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Optical absorption spectra of the Holstein molecular crystal for weak
and intermediate electronic coupling

M. Hoffmann* and Z. G. Soos
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 8 March 2002; published 24 July 2002!

We investigate the optical absorption spectrum in a Holstein model for a molecular chain with Frenkel
excitons and linear coupling to one internal vibration. The model is extended for nearest-neighbor charge-
transfer excitons that mix with the Frenkel excitons. We represent the Hamiltonian in a displaced oscillator
~Lang-Firsov! basis and employ a problem-adapted scheme for the truncation of the phonon basis. For weak
and intermediate electronic coupling, the complete absorption spectrum and the structure of the relevant
eigenstates become accessible by direct numerical diagonalization. We discuss the structure of the phonon
clouds and the applicability of the molecular vibron model, in which only joint exciton-phonon configurations
are included. As examples, we model absorption spectra of PTCDA~3,4,9,10-perylenetetracarboxylic dianhy-
dride! and MePTCDI (N-N8-dimethylperylene-3,4,9,10-dicarboximide!.

DOI: 10.1103/PhysRevB.66.024305 PACS number~s!: 71.35.Aa, 71.38.Ht, 78.40.Me
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I. INTRODUCTION

There is revived interest in organic semiconductors ba
on p-conjugated molecules. The reasons are commerc
attractive results in organic LED’s~e.g., Refs. 1–5!, promis-
ing demonstrations of solar cells~e.g., Refs. 6–10! and the
fundamental physics of high quality single crystals show
band transport,11 ballistic hole transport,12 fractional quan-
tum Hall effects,13 charge injection lasers,14

superconductivity,15 or superconducting switches.16 There-
fore, a detailed understanding of various electronic exc
tions becomes desirable.

In this article, we investigate the optical absorption sp
trum in a Holstein model17,18 for a molecular chain with
Frenkel excitons and linear coupling to one internal vib
tion. We extend the model to include nearest-neigh
charge-transfer~CT! excitons that mix with the Frenkel ex
citons. Such a model is approximately realized by so
quasi-one-dimensional molecular crystals, in particular
PTCDA ~3,4,9,10-perylenetetracarboxylic dianhydride!,
MePTCDI ~N-N8-dimethylperylene-3,4,9,10-dicarboximide!,
or related perylene derivatives. PTCDA has become a p
digm because it readily forms highly ordered films,19,20while
perylene derivatives have solar cells applications.6,7,9Several
works have sought to understand the PTCDA absorp
spectrum and related properties of its electro
excitations.21–27

A major advantage of PTCDA-related systems is sim
and accessible molecular behavior. The lowestp-p* excita-
tion is dipole allowed and well separated from higher sta
~e.g. Refs. 28,29!. This excitation couples to several vibra
tions of the carbon backbone,30 but the most strongly
coupled modes are almost degenerate and can be treat
one effective mode~see, e.g., Ref. 31 or Sec. V!. Since the
vibrational quantum in the ground and excited state is alm
the same, we have a textbook example of linear excit
phonon coupling. Furthermore, other perylene derivati
show similar molecular properties but form very differe
0163-1829/2002/66~2!/024305~18!/$20.00 66 0243
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crystal structures with correspondingly different crys
spectra.32 All recent interpretations of crystal absorptio
spectra24–27 use the framework of small-radius exciton
However, there is no general agreement yet about the rol
CT excitons, about the choice between a complete Hols
model or a molecular vibron model, and about the concr
values of various interaction parameters.

Although motivated by perylene spectra, we will discu
general aspects of relaxed excited states in the Hols
model. This familiar one-dimensional model, as summariz
in Sec. II A, has harmonic potentials with quanta\v, linear
electron-phonon couplingg for each molecule, and an exc
tation transfer integralJ between neighbors. Takingg andJ
in units of \v, we have two control parameters that enco
pass many cases of interest.

In the molecular limit~no interaction,J50), optical ab-
sorption creates only exciton-phonon configurations at
same site. For finiteJ, these joint configurations can mi
with configurations in which the exciton and phonons o
cupy different sites. The resulting eigenstates have a com
structure consisting of an exciton surrounded by a pho
cloud. We focus below on the structure and modeling
these phonon clouds.

The eigenstate structure varies widely with respect tog
andJ. For optical spectroscopy, the analysis typically sta
with vibronic properties of isolated molecules and then
troduces electronic coupling. The limiting cases are cal
weak ~electronic! coupling and strong~electronic! coupling.
This classification was introduced by Simpson a
Peterson33 and is mainly used in spectroscopy~e.g., Ref. 34!.
In the weak coupling regime (J!g), the transfer of elec-
tronic excitation is ‘‘slow’’ compared to the nuclear relax
ation time within the molecule. The crystal spectrum w
then resemble the vibronic structure of the isolated molec
In the strong coupling regime (J@g), the electronic transfer
is ‘‘fast’’ compared to the nuclear relaxation and a Bor
Oppenheimer separation between the electronic and vibr
wave functions of the whole crystal can be made. Since
©2002 The American Physical Society05-1
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M. HOFFMANN AND Z. G. SOOS PHYSICAL REVIEW B66, 024305 ~2002!
electronic excitation is now completely delocalized, the co
pling to the vibrational system vanishes and the spect
becomes a single narrow line. We adopt the spectrosc
classification of the limiting cases and consider weak to
termediate coupling.

In the context of charge-carrier mobilities, by contrast,
natural starting point is delocalized electronic excitatio
The coupling to vibrational modes of the lattice is then
troduced as the second step. From this point of view,
relevant limiting cases are classified in the opposite sp
There is either ‘‘weak~electron-phonon! coupling’’ (g!J)
or ‘‘strong ~electron-phonon! coupling’’ (g@J).

The Holstein Hamiltonian has been extensively stud
and reviewed in the context of mobility at zero and fin
temperatures.17,18,35–41 Since the Hamiltonian cannot b
solved analytically, the emphasis in these traditional wo
lies on studies of perturbative limits. In the course of
newed interest in molecular crystals and other narro
bandwidth systems and in connection with increasing co
puter capabilities, a variety of numerical studies ha
recently been undertaken to explore the lowest state in
full parameter range. These include variation
approaches,42–48 direct diagonalization,49–53 quantum Monte
Carlo calculations54–57 and density-matrix renormalization
group techniques.58

Compared to this, the properties of higher states h
been much less investigated. These excited vibronic sta
however, are essential for an understanding of optical
sorption spectra. The relevant issues were identified in
initial studies of molecular crystals and limiting cases we
analyzed~see, e.g., Refs. 34, 59!. For intermediate coupling
however, only a few quantitative studies have been p
lished. These include direct diagonalization studies
dimers,60,24 variational and direct-diagonalization study
linear aggregates,61–64and a discussion of the second lowe
vibronic state in an infinite chain.53

In this article, we describe a direct-diagonalization a
proach to the complete optical spectrum of vibronic sta
For direct diagonalization, the choice of a proper basis se
crucial to allow convergence and sufficient flexibility with
out becoming inconveniently large. We consider an infin
chain and include translational symmetry by using ba
states in momentum space. Thus, some of the finite-size
sues in aggregate studies are avoided from the outset.
truncation of the basis set is done by considering only p
non clouds localized around the exciton. Furthermore,
use a displaced oscillator basis~Lang-Firsov basis!, which is
exact for the molecular limit of no hopping. This schem
allows a flexible description of weak and intermediate el
tronic coupling (g'1, uJu&1). In this regime, optical spec
tra can be calculated with an accuracy sufficient for comp
son with experiments by diagonalizing matrices
dimension&5000. Thus, standard eigenvalue routines can
used and the nature of all excited states can easily be in
tigated. Our approach is extended to include charge-tran
states. Applications to absorption spectra of PTCDA a
MePTCDI are given as examples.
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II. THE FRENKEL PROBLEM: REPRESENTATION AND
SCHEME FOR NUMERICAL SOLUTION

A. The Holstein Hamiltonian

The Holstein model17,18 assumes a one-dimensional m
lecular chain. Each molecule has one vibrational and
electronic degree of freedom. Vibrationally, each moleculn
has one effective configuration coordinateln . The vibra-
tional potential isVn

gr5ln
2 in the electronic ground andVn

ex

5(ln2g)2 in the excited state. All energies are measured
units of the vibrational quantum\v. The dimensionless
exciton-phonon coupling constantg is related to the vibra-
tional relaxation energy~Franck-Condon energy! of the ex-
cited molecule byEFC5g2. Creation and annihilation opera
tors for vibrations in the potentialVn

gr are denoted bybn
† and

bn .
Electronically, moleculen can be either in the ground

state or in the first excited state. Operatorsan
† are introduced

to create an excitation at siten from the electronic ground
state of the chainu0el&. In the Holstein model, the quasipa
ticle an

†u0el& can be either an exciton or, as originally di
cussed, a charge carrier. The hopping integralJ ~in units of
\v) describes the nearest-neighbor transfer of the quasi
ticle as in a tight-binding model.

Using these definitions, the complete Holstein Ham
tonian for a Frenkel exciton~FE! can be written as

Hhol
FE5Helec

FE 1Hph1HFE-ph, ~1!

Helec
FE 5J(

n
~an

†an111an11
† an!, ~2!

Hph5(
n

bn
†bn , ~3!

HFE-ph5(
n

an
†an@2g~bn

†1bn!1g2#. ~4!

Here, the last termHFE-ph couples linearly the otherwise in
dependent exciton and phonon systems. Thus, the Hols
Hamiltonian operates on states that generally consist of b
exciton and phonon excitations. Such states, if they con
at least one exciton, are called vibronic states.

The Holstein Hamiltonian conserves the number of ex
tons. We are interested only in the states with exactly o
exciton. Therefore, Eqs.~1!–~4! are already written for this
subspace of ‘‘one-exciton states,’’ and the exciton count
term (nan

†an is omitted. The constantg2 in Eq. ~4! is added
to align the zero of the energy axis with the lowest vibron
state of the molecular limit (J50). This energy scale reflect
the exciton viewpoint, in which the states of the isolat
molecules including their internal exciton-phonon coupli
are used as reference states. The lowest vibronic state
our one-exciton space should not be confused with the t
ground state of the crystal, in which there are neither exci
nor phonon excitations.
5-2
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OPTICAL ABSORPTION SPECTRA OF THE HOLSTEIN . . . PHYSICAL REVIEW B66, 024305 ~2002!
B. Basis set and matrix elements

Our aim is to find numerically the low energy eigensta
of the Holstein Hamiltonian~1! within the one-exciton mani-
fold. As basis functions, we use the eigenstatesunn& from the
limiting case of zero exciton hopping (J50). We call this
the molecular limit, since all intermolecular interaction term
are turned off now. In the molecular limit, an exciton loca
ized at siten is stationary and the vibrational wave functio
at this site are given by oscillator functions in the displac
potentialVex. At all other sites, which we count relative t
the position of the exciton, the vibrational wave functions a
oscillator functions in the ground state potentialVgr.

Thus, the basis functions can be written as

~5!

~6!

Here, the first factor~‘‘electronic’’ ! describes the electroni
part of a localized Frenkel exciton at siten. The second
factor ~‘‘displaced’’! describes internal phonons at this siten

of the exciton. The displaced ground state is denoted byu0̃n&
and the operatorb̃n

†5bn
†2g creates phonon excitations i

this potential. The third factor~‘‘undisplaced’’! describes in-
ternal phonons at all sites different fromn in the undisplaced
potential. The choice of the displaced basis functions fr
Eq. ~5! corresponds to applying the polaron canonical tra
formation ~Lang-Firsov transformation! to a set of basis
functions, in which all vibrational functions~including the
site n of the exciton! are oscillator functions in the groun
state potential~Ref. 35 or see, e.g., Ref. 39, p. 98, Ref. 40,
25!.

The phonon-cloud stateun& contains the phonon occupa
tion numbersnm around the exciton for all lattice sites. I
long notationu•••n21ñ0n1•••&, the special position of the
exciton (m50) is denoted by a tilde. A complete phono
cloud basis for a chain ofN molecules consists ofN-boson
states and leads to huge basis sets even for small occup
numbers. But a far smaller basis is sufficient to calculate
absorption spectrum. Optical absorption from the electro
and vibrational ground state only creates phonons at the
of the electronic excitation, i.e. only states of the for
u•••000ñ0000•••&. Excited states with anynmÞ0 for m
Þ0 cannot be reached optically.

For J50, these ‘‘dark’’ states cannot mix with the opt
cally active basis states either. Then, instead of theN-particle
statesun& we can use the one-particle statesun0&. For uJu
.0, the dark basis states can mix with the optically act
states. That means that optical absorption creates a sta
which phonons are excited at arbitrary distance from the
citon site. However, the contribution of such separated c
02430
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figurations decreases with increasing exciton-phonon sep
tion. Thus, the exciton will be surrounded by alocalized
phonon cloud. The localized nature of phonon clouds is
motivation for our choice of basis functions. Instead
N-dimensional cloud statesun&, a finite rangeun2M••• ñ0
•••nM&, with M denoting the extension of the phonon clou
will be sufficient. Numerically,M can be increased until con
vergence is reached.

With the restriction to local phonon clouds around t
exciton, we Fourier transform the basis states~5!:

ukn&[
1

AN
(

n
eiknunn&. ~7!

These states represent an exciton ‘‘dressed’’ with a local p
non cloud. The indexk gives the quasimomentum of th
whole object, i.e., the dressed exciton, andk is a good quan-
tum number due to translational symmetry. Thus, for a
given k the basis set consists only of a set of phonon clo
configurations. We emphasize that in contrast to the re
space basis~5!, the momentum-space basis functions~7! are
not Born-Oppenheimer separable into a product of a pu
electronic and a purely vibrational part.

Having specified the basis states, the Hamiltonian can
represented as a matrix. Application ofHHol

FE to the real space
states from Eq.~5! yields the matrix elements

^mmuHHol
FE unn&5dm,n^mun&(

i
n i

1JFdm,n21F21S m

n D 1dm,n11F11S m

n D G .

~8!

The first term in this compact notation results from the o
eratorsHph andHFE-ph. They contain no interactions betwee
different sites and thus simply count the phonons in
Lang-Firsov basis. The overlap factor^mun& stands for the
total overlap of two phonon clouds centered at the same
tice site. It is nonzero only for identical clouds due to t
orthogonality of the oscillator functions

^mun&5)
i

^m i un i&, ~9!

where ^mun&5dmn is the overlap between oscillator func
tions in the same potential.

The second term in Eq.~8! results from the purely elec
tronic Frenkel transfer processHelec

FE . The vibrational part of
the basis functions factors out and leads to the Fran
Condon overlapsF61 for the total vibronic overlap of the
phonon cloudn centered atn and the phonon cloudm cen-
tered atm5n61:

F215SS m0

n21
DSS n0

m11
D )

iÞ0,1
^m i un i 21&, ~10!
5-3
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M. HOFFMANN AND Z. G. SOOS PHYSICAL REVIEW B66, 024305 ~2002!
F115SS n0

m21
DSS m0

n11
D )

iÞ21,0
^m i un i 11&. ~11!

Here, S(m
n ) is the overlap between a displaced oscilla

function with quantum numbern and an undisplaced func
tion with quantum numberm ~Ref. 65!

SS n

m D[K 1

Am!
~b†!m0U 1

An!
~ b̃†!n0L

5
e2g2/2

Am!n!
(
i 50

min(m,n)
~21!n2 igm1n22im!n!

i ! ~m2 i !! ~n2 i !!
. ~12!

It is obvious that in the Lang-Firsov basis the strengthg of
the exciton-phonon coupling enters only through the mag
tude of the factorsF61 in the intersite hopping term.

In the momentum space representation~6!, the Hamil-
tonian matrix becomes

^kmuHHol
FE ukn&5^mun&(

i
n i

1JFe2 ikF21S m

n D 1e1 ikF11S m

n D G . ~13!

For general momentak, these matrix elements are comple
numbers. For our intended application to spectroscopy,
values at the Brillouin-zone edges (k50,p) are of interest
and there the matrix elements are real. Representing the
eigenstates as

uC j~k!&5(
n

un j~k!ukn&, ~14!

we obtain the eigenvalue problem

(
m

^kmuHHol
FE ukn&um j5Ejun j ~15!

for the real matrix^kmuHHol
FE ukn&. Its eigenvaluesEj and

eigenstatesuC j (k)& are the stationary solutions of the Ho
stein Hamiltonian~1!.

C. Transition dipoles and phonon clouds of the eigenstates

The properties of the eigenstates~14! are easily com-
puted. We start with the transition dipole moment betwe
the eigenstates and the total ground state. For a light w
with wave vectorq, the transition dipole operator is

P̂q5
1

AN
(

n
e2 iqn~an

†1an!, ~16!

The normalization is such that the absolute squared trans
dipole per unit cell becomespW M

2 , with pW M being the molecu-
lar transition dipole. The transition dipole of a stateuC j (k)&
will be nonzero only forq5k. Therefore, we introduce a
k-dependent transition dipole
02430
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Pj~k![^C j~k!uP̂ku0tot&. ~17!

Inserting the explicit expression~13!, one obtains

Pj~k!5(
n

un j* SS n0

0 D )
rÞ0

^n r u0&. ~18!

The squares of these transition moments are the spe
weights of the corresponding states and obey the sum ru

(
j

Pj
2~k!51. ~19!

For k50, Pj (0) gives the transition dipole for optical exc
tation, andPj

2(0) determines the spectral weight of the sta
in an absorption spectrum. For generalk, the spectral weight
Pj

2(k) can be viewed as the exciton character of st
uC j (k)& since Pj (k) is the projection of this state onto
Frenkel exciton without phonon excitations.

As an illustration, we show in Fig. 1 the results of such
calculation fork50 and the parametersJ50.5 andg51.
The energy levelsEj of the eigenstates are arranged at
vertical energy axis in the left part. Their spectral weightPj

2

is indicated by the horizontal length of each stick. The low
state appears as a solitary stick atE150.0074. At higher

FIG. 1. Illustration of the eigenstates and their properties fo
numerical solution of the Holstein model~1! with parametersJ
50.5 andg51 at total momentumk50. In the left panel, the
optically active eigenstates are shown at a vertical energy axis.
sticks indicate the spectral weightPj

2 of each state according to Eq
~17!. For a visualization of the resulting spectrum, the stick sp
trum is convolved with a Gaussian~standard derivations50.15)
and the broadened spectrum is scaled for easy superposition@here,
area* f (E)dE50.5#. In the right panels, the occupation numb

clouds^N̂m& and displacement clouds^l̂m& are shown for two par-
ticular eigenstates@see comments to Eqs.~20! and ~21!#.
5-4
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OPTICAL ABSORPTION SPECTRA OF THE HOLSTEIN . . . PHYSICAL REVIEW B66, 024305 ~2002!
energies, the spectrum consists of many densely packed
resulting from the mixture of the various phonon cloud co
figurations in the basis set. The numerical spectrum rem
discrete only because the basis is finite. To illustrate
dense vibronic manifold, we always convolve stick spec
with a Gaussian of constant standard derivation (s50.15)
and show the broadened spectrum using a convenient sc
factor.

Another important property of a vibronic stateuC j (k)& is
the internal structure of its phonon cloud. One measure
characterize it is the set of expectation values^N̂m& for the
occupation number operators

^N̂m&[K (
n

an
†anbn1m

† bn1mL . ~20!

These occupation numbers show how many phonons are
cited at the oscillator that ism lattice spacings from the ex
citon. Note that they depend on the displacement chosen
the oscillator functions in the basis set. Thus, they are
observable quantities. They are mainly important for cho
ing a reasonable basis set: Since numerically for each r
tive sitem, only states up to a predefined numbernm

max can be

included in the basis set, it must be assured that^N̂m&
!nm

max. These phonon occupation numbers are again il
trated in Fig. 1 for two representative eigenstates of h
spectral weight. For the lowest state atE150.0074, there are
0.16 phonons at the exciton site (m50), and the total pho-
non number is(m^Nm&50.34. In the molecular limit, this
state would be the zero-phonon state, but the hopping teJ
leads to a nonzero phonon occupation number. At a hig
stateE4152.28, the total phonon number is 2.12 with a pe
value of ^N̂0&51.05. This state originates from the two
phonon state in the molecular limit. Electronic delocalizati
leads to broad phonon clouds.

A description of the phonon cloud that is independent
the basis set can be provided by the expectation values o
displacement operators

^l̂m&[K (
n

an
†an

bn1m
† 1bn1m

2 L . ~21!

This displacement cloud̂lm& gives the average distortio
from equilibrium ~along the dimensionless normal coord
natel) at a molecule which ism sites from the exciton. Note
that the exciton itself is completely delocalized in real spa
and so is the displacement cloud. With respect to the b
representation~5!, the displacement cloud of a stateuC j (k)&
~14! is obtained as

^l̂m&5(
mn

um j* un j3S )
rÞm

^m r un r& D SAnm11

2
^mmunm11&

1
Anm

2
^mmunm21&1gdm,0̂ m0un0& D . ~22!

Again, Fig. 1 may serve as an illustration. There, the d
placement clouds are shown for the same representa
states that were analyzed in terms of occupation num
02430
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clouds. The narrow clouds show that the actual lattice dis
tion is much more localized around the exciton than
broad occupation number clouds might suggest. This dif
ence results from the fact that the vibronic wave function
the actual eigenstates cannot be accurately represente
single oscillator functions of the special Lang-Firsov basi

D. Truncated phonon basis and symmetry adaptation

By now, the formal tools for calculating and analyzing th
eigenstates of the Holstein Hamiltonian~1! have been col-
lected. The only remaining issue is how to truncate the in
nite phonon-cloud basis to a number that allows numer
diagonalization. For this, we first restrict the basis to clo
states of the form

unM&5un2M••• ñ0•••n1M&. ~23!

This means that only phonon clouds localized at the 2M
11 molecules around the exciton are included whereas
phonons can only be approximated using largeM.

Second, for each position in the phonon-cloud we rest
the maximum occupation number

nm<nm
max. ~24!

In this way, the localized nature of the phonon cloud c
better be taken into account by considering only small oc
pation numbersnm

max at sites far away from the exciton. A
typical cutoff vector as used for the calculation in Fig. 1 h
M55 andunmax&5u123456̃54321&.

Third, among these states we include only those for wh
the total number of phonons does not exceed a given m
mum

(
m

nm<n tot
max. ~25!

In this way, high-energy basis states are excluded. Since
overlap factors for states with high vibrational excitation d
crease rapidly, these states do not appear in the absor
spectrum. Condition ~24! is only effective for n tot

max

,(mnm
max, but typically it can be used as a strong restricti

~e.g.,n tot
max56 in Fig. 1!.

Now, we have arrived at a fairly complex description f
the cut-off conditions of the basis set, given by the numb
M, nmax, n tot

max. However, this complex scheme allows
choose a basis just large enough to represent the optic
active eigenstates of the Hamiltonian.

The minimum radiusM50 is an important special cas
of the phonon basis in which electronic and vibrational e
citations are always at the same site, just as in theJ50 limit.
These joint exciton-phonon configurations can be conside
as distinct molecular excited states and treated within
standard framework of Frenkel exciton theory. Followin
Broude, Rashba, and Sheka~Ref. 66, p. 185!, we call this the
molecular vibron model:

M50. ~26!
5-5
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The molecular vibron model follows naturally from the e
citon concept and was successfully applied to early interp
tations of crystal spectra.67 The approximation is additionally
justified if—beyond the simplest Holstein Hamiltonian~1!—
the phonon energy differs between the electronic ground
excited state of the molecule~see Ref. 34, p. 87ff or Ref. 66
p. 198f!.

To find a suitable phonon basis for concrete calculatio
we start with the molecular vibron model and gradually
crease the phonon basis until the obtained absorption s
trum converges. This procedure is demonstrated in Sec.~III !.

In addition to the general truncation scheme, in so
cases the dimension of the phonon basis can be reduce
symmetry. For the Frenkel exciton problem in this secti
we have inversion symmetry about the exciton’s site. So
can introduce symmetry adapted basis statesukn&6 in which
the phonon cloud is either symmetric (1) or antisymmetric
(2) with respect to inversion about its center. Inversion
the phonon cloud in the nonadapted basis~7! shall be de-
noted by an overbar:

un̄&: n̄n5n2n . ~27!

Even the nonadapted basis contains some symm
phononclouds (n̄5n). For all other states, a symmetry ada
tion has to be chosen. Thus, the symmetry adapted state
be obtained as

ukn&15H ukn& for n̄5n,

1

A2
~ ukn&1ukn̄& ! for n̄Þn,

ukn&25
1

A2
~ ukn&2ukn̄&) for n̄Þn. ~28!

Now, the symmetric subspace spanned by theukn&1 states
does not mix with the antisymmetric subspace spanned
the ukn&2 states and the diagonalization can be done se
rately for both subspaces. For a large cutoff radius of
phonon cloud, the dimension of the two subspaces is roug
one half of the original basis. Furthermore, the transit
dipoles of all antisymmetric states vanish exactly and o
the symmetric space is needed for the absorption spectr

III. FRENKEL EXCITON SPECTRA

A. Overview

The Holstein Hamiltonian~1! contains two parameters
The exciton hopping integralJ and the exciton-phonon cou
pling constantg. Both are already scaled in units of the thi
physical parameter of the system: the vibrational quan
\v. Thus, the parameter space cannot be reduced to less
two dimensions anymore. The qualitative character of
solutions strongly depends in a complicated way on b
control parameters. We will explore only a certain region
this parameter space.

In Sec. III B, the molecular limit (J50) and the case o
weak electronic coupling (J!g) is considered. The zero
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phonon and the one-phonon space will be analyzed for a
trary g using perturbation theory. This analysis illustrat
what type of phonon basis is needed in various situation

In Sec. III C, numerical solutions will be presented f
some intermediate coupling situations (J50.5 andJ51).
This coupling range is considered only forg51 since in the
intended applicationsg typically is in this order.

B. Perturbative limit for weak coupling

One extreme case is the molecular limitJ50. In this case,
all basis states~7! are eigenstates and the molecular vibr
model (M50) is sufficient to describe the optically activ
states. The spectrum is the nondispersive vibronic prog
sion of an isolated molecule:

Ej
(0)~k!5n, n~ j !5 j 2150,1,2, . . . , ~29!

Pj
2~k!5S2S n

0D 5
g2n

n!
e2g2

, ~30!

For g51, the lowest and second lowest state have eq
spectral weight (P1

25P2
2) and the weight of higher state

decreases rapidly. The displacement cloud is strictly loc
ized at the site of the exciton

^lm&5gdm,0 . ~31!

For finiteJ!g, one can start with the molecular limit an
apply first order perturbation theory in the parameterJ.
The lowest state of the unperturbed system isukn& with un&
5u•••00̃0•••&. This state atE1

(0)50 is nondegenerate, an
application of first order perturbation theory gives imme
ately

E1
(1)52J cos~k!S2S 0

0D 52J cos~k!e2g2
. ~32!

This result is well known from small polaron theory for ze
temperature. The width 4J of the purely electronic band is
renormalized by the overlap factore2g2

since the exciton
moves together with its displacement cloud.

Little attention has been paid, however, to the fate
higher vibronic states under the effect of the small pertur
tion J. Let us consider the one-phonon states in more de

In the molecular limit, the only optically active one
phonon state has the cloudun&5u•••0001̃000•••& with one
on-site phonon. This state is degenerate with all other d
basis states that contain one phonon excitation at an arbi
exciton-phonon separationn. A perturbationJ.0 will mix
all these states and lift their degeneracy. This can be analy
by writing down the matrix elements~13! for the states of the
one-phonon manifold. The phonon cloud of the stateukn(n)&
has the structuren i5d i ,n and analogously forukm(m)&: m i
5d i ,m . The matrix representation~13! then becomes

Hmn5^km~m!uHHol
FE ukn~n!&5dm,n1Je2g2

~Wmn1g2Vmn!,
~33!

where
5-6
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OPTICAL ABSORPTION SPECTRA OF THE HOLSTEIN . . . PHYSICAL REVIEW B66, 024305 ~2002!
Wmn5dm,n11•e2 ik1dm,n21•e1 ik, ~34!

and Vmn is a matrix that has nonzero elements only
umu,unu<1. That means,Vmn only mixes the states where th
phonon is located either at the exciton site or at its nea
neighbor.

The two contributionsWmn and Vmn in the nondiagonal
perturbation term of Eq.~32! act in completely different
ways. Let us first discuss the case ofg!1 and neglectVmn .
For k50 or k5p, Wmn is the Hamiltonian of a neares
neighbor hopping particle on an infinite chain with op
boundary. This gives a wavelike solution. In contrast to
ordinary hopping problem, the exact consideration of
specific boundary conditions is essential now. Only then,
correct amplitude at the special siten50 can be obtained
and this amplitude alone determines the spectral wei
Thus, one obtains the eigenstates

uC j&5
1

AM11
(

n52M

M

sinS n jp

2M12D ukn~n!& ~35!

with

j 51,2, . . . ,2M11. ~36!

Their energies are

Ej
(1ph,g!1)5162Je2g2

cosS j p

M11D , ~37!

where6 refers tok50 andk5p, respectively. The spectra
weight of statej at k50 follows from definition~17!. It has
only two values depending on the indexj:

Pj
25H 1

M11
g2e2g2

for odd j ,

0 for even j .

~38!

The M states with evenj and zero spectral weight belong
the subspace of the antisymmetric states in the symm
adapted basis~28!. The M11 optically active states with
odd j are the symmetric states. These active states for
band of equally absorbing states with a total width
4Je2g2

. The total spectral weight of these active states su
up tog2e2g2

representing the value of the molecular limit.
all these states, the phonon cloud is not localized around
exciton but consists of a standing phonon wave. We emp
size that this behavior is the limit for smallg. In this limit,
the total spectral weight of the considered one-phonon b
is only a small feature in the overall spectrum since the m
jor part of the spectral weight is concentrated in the ze
phonon state.

Complementary, theVmn part in the perturbation~33!
mixes only the cloud states with phonon excitations at
next to the exciton site. Therefore, in the limit of largeg, the
basis set can be reduced to include only local phonon cl
configurations up to the nearest neighbor (M51). Using the
symmetry adapted basis functions~28!, the symmetric one-
phonon subspace consists only of two phonon configurat
02430
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uF1(k)&5uk&u01̃0&1 anduF2(k)&5uk&u10̃0&1 . The Hamil-
tonian in the representation of these two states takes the

Hmn5dmn12Je2g2
cos~k!S g2 12g2

A2

12g2

A2

1

2
g2 D ~39!

with eigenvalues

E6
(1ph,g@1)5112J cos~k!g2e2g2

3
3

4 S 16A12
16

9g2
1

8

9g4D . ~40!

Thus, the zero-order energyE51 splits into two bands
E6(k). Similarly to the perturbation-in-J treatment of the
lowest state~32!, the electronic bandwidth 4J is multiplied
by an overlap factorg2e2g2

which corresponds to the inter
action of the transition-dipole moments of the molecu
one-phonon state. However, there aretwo states now. In the
limit g→`, their energies tend to

E1
(1ph,g→`)→112J cos~k!g2e2g2

3
3

4
, ~41!

E2
(1ph,g→`)→1. ~42!

In this limit, both states still have spectral weights ofP1
2

→ 2
3 andP2

2 → 1
3 .

This splitting into two states which both carry spectr
weight is entirely caused by the delocalization of the phon
cloud. Such a delocalization is neglected in the simplest
proach of the molecular vibron model~26!, which would
mean the neglect of stateuF2(k)& in Hamiltonian ~39!.
Looking at the nondiagonal term in Hamiltonian~39! sug-
gests, and closer inspection of the full one-phonon subsp
Hamiltonian ~33! confirms: For the special valueg51, the
molecular vibron stateukn(n50)& decouples from all other
phonon cloud configurations. Only in this case, the mole
lar vibron model becomes exact~in the one-phonon sub
space! and yields one energy band at

E(1ph,g51)5112J cos~k!g2e2g2
~43!

which carries all the spectral weightg2e2g2
.

To give an illustration of the phenomena in the on
phonon subspace and to show the relevance of the desc
limiting cases, we show a numerical solution in Fig. 2. F
this, we solved the Hamiltonian~32! numerically for a pho-
non cloud of radiusM520 at the total momentumk50. For
k5p, the spectra only have to be mirrored with respect
E51.

In Fig. 2~a!, the ‘‘exact’’ numerical results~graph 1! are
shown for a relatively smallg50.5. The tendency of a broa
band with constant spectral weight is clearly visible. Th
bandwidth is compared to the width the free phonon p
Wmn from Eq. ~37! in graph 2. Both agree very well. Th
5-7
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M. HOFFMANN AND Z. G. SOOS PHYSICAL REVIEW B66, 024305 ~2002!
molecular vibron model (M50) would give a single active
state at (E21)/J50.389 ~position indicated by graph 3!.
This state would represent the weighted center of the e
band@also at (E21)/J50.389 in this case# but it would veil
the large splitting (DE/J'1.55).

In Fig. 2~b!, we show the solution forg51. There, the
one active state of the molecular vibron model (M50) is the
exact solution.

In Fig. 2~c!, the numerical solution is shown for a rath
largeg51.5 ~graph 1!. It clearly approaches the two activ
states from the nearest-neighbor cloud~radiusM51) given
by Eq. ~40!, which are shown in graph 2. For compariso
the result of the molecular vibron model (M50) is also
shown in graph 3. As forg,1, the molecular vibron mode
can only represent the weighted center of the one-pho
states but not their qualitative splitting. Note that for bo
casesg,1 andg.1 the correct splittings of the one-phono
states are in the same order as the perturbation parameJ.

The situation for energies above the one-phonon subs
becomes more complex and will not be considered here.
ready in the two-phonon subspace, which is spanned by

FIG. 2. Perturbative treatmentJ→0 of the one-phonon sub
space for three coupling parametersg. The ‘‘exact’’ stick spectra are
numerical solutions of the one-phonon Hamiltonian~33! for a
phonon-cloud radius ofM520. The envelopes are convolutions
the stick spectra with Gaussians of appropriate width. Figure~a!
represents the small-g case, where a broad one-phonon sideban
formed. The ‘‘exact’’ solution in graph 1 is compared to the ban
width of the free-phonon part@Wmn from Eq. ~37!# in graph 2 and
to the position of the single active state from the molecular vib
model~26! in graph 3. Figure 2~b! represents theg51 case, where
the molecular vibron model becomes exact. Figure 2~c! represents
the large-g case, in which the exciton interacts mainly with
nearest-neighbor phonon cloud. The ‘‘exact’’ numerical solution
graph 1 resembles the approximate solution~39! for a nearest
neighbor cloud (M51) in graph 2. The single state from the m
lecular vibron model (M50) is shown in graph 3.
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zero-order basis states with a total phonon number 2, th
occurs a high degeneracy of various cloud configuratio
The numerical calculations in Sec. III C confirm that for n
too strong electronic coupling (J&0.5) andg in the order of
1, the approximation of highly localized phonon clouds
even the molecular vibron model yields a good description
the full absorption spectrum.

C. Numerical solutions for intermediate coupling

In the intermediate electronic coupling regime, the ex
ton hopping integral is of the order of 1. In this case, t
perturbative approach from Sec. III B breaks down sin
e.g., the bandwidths for the zero-phonon subspace~32! or the
one-phonon subspace~40! would not be small compared t
the vibronic spacing. In this case, numerical solutions us
the basis from Sec. II B can be used. We will discuss the c
of g51, which is approximately realized for the optical
coupled C-C stretching modes in many conjugated molec
~conjugated polymers, polyacenes, PTCDA derivatives!.

In Fig. 3, we show the convergence forJ50.5 andg51

is
-

n

FIG. 3. Convergence of absorption spectra at the top of the b
for J50.5 andg51 ~intermediate coupling, rather smallJ). Panel
a shows the results for the molecular vibron model~26!. Panels~b!
and~c! show spectra for a large phonon cloud basis. Going from~b!
to ~c!, the maximum cloud radiusM is increased from 5 to 6 and o
each relative sitem the maximum occupation numbernm is in-
creased by 1. This increases the number of symmetric basis s
from 1587 in panel~b! to 4485 inc. The sticks always show the
spectral weight according to Eq.~17!. The solid lines are convolu-
tions of the stick spectra with a Gaussian as in Fig. 1~normalized to
area 0.5!. The shape of the thus broadened spectrum in panelc has
almost converged, particulary for energiesE,2.5. The inset in
panel c shows the displacement cloud of the lowest state as
Fig. 1.
5-8
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OPTICAL ABSORPTION SPECTRA OF THE HOLSTEIN . . . PHYSICAL REVIEW B66, 024305 ~2002!
at the top of the band (k50). This parameter set was alread
used in the illustrations from Fig. 1. Figure 3~a! gives the
spectrum in the molecular vibron model~25! with a maxi-
mum phonon number ofn tot

max56. In this model, one obtain
n tot

max11 vibronic states. Compared to the molecular lim
the molecular vibron states are shifted and their spec
weight is redistributed to higher energies due to the effec
the positive hopping integralJ.

Figures 3~b! and 3~c! show the solutions for large bas
sets. Only the optically active statesukn&1 from Eqs. ~28!
were calculated. In both cases,n tot

max56 was retained as fo
the molecular vibron model. Only the cutoff vectorun&max

was increased fromun&max5u12346̃4321& in Fig. 3~b! to
un&max5u123456̃54321& in Fig. 3~c!. This means that in Fig
3~c! the cloud radiusM is increased from 4 to 5 and at eac
cloud position the allowed number of phonons is increa
by 1. This increases the number of symmetric basis st
from 1587 to 4485. The broadened spectra clearly show
this increase in basis size changes the result only very l
and mainly at energiesE.2.5. The obtained accuracy
completely sufficient for interpreting experimental abso
tion spectra, since effects not included in the model Ham
tonian will be larger anyway.

The properties of the lowest state and a representa
high-lying state with large spectral weight were alrea
shown in Fig. 1. The occupation number clouds^N̂m& of both
states are strongly localized around the exciton site and t
decay patterns justify the pattern of the cutoff vectorun&max.
The occupation cloud is more localized for the high-lyi
state than for the lowest state. Therefore, the molecular
bron model~26! is more accurate for the high-lying stat
which can be seen from the comparison of Figs. 3~a! and
3~c!. The main effect of the delocalized cloud basis in t
high energy region is a broadening of the spectra. The low
state, however, moves considerably fromE150.229 in the
Fig. 3~a! to E150.0074 in the largest basis set of Fig. 3~c!.

The displacement cloudŝl̂m& show the same delocaliza
tion tendencies. Remarkably, the displacement pattern of
lowest state alternates with distance from the exciton s
This behavior can be rationalized on the level of a variatio
mean-field theory~as in Ref. 36! by the competition between
exciton delocalization and exciton-phonon coupling: At t
top of the band, the~purely electronic! exciton hopping in-
creases the energy of the lowest state. With inclusion
exciton-phonon coupling, the hopping term gets multipli
by a vibronic overlap factor between the oscillator at t
exciton site ~displacement̂ l̂0&) and the oscillator at the
nearest neighbor~displacement̂ l̂1&). To lower the energy,
the effective hopping, i.e., the vibronic overlap, should
decreased. This can be achieved by maximizing the dif
ence in the displacementŝl̂0& and ^l̂1&. Since the total
displacement is fixed by the sum rule(m^l̂m&5g ~e.g. Ref.
31!, an alternating displacement pattern minimizes the
ergy. At the bottom of the band, the same argument dema
a large effective hopping and thereby the smallest poss
difference in displacements, which results in a uniformly d
caying displacement cloud as shown in the following Fig.
02430
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At the bottom of the band (k5p, Fig. 4!, convergence is
much easier to obtain for intermediateJ. This is clear since
the bottom of the band corresponds to the real ground s
of the Hamiltonian, whereas thek50 states at the top corre
spond energetically to phonon excitations of thek5p states
at lower energies. The convergence is shown for the sa
parameters and basis sets as at the top of the band~Fig. 3!.
The inset in Fig. 4~c! shows again the displacement cloud
the lowest state, which now has the nonalternating patter
discussed in the previous paragraph.

For larger values ofJ, the delocalization of the phono
cloud is more pronounced and larger basis sets are ne
for the same level of accuracy. In Fig. 5, we demonstrate
convergence at the top of the band forJ51 and the same
basis sets as in Fig. 3. Now, the molecular vibron mode
Fig. 5~a! deviates from the complete solution even on t
energy scale of the vibronic quantum. The energy of
lowest state is overestimated by 0.88, and also the maxim
of the broadened spectra deviates by almost 0.5. Even
solution in Fig. 5~b! still shows notable differences from th
solution for the largest basis set in Fig. 5~c!. Only the posi-
tion and spectral weight of the lowest state have alre
converged to about two significant figures. The lowest st
in panel 5~c! lies at 20.563, which reproduces two signifi
cant figures of the high-accuracy ground state calculati
(20.5689•••) reported in Ref. 53.

The convergence forJ51 at the bottom of the band (k
5p) is shown in Fig. 6. As forJ50.5, the convergence i
much better at the band bottom with almost no change of
broadened spectra for the basis set increase from Fig. 6~b! to

FIG. 4. Convergence of absorption spectra at the bottom of
band forJ50.5 andg51. Panels~a!, ~b!, and~c! show the results
for the same basis sets as in Fig. 3. The broadened spectra are
normalized to area50.5.
5-9
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M. HOFFMANN AND Z. G. SOOS PHYSICAL REVIEW B66, 024305 ~2002!
Fig. 6~c!. The energy of the lowest state changes fro
21.46955 to21.46961 and then agrees up to five significa
figures with the results from Ref. 53.

For values ofJ much above 1, the Lang-Firsov basis b
comes increasingly inefficient. While approaching the stro
electronic coupling regimeJ@g, the lattice displacement i
not localized around the exciton anymore in very contras
the premises of our truncation scheme. In the strong coup
limit, the exciton hopping is ‘‘fast’’ compared to the excito
phonon coupling and the Born-Oppenheimer approxima
should be applied to the whole crystal as one object~see Ref.
33!. The total lattice displacement(^l̂m&5g is now equally
distributed over theN→` molecules. Therefore, the tota
relaxation energyEFC5g2(^l̂m&2 tends to zero. Figuratively
speaking, the very fast exciton looses its phonon clo
Compared to the molecular limit~lowest state atE50), the
lowest state will now be given by the purely electronic ba
at E52J cosk1g2. Because of the vanishing relaxation e
ergy, higher vibronic states have no spectral weight and
absorption spectrum consists of a narrow line at the e
tronic energy.

IV. INCLUSION OF CT STATES

The Holstein Hamiltonian for Frenkel excitons~1! can be
very naturally extended to include charge-transfer~CT!
states. The relevance of CT states is a major point in

FIG. 5. Convergence of absorption spectra at the top of the b
for J51 andg51. Panels~a!, ~b!, and~c! show the results for the
same basis sets as in Fig. 3. With increasing number of states
spectral weight of the individual states in the higher energy reg
decreases. Therefore, the y-axis scaling and the normalization o
broadened spectra is different in each panel.@Area 5 0.5 in panel
~a!, area5 0.3 in panel~b!, and area5 0.09 in panel~c!.#
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discussion of PTCDA and other quasi-one-dimensional cr
tals~see Sec. I!. Let cn, f

† be the creation operator for a neare
neighbor CT state in which an electron is transferred fr
lattice siten to site n1 f ( f 561). The molecular limit is
again defined as the case where no transfer interactions~nei-
ther Frenkel exciton transfer nor charge transfer n
Frenkel-CT interactions! are considered. Then, the electron
CT Hamiltonian is

HCT5D(
n, f

cn, f
† cn, f , ~44!

with D being the on-site energy of a CT state in the mole
lar limit ~relative to the Frenkel exciton on-site energy
zero in our energy units!.

The electron or hole excitation of the CT state are
sumed to couple to the same effective vibrational coordin
l as the Frenkel exciton. With the electron-phonon coupl
constantge and the hole-phonon coupling constantgh , the
linear coupling between CT states and phonons is descr
by the Hamiltonian

HCT-ph5(
n, f

cn, f
† cn, f@2gh~bn

†1bn!

2ge~bn1 f
† 1bn1 f !1gh

21ge
2#. ~45!

These expressions are analogous to the Frenkel-exc
phonon coupling in Eq.~4!. The termgh

21ge
2 is the vibra-

tional relaxation energy of a CT state in the molecular lim

nd

the
n
he

FIG. 6. Convergence of absorption spectra at the bottom of
band forJ51 andg51. Panels~a!, ~b!, and~c! show the results for
the same basis sets as in Fig. 3. The area of the broadened spe
normalized to 0.45.
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OPTICAL ABSORPTION SPECTRA OF THE HOLSTEIN . . . PHYSICAL REVIEW B66, 024305 ~2002!
As in Eq.~4!, this term is added to align the on-site energyD
of the CT states to its value in the molecular limit.

The mixing between Frenkel and CT excitons can be
scribed by the Hamiltonian

HFE-CT5(
n

@ te~an
†cn,111an

†cn,21!

1th~an
†cn11,211an

†cn21,11!1H.c.#. ~46!

The charge-transfer integralste (th) describe the transfer o
an individual electron~hole! between the site of a Frenke
exciton and its nearest neighbor~see Refs. 24, 25!. We ne-
glect the dispersion~hopping! of CT states since this would
involve a simultaneous hop of two particles and is expec
to be on a much smaller energy scale. Thus, the exten
Holstein-Hamiltonian for Frenkel and CT excitons becom

HHol
FCT5HHol

FE 1HCT1HCT-ph1HFE-CT. ~47!

This Hamiltonian corresponds to the dimer Hamiltonian us
in Ref. 24.

A natural extension of the basis statesunn& from Eq.~5! is
obtained by including the new electronic degree of freed
f. The valuef 50 shall denote the former Frenkel excito
basis states

@ un fn&] f 50[unn&. ~48!

A Lang-Firsov-type basis for CT states (f 561) is defined
by

~49!

Here, u0̃n
h& is a ground state oscillator function displaced

the hole-phonon coupling constantgh and u0̃n
e& is an oscilla-

tor function correspondingly displaced byge . bn
†2gh and

bn
†2ge create phonon excitations in these displaced osc

tors.
The real-space basis states from Eq.~49! can again be

Fourier transformed to momentum-space basis states
total momentumk:

uk fn&[
1

AN
(

n
eiknun fn&. ~50!

As for the Frenkel problem, the matrix elements of t
Frenkel-CT Holstein Hamiltonian~47! can be derived in a
02430
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straightforward way. The final expressions become leng
due to various overlap factors and we omit them here. T
basis can be reduced to a manageable size by a trunc
scheme as for the Frenkel problem. Then, the eigenst
uC j (k)& at k50 or k5p can again be obtained by standa
diagonalization methods for real matrices.

From the eigenstates, the transition dipole moments
be reduced to the transition moments of the basis states.
Frenkel excitonsa†u0& give rise to a Frenkel transition di
pole operator as in Sec. II C:

P̂FE~q!5
1

AN
(

n
e2 iqn~an

†1an!. ~51!

An equivalent operator can be introduced for CT states
this case, the most elementary excitation always involve
unit of two molecules atn andn61. As argued in Ref. 25,
the symmetric CT excitation

1

A2
~cn,11

† 1cn11,21
† !u0&

can have a significant transition dipole momentpW CT. On the
other hand, the transition dipole of the antisymmetric C
excitation

1

A2
~cn,11

† 2cn11,21
† !u0&

is strictly zero for symmetry reasons. Therefore, we anal
only theq-dependent symmetric CT transition operator

P̂CT~q!5
1

AN
(

n
e2 iqnS cn,11

† 1cn11,21
†

A2
1H.c.D .

~52!

Then,

PFEj~k![^C j~k!uP̂FE~k!u0tot& ~53!

gives the Frenkel part of the transition dipole alongpW M and

PCTj~k![^C j~k!uP̂CT~k!u0tot& ~54!

gives the CT part of the transition dipole alongpW CT. At k
50, the absolute transition dipole for absorption of visib
light is obtained as

PW j5PFEj~0!pW M1PCTj~0!pW CT. ~55!

These transition dipoles are now determined by two indep
dent contributions. However, in a first approximation the C
transition dipole will be small andPW j will mainly be given
by its Frenkel component. As for the Frenkel problem@see
Eq. ~19!#, the k-dependent spectral weightsPFEj

2 (k) and
PCTj

2 (k) represent the electronic character~Frenkel or sym-
metric CT! of statej.

A representative calculation is shown in Figs. 7 and 8
the parametersJ50.5, g51, D50, te5th50.5. The Fren-
kel part of this parameter set corresponds to the calcula
5-11
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FIG. 7. Eigenstates of the extended Holstein model
Frenkel-CT mixing~47! at total momentumk50. ParametersJ
50.5, g51, D50, te5th50.5, ge5gh51/A2. The Frenkel pa-
rameters and the illustration correspond to Fig. 1.PFE

2 shows the
spectral weights~Frenkel character! of the Frenkel-part,PCT

2 shows
the spectral weights of the symmetric CT part. The broadened s
tra are both normalized to an area of 0.5.

FIG. 8. Eigenstates of the extended Holstein model
Frenkel-CT mixing~47! at total momentumk5p. Parameters as in
Fig. 7. Because ofte5th , the electronic FE and CT states do n
mix and all eigenstates have either pure FE or pure CT charac
02430
in Fig. 1. The basis cut-off vector for the phonon-space w
un&max5u12345̃4321& with n tot

max55, resulting in 4332 basis
states. An additional CT state is assumed at resonance
the Frenkel state (D50). The charge-transfer integralste
and th are chosen equal to the Frenkel hopping integral
give an illustration for strong Frenkel-CT mixing.

For the electron and hole coupling parameters, we u
ge5gh5g/A2, which gives equal relaxation energy for th
CT state and the Frenkel exciton. Perylene’sp system is
alternant. Simple Hu¨ckel theory then gives equal and opp
site charges in the cation and anion, with half-filled HOM
and LUMO, respectively, while both are half-filled in th
excited state. We havege5gh5g/2 for noninteracting elec-
trons. The Pariser-Parr-Pople model of interactingp elec-
trons yieldsge5gh for systems with electron-hole symmetr
The bond order changes and relaxation energy of the sin
excitation in anthracene or trans-stilbene are now appr
mately half that of the triplet, which in turn is comparable
the relaxation energy of dication or dianion.68,69 Our initial
choice of equal relaxation energy for the Frenkel and
excitation follows the correlated case, although this is
guess and PTCDA does not havee-h symmetry.

At the top of the band (k50), the energetic degenerac
and the large charge-transfer integrals lead to a strong mi
of Frenkel and CT states throughout the whole spectrum.
overall distribution of the spectral weights gives more Fre
kel character to the higher states as a result of the positivJ.
The FE character in Fig. 7 should be compared to
Frenkel-only problem from Fig. 1. In the Frenkel-only pro
lem, the lowest state gave rise to a single peak in the bro
ened spectrum atE'0. This peak is now split into two wel
separated peaks atE'21 andE'0. In such a way, strong
mixing with CT states can add new features to the absorp
spectrum even if their intrinsic transition dipoles are ze
(pW CT50). This phenomenon is commonly described by t
figurative phrase that the CT states ‘‘borrow’’ oscillat
strength from the Frenkel states.

At the bottom of the band (k5p, Fig. 8!, the symmetry of
the CT integrals (te5th) in this special case decouples th
electronic Frenkel and CT states~see Ref. 24!. Therefore, the
spectral weight of all states has either pure Frenkel or p
CT character. Only some indirect mixing is introduced by t
phonon part of the Hamiltonian, which mainly affects th
vibronic structure of the CT-character states.

V. DESCRIPTION OF EXPERIMENTAL ABSORPTION
SPECTRA

In Sec. IV, the energiesEj and transition dipolesPj ~55!
of the eigenstates of the one-dimensional Holstein prob
were obtained. These quantities are essential but not yet
ficient for the description of a real absorption spectrum o
quasi-one-dimensional molecular crystal. Let us first ret
from the dimensionless quantitiesE, J, D, t, andP to abso-
lute values, which are denoted by a tilde to prevent con
sion. The absolute excitation energy of stateuC j& is then
given by

Ẽj5Ẽ001Ej•\v, ~56!

r

c-

r

r.
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where Ẽ00 is the absolute energy of the lowest eigenst
with respect to the electronic and vibrational ground state
the crystal. Furthermore, we will only consider the Fren
contribution to the transition dipoles in Eq.~55!:

PW̃ j5pW M•PFEj . ~57!

In PTCDA and MePTCDI and many other organic cry
tals, the unit cell contains two nonequivalent molecules.
now assume thatall interstack interactions are on a muc
smaller energy scale than the in-stack interactionJ. That
means, the energy spectrum of the one-dimensional mod
in first approximation not affected. Only the transition d
poles of the two molecules A and B couple and form tw
Davydov components (b5p,s) with two orthogonal transi-
tion dipoles

PW̃ j b5
pW M~A!6pW M~B!

A2
•PFEj . ~58!

If w is the angle between the two nonequivalent molecu
transition dipoles, the absolute value of the Davydov com
nents can be written as

P̃j b5pb•PFEj , ~59!

with the transition dipoles per unit cellpb :

pp5pM cos
w

2
, ~60!

ps5pM sin
w

2
. ~61!

For the crystal structure of PTCDA and MePTCDI, thep
direction is given as the crystallographicb axis. Thes direc-
tion lies approximately in the~102! plane because the mo
lecular planes of both inequivalent molecules are roug
parallel to the~102! plane@within 5° ~Ref. 70! for PTCDA
and within 10° for MePTCDI, derived from Ref. 71#.

Knowing the transition dipoles per unit cell, the tran
verse dielectric constant for perturbation by an external li
wave polarized along theb5p,s directions can be expresse
as a sum over the excited states~see, e.g., Refs. 72, 73!:

eb
0~Ẽ!511

8p

v
pb

2(
j

PFEj
2 Ẽj

Ẽj
22Ẽ22 i\GẼ

. ~62!

Here,v is the volume of the unit cell andG21 the life time of
the excited states.

Equation~62! is rigorous for any quantum system ifall
excited states are included. However, we are conside
only the lowest electronic excitation. Therefore, we inclu
the contribution of the higher states~mixing of molecular
configurations! by using a phenomenologically modified fo
mula for the dielectric function

eb~Ẽ!5eb
bg1

8p

v
~ f b

bgpb!2(
j

PFEj
2 Ẽj

Ẽj
22Ẽ22 i\GẼ

. ~63!
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Here,eb
bg is a background dielectric constant that represe

the value ofeb(0) corresponding to a crystal in which th
considered lowest electronic excitation would not exist.f b

bg is
a screening factor describing the modification of the act
field by the higher transitions. Furthermore, the higher tr
sitions will modify the Frenkel exciton hopping integralJ
and thereby all the eigenstates of the system. Since we
J as an effective fitting parameter anyway, the effect of
higher transitions ontoJ is not important here but should b
remembered in any microscopic interpretation ofJ. Such a
background modification of the dielectric function was d
cussed for a simple model system of one purely electro
Frenkel exciton in a cubic crystal in Ref. 39. In our gene
case, the effect of the higher transitions represented in
background parameters is also anisotropic in nature.

The dielectric function~63! includes a Lorentzian broad
ening of the individual eigenstates due to a finite lifetim
G21. In a typical situation, however, there are several ot
sources of a much larger broadening:~i! coupling to further
low-energy vibrations,~ii ! splitting of the main vibrational
mode, which consists actually of several nearly degene
modes, and~iii ! inhomogeneous broadening. To account
all these effects empirically, we replace each eigenstate
the Holstein modeluC j& by a Gaussian distribution of state
with standard deviations j as, e.g., done in Ref. 74. Th
individual broadeningss j have no microscopic meaning an
should be seen as no more than a convenient tool to com
the spectrum from the eigenstates of the Holstein mode
an experimental spectrum. Practically, we assigned cons
values ofs j for 4 separate regions of the spectrum in ord
to have only four different broadening parameters. The in
vidual Lorentzian linewidth is assumed to be much sma
than thes j and does not contribute anymore.

From the complex dielectric function~63!, the complex
refractive index (n1 ik)25e and the absorption coefficien
a52Ẽ/(\c)•k can be calculated for the special light wav
that propagate perpendicular to thep-s plane and are polar
ized along thep or s direction. For general directions, th
complex rules of crystal optics would have to be consider

For PTCDA, it is possible to create vapor-deposited po
crystalline films with a high preferential orientation such th
the ~102! crystal planes always lie parallel to the substra
Furthermore, the anisotropy between thep ands direction is
expected to be very small due to the almost right angle
tween the molecules (w582°). Thus,ep'es can be directly
probed by a vertical incidence absorption measuremen
such films. For thicknesses above'30 nm, the influence of
interface reflections and interference effects is small and
absorption coefficient follows directly from the optical de
sity and the layer thickness. The layer thickness, howeve
difficult to determine accurately. Haskalet al.22 report abso-
lute absorption coefficients for PTCDA on glass, deposited
low substrate temperature. We determined absolute abs
tion coefficients for PTCDA on mica at room temperatu
The orientation of the~102! planes parallel to the substra
was verified by x-ray diffraction and the layer thickness
~e.g., 30 nm! were determined by atomic force microscop
investigation of step profiles. Our results for the integral a
5-13
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M. HOFFMANN AND Z. G. SOOS PHYSICAL REVIEW B66, 024305 ~2002!
sorption coefficient agree within 7% with the ones from R
22. Using our value of*adẼ52.231025 cm21 eV ~in the
range 2–3 eV!, we calibrate the low-temperature absorpti
spectrum of PTCDA reported in Ref. 25 to absolute valu
This spectrum is shown in Fig. 9~a!.

For MePTCDI, the angle between the two nonequival
molecules isw537° ~derived from Ref. 71! and thus the
anisotropy between thep and s direction is expected to be
strong (pp

2/ps
259.0). Polarized low-temperature absorpti

spectra of MePTCDI were reported in Ref. 25, but there
absolute scaling was not known. To provide an approxim
scaling, we assume that the isotropic average of the inte
absorption coefficient should equal that of PTCDA@*(ap

1as)dẼ5*a(PTCDA)dẼ# since the molecular transitio
dipoles of the two materials are very similar25 and only their

FIG. 9. Experimental low temperature absorption spectra
PTCDA and model fit. Panel~a! shows the comparison for th
absorption coefficienta. The model fit~parameters see text! is done
with a large phonon basis~as in Fig. 7! but a comparison with the
molecular vibron model for the same parameters is also giv
Panel ~b! shows the optical constantsn, k corresponding to the
model fit. Panel~c! shows the actual eigenstates and the Fren
part of their spectral weight. In panel~d!, the CT part of the spectra
weight is given. The stick spectra are broadened by Gaussians
a constant widths548 meV corresponding to the width of th
lowest state in the fit.
02430
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crystal structure differs. The resultantp-polarized spectrum
is shown in Fig. 10~a!. At this stage, we do not intend t
explain the dependence of the spectral shape on polariza
Such a dependence might be affected by contributions
nonzero intrinsic CT transition dipole,25 by nonzero inter-
stack coupling,27 and by the anisotropy of the dielectri
background contribution. By concentrating on th
p-polarized spectrum, at least the CT contribution would
minimized.

We note that the consideration of theabsoluteabsorption
coefficient is essential for describing the shape of solid s
spectra. The microscopic models provide predictions o
about therelative spectral distribution of the transition di
poles, which determines the shape of the imaginary p
e2(Ẽ) of the dielectric function. The shape of the absorpti
spectruma(Ẽ), however, is strongly influenced by the vari
tion of the refractive index in the absorption region@a

5Ẽ/(\c)•e2 /n# and the variation ofn is again determined

f

n.

l

ith

FIG. 10. Experimental absorption spectra of MePTCDI a
model fit. Panel~a! shows the comparison for thep-polarizeda
spectra, the parameters are given in the text. The model spectru
shown for a large phonon cloud basis~as in Fig. 7! and the molecu-
lar vibron model. Panel~b! gives the optical constants from th
model. Panels~c! and ~d! show the actual eigenstates and th
composition as explained in Fig. 9. The broadening in~c! and~d! is
constants528 meV as for the lowest peak in the experimen
spectrum. Due to the variable broadening in the fit, the second l
peak at'2.3 eV from panel~c! appears in thea andk spectra of
panels~a! and ~b! only as a broad feature with lower peak value
5-14
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OPTICAL ABSORPTION SPECTRA OF THE HOLSTEIN . . . PHYSICAL REVIEW B66, 024305 ~2002!
by the absolute absorption coefficient. Only ifa is very
small, as typically for spectroscopy of solutions,n does not
vary and the shape of the absorption spectrum is dire
given by the shape of the transition dipole distribution~‘‘di-
lute limit’’ !. The best approach would be, of course, to obt
the complex dielectric function from experiment. Such d
is presently available only for films of unknown degree
orientational order.75

The dielectric function~63! allows a direct fit of the ab-
sorption spectra in whichebg and f bg have to be considere
as fitting parameters.ebg can be chosen from the indepe
dend criterion that the refractive indexn below the absorp-
tion region is matched. For PTCDA, we used the value

e(Ẽ50.962 eV)54.07.76 For MePTCDI, the anisotropy in

the ~102! plane is not known. We use an estimate ofe(Ẽ
50.962 eV)54.66 based on long and medium axis molec
lar polarizabilities of the PTCDA molecule77,78 and the dif-
ferent relative orientations of MePTCDI. For such relative
large values of the low energy dielectric constant, the pre
number does not affect the results.

The eigenstates of the Holstein model are determined
the parameters\v, J̃5J•\v, g, Ẽ00 for the Frenkel part and
ge , gh , D̃5D•\v, t̃ e5te•\v, t̃ h5th•\v for the
Frenkel-CT mixing. We assume that the intramolecular
brational quantum\v and its couplingg to the intramolecu-
lar excitation are not affected by the surrounding crystal a
can be derived from the absorption spectrum of isolated m
ecules in solution. A fit of the solution spectrum
MePTCDI in CHCl3 ~Ref. 25! to a simple vibronic progres
sion ~with freely adjustable Gaussian broadenings! gives
\v50.17 eV andg50.88. We use the same values f
PTCDA, since the absorption spectrum of PTCDA
CH2Cl2 from Ref. 79 is identical within graphical accurac
apart from an absolute energy shift of 23 meV. For the el
tron and hole coupling parameters we usedge5gh5g/A2 as
in Sec. IV. Furthermore, we use only one charge-trans
integral t5te5th , since the electronic problem atk50 is
only determined by the sumte1th .24,25 With these assump
tions, four unknown empirical parameters remain in the H
stein model atk50: J̃, Ẽ00, D̃, and t̃ . This freedom in the
parameter space is still too large to obtain definite val
from the absorption spectra alone. We determined param
sets by global fitting procedures in order to find some r
evant values that are useful to discuss the absorption spe

For PTCDA, a representative fitting result is shown as
model spectrum in Fig. 9~a! in comparison with the experi
mental spectrum. The parameters areJ̃542 meV, D̃

597 meV, t̃ 585 meV, andẼ0052.23 eV. This paramete
set corresponds to a strong mixing of Frenkel and CT e
tons as can be seen from the FE and CT contributions sh
in panels~c! and ~d!. The a spectrum follows roughly the
absorption indexk in panel~b!. The characteristic differenc
between the absorption (a) spectrum in 1~a! and the distri-
bution of the spectral weight in 1~c! is entirely caused by the
spectral shape of the refractive indexn, which becomes smal
at energies above the major absorption region. The pho
basis for the model spectrum was chosen as in the calc
02430
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tions for Figs. 7 and 8. Additionally, we show a model spe
trum for the same parameters~including the broadenings! but
using the molecular vibron model. Molecular vibrons for t
CT states are naturally defined by all configurations that
low phonons only at the site of the electron or the hole. T
comparison with the large phonon basis shows almost
differences apart from the larger broadening in the large
sis. This close resemblance is mainly caused by the relati
small values of the transfer integrals and a coupling cons
g'1. Thus, at least for the Frenkel part of the problem,
parameters are close to the scenario of Fig. 2~b!, where the
molecular vibron model becomes exact.

We emphasize that similarly good fits of the experimen
spectra can be obtained for different parameter sets w
varying degree of CT mixing. Even total neglect of CT sta
would give a satisfactory fit with a Frenkel transfer integ
of 70 meV. Such a value corresponds to the thr
dimensional Frenkel exciton model for PTCDA in Ref. 2
with a nearest-neighbor hopping of 82 meV.

For MePTCDI, a fitting result is shown in Fig. 10~a!. The
parameters areJ̃546 meV, D̃5240 meV, t̃ 5115 meV,
and Ẽ0052.13 eV. As for PTCDA, the obtained paramet
set represents a strong mixing of Frenkel and CT excito
Since the spectrum of MePTCDI shows a more pronoun
peak structure, there is not as much freedom in choosing
parameters. In particular, only the inclusion of the CT sta
can reproduce the typical shape with four pronounced pe
In contrast to the fit for PTCDA, in MePTCDI the molecula
vibron model shows visible differences compared the la
phonon basis. Nevertheless, it captures the situation a
rately enough regarding the overall uncertainty of the int
pretation.

VI. DISCUSSION

In this article, we modeled absorption spectra and diel
tric responses of molecular crystals in the simplest contex
a one-dimensional Holstein model. Our procedure for c
structingk50 or k5p states with a tailored basis is gener
and also appropriate for models with more coupled mode
more electronic states. However, the computational effort
creases dramatically in particular with the number of mod
Practically, only the regime of weak up to intermediate ele
tronic coupling can be calculated at sufficient accuracy.
strong electronic coupling, the underlying concept of a loc
ized phonon cloud becomes inappropriate.

We used this approach to model absorption spectra of
closely related molecular crystals~MePTCDI and PTCDA!.
At the present stage, the comparison between models
experimental data still involves serious compromises. T
model neglects or approximates several effects whose in
ence is not accurately known:~i! three-dimensional Frenke
exciton hopping,~ii ! coupling to several vibrational modes
and ~iii ! mixing of higher electronic states. In spite of the
simplifications, the model still contains too many paramet
to derive unique values alone from the optical absorpt
spectra. Our present parameters are meant to illustrate s
troscopic applications of Holstein models to actual materia
but their precise magnitudes remain to be found.
5-15
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M. HOFFMANN AND Z. G. SOOS PHYSICAL REVIEW B66, 024305 ~2002!
We used microscopic arguments to derive the excit
phonon coupling constantsg, ge , gh from solution spectra of
isolated molecules. The inclusion of charge-transfer state
motivated ~i! by the strong and nearly isotropic electr
absorption response of PTCDA~as in the interpretation o
Ref. 24!, ~ii ! by the polarization dependence of MePTC
spectra,25 and~iii ! by the detailed structure of the MePTCD
spectrum, which demands extensions of the pure Frenke
citon Hamiltonian from Eq.~1!. As a guiding principle, we
tried to explain two related compounds within the sa
scheme. This favors our present choice with similar exci
hopping integrals for PTCDA and MePTCDI. In addition, w
concentrated on low-temperature absorption spectra. T
show some structure even for the broad high-energy abs
tion band of PTCDA (2.322.9 eV).

The differences between the scenario presented here
other recent interpretations results from the inclusion of d
ferent aspects. In Ref. 24, a comprehensive picture was g
for absorption, emission, and electroabsorption of PTCD
The underlying model Hamiltonian was identical with o
present one@Eq. ~46!# but the k50 states were calculate
within a dimer approximation. Furthermore, the absorpt
spectrum was approximated in the dilute limit without usi
a dielectric function. The obtained key parameters in Ref.
are J̃5180 meV, D̃522 meV, and (t̃ e1 t̃ h)/2589 meV.
The larger value ofJ̃ mainly results from the assignment o
the strongly redshifted emission spectrum. Furthermore,
inclusion of the dielectric function would redistribute spe
tral weight in the absorption spectrum to higher energ
This solid state effect is not included in Ref. 24 and thus
compensated by a larger value ofJ̃. The general picture o
strong Frenkel-CT mixing caused by a Frenkel-CT sepa
tion D̃ in the same order as the charge-transfer integrat̃
corresponds to our present study.

In Ref. 25, a model was used that considered Frenkel
mixing as in our present study and some extensions
three-dimensional crystals. The effect of the dielectric fu
tion was approximately included by the way of extracting t
transition dipoles from the spectra. However, the Ham
tonian was explicitly constructed within the molecular vibr
model and the vibronic replicas of the CT states were
glected. The obtained key parameters for MePTCDI arJ̃

5110 meV,D̃5280 meV, and (t̃ e1 t̃ h)/2550 meV. Be-
cause of the severe simplifications, the overall shape of
spectra and the CT positionD̃ were only very roughly de-
scribed. The emphasis in Ref. 25 lay on the observed po
ization ratios and Davydov splittings. Both effects are s
beyond the presently studied Hamiltonian. The mixing
Frenkel and CT states, which was supported by the polar
tion ratios, agrees qualitatively with the present study.

In Ref. 26, a three-dimensional crystal model with Fre
kel and several CT excitons is used for absorption and e
troabsorption spectra of PTCDA and MePTCDI. The m
lecular vibron model was used as in Ref. 25 and
absorption spectrum was calculated for the dilute limit as
02430
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Ref. 24. The overall outcome is a significant Frenkel-C
mixing with, e.g., J̃5200 meV, D̃5120 meV, and (t̃ e

1 t̃ h)/2590 meV for MePTCDI.
In Ref. 27, a three-dimensional Frenkel-exciton Ham

tonian within the molecular vibron approximation and a d
electric function model were used for modeling optical co
stants of PTCDA. The resulting nearest-neighbor Fren
exciton transfer integral isJ̃582 meV. Polarization ratios
and Davydov splittings of PTCDA were explained by th
three-dimensional Frenkel interactions, which are beyo
our present study. The proposed value ofJ̃ agrees with our
model for PTCDA if we would neglect CT states~see Sec.
V!.

In our present study, the changes of the absorption spe
in the solid state compared to the much narrower solut
spectra are mainly caused by the dielectric function mod
by the mixing with CT states and—to a smaller degree—
the positive Frenkel hopping integral. All three effects d
tribute spectral weight in the absorption spectrum to a hig
energy region. The Frenkel-CT mixing and the inclusion
separated exciton-phonon configurations explain the
dency towards spectra with more features spread over a w
energy range. The scenario of Frenkel-CT mixing cor
sponds roughly to Refs. 24, 25, or 26. We emphasize that
Frenkel-CT mixing in our study is only manifested in th
detailed structure of the MePTCDI spectrum.

Obviously, the exact situation and reliable parameter v
ues can only be obtained if all relevant effects are included
one model: separated exciton-phonon configurations, th
dimensional interactions, the possibility of Frenkel-CT mi
ing, a dielectric model and mixing with higher states.
order to determine the multitude of arising parameters
broad set of experimental information has to be obtained
critically used.

The major goal of this article was to investigate the stru
ture of phonon clouds for molecular crystals of current int
est, in which the exciton-phonon coupling constant typica
is in the order of 1. We illustrated that the molecular vibr
model@Eq. ~26!# with joint exciton-phonon configurations i
justified only for g'1 and J!1. This regime is approxi-
mately realized in our interpretation of PTCDA an
MePTCDI spectra (J'0.27). For larger values ofJ, the ef-
fects of delocalized phonon clouds become significant~see
Figs. 3 and 4 forJ50.5). Such larger values are also us
for PTCDA in the literature, and they are of interest for ma
other applications. In these cases, an extended phonon c
basis should be used for the calculation of the vibronic sta
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