin chain ofB5 units. TheseB5 units are slightly different
from the ones we have used earlier. Here we have two
change couplingsJ andaJ unlike the earlier consideration

FIG. 4. The exchange connectivity of a one-dimensional s
model with exact dimer ground state whose degeneracy is expo
tial in the number of sites. Shown in the figure is an example o
16-site model on a closed chain geometry. The sites where theB5

unit repeats itself are numbered explicitly. The exchange coupl
are: solid line[aJ and dashed line[J.
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where coupling was identicallyJ. The corresponding Hamil-
tonian can be written as:H5J( l 51

L/4 h4l 238 (B5), with J.0.
The block Hamiltonian,

h4l 238 ~B5!5a$S4l 23•~S4l 221S4l 211S4l !

1S4l 22•~S4l 211S4l !1S4l 21•S4l%

1S4l 11•~S4l 231S4l 221S4l 211S4l !, ~13!

is a slightly generalized version of the previously definedB5
block Hamiltonian,h(B5). Whena51, h8(B5) is the same
ash(B5).

For a.1, h4l 238 (B5)’s minimum energy is equal to
23a/2 for S51/2. SpinsS4l 23 , S4l 22 , S4l 21, andS4l form
a twofold degenerate block singlet corresponding to
block Hamiltonian’s lowest eigenenergy, and spinS4l 11 re-
mains ‘‘free’’ to be a part of the next block singlet. Therefo
the ground-state energy of this spin model is23aJL/8, and
the ground-state configurations can be written as

ucg&5@1,2,3,4# ^ @5,6,7,8#

^ •••^ @L23,L22,L21,L#. ~14!

Since each of these four spin block singlets,@4l 23,4l
22,4l 21,4l #, has two dimer representations,ucg& represents
2L/4 degenerate, dimer configurations forming the grou
subspace. Fora51, the ground-state energy is still given b
the above expression, but the degeneracy of the ground
is 2(2L/4). This is so because, fora51, any four spins of a
B5 block can form a singlet in the minimum-energy config
ration. This allows the following configurations, togeth
with ucg&, in the ground state,

ucg8&5@2,3,4,5# ^ @6,7,8,9# ^ •••^ @L22,L21,L,1#. ~15!

And hence the degeneracy is doubled. The procedure,
scribed here in detail, can be directly applied to constr
models using bigger spin blocks. Thus we are able to c
struct quantum spin chains with exponentially degener
dimer ground state, and the interesting thing to note is t
the ground state is exactly known fora>1, unlike the linear
exchange models wherea is strictly 1. Or, in other words,
the dimer configurations are superstable for all values oa
greater than or equal to 1. We will come across the sa
features once more in the following section, while consid
ing the higher dimensional generalization of our scheme

In this section, we have developed the concepts, and
plicitly used them in constructing one-dimensional spin mo
els. In the next section, we will use this understanding
construct models with an exact dimer ground state in t
and three dimensions. Before going to the next section,
must mention that recently there have been some genera
tions of MG and SS models.19–21 In this regard, we would
like to stress the point that our scheme provides a very g
eral framework to construct all such models using only t
things: ~i! the basic building blocks, and~ii ! arranging them
in such a way that each block is able to satisfy its minimu
energy configuration even when being a part of the full
sembly. This we have already seen working in one dim
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BRIJESH KUMAR PHYSICAL REVIEW B66, 024406 ~2002!
sion. We will illustrate this in the following section b
constructing various models in two and three dimensions

IV. GENERALIZATION TO TWO AND THREE
DIMENSIONS

The SS model is a two-dimensional spin model with
specific exchange connectivity.1 It has an exact dimer groun
state with no degeneracy. It is, in some sense, the t
dimensional analog of the MG model. The SS model, like
MG model, is made up of fundamental blocks of three sp
that is,B3 units in our language. Hence the SS model is
first member of the family of 2D spin models with an exa
dimer ground state, if labeled according to our scheme.

This correspondence motivates us to construct spin m
els in higher dimensions whose ground states can be kn
exactly. In fact, we can construct a whole lot of them. T
rules are very simple. Pick one spin of aB2n11 unit as free.
Leave the rest to form a block singlet of size 2n. Each of the
2n spins of the singlet forming block can act as the ‘‘fre
spin for the neighboring blocks. And any given block sing
can be fully or partially shared by other ‘‘free’’ spins. Th
allows us to extend the network in higher dimensions. T
Hamiltonian for any such model is just the sum of all t
block Hamiltonians. Only those dimer configurations whi
satisfy each building block’s minimum-energy configurati
form the exact ground-state configurations. This set of ru
seem sufficiently general for constructing models with ex
dimer ground states. For example, one gets the SS mode
applying these rules to make a 2D model usingB3 units.

We consider a generalizedB2n11 unit, where one of the
spins is picked up to be exclusive such that it is coupled
the rest by unit exchange strength while the rest are c
pletely coupled among themselves by some exchangea.
These basic spin blocks are still completely connected,
the couplings are not identical. This choice is exactly like
one we had for constructing 1D models with exponentia
degenerate dimer ground states; see Fig. 2, whereB3 andB5
units are shown in one, two, and three spatial dimensio
The ‘‘block singlet1 free spin’’ is the lowest energy con
figuration of theB2n11 unit for a>1. We can construc
models in two dimensions~and also in three dimensions! in
such a way thatspatially disjoint block-singletsform the
exact ground-state configurations fora>1. It is interesting
to note that the domain of superstability for the dimer grou
states in these models isa>1, unlike the case of translation
ally invariant 1D models constructed in the previous secti
There, the dimer configurations form a superstable gro
state only ata51. Also, the spatial disjointness preserv
the intrinsic degeneracy of the block singlets which ma

FIG. 5. The ladder made up ofB5 blocks. The exchange cou
plings are: thin solid line[J, dashed line[2J, and thick solid line
[4aJ.
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the ground-state exponentially degenerate. Thus we are
to constructspin models with finite entropy density in th
ground state. To illustrate all this, we describe models ma
up of B5 units.

Following the rules stated above, a ladder model,
shown in Fig. 5, is constructed withB5 units. ~We could
have constructed a simpler ladder withB3 units, but the
exponentially degenerate ground state cannot be real
there. The dimers along the rungs form the exact grou
state configuration of aB3 ladder.! These ladders properly
arranged on a plane give rise to a certain 2D spin mode
shown in Fig. 6. Assuming a ribbonlike geometry for th
ladder and the toroidal geometry for the 2D model, we c
easily find their ground-state energies. In our constructi
each lattice point of the ladder model contributes exactly o
B5 unit, whereas each site on the 2D model contributes
such units. Therefore the ground-state energies, fora>1, of
the ladder and the 2D model are2 3

2 aJL and 23aJL, re-
spectively. Here,L is the total number of sites. The ground
state energy per site, in units of the strongest exchange (aJ
for the ladder, and 8aJ for the 2D model!, is just 2 3

8 . The
blocks of spins, connected with thick lines as shown in Fi
5 and 6, forming singlets is the exact ground-state confi
ration. For the ladder, the ground-state configuration
shown in Fig. 7. The ground state for the 2D model is simi

FIG. 6. A 2D model with a certain exchange connectivity, ma
up of B5 blocks. The exchange couplings are: thin solid line[J,
dashed line[2J, and thick solid line[8aJ.

FIG. 7. The ground-state configuration of the ladder mod
Each of the square blocks is a singlet which has two linearly in
pendent dimer representations as shown by vertical and horizo
dimers.
6-6
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QUANTUM SPIN MODELS WITH EXACT DIMER GROUND . . . PHYSICAL REVIEW B66, 024406 ~2002!
to that of the ladder. The twofold intrinsic degeneracy
each block singlet makes the ground subspace 2L/4-fold de-
generate. The entropy density in the ground state is1

4 ln(2),
just one-fourth of that of a paramagnet. Each block sing
has two independent bond-singlet configurations, there
the ground subspace consists of 2L/4 distinct dimer or va-
lence bond configurations. For example, two of these c
figurations are the columnar dimer states which are the e
ground states of a certain model constructed by Bose
Mitra.22 Thus the ground state of models discussed here
spin liquid as well as a dimer liquid, as the dimers within
block singlet are correlated, but there is no correlation
tween dimers belonging to different block singlets. One c
easily construct certain other models, using the same ru
whose ground states are dimer solids, though we will
discuss these models explicitly.

The generalizations of the SS model, considered in R
19, provide good examples of the higher dimensional mod
made up ofB3 units. So, we will consider the next block
that is,B5. The three-dimensional~3D! B5 block is shown
in Fig. 2. There can be many ways of constructing 3D m
els usingB5 pyramids. We consider a case where two su
pyramids share the basal plane to form an octahedra. Fa
>1, the four spins of the common basal plane form a blo
singlet. Layers of the corner-sharing octahedra, stacke
certain ways, form one such model. The projection of o
such layer on anx-y plane is shown in Fig. 8. The ground
state configurations are such that the singlet blocks are l
in orthogonal planes. It is topologically similar to the o
thogonal arrangement of dimers in the exact ground stat
the 2D SS model except that these are block singlets, and
lying in orthogonal planes. The spatial disjointness of

FIG. 8. This is a projection on anx-y plane of the ground-state
configuration of a layer of the corner sharing octahedra made ou
square pyramids~the B5 units in three dimensions!. Thick lines
here represent the common basal plane of twoB5 pyramids making
an octahedra. In the ground state, four spins lying on the com
basal plane form a twofold degenerate block singlet. These b
singlets lie inx-z or y-z planes. It is interesting to observe th
topological equivalence of the arrangement of block singlets
orthogonal planes, here, to that of the dimers in the exact gro
state of the SS model.
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block singlets belonging to different planes gives rise to
exponentially degenerate dimer ground state.

The possibilities for making such models are enormo
and therefore cannot be exhausted in one place. But
thing must be emphasized. The basis for constructing mo
with exact dimer ground states, as discussed in the pre
work, is very general. The model Hamiltonians that may
constructed with these rules may be of definite importanc
understanding some physics of the spin systems.

V. CONCLUSIONS

We first summarize the main results. We have construc
a family of one-dimensional spin models with linearly d
creasing exchange coupling. The range of coupling is
family parameter which is decided by the size of the ba
building block. The fundamental building blocks are com
pletely connected blocks of an odd number of identical sp
All the members in the family have an exact, twofold dege
erate dimer ground state. There exists an energy gap in
excitation spectrum above the dimer ground states, an
seems to be increasing monotonically for the higher me
bers in the family. The interesting analogy of this family
models, with the Coulomb problem in one dimension, is d
cussed. One-dimensional spin models with exponentially
generate dimer ground states are also discussed.

This way of constructing models is easily generalized
higher dimensions. We are able to construct models in
and three dimensions, with exact dimer ground states.
ground state of many such models is exponentially dege
ate. The degeneracy in the ground state of these mo
arises due to many degenerate dimer representations o
block singlets forming the ground-state configuration. The
models thus provide explicit examples of the systems w
finite entropy density in the ground state, and hence violat
the third law of thermodynamics. Also, these are the mod
with finite rangedRVB-type ground states, spanned by
exponentially large subset of the full set of linearly indepe
dent valence bond configurations. The range of the vale
bonds is decided by the size of the building block. The ru
for constructing such models are explicitly discussed.

We hope that the general class of models proposed
may be useful in studying the quantum phase transition
the frustrated spin systems. The exact knowledge of
ground state with exponential degeneracy, in these mode
particularly remarkable. The building block way of lookin
at these models is quite in the spirit of synthetic chemists
may be possible to realize such models.

Note added in proof. We are thankful to Professor Indran
Bose who brought to our notice an earlier work of Takan23

which has some overlap with our present work. Takano h
also arrived at the linear exchange spin chains with dim
ground state, and discussed its generalization in two dim
sions. Though there are interesting similarities between
kano’s and our present work, there are also clear differen
in the approach and the emphases in the two.
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