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Quantum spin models with exact dimer ground states
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Inspired by the exact solution of the Majumdar-Ghosh model, a family of one-dimensional, translationally
invariant spin Hamiltonians is constructed. The exchange coupling in these models is antiferromagnetic, and
decreases linearly with the separation between the spins. The coupling becomes identically zero beyond a
certain distance. It is rigorously proved that the dimer configuration is an exact, superstable ground-state
configuration of all the members of the family on a periodic chain. The ground state is twofold degenerate, and
there exists an energy gap above the ground state. The Majumdar-Ghosh Hamiltonian with a twofold degen-
erate dimer ground state is just the first member of the family. The scheme of construction is generalized to two
and three dimensions, and illustrated with the help of some concrete examples. The first member in two
dimensions is the Shastry-Sutherland model. Many of these models have exponentially degenerate, exact dimer
ground states.
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[. INTRODUCTION structing models with exact dimer ground states which is the
subject of the present work. The Hamiltonian for the MG
The studies of quantum spin models are of great currenmodel is written as

interest. These studies help us in getting some understanding .
of the magnetic properties of the real, physical systems.
Studies of the magnetic properties described by the diorer HMG:‘]EI (25 S+1+aS-S+2), @
valence bongconfigurations has been a subject of continu-
ing research activities, and has been of particular interesvhere J>0, and L is the number of sites in a one-
recently. A recent example is the Shastry-Suthefldrigpe  dimensional(1D) lattice with periodic boundary condition
models used in understanding the physical properties ofPBC). It is a well studied model, and shows a quantum
SrCw(B0s),.2 This system is a magnetic insulator with phase transition from an ordered phase to a disordered, spin-
dimer ground state, which is topologically equivalent to thatliquid-like phase asy is increased from zero to some value
of the Shastry-Sutherlan®S model. Then there are studies greater than 0.48% At a=1, and forL being even, the
related to th&agomeantiferromagnet;® where magnetic ex- bond-singlet(dimen configurations, as shown in Figs(al
citations are gapped, and this gap is filled with a large numand Xb), form an exact, twofold degenerate ground sub-
ber of low-lying singlet excitations whose number grows asspace. Let us refer to these dimer configurations/as and
exponential in the number of sites. It is believed that thel#,) which are given below:
low-energy physics of the Heisenberg antiferromagnet on the

kagomdattice is of the resonating valence bofiRVB) type. |¢1)=[1,2]®[3,4]®[5,6]®---®[L—1L], 2
The quantum dimer models have been applied to study anti-
ferromagnets on triangular latticBsAgain, the idea em- l)=[2,3]®[4,5][6,7]®- - - ©[L,1], 3)

ployed is that of resonating dimer coverings of the lattice. _ _

The idea of doping the RVB ground state to achieve superhere[l,m]=(|1;! m~ L1 Tm)/V2 is the singlet state of a
conductivity has been the subject of great consideration i@l Of Spins, sitting at sitesandm, representing a double -
the context of highF, superconductors? Though the low- bond in the cheml_cal sense. The grou_nd—state energy, in units
temperature behavior of the undoped highmaterials does O the nearest-neighbor exchangelf2is —(3/8)L.

not show up RVB-like magnetic properties, the idea is still N the following sections, we will discuss briefly why
interesting, and motivates the search for a doped RvBIwme is exactly solvable for its ground state @t=1. It will
superconductct.All these studies clearly show the impor-

tance of understanding the physics governed by valence a ° - - " - -
bond configurations. It makes the search for and the studies  b) — —e —e —
of models with dimer ground state particularly desirable. ) e o —

The Majumdar-GhostiMG) modef®!is a one dimen-
sional quantum spin model with the nearest- and next- g 1 (g and(b) are two exact ground-state configurations of
nearest—n_elghbor gxchange interactions. It is gxactly solvablg,e family of 1D models with linear exchange coupling, as dis-
for a particular ratio of these exchange couplings, and has g,ssed in the text. The solid line joining two lattice points repre-
twofold degenerate dimer ground state. Though this modedents a singlet state between spins sitting at corresponding sites.
has been studied for anisotropic exchange and generaSspin These ground-state configurations are referred thsas and | ,)
we will consider only isotropic exchange and tBe=1/2  in the text.(c) is one of the singlet configurations which is not an
case. The exact solution of the MG model guides us in coneigenconfiguration of the Hamiltonian given by Ed).
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guide us in constructing the general family of spin models on B;: & (ID) = 'r\ D)
a 1D lattice with PBC. It will be rigorously proved that the )

dimer configurations},i,) and|,), form an exact, twofold
degenerate ground subspace for the whole family. Various Bs: @ (1D)
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features of this family of 1D models will be discussed in "
some detail. Then, the generalization to two and three spatial
dimensions will be discussed. Our scheme allows us to con- = % (D)

struct higher dimensional models with exact knowledge of

the ground state. The exponential degeneracy in the ground FiG. 2. The,, ., blocks forv=1 and 2, in one, two, and three
subspace O_f such models will _be d'S.CUSSQd- Finally, we wilgimensions. The dashed coupling in 2D blocks is unity while the
conclude with some general discussion and remarks. solid one isa. In the 3D block, the coupling of thapexto the

squarefaceis unity while the coupling within the face is.

[l. LESSONS FROM THE MG HAMILTONIAN'S also the ground state of the basic building blocks, is the

SOLUTION ground state of the Hamiltonian. In the next section, we will
construct a general family of one-dimensional spin Hamilto-
nians, and show thats,) and| ) are the exact ground-state
configurations for the whole family.

On a chain with PBC, and fax=1, the MG Hamiltonian
can be rewritten astyg=J=" (S S+1+S-S+2+S1
-S,,)=J="_,h;. The Hamiltonianh;=S-S,:+S-S+»
+S5.1-S42, is that of a block of three spins, théh spin
and its next two neighbors, coupled to each other identically.
Let us refer to these blocks &; where®B stands for a block
of completely connected spins, and the subscript 3 refers to The modelLet us consider a bloc®,, ., ; of identically
the number of Spins in the block. Spins within a block aregnd Comp|ete|y connected (;2— ]_) Spins wherey is a posi_
understood to be identically coupled, unless specified. Th@ve integer. The identical and complete connectedness
minimum eigenvalue oh;, e™"=—3/4, forS=1/2. Thisis  of spins means that every spin in a block is coupled to every
easy to see if we rewritd; as %[($+3+1+S+2)2—32 other, with the same strengtiwhich is taken to be unity
—32+1—32+2]. The minimum-energy spin configuration for as shown in Fig. 2 forvr=1 and 2. On a spin chain,
B4 has one free spin and the other two spins form a singletany sitei and its next 2 neighbors will form &3, ; unit
For example[i,i+1]®|Ti,,) is one such eigenconfigura- once they are identically and completely coupled. The
tion. There are two linearly independent ways of formingHamiltonian corresponding to thigh such block on a 1D
such configurations for which the tot#l; spin is 1/2. lattice is written as:hj(B,,.1)={S-(S+1+ - +Si2,)

Since the MG chain is made up & units, the ground + S41- (Ss2+---+Si2) +-+ Sio2- (Si2,-1
configuration of the MG chain can be constructed in such a-S+2,) +S+2,-1- S+2,}. Adding all such block Hamilto-
way that it is also the lowest energy eigenconfiguration ofnians gives the total Hamiltonian for the spin chain made up
B5. This is not possible in general. Interestingly, this is pos-of 9B,,,; units. There are exactly 12 number of first-
sible for the MG chain because the minimum-energy conneighbor (nearest-neighbor pairs, (2—1) number of
figuration ofB5 has strictly one bond singlet andraespin.  second-neighbor pairs, and so on, within e&8}),. , unit.
This “free” spin is free in the sense that it can bond with the Therefore the total Hamiltonian for%s,, . 1 spin chain with
“outside” world, and the new composite configuration is still PBC is
the eigenconfiguration of the block Hamiltonian with energy,

—3/4, provided the other two spins of the block form a sin- -

glet. Since every spin on the MG chain has identical ex- H[%Zv+l]:JZ [2vS-S11+(2v—=1)§-S2

change connectivity, the above considerations imply that the =t

ground-state configuration dfl,g is the one where every +--+25-S:2,.1+S-S.2,]

three neighboring spins share exactly one bond singlet. The .
key observation to make is the fact that the fundamental _

block has an odd number of spins, and its minimum-energy :Ji ] 121 (2v+1-))S- S+ (4)
configuration contains exactly one free spin while the rest

form a singlet. All this straightforwardly leads to the exact Thus, on &3,,.,; spin chain, théth spin is coupled to next
solution of the ground state of the MG chain, already men2v neighbors with linearly decreasing exchange coupling.
tioned in the Introduction, and can be proved rigorously usNote that the Hamiltonian correspondingite-1 is just the

ing the inequality <¢|HMG|¢)>E92J2}:1e{“'”(%3) MG Hamiltonian with dimer ground state. We will show that
=—(3J/4)L and the identitiesS,- (S+Sy)[l,m]=0 V k H[B,, 1], for anyv, has the same ground state. Therefore
#l andm; S-S, [I,m]=—S(S+1)[I,m]. If |¢) is such an can be regarded as the label for the members in our family of
eigenstate of the Hamiltonian that the upper bound of thelD spin models with twofold degenerate dimer ground state.
inequality equals the lower bound, thég) is also the The ground stateln order to find the ground-state energy
ground state of the Hamiltonian. In other words, this inequaland the corresponding eigenconfigurations Hff8,,. 1],

ity ensures that an eigenstate of the Hamiltonian, which ixonsider the minimum-energy configurations forsg, . |

Ill. FAMILY OF 1D MODELS WITH DIMER GROUND
STATE

I -
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unit. Rewriting h;j(B,,.1) as 3[(S+S.1+---+S.,,)2 tical exchange connectivity suppresses the choices allowed

—(SP+S,+---+F.,,)] tells us that the total spin py the.intrinsic. degeqeracy of blogk singlets. The only con-
EjzioSﬂ being minimum corresponds to the lowest energyflgpratmn_s which satlsfy the condlt_lon that every _block of
of the block. ForS= 1/2, the minimum energy is-3v/4, and  N€ighboring (2+1) spins on a chain has exactydimers
the corresponding spin configurations are such that there &'€|#1) and|y). In fact, the other configurations are not
exactly one free spin while the remaining Zpins form a  €ven the eigenconfigurations 6l 5,, . ,]. One such con-
block singletA block singlet can be described in terms of the figuration is shown in Fig. (). This is so because such
bond singlets(valence bond or dimers, as we often call configurations always find some building blocks whose
them. Since there are many, independent ways of doing thafNinimum-energy configuration is not satisfied, whergag
a block singlet has an intrinsic degeneracy of valence bon@nd|2) sastisfy all building blocks” minimum-energy con-
configurations. For exampl&s’s minimum-energy configu- figurations. Thereforgys) and|y) are the exact ground-
ration consists of a free spin, and a block singlet of four_state configurations of the family of spm_HamlItomans given
spins. ForS=1/2, there are exactly two linearly independenti" EQ. (4), and the ground-state energy-g(3»J/4)L.
valence bond configurations for a block singlet of four spins, N the following, we give another proof ¢fsy) and|y)
We will see later that in certain other models, this intrinsicP®ing the ground-state configurations f5,,,] for all
degeneracy leads to a ground-state with exponential degeMalues ofv, despite the fact that we have already shown it.
eracy, and hence finite entropy density in the ground state. Ikhis proof gives an independent existence to the Hamil-
the following, we try to construct the exact ground state confonian H[%B,, . ,]. The proof is based on the principle of
figurations ofH[B,,. ], for all values ofy. mathematical |nd_u_ct|30n, _and bnngs out an_lntere_stlng prop-
If we can find a configuration where every block of suc-€ry of superstability> which the dimer configurations pos-
cessive (2+1) spins share exactly one block singlet of 2 S€ss. An eigenstatgp) of some HamiltonianH is called
spins, then it is the ground state configuratiorHjfB,, . ;]. superstable if it is also the eigenstate of the opergitorV/,

This is ensured by the inequality for a certain operatov where the commutatgH,V]#0. To
make a definitive statement about the superstability, we
L . should clearly understand the relationship between succes-
<¢|H[*B2V+1]|¢)>Egzzl eM"(B,, . 1). (5  sive Hamiltonians of the family. The proof by induction is
=

based on the understanding of such relationships, and hence

The following identities are used in establishing the fact thafllustrates the superstability of the dimer configurations as
such a construction will form an eigenconfiguration of the!® ground state of our family of Hamiltonians, in a rigorous
ay.

H[B : way.
[B2y41] Proof by induction For v=1, the Hamiltonian operator
T ) i1)in, i ]=0, 6 is H[B3]=Hpmg. It is known that Hyg|io)
(S, Sz Syllatz 2] © =—(3J/4)L| ¢ with |4, ) being the ground-state con-
oyl 2y 3 ;‘igu;ation. Here|y 5) refers to| ) and|y,). Assume that
. - a2 1 5 is the eigenconfiguration of thev¢1)th member of
DI S, Sl =g D he family, with eigenenergg,_ , (for the sake of this proof

11=1 02> 1
_ o _ _ N ignore the fact that we have already proved.ifThat is,
In Eq. (6), 5,4 1#{i1,ip, ... ,io,}. The above identities are H[B,, 11|10 =E, 1|¢h1. Now, we check for thevth

Straightforward generalizations of what were used in ﬁnding‘nember_ The Hamiltonian for theth member, where>1,
the exact ground state for the MG model 8+ 1/2. For  can be rewritten in the following way:

general spinS, the right-hand side of Eq(7) will be

—vS(S+1). The notatiori,i,, ... ,,,] denotes a block L2y

singlet of 2v spins. Just to illustrate this notation, considerH[%ZVﬂ]:JZ 2 (2v+1-))S- S

four sites labeled 1, 2, 3, and 4. Thigh2,3,4 denotes all the ==l

singlet configurations made up of spins sitting at these sites. L 2v-1
Thus [1,2,3,4=[1,2]®[3,4] or [2,3]®[4,1]. The indices =H[B3,-1]+3> 1S Si2,+2 > S-S
{igsis, .. .21} take the values from the sefi,i =1 =1
+1,...j+2v} while considering théth 9,,,, block on a L

spin chain. Also, each one of the indic€s, ,is, .. . izt 1}, =H[B,,_1]+Huc+I> {S-S.»

is distinct. Among the allowed dimer representations of i=1

[i1,ip, ...,ip,], One is simply[i,i+1]®[i+2i+3]®---

o[i+2v—2i+2v—1]. This is like the dimers we have al- F25:(Seat +842-) 5 S}
ready seen. There are many different types of them. Some =H[B,, 1]+ Hus

will be of the type, say[i,[i+1i+2],i+3]®[i+4,i+5] .

®---®[1+2v—2)i+2v—1]. Here, the notatiori,[i+ 1,

+2],i+3] refers to a configuration whei® and S, 5 pair +J§1 (S+S+1)(S4zt--+S43,). (8
up to form a singlet whiles . ; andS ;. , do the same. Each

of these dimer representations for &-8pin block singlet Clearly, from Eq. (8), H[B,:1]l¢12=[E,—1
contains exactly dimers. The fact that every site has iden- —(3J/4)L]|#; 5, as one can easily show that
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the family, and seems to increase monotonically for higher
members in the family. The dispersion relation fof255]

2r-2  2-1 2 2+l 2r42 (the MG model is &;(k)=3%+cos(X). This is already
known from Ref. 14. Here, the lattice paramedas taken to

be unity, and— w/2<k=</2. The single defect-boundary
excitation energies for the next two members of the family,

‘2&: —e *——e * *——e ~—

FIG. 3. This is one of the defect configurations with dangling
spin beingT, at site 2. One is allowed to have defect configura-
tions with dangling spin polarization beingwithout affecting the

dispersion relation. that isH[B5] andH[ ‘8], are the following:
L Es(k)=2+ 3 q2k) ! g 4k) (10
S =2+ —co — —=Co ,
;1( +S41)(Sigt - +S12,)|¢12=0. (9) 5 4 2

. . i . 11 3 3 1
This proves that,) and|,) are the eigenconfigurations of &7(k)= —+ —cod 2k) — -coq 4k) + —coq 6k). (11
the vth member of the family, with eigenenerdy,=E, 4 4 8 4
—(3J/4)L for any v>1 [with E;=—(3J/4)L]. This gives
E,=~(3vJ/4)L. Since thek, we get here is same as the N is the total number of5,,. ; units forming a finite chain

lower bound of the inequalitﬁEq._(S)], the| ‘./’1> and|yj;) are of L sites.N=L for a chain with PBC, antN=L —2v for an
also the ground states, and not just the eigenstates. Therefo&sen chain. Actually, we have considered the chains with an
we have been able to prove that the dimer configurationsdd numbe'r of spinst’,=4M+1 ‘1 order to find the defect's

| 1) and|y,) form a superstable, twofold degenerate ground,. . ; e .
subspace of the whole family &1 B,, . ,], parametrized by dispersion relation, and taken the linMt— . The ket k) is

Here, 52v+1:<k|(H[%2v+l]_ Ev)|k>/<k|k> EV: _%VN;

v, on a one-dimensional lattice with PBC. defined as

The summary of our findings, in the context of one- M
dimensional spin systems, is the following: k)= E elk|2r) (12)
¢ A family of spin models with exact dimer ground state is VZM+1r=-M

constructed. The ground subspace is twofold degenerate.l.he ket,|2r), is a configuration where there is a dangling

* The Lgenezrval Ham|lto_n|an of the family '9'_'_[%2”1]_ spin at 2 th site, and the rest forming the dimer configuration
=212, (2v+1-])S- S . Here,J>0, visaposi- ot 4y type on one side of the dangling spin and|g#)
tive integer, andB,, , , refers to the fundamental building 1y he on the other side, as shown in Fig. 3. The dangling spin
blocks for different members of the family. Note that the can have eithet polarization or| polarization. These defect
Hamiltonian has translational invariance, the exchang&onfigurations are nonorthogonal. Sif¢2r)} do not form a
coupling decreases linearly with distance between th%omplete set of states, the propagating defect $itatis only
coupled neighbors, and for a givenevery spin is coupled g variational choice. Nevertheless, it gives us some idea of
only up to 2vth neighbor, starting from the nearest one. the nature of excitations above the ground state. From the
» The ground-state energy, in units of the strongest exchanggispersion relations for the defect, we find that the energy
coupling(the nearest-neighbor coupling:2), is — 3L, for  gap for B3, Bs, and B, chains, in units of the nearest-
all members of the family. neighbor exchange, is 1/8, 3/16, and 11/48, respectively.
» The dimer state$y;) and |,) are superstable ground- Presently, we are unable to identify any simple relation be-
state configurations with respect to all members of theween the members of the family and the corresponding en-
family. ergy gaps, nonetheless, we see that there is a gap, and it
seems to be increasing as we go up in the hierarchy. One can
Having described in detail the construction, and the exacalso consider the case where there are many such dangling
ground state of this family of one-dimensional spin modelsspins in the dimer background, and consider the possibility
let us briefly discuss the nature of elementary excitations 0bf the bound states. We will not do it here.

the same. Connection with the Coulomb problem in one dimension
Energy gap in the excitation spectruihe MG model It is important to observe that the exchange coupling of the
has gap in the excitation spectrum with respect to the dimemodels constructed in the present Woﬂh,oc(R—|i —jl),is

ground state. This was illustrated by a variational calculatiorexactly like the Coulomb interaction in one dimension, albeit
of the dispersion of the defe@the dangling spin as shown in with a rangeR.}’ From theRth neighbor onwards, the ex-
Fig. 3 boundary between two exact ground-statechange coupling is zero. But there is no restriction on the
configurations? Later, it was exactly proved that there is an rangeR, and it can be anything. Hence what we have found,
energy gap in the excitation above the exact dimer groun@ssentially, is a quantum spin analog of the Coulomb prob-
states of the MG modéP. A method to calculate the lower lem in one dimension which was studied exactly by Lenard
bound for the energy gap was also developed, and applied end Baxter long agdf It is an interesting and unexpected
certain quantum antiferromagnéfswWe have calculated the connection. Analogous to the Coulomb problem, one would
dispersion relation for the propagating defect, variationally,expect plasmonlike gapped excitations in a spin model with
for B85 and‘B, chains. We find that the energy gap towardsinfinitely long-ranged, linear exchange coupling. For antifer-
such solitonic excitations exists for each of these members abmagnetic exchange coupling, as we saw just now, the en-
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P A T NPTt TSP S A Y where coupling was identically. The corresponding Hamil-
@@@@3 tonian can be written agd=JS " h} _5(Bs), with J>0.
1 5 9 13 1 The block Hamiltonian,

FIG. 4. The exchange connectivity of a one-dimensional spinh/ = alS (S +S +S
model with exact dimer ground state whose degeneracy is exponen-‘”_g(%S) {Sa—a+(Sa-2F a1 S)

tial in the number of sites. Shown in the figure is an example of a +Sa_2-(Sy—1+Su)+Su_1-Sui}
16-site model on a closed chain geometry. The sites wher&the
unit repeats itself are numbered explicitly. The exchange couplings +Sy 11 (Sa—3t+Sy_2tSy_1+Ss), (13

are: solid line=aJ and dashed line=J. . ) . . . .
is a slightly generalized version of the previously defifigd

ergy gap increases witR. But the analogy has interesting block Hamiltonianh(®Bs). Whena=1, h'(%55) is the same
consequences for the spin models with ferromagnetic lineassh(Bs).
exchange coupling. For a>1, hy _3(Bs)’s minimum energy is equal to

The Hamiltonian for the ferromagnetic case is written as:—3q/2 for S=1/2. SpinsSy_3, Sy_2, Sy_1, andS, form
H=-J3 3R 1(R-m)S-S . Here,J>0, andRcan a twofold degenerate block singlet corresponding to the
be even as well as odd unlike the antiferromagnetic casblock Hamiltonian's lowest eigenenergy, and s@if. ; re-
discussed in the present work. The ground-state energy formains “free” to be a part of the next block singlet. Therefore
general spirSis Eg= —JS?R(R—1)L/2. And the exact one the ground-state energy of this spin modeti8aJL/8, and
magnon dispersion with respect to the ground-state energy ithe ground-state configurations can be written as
E(k)=JS{R?>—~[1—cosRK)]/[1—cosk)]}, k=2n=I/L,
where isn is an integer. The wave numbékrtakes values |z/fg)=[1,2,3,4|®[5,6,7,a
between— 7 andr. For any finiteR, £(k) —0 quadratically,
ask—0. Hence the excitations are gapless. In order to con- ®---®[L-3L-2L-1L]. (14)
sider the analog of Coulomb problerR, should be of the  gjnce each of these four spin block singlefd) — 3,4
order of L, an% letL go to infinity. We putR=L/2, and = _5 41 47, has two dimer representationg,,) represents
rescale] to J/R” (as the grouznd state as well as the magnomL/4 gegenerate, dimer configurations forming the ground
excitation energy goes aR for large R). Then, &(k)  gupspace. Far=1, the ground-state energy is still given by
=JS(1—-4[1-(—)")/L7[1—cos)]. Therefore, in the the above expression, but the degeneracy of the ground state
thermodynamic limit, the magnon excitation has a gap ofg 2(2“%). This is so because, far=1, any four spins of a
valueJS, and a totally flat dispersion. Hence a ferromagnety, piock can form a singlet in the minimum-energy configu-
with '”f'”'t? ranged linear exchange c_oupllng is gappedyation. This allows the following configurations, together
Next, we discuss another type of 1D spin models where th¢iih |4y, in the ground state,
dimer ground state is exponentially degenerate. These mod- g
els are also constructed &,,; units. J¢,>:[2’3’4’5®[6’7’8’q®. ®[L-2L-1L,1]. (15

1D models with exponentially degenerate dimer groun g
state As mentioned earlier, the block singlets made up ofAnd hence the degeneracy is doubled. The procedure, de-
four or more spins always have degenerate dimer represegeribed here in detail, can be directly applied to construct
tations. This intrinsic degeneracy at the block level, howevermodels using bigger spin blocks. Thus we are able to con-
could not be greatly exploited in our previous constructionstruct quantum spin chains with exponentially degenerate
which led to the class of linear exchange spin models on aimer ground state, and the interesting thing to note is that
chain. The dimer ground state of this class of models is onlghe ground state is exactly known fae 1, unlike the linear
twofold degenerate. Now, we construct another type of spirexchange models whewe is strictly 1. Or, in other words,
model, on a closed chain, whose ground state has an exptie dimer configurations are superstable for all values of
nentially large number of degenerate dimer configurationsgreater than or equal to 1. We will come across the same
Here, the degeneracy of the ground state is exponential in thfeatures once more in the following section, while consider-
number of lattice sitek. To illustrate this class of model, we ing the higher dimensional generalization of our scheme.
describe a particular construction usifig units. In this section, we have developed the concepts, and ex-

Consider a closed chain with even number of sites. Conplicitly used them in constructing one-dimensional spin mod-
nect spins at the 1st, 2nd, 3rd, and 4th sites identicallyls. In the next section, we will use this understanding to
among themselves with exchange coupliny Then connect construct models with an exact dimer ground state in two
each of these four spins to the spin at the 5th site with exand three dimensions. Before going to the next section, we
change coupling), as shown in Fig. 4. Again, connect spins must mention that recently there have been some generaliza-
from the 5th to 8th site identically with couplingJ, and  tions of MG and SS model§~?! In this regard, we would
then connect these four spins to the spin at 9th site withike to stress the point that our scheme provides a very gen-
coupling J. Repeat this procedure for further spins, startingeral framework to construct all such models using only two
with the 13th site, the 17th, and so on. Thus we construct ¢hings: (i) the basic building blocks, an@) arranging them
spin chain ofB5 units. TheseBs units are slightly different in such a way that each block is able to satisfy its minimum-
from the ones we have used earlier. Here we have two exenergy configuration even when being a part of the full as-
change couplingd and «J unlike the earlier considerations sembly. This we have already seen working in one dimen-
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sion. We will illustrate this in the following section by
constructing various models in two and three dimensions.

IV. GENERALIZATION TO TWO AND THREE

DIMENSIONS OO =KX RO

| R i a Wi NN NN
The SS model is a two-dimensional spin model with a Aw‘wﬂe> 4%“*‘%“%’ 4%1-&"7%\
specific exchange connectivityt has an exact dimer ground ViVF VQV.V \V VQV.YQV Vﬂ‘
state with no degeneracy. It is, in some sense, the two- AbX 2NN ALLX ANEA AL X AN

. . . OSSOV e AV O vV S e AV O v
dimensional analog of the MG model. The SS model, like the 3 w“'//‘ Eﬁi l\\‘%"’/‘ ﬁ;qa l\“""’/ﬂ?

MG model, is made up of fundamental blocks of three spins, . ;A k« R K RO
that is, 83 units in our language. Hence the SS model is the 2 "/k:«é‘ 745‘@7/}4%&\"454&‘ ’/}A%;\‘ é
first member of the family of 2D spin models with an exact % R OS AL S g AV

dimer ground state, if labeled according to our scheme.
This correspondence motivates us to construct spin mod:
els in higher dimensions whose ground states can be known
exactly. In fact, we can construct a whole lot of them. The  F|G. 6. A 2D model with a certain exchange connectivity, made
rules are very simple. Pick one spin of,,; unit as free.  up of B; blocks. The exchange couplings are: thin solid liaé,
Leave the rest to form a block singlet of size.ZEach of the  dashed line=2J, and thick solid line=8aJ.
2v spins of the singlet forming block can act as the “free”
spin for the neighboring blocks. And any given block singletthe ground-state exponentially degenerate. Thus we are able
can be fully or partially shared by other “free” spins. This to constructspin models with finite entropy density in the
allows us to extend the network in higher dimensions. Theground stateTo illustrate all this, we describe models made
Hamiltonian for any such model is just the sum of all theup of B85 units.
block Hamiltonians. Only those dimer configurations which  Following the rules stated above, a ladder model, as
satisfy each building block’s minimum-energy configurationshown in Fig. 5, is constructed wit®Bs units. (We could
form the exact ground-state configurations. This set of rulehave constructed a simpler ladder with; units, but the
seem sufficiently general for constructing models with exacexponentially degenerate ground state cannot be realized
dimer ground states. For example, one gets the SS model lilgere. The dimers along the rungs form the exact ground-
applying these rules to make a 2D model usf#g units. state configuration of &, ladder) These ladders properly
We consider a generalizes,, . ; unit, where one of the arranged on a plane give rise to a certain 2D spin model as
spins is picked up to be exclusive such that it is coupled tshown in Fig. 6. Assuming a ribbonlike geometry for the
the rest by unit exchange strength while the rest are comladder and the toroidal geometry for the 2D model, we can
pletely coupled among themselves by some exchamge easily find their ground-state energies. In our construction,
These basic spin blocks are still completely connected, butach lattice point of the ladder model contributes exactly one
the couplings are not identical. This choice is exactly like the®Bs unit, whereas each site on the 2D model contributes two
one we had for constructing 1D models with exponentiallysuch units. Therefore the ground-state energiesqfod , of
degenerate dimer ground states; see Fig. 2, wigrand®B8s;  the ladder and the 2D model arejaJL and —3aJL, re-
units are shown in one, two, and three spatial dimensionsspectively. Herel is the total number of sites. The ground-
The “block singlet + free spin” is the lowest energy con- state energy per site, in units of the strongest exchangd (4
figuration of the®B,,.; unit for «=1. We can construct for the ladder, and 8J for the 2D mode), is just— 2. The
models in two dimension&@nd also in three dimensions blocks of spins, connected with thick lines as shown in Figs.
such a way thaspatially disjoint block-singletdorm the 5 and 6, forming singlets is the exact ground-state configu-
exact ground-state configurations fee 1. It is interesting ration. For the ladder, the ground-state configuration is
to note that the domain of superstability for the dimer groundshown in Fig. 7. The ground state for the 2D model is similar
states in these modelsds=1, unlike the case of translation-

ally invariant 1D models constructed in the previous section.
There, the dimer configurations form a superstable grounc ® ® ®
state only ate=1. Also, the spatial disjointness preserves
the intrinsic degeneracy of the block singlets which makes
or—0
— OR
*—

FIG. 7. The ground-state configuration of the ladder model.
FIG. 5. The ladder made up &5 blocks. The exchange cou- Each of the square blocks is a singlet which has two linearly inde-
plings are: thin solid line=J, dashed line=2J, and thick solid line  pendent dimer representations as shown by vertical and horizontal
=4al. dimers.
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block singlets belonging to different planes gives rise to an
M exponentially degenerate dimer ground state.

The possibilities for making such models are enormous,
and therefore cannot be exhausted in one place. But one
thing must be emphasized. The basis for constructing models
with exact dimer ground states, as discussed in the present
z work, is very general. The model Hamiltonians that may be

constructed with these rules may be of definite importance in
understanding some physics of the spin systems.

V. CONCLUSIONS

We first summarize the main results. We have constructed
a family of one-dimensional spin models with linearly de-
creasing exchange coupling. The range of coupling is the
family parameter which is decided by the size of the basic
building block. The fundamental building blocks are com-
pletely connected blocks of an odd number of identical spins.
4l the members in the family have an exact, twofold degen-
erate dimer ground state. There exists an energy gap in the
excitation spectrum above the dimer ground states, and it
Eeems to be increasing monotonically for the higher mem-

FIG. 8. This is a projection on axry plane of the ground-state
configuration of a layer of the corner sharing octahedra made out
square pyramidsgthe B units in three dimensionsThick lines
here represent the common basal plane of Bvgyramids making

an octahedra. In the ground state, four spins lying on the commo in the familv. The int i |  this familv of
basal plane form a twofold degenerate block singlet. These bloc ers in the family. 1he interésting analogy of this family O
models, with the Coulomb problem in one dimension, is dis-

singlets lie inx-z or y-z planes. It is interesting to observe the d. One-di . | spi dels with tally d
topological equivalence of the arrangement of block singlets orf USSEd. Une-aimensional spin models with exponentially de-
enerate dimer ground states are also discussed.

orthogonal planes, here, to that of the dimers in the exact groung Thi f tructi dels i i lized t
state of the SS model. is way of constructing models is easily generalized to

higher dimensions. We are able to construct models in two

and three dimensions, with exact dimer ground states. The
to that of the ladder. The twofold intrinsic degeneracy ofground state of many such models is exponentially degener-
each block singlet makes the ground subspacéfald de-  ate. The degeneracy in the ground state of these models
generate. The entropy density in the ground statelig2),  arises due to many degenerate dimer representations of the
just one-fourth of that of a paramagnet. Each block singleblock singlets forming the ground-state configuration. These
has two independent bond-singlet configurations, thereforgnodels thus provide explicit examples of the systems with
the ground subspace consists df“2distinct dimer or va- finite entropy density in the ground state, and hence violating
lence bond Configurations' For examp'e’ two of these Conth.e th|rd law of thermodynam|cs. A|SO, these are the models
figurations are the columnar dimer states which are the exa¥ith finite rangedRVB-type ground states, spanned by an
ground states of a certain model constructed by Bose angxponentially large subs_et of 'ghe full set of linearly indepen-
Mitra.?? Thus the ground state of models discussed here is gent valence bond configurations. The range of the valence
spin liquid as well as a dimer liquid, as the dimers within a20nds is decided by the size of the building block. The rules
block singlet are correlated, but there is no correlation befor constructing such models are explicitly discussed.

. . : . We hope that the general class of models proposed here

tween dimers belonging to different block singlets. One can

. . . ay be useful in studying the quantum phase transitions in
easily construct certain other models, using the same ruIeE1 y ying g P
r

h d stat di lids. thouah o e frustrated spin systems. The exact knowledge of the
whose ground states areé dimer solids, though we will N0y 6 nd state with exponential degeneracy, in these models, is
discuss these models explicitly.

e ) , fparticularly remarkable. The building block way of looking
The generalizations of the SS model, considered in Refat these models is quite in the spirit of synthetic chemists. It
19, provide good examples of the higher dimensional modelgay be possible to realize such models.

made up ofB; units. So, we will consider the next block,  Note added in proofWe are thankful to Professor Indrani
that is,Bs. The three-dimensiondBD) B5 block is shown  Bose who brought to our notice an earlier work of Tak&no

in Fig. 2. There can be many ways of constructing 3D modwhich has some overlap with our present work. Takano had
els usingBs pyramids. We consider a case where two suchalso arrived at the linear exchange spin chains with dimer
pyramids share the basal plane to form an octahedraaFor ground state, and discussed its generalization in two dimen-
=1, the four spins of the common basal plane form a blocksions. Though there are interesting similarities between Ta-
singlet. Layers of the corner-sharing octahedra, stacked ikano’s and our present work, there are also clear differences
certain ways, form one such model. The projection of ondn the approach and the emphases in the two.

such layer on ax-y plane is shown in Fig. 8. The ground-

state configurations are such that the singlet blocks are lying ACKNOWLEDGMENTS

in orthogonal planes. It is topologically similar to the or-  The author wishes to thank Professor B. Sriram Shastry
thogonal arrangement of dimers in the exact ground state &fnd Professor Diptiman Sen for fruitful discussions and com
the 2D SS model except that these are block singlets, and argents, and likes to acknowledge the Council of Scientific
lying in orthogonal planes. The spatial disjointness of theand Industrial Researdl€SIR), India, for financial support.
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