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Optical absorption spectra of the Holstein molecular crystal for weak
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We investigate the optical absorption spectrum in a Holstein model for a molecular chain with Frenkel
excitons and linear coupling to one internal vibration. The model is extended for nearest-neighbor charge-
transfer excitons that mix with the Frenkel excitons. We represent the Hamiltonian in a displaced oscillator
(Lang-Firsoy basis and employ a problem-adapted scheme for the truncation of the phonon basis. For weak
and intermediate electronic coupling, the complete absorption spectrum and the structure of the relevant
eigenstates become accessible by direct numerical diagonalization. We discuss the structure of the phonon
clouds and the applicability of the molecular viboron model, in which only joint exciton-phonon configurations
are included. As examples, we model absorption spectra of PT@R9,10-perylenetetracarboxylic dianhy-
dride) and MePTCDI {-N’-dimethylperylene-3,4,9,10-dicarboximide
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[. INTRODUCTION crystal structures with correspondingly different crystal
spectra? All recent interpretations of crystal absorption

There is revived interest in organic semiconductors basedpectrd*~?” use the framework of small-radius excitons.
on m-conjugated molecules. The reasons are commercialliowever, there is no general agreement yet about the role of
attractive results in organic LED®®.g., Refs. 1-f promis-  CT excitons, about the choice between a complete Holstein
ing demonstrations of solar celis.g., Refs. 6—-10and the model or a molecular vibron model, and about the concrete
fundamental physics of high quality single crystals showingvalues of various interaction parameters.
band transport! ballistic hole transpor? fractional quan- Although motivated by perylene spectra, we will discuss
tum Hall effects®> charge injection laserd, general aspects of relaxed excited states in the Holstein
superconductivity® or superconducting switché®.There-  model. This familiar one-dimensional model, as summarized
fore, a detailed understanding of various electronic excitain Sec. Il A, has harmonic potentials with quaita, linear
tions becomes desirable. electron-phonon coupling for each molecule, and an exci-

In this article, we investigate the optical absorption spectation transfer integral between neighbors. TakingandJ
trum in a Holstein modél*8 for a molecular chain with in units of i, we have two control parameters that encom-
Frenkel excitons and linear coupling to one internal vibra-pass many cases of interest.
tion. We extend the model to include nearest-neighbor In the molecular limit(no interactionJ=0), optical ab-
charge-transfe(CT) excitons that mix with the Frenkel ex- sorption creates only exciton-phonon configurations at the
citons. Such a model is approximately realized by someame site. For finite], these joint configurations can mix
guasi-one-dimensional molecular crystals, in particular bywith configurations in which the exciton and phonons oc-
PTCDA (3,4,9,10-perylenetetracarboxylic  dianhydjide cupy different sites. The resulting eigenstates have a complex
MePTCDI (N-N’'-dimethylperylene-3,4,9,10-dicarboximige  structure consisting of an exciton surrounded by a phonon
or related perylene derivatives. PTCDA has become a paraloud. We focus below on the structure and modeling of
digm because it readily forms highly ordered filhig°while  these phonon clouds.
perylene derivatives have solar cells applicatibh8Several The eigenstate structure varies widely with respecty to
works have sought to understand the PTCDA absorptiomndJ. For optical spectroscopy, the analysis typically starts
spectrum and related properties of its electronicwith vibronic properties of isolated molecules and then in-
excitations?} 2’ troduces electronic coupling. The limiting cases are called

A major advantage of PTCDA-related systems is simpleweak (electroni¢ coupling and strondelectronig¢ coupling.
and accessible molecular behavior. The lowest* excita- This classification was introduced by Simpson and
tion is dipole allowed and well separated from higher state$etersoff and is mainly used in spectroscofeyg., Ref. 34
(e.g. Refs. 28,20 This excitation couples to several vibra- In the weak coupling regimeJ&g), the transfer of elec-
tions of the carbon backbori, but the most strongly tronic excitation is “slow” compared to the nuclear relax-
coupled modes are almost degenerate and can be treateda®n time within the molecule. The crystal spectrum will
one effective modésee, e.g., Ref. 31 or Sec)\VSince the then resemble the vibronic structure of the isolated molecule.
vibrational quantum in the ground and excited state is almosin the strong coupling regimel& g), the electronic transfer
the same, we have a textbook example of linear excitonis “fast” compared to the nuclear relaxation and a Born-
phonon coupling. Furthermore, other perylene derivative®Dppenheimer separation between the electronic and vibronic
show similar molecular properties but form very different wave functions of the whole crystal can be made. Since the
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electronic excitation is now completely delocalized, the cou- II. THE FRENKEL PROBLEM: REPRESENTATION AND
pling to the vibrational system vanishes and the spectrum SCHEME FOR NUMERICAL SOLUTION
becomes a single narrow line. We adopt the spectroscopic

classification of the limiting cases and consider weak to in- _ 18 _ )
The Holstein modél*® assumes a one-dimensional mo-

termediate coupling. > N
In the context of charge-carrier mobilities, by contrast, thelecular chain. Each molecule has one vibrational and one

natural starting point is delocalized electronic excitations Electronic degr(_ee of frefadom_. V|brat|0n_ally, each mqleu:ule
has one effective configuration coordinatg. The vibra-

The coupling to vibrational modes of the lattice is then in- gD . ox
troduced as the second step. From this point of view, thé'_Onal pottgr)tlalr]lsvn :,)‘a in the elllectronllc ground and, di
relevant limiting cases are classified in the opposite spirit_ (*n—9)” in the excited state. All energies are measured in

oo “ o units of the vibrational quantuniw. The dimensionless
- < ; . . .
Th?re Is either "weakelectron phorlo)\couplmg (9<J) exciton-phonon coupling constagtis related to the vibra-
or “strong (electron-phononcoupling” (g>J).

. L : . tional relaxation energyFranck-Condon energyof the ex-
The Holstein Hamiltonian has been extensively stud|ec£iteol molecule byE .= g Creation and annihilation opera-

and reviewed in the context of mobility at zero and finite . . . e A yar t
. A tors for vibrations in the potentiat are denoted by and
temperature$’183°-4! Since the Hamiltonian cannot be P n Pn

. - o n
solved analytically, the emphasis in these traditional works Electronically, moleculen can be either in the ground

lies on _stud|es O.f perturbative limits. In the course of "€ state or in the first excited state. Operataﬁsare introduced
newed interest in molecular crystals and other narrow-

bandwidth di ) ih i . to create an excitation at sitefrom the electronic ground
andwidth systems and in connection with Increasing CoMg;,0 of the chaif0®). In the Holstein model, the quasipar-
puter capabilities, a variety of numerical studies havi

N b dertak | he | ) ﬁticle a§|Oe'> can be either an exciton or, as originally dis-
recently been undertaken to explore the lowest state in t Eussed, a charge carrier. The hopping intedréh units of

full parameter  range. These 9_'52(3'“‘19 variationaly, .y describes the nearest-neighbor transfer of the quasipar-
approache&~**direct diagonalizatiofi">* quantum Monte  4icja as in a tight-binding model.

A. The Holstein Hamiltonian

Carlo calculation®~>" and density-matrix renormalization- Using these definitions, the complete Holstein Hamil-
group technique®® _ _ _ tonian for a Frenkel excitofFE) can be written as
Compared to this, the properties of higher states have
been much less investigated. These excited vibronic states, .
9 HEE=HEE + HPh HFEPD 1)

however, are essential for an understanding of optical ab-
sorption spectra. The relevant issues were identified in the

initial studies of molecular crystals and limiting cases were FE _ + +

analyzed(see, e.g., Refs. 34, k% or intermediate coupling, He'ec_‘]; (8n8n+1F 8n118n), )
however, only a few quantitative studies have been pub-

lished. These include direct diagonalization studies of

dimers®2* variational and direct-diagonalization study of HP'= bip,, 3)
linear aggregate®;®*and a discussion of the second lowest n

vibronic state in an infinite chaitv.

In this article, we describe a direct-diagonalization ap-
proach to the complete optical spectrum of vibronic states. HFEP= > ala[—g(b)+Db,) +g?]. (4)
For direct diagonalization, the choice of a proper basis set is "
crucial to allow convergence and sufficient flexibility with-

out becoming inconveniently large. We consider an infiniteHere’ the last terni """ couples linearly the otherwise in-
9 y large. ~dependent exciton and phonon systems. Thus, the Holstein

chain {and include translational symmetry by using ,bas'ﬁ—|amiltonian operates on states that generally consist of both
states in momentum space. Thus, some of the finite-size igjton and phonon excitations. Such states, if they contain
sues in aggregate studies are avoided from the outset. Thg |east one exciton, are called vibronic states.

truncation of the basis set is done by considering only pho- The Holstein Hamiltonian conserves the number of exci-
non clouds localized around the exciton. Furthermore, Wegns. We are interested only in the states with exactly one
use a displaced oscillator baslsang-Firsov basis which is  exciton. Therefore, Eqg1)—(4) are already written for this
exact for the molecular limit of no hopping. This schemesubspace of “one-exciton states,” and the exciton counting
allows a flexible description of weak and intermediate e|eC‘termEnaEan is omitted. The constarg? in Eq. (4) is added
tronic coupling @~1, [J|=<1). In this regime, optical spec- to align the zero of the energy axis with the lowest vibronic
tra can be calculated with an accuracy sufficient for comparistate of the molecular limitX=0). This energy scale reflects
son with experiments by diagonalizing matrices ofthe exciton viewpoint, in which the states of the isolated
dimension=5000. Thus, standard eigenvalue routines can benolecules including their internal exciton-phonon coupling
used and the nature of all excited states can easily be inveare used as reference states. The lowest vibronic state from
tigated. Our approach is extended to include charge-transfe@ur one-exciton space should not be confused with the total
states. Applications to absorption spectra of PTCDA andyround state of the crystal, in which there are neither exciton
MePTCDI are given as examples. nor phonon excitations.
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B. Basis set and matrix elements figurations decreases with increasing exciton-phonon separa-

Our aim is to find numerically the low energy eigenstatesion- Thus, the exciton will be surrounded bylacalized
of the Holstein Hamiltoniaril) within the one-exciton mani- Phonon cloud. The localized nature of phonon clouds is the
fold. As basis functions, we use the eigenstates from the motivation for our choice of basis functions. Instefld of
limiting case of zero exciton hoppingl€0). We call this N-dimensional cloud stately), a finite range|v_y- - - vo
the molecular limit, since all intermolecular interaction terms- - - ¥u), With M denoting the extension of the phonon cloud,
are turned off now. In the molecular limit, an exciton local- Will be sufficient. NumericallyM can be increased until con-
ized at siten is stationary and the vibrational wave functions vergence is reached.
at this site are given by oscillator functions in the displaced With the restriction to local phonon clouds around the
potential V. At all other sites, which we count relative to €Xciton, we Fourier transform the basis stat&s
the position of the exciton, the vibrational wave functions are

oscillator functions in the ground state potentiél. 1 ”
Thus, the basis functions can be written as [kv)= \/_ﬁ > €Xny). 7
n
lnvy=[n)|---v_ vov;---) )

These states represent an exciton “dressed” with a local pho-

1 ~ non cloud. The indeX gives the quasimomentum of the
Eail0°1>><J——,(b2>”°|0n> whole object, i.e., the dressed exciton, &nid a good quan-
T Yo' tum number due to translational symmetry. Thus, for any
displaced on n givenk the basis set consists only of a set of phonon cloud
configurations. We emphasize that in contrast to the real-
% H L(blm)”’”mnm)- (6) space basib), the _momentum-spa(_:e basis functigisare
m#0 \Jv,! not Born-Oppenheimer separable into a product of a purely

electronic and a purely vibrational part.

Having specified the basis states, the Hamiltonian can be
represented as a matrix. Applicationfﬁhﬁ%I to the real space
states from Eq(5) yields the matrix elements

undisplaced otherwise

Here, the first factof“electronic”) describes the electronic

part of a localized Frenkel exciton at site The second

factor (“displaced”) describes internal phonons at this site

of the exciton. The displaced ground state is denotefORy (MulHEEINY) =80 ol v) 2 v

and the operatoblzbl—g creates phonon excitations in '

this potential. The third factot‘undisplaced”) describes in-

ternal phonons at all sites different framin the undisplaced +3J

potential. The choice of the displaced basis functions from

Eq. (5) corresponds to applying the polaron canonical trans- @)

formation (Lang-Firsov transformationto a set of basis

functions, in which all vibrational functionéincluding the  The first term in this compact notation results from the op-

site n of the exciton are oscillator functions in the ground eratorsHP" andHFEP" They contain no interactions between

state potentiafRef. 35 or see, e.g., Ref. 39, p. 98, Ref. 40, p.djfferent sites and thus simply count the phonons in the

29). _ Lang-Firsov basis. The overlap factfu|v) stands for the
The phonon-cloud state) contains the phonon occupa- total overlap of two phonon clouds centered at the same lat-

tion numbersyy, around the exciton for all lattice sites. In tice site. It is nonzero only for identical clouds due to the

long notation|- - - v_, vy, - - - ), the special position of the orthogonality of the oscillator functions

exciton (m=0) is denoted by a tilde. A complete phonon-

cloud basis for a chain dfl molecules consists dfl-boson

states and leads to huge basis sets even for small occupation (ulv)= H (milvi), 9

numbers. But a far smaller basis is sufficient to calculate the '

absor_pt|on_ spectrum. Optical absorption from the eIeCtron'.?Nhere(/,dv): 5. is the overlap between oscillator func-

and vibrational ground state only creates phonons at the sq? y

of the electronic excitation, i.e. only states of the form' in the same potential.
~ _ T _y The second term in Eq8) results from the purely elec-
|---000v,000 - -). Excited states with any,,#0 for m

, tronic Frenkel transfer proces$i-.. The vibrational part of
70 _cannot be reached optically. o . the basis functions factors out and leads to the Franck-
For J=0, these “dark” states cannot mix with the opti-

. ; . X i Condon overlapsF. 4 for the total vibronic overlap of the
cally active basis states either. Then., instead of\thmrticle phonon cloudv centered ah and the phonon cloug cen-
states|v) we can use the one-particle stateg). For |J| =

= . LT _ . tered atm=n=*1:
>0, the dark basis states can mix with the optically active

states. That means that optical absorption creates a state in
which phonons are excited at arbitrary distance from the ex- F 1=S
citon site. However, the contribution of such separated con-

=
=

5m,n—1f—1 +5m,n+l~7:+1

14 14

Vo
M1

S IT (milvie), (10)

i#0,1

Vo1
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5 —
Vo Mo
Fi1=S S , (milvign)- 11
M1 Vyq1)i#-10
4
Here, S(;,) is the overlap between a displaced oscillator
function with quantum number and an undisplaced func-
tion with quantum number (Ref. 69 3
( v) 1 : 1 . N
S ={ —(b")*0|—=(b")"0 -
W N\ "
e—g2/2 min(u,v) (_1)V—ig,u+v—2ilu! pl 1F
= > — . (12
Vulvl =0 M=) (v—i)!
0
It is obvious that in the Lang-Firsov basis the strengtbf
the exciton-phonon coupling enters only through the magni-
tude of the factorsF. ; in the intersite hopping term. i
In the momentum space representati@y, the Hamil-
tonian matrix becomes 2
0.0 0.1 0.2 03 -5 0 5
<kﬁ|HEE||kZ>:<&|K>Ei 2 P! m

FIG. 1. lllustration of the eigenstates and their properties for a
numerical solution of the Holstein modél) with parameters]
=0.5 andg=1 at total momentunk=0. In the left panel, the
optically active eigenstates are shown at a vertical energy axis. The
For general momentk, these matrix elements are complex sticks indicate the spectral weighf of each state according to Eq.
numbers. For our intended application to spectroscopy, thel7). For a visualization of the resulting spectrum, the stick spec-
values at the Brillouin-zone edgek=0,7) are of interest trum is convolved with a Gaussiaistandard derivationr=0.15)
and there the matrix elements are real. Representing the finahd the broadened spectrum is scaled for easy superpdgitoe,
eigenstates as area [f(E)dE=0.5]. In the right panels, the occupation number
clouds(N,,) and displacement clouds.,) are shown for two par-
ticular eigenstategsee comments to Eq&0) and(21)].

) ) y73
+J ek F +e+'k}'+1(_) . (13
14

[Wi(k) =2 uy(K)[kv), (14)
p P, (k) =( (10| B0, a7

Inserting the explicit expressiofi3), one obtains

we obtain the eigenvalue problem

> (ku|Hglkp)u,=Eju,, (15 Vo
& Pi(k)=2> UZjS( O)H (v:]0). (18)
for the real matrix(ku|Higlkv). Its eigenvaluesE; and : o
eigenstatesV;(k)) are the stationary solutions of the Hol-  The squares of these transition moments are the spectral
stein Hamiltonian(1). weights of the corresponding states and obey the sum rule
C. Transition dipoles and phonon clouds of the eigenstates EJ: sz(k): 1. (19)

The properties of the eigenstat€s4) are easily com-
puted. We start with the transition dipole moment between-qor k=0, P;(0) gives the transition dipole for optical exci-
the eigenstates and the total ground state. For a light WaV@tion, andez(O) determines the spectral weight of the state

with wave vector, the transition dipole operator is in an absorption spectrum. For genekathe spectral weight
1 sz(k) can be viewed as the exciton character of state
I5q=— E efiqn(ag_‘_an), (16) |\Ifj(k)> since P,—(Ig) is the prolectlon qf this state onto a
N “n Frenkel exciton without phonon excitations.

As an illustration, we show in Fig. 1 the results of such a
The normalization is such that the absolute squared transitiogalculation fork=0 and the parameted=0.5 andg=1.
dipole per unit cell becomq&.ﬁ,I , with py, being the molecu- The energy levels€E; of the eigenstates are arranged at a
lar transition dipole. The transition dipole of a staﬂej(k» vertical energy axis in the left part. Their spectral wei@lﬁt
will be nonzero only forg=k. Therefore, we introduce a is indicated by the horizontal length of each stick. The lowest
k-dependent transition dipole state appears as a solitary stick Bf=0.0074. At higher
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energies, the spectrum consists of many densely packed line®uds. The narrow clouds show that the actual lattice distor-
resulting from the mixture of the various phonon cloud con-tion is much more localized around the exciton than the
figurations in the basis set. The numerical spectrum remainisroad occupation number clouds might suggest. This differ-
discrete only because the basis is finite. To illustrate thence results from the fact that the vibronic wave function in
dense vibronic manifold, we always convolve stick spectrahe actual eigenstates cannot be accurately represented by
with a Gaussian of constant standard derivatio=0.15)  single oscillator functions of the special Lang-Firsov basis.
and show the broadened spectrum using a convenient scaling

factor. D. Truncated phonon basis and symmetry adaptation

Another important property of a vibronic sta{r{fj(k)) is ) )
the internal structure of its phonon cloud. One measure to. BY NoW, the formal tools for calculating and analyzing the

o . ~ eigenstates of the Holstein Hamiltonidh) have been col-
characte_rlze it is the set of expectation val(bk,) for the lected. The only remaining issue is how to truncate the infi-
occupation number operators

nite phonon-cloud basis to a number that allows numerical
) diagonalization. For this, we first restrict the basis to cloud
(Npy=( > alab!, bnim). (200 states of the form

n

These occupation numbers show how many phonons are ex- lom)=1v_m Vo Vim). (23

cited at the oscillator that is lattice spacings from the ex- . )

citon. Note that they depend on the displacement chosen fdrhis means that only phonon clouds localized at thé 2
the oscillator functions in the basis set. Thus, they are no" 1 molecules around the exciton are included whereas free
observable quantities. They are mainly important for choosPhonons can only be approximated using lakge _
ing a reasonable basis set: Since numerically for each rela- Second, for each position in the phonon-cloud we restrict

tive sitem, only states up to a predefined numb&f*can be ~ theé maximum occupation number

included in the basis set, it must be assured g, max
max . m Vn=vm - (29
<v, . These phonon occupation numbers are again illus-

trated in Fig. 1 for two representative eigenstates of highn this way, the localized nature of the phonon cloud can
spectral weight. For the lowest statefat=0.0074, there are  petter be taken into account by considering only small occu-
0.16 phonons at the exciton siten¢0), and the total pho-  pation numbers™ at sites far away from the exciton. A

non number is2(Ny)=0.34. In the molecular limit, this  typical cutoff vector as used for the calculation in Fig. 1 has
state would be the zero-phonon state, but the hopping JIermM —5 and| Vmax>:|12345~€54323>

leads to a nonzero phonon occupation number. At a higher Third, among these states we include only those for which

stateE41=%.28, the total phonon numper Is 2.12 with a peakthe total number of phonons does not exceed a given maxi-
value of (Np)=1.05. This state originates from the two- pum

phonon state in the molecular limit. Electronic delocalization
leads to broad phonon clouds.

A description of the phonon cloud that is independent of > vp=vI, (25)
the basis set can be provided by the expectation values of the m

displacement operators In this way, high-energy basis states are excluded. Since the

b’ +b overlap factors for states with high vibrational excitation de-
<)§m>5<2 agan“*m—rW">_ (21)  crease rapidly, these states do not appear in the absorption
n 2 spectrum. Condition (24) is only effective for v

This displacement cloud\ ) gives the average distortion <>m¥m . buttypically it can be used as a strong restriction
from equilibrium (along the dimensionless normal coordi- (€.9., v =6 in Fig. 1.

nate\) at a molecule which is1 sites from the exciton. Note ~ Now, we have arrived at a fairly complex description for

that the exciton itself is completely delocalized in real spacdhe cut-off conditions of the basis set, given by the numbers
and so is the displacement cloud. With respect to the basi, »™ wvi . However, this complex scheme allows to

representatioi5), the displacement cloud of a stdt;(k)) ~ choose a basis just large enough to represent the optically

(14) is obtained as active eigenstates of the Hamiltonian.
The minimum radiusM =0 is an important special case
- . Vrnt1 of the phonon basis in which electronic and vibrational ex-
Ry=2 Ul Uy X rl;[m (el Vr>) (T(Mm| vmt1) citations are always at the same site, just as ifJth@ limit.
“e These joint exciton-phonon configurations can be considered
Jvm as distinct molecular excited states and treated within the
(| vm— 1>+g5m,o<,uo|Vo>)- (220 standard framework of Frenkel exciton theory. Following

Broude, Rashba, and ShefRef. 66, p. 185 we call this the
Again, Fig. 1 may serve as an illustration. There, the dis-molecular vibron model:
placement clouds are shown for the same representative
states that were analyzed in terms of occupation number M=0. (26)
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The molecular vibron model follows naturally from the ex- phonon and the one-phonon space will be analyzed for arbi-
citon concept and was successfully applied to early interpretrary g using perturbation theory. This analysis illustrates
tations of crystal spectff. The approximation is additionally what type of phonon basis is needed in various situations.
justified if—beyond the simplest Holstein Hamiltoniéh)— In Sec. Il C, numerical solutions will be presented for
the phonon energy differs between the electronic ground ansome intermediate coupling situationd=0.5 andJ=1).
excited state of the moleculsee Ref. 34, p. 87ff or Ref. 66, This coupling range is considered only fp#= 1 since in the

p. 1984. intended applicationg typically is in this order.
To find a suitable phonon basis for concrete calculations,
we start with the molecular vibron model and gradua"y in- B. Perturbative limit for weak Coup"ng

crease the phonon basis until the obtained absorption spec-
trum converges. This procedure is demonstrated in @ég.

In addition to the general truncation scheme, in som
cases the dimension of the phonon basis can be reduced
symmetry. For the Frenkel exciton problem in this section,>; .
we have inversion symmetry about the exciton’s site. So weion Of an isolated molecule:
can introduce symmetry adapted basis stftes. in which EOK)=v, u(j)=]—1=0,1,2 (29)
the phonon cloud is either symmetrie-§ or antisymmetric ] ' e

One extreme case is the molecular lidwt 0. In this case,

@II basis state$7) are eigenstates and the molecular vibron
del (M =0) is sufficient to describe the optically active

s}gtes. The spectrum is the nondispersive vibronic progres-

(—) with respect to inversion about its center. Inversion of » 2
the phonon cloud in the nonadapted bagis shall be de- P-Z(k)=82( )= 9 efg2, (30)
noted by an overbar: ! o/ v

— - For g=1, the lowest and second lowest state have equal
) ve=ven. 27 spectral weight P7=P3) and the weight of higher states
Even the nonadapted basis contains some symmetridecreases rapidly. The displacement cloud is strictly local-
phononclouds #= »). For all other states, a symmetry adap-i2€d at the site of the exciton
tion has to be chosen. Thus, the symmetry adapted states can () =05, 31)
be obtained as m m0-

— For finite J<g, one can start with the molecular limit and

k) for v=wv, apply first order perturbation theory in the parameder
k), =1{ 1 _ _ The lowest state of the unperturbed systerfkis) with |v)
E(|k£>+|kﬂ>) for v#v, =|.-.000---). This state aE{¥=0 is nondegenerate, and
application of first order perturbation theory gives immedi-
1 ately
[kv)_ \/§(|kz) |kv)) for v#w. (28

0
E(M=2J cos(k)SZ( )ZZJ cos(kie ®. (32
Now, the symmetric subspace spanned by [the , states 0
does not mix with the antisymmetric subspace spanned byhis result is well known from small polaron theory for zero
the |kv) _ states and the diagonalization can be done sepaemperature. The width#of the purely electronic band is

rately for both subspaces. For a large cutoff radius of thqenormalized by the overlap factar 9° since the exciton
phonon cloud, the dimension of the two subspaces is roth%oves together with its displacement cloud.

one half of the original basis. Furthermore, the transition Little attention has been paid, however, to the fate of

dipoles of al! antisymmetric states vanish exac_:tly and Onl>1”|igher vibronic states under the effect of the small perturba-

the symmetric space is needed for the absorption spectrumy,, 3| ot ys consider the one-phonon states in more detail.
In the molecular limit, the only optically active one-

lll. FRENKEL EXCITON SPECTRA phonon state has the clofid)=|- - -0001000 - -} with one

A. Overview on-site phonon. This state is degenerate with all other dark
basis states that contain one phonon excitation at an arbitrary
exciton-phonon separatiom A perturbationJ>0 will mix
all these states and lift their degeneracy. This can be analyzed

The Holstein Hamiltonian(1) contains two parameters:
The exciton hopping integral and the exciton-phonon cou-

pling constang. Both are already scaled in units of the third by writing down the matrix elementd3) for the states of the
physical parameter of the system: the vibrational quantu ne-phonon manifold. The phonon cloud of the staie(n))
. Thus, the parameter space cannot be reduced to less thal . 1"« oturer = 5 - and analogously fofku(m)): s
two dimensions anymore. The qualitative character of the_ o The matri>|< reB?esentatio(rlS) then beco&mes ©
solutions strongly depends in a complicated way on both ™"
2
fﬁgt;ﬂrgﬂggretseg;ge will explore only a certain region of Hmn=(kﬁ(m)|HEE||kK(”)>: SmntJde 9 (Wpnt ngmr:,)‘)é
In Sec. lll B, the molecular limit J=0) and the case of (33
weak electronic couplingJ<g) is considered. The zero- where
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Win=Smni1-€ "+ Smn_1-€"K, (34  |®,(k))=]|k)|010), and|P,(k))=|k)|100), . The Hamil-

. _ tonian in the representation of these two states takes the form
and V,,, is a matrix that has nonzero elements only for

|m|,|n|<1. That meansy,, only mixes the states where the

phonon is located either at the exciton site or at its nearest g2 179
neighbor. _g? \/E
The two contributionsWV,,, and V., in the nondiagonal Himn=Omn+2Je"9 cos(k) 0?2 1 (39
perturbation term of Eq(32) act in completely different g =g
ways. Let us first discuss the casegz€1 and neglecV,,,. V2 2
For k=0 or k=_ T, Wmf, is the Har.nil_to.nian of' a nearest- | iy eigenvalues
neighbor hopping particle on an infinite chain with open
bou_ndary. This_ gives a wavelike solution. In_ contrast to the E@phg>1)_1 4 o] cos(k)gze‘gz
ordinary hopping problem, the exact consideration of the -
specific boundary conditions is essential now. Only then, the 3( 16 8 )
correct amplitude at the special site=0 can be obtained,; X=|1x\[/1-—+—]|. (40
and this amplitude alone determines the spectral weight. 4 9g®> 9g*

Thus, one obtains the eigenstates Thus, the zero-order energg=1 splits into two bands

E. (k). Similarly to the perturbation-id- treatment of the

M

|\Ifj): 1 E ( Ikp(n)) (35) lowest statg32), the electzronic bandwidth Jis multiplied

M +1 ns 2M+2 by an overlap factogZe~9 which corresponds to the inter-
ith action of the transition-dipole moments of the molecular
wi one-phonon state. However, there am® states now. In the
i=12,... M+1. (36) limit g— o, their energies tend to
Their energies are E(PPI—=*) 1+ 2] cos(k)g? 792><§ (42)
+ g-e 4’
E(1phg<1)_ 1 4+ 9 jg=0° im 3 (1phg—=)
( =1+2Je ¥ cog 7], (37 gUPhe==) 1, (42

where= refers tok=0 andk= , respectively. The spectral N this limit, b?th states still have spectral weights Rf

weight of statg at k=0 follows from definition(17). It has —3 end Pg_—_>§- . _
only two values depending on the indpx This splitting into two states which both carry spectral

weight is entirely caused by the delocalization of the phonon
cloud. Such a delocalization is neglected in the simplest ap-

_q? ,
p2_ M+1gze 9" forodd j, 38 proach of the molecular vibron modé26), which would
I . B8 mean the neglect of statgb,(k)) in Hamiltonian (39).
0 foreven j. Looking at the nondiagonal term in Hamiltoni@f9) sug-

o gests, and closer inspection of the full one-phonon subspace
amiltonian (33) confirms: For the special valug=1, the
olecular vibron statékv(n=0)) decouples from all other
honon cloud configurations. Only in this case, the molecu-

ar vibron model becomes exa¢in the one-phonon sub-

space and yields one energy band at

The M states with evef and zero spectral weight belong t
the subspace of the antisymmetric states in the symmet
adapted basi$28). The M+ 1 optically active states with

odd j are the symmetric states. These active states form
band of equally absorbing states with a total width of

43e 9 The total spectral weight of these active states sums

up tog?e o representing the value of the molecular limit. In E(phg=1)—_14 27 cos(k)gze‘gz (43)

all these states, the phonon cloud is not localized around the

exciton but consists of a standing phonon wave. We emphawhich carries all the spectral weighfe™ o

size that this behavior is the limit for small In this limit, To give an illustration of the phenomena in the one-

the total spectral weight of the considered one-phonon banghonon subspace and to show the relevance of the described

is only a small feature in the overall spectrum since the malimiting cases, we show a numerical solution in Fig. 2. For

jor part of the spectral weight is concentrated in the zerothis, we solved the Hamiltonia(82) numerically for a pho-

phonon state. non cloud of radiugvl = 20 at the total momentuik=0. For
Complementary, the/,, part in the perturbation33) k=, the spectra only have to be mirrored with respect to

mixes only the cloud states with phonon excitations at olE=1.

next to the exciton site. Therefore, in the limit of largethe In Fig. 2(a), the “exact” numerical result¢graph 1 are

basis set can be reduced to include only local phonon cloughown for a relatively smaly=0.5. The tendency of a broad

configurations up to the nearest neighbbt=€1). Using the  band with constant spectral weight is clearly visible. This

symmetry adapted basis functiof®8), the symmetric one- bandwidth is compared to the width the free phonon part

phonon subspace consists only of two phonon configuration®/,,,, from Eq. (37) in graph 2. Both agree very well. The
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FIG. 2. Perturbative treatmerdt—0 of the one-phonon sub- -1 0 1 2 3 4 5
space for three coupling parametgrd he “exact” stick spectra are E

numerical solutions of the one-phonon Hamiltonié3B8) for a
phonon-cloud radius d1=20. The envelopes are convolutions of FIG. 3. Convergence of absorption spectra at the top of the band
the stick spectra with Gaussians of appropriate width. Figgag 2 for J=0.5 andg=1 (intermediate coupling, rather smdl). Panel
represents the smail-case, where a broad one-phonon sideband isa shows the results for the molecular vibron mo@é). Panels(b)
formed. The “exact” solution in graph 1 is compared to the band-and(c) show spectra for a large phonon cloud basis. Going ftiom
width of the free-phonon pafW,,, from Eq.(37)] in graph 2 and  to (c), the maximum cloud radius! is increased from 5 to 6 and on
to the position of the single active state from the molecular vibroneach relative sitem the maximum occupation number, is in-
model(26) in graph 3. Figure @) represents thg=1 case, where creased by 1. This increases the number of symmetric basis states
the molecular vibron model becomes exact. Figui@ Bepresents from 1587 in panelb) to 4485 inc. The sticks always show the
the largeg case, in which the exciton interacts mainly with a spectral weight according to E¢L7). The solid lines are convolu-
nearest-neighbor phonon cloud. The “exact” numerical solution intions of the stick spectra with a Gaussian as in Fighdrmalized to
graph 1 resembles the approximate soluti@) for a nearest area 0.5 The shape of the thus broadened spectrum in pahab
neighbor cloud M =1) in graph 2. The single state from the mo- almost converged, particulary for energiBs<2.5. The inset in
lecular vibron model 1 =0) is shown in graph 3. panel c shows the displacement cloud of the lowest state as in
Fig. 1.

molecular vibron model§1 =0) would give a single active
state at E—1)/J=0.389 (position indicated by graph)3
This state would represent the weighted center of the exa
band[also at €—1)/J=0.389 in this casgbut it would veil
the large splitting AE/J~1.55).

In Fig. 2b), we show the solution fog=1. There, the
one active state of the molecular vibron model <€ 0) is the
exact solution.

In Fig. 2(c), the numerical solution is shown for a rather
largeg=1.5 (graph 1. It clearly approaches the two active
states from the nearest-neighbor clduadiusM =1) given In the intermediate electronic coupling regime, the exci-
by Eg. (40), which are shown in graph 2. For comparison,ton hopping integral is of the order of 1. In this case, the
the result of the molecular vibron modeM(=0) is also perturbative approach from Sec. Il B breaks down since,
shown in graph 3. As fog<1, the molecular vibron model e.g., the bandwidths for the zero-phonon subsga2eor the
can only represent the weighted center of the one-phonoane-phonon subspa¢d0) would not be small compared to
states but not their qualitative splitting. Note that for boththe vibronic spacing. In this case, numerical solutions using
casegy<1 andg>1 the correct splittings of the one-phonon the basis from Sec. Il B can be used. We will discuss the case
states are in the same order as the perturbation parateterof g=1, which is approximately realized for the optically

The situation for energies above the one-phonon subspa@®upled C-C stretching modes in many conjugated molecules
becomes more complex and will not be considered here. Alconjugated polymers, polyacenes, PTCDA derivalives
ready in the two-phonon subspace, which is spanned by all In Fig. 3, we show the convergence fd+ 0.5 andg=1

zero-order basis states with a total phonon number 2, there
occurs a high degeneracy of various cloud configurations.
%he numerical calculations in Sec. IIl C confirm that for not
too strong electronic couplingl€0.5) andg in the order of

1, the approximation of highly localized phonon clouds or
even the molecular vibron model yields a good description of
the full absorption spectrum.

C. Numerical solutions for intermediate coupling
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at the top of the bandk&0). This parameter set was already 1 [ ]
used in the illustrations from Fig. 1. FiguréaB gives the a) k=n J=0.5 g=1
spectrum in the molecular vibron mod@5) with a maxi-
mum phonon number afgi*=6. In this model, one obtains &~
v+ 1 vibronic states. Compared to the molecular limit,
the molecular vibron states are shifted and their spectral
weight is redistributed to higher energies due to the effect of
the positive hopping integral.

Figures 3b) and 3c) show the solutions for large basis
sets. Only the optically active statglsv) . from Egs.(28)
were calculated. In both cases*=6 was retained as for %
the molecular vibron model. Only the cutoff vector)™

was increased fronjr)™®=|123464321) in Fig. 3b) to

|v)M¥=|1234564321) in Fig. 3(c). This means that in Fig.
3(c) the cloud radiusM is increased from 4 to 5 and at each
cloud position the allowed number of phonons is increased
by 1. This increases the number of symmetric basis states
from 1587 to 4485. The broadened spectra clearly show that &~
this increase in basis size changes the result only very little
and mainly at energie€>2.5. The obtained accuracy is
completely sufficient for interpreting experimental absorp- T
tion spectra, since effects not included in the model Hamil- -2 -1 0 1 2 3 4
tonian will be larger anyway. E

The properties of the lowest state and a representative i
high-lying state with large spectral weight were already FIG. 4. Convergence of absorption spectra at the bottom of the

N . ~ band forJ=0.5 andg= 1. Panelqa), (b), and(c) show the results
shown in Fig. 1. The ocqupatlon number Cloquf& .Of both for the same basis sgets as in Fig. 3. The broadened spectra are again
states are strongly localized around the exciton site and thel{,malized to area0 5.
decay patterns justify the pattern of the cutoff vedtg™®
The occupation cloud is more localized for the high-lying At the bottom of the bandk(= 7, Fig. 4), convergence is
state than for the lowest state. Therefore, the molecular vimuch easier to obtain for intermedialeThis is clear since
bron model(26) is more accurate for the high-lying state, the bottom of the band corresponds to the real ground state
which can be seen from the comparison of Fig&) &nd  of the Hamiltonian, whereas the=0 states at the top corre-
3(c). The main effect of the delocalized cloud basis in thespond energetically to phonon excitations of kver states
high energy region is a broadening of the spectra. The lowesit lower energies. The convergence is shown for the same
state, however, moves considerably fr&dn=0.229 in the parameters and basis sets as at the top of the {FEigd3).

Fig. 3(a) to E;=0.0074 in the largest basis set of Figc)3 The inset in Fig. &) shows again the displacement cloud of

The displacement clouds ) show the same delocaliza- the lowest state, which now has the nonalternating pattern as
tion tendencies. Remarkably, the displacement pattern of théiscussed in the previous paragraph.
lowest state alternates with distance from the exciton site. For larger values of, the delocalization of the phonon
This behavior can be rationalized on the level of a variationaFloud is more pronounced and larger basis sets are needed
mean-field theoryas in Ref. 36 by the competition between for the same level of accuracy. In Fig. 5, we demonstrate the
exciton delocalization and exciton-phonon coupling: At theconvergence at the top of the band fbr1 and the same
top of the band, thépurely electronit exciton hopping in- basis sets as in Fig. 3. Now, the molecular vibron model in
creases the energy of the lowest state. With inclusion ofig. 5@ deviates from the complete solution even on the
exciton-phonon coupling, the hopping term gets multipliedenergy scale of the vibronic quantum. The energy of the
by a vibronic overlap factor between the oscillator at thelowest state is overestimated by 0.88, and also the maximum
exciton site (displacement(fxo)) and the oscillator at the of the broadened spectra deviates by almost 0.5. Even the

) . ~ solution in Fig. 5b) still shows notable differences from the
nearest neighbofdisplacement),)). To lower the energy, solution for the largest basis set in Figch Only the posi-

the effective hopping, i.e., the vibronic overlap, should betion and spectral weight of the lowest state have already

decrer?lsed. Th_'s can be acihleved bX maximizing the dlfferE:onverged to about two significant figures. The lowest state
ence in the displacements.o) and (Ay). Since the total iy panel 5c) lies at —0.563, which reproduces two signifi-
displacement is fixed by the sum rufg,(A,)=g (e.g. Ref.  cant figures of the high-accuracy ground state calculation
31), an alternating displacement pattern minimizes the en¢—0.5689 - -) reported in Ref. 53.

ergy. At the bottom of the band, the same argument demands The convergence fal=1 at the bottom of the bandk(

a large effective hopping and thereby the smallest possible- 77) is shown in Fig. 6. As fod=0.5, the convergence is
difference in displacements, which results in a uniformly de-much better at the band bottom with almost no change of the

caying displacement cloud as shown in the following Fig. 4.broadened spectra for the basis set increase from Hiyi®
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FIG. 5. Convergence of absorption spectra at the top of the band FIG. 6. Convergence of absorption spectra at the bottom of the

for J=1 andg=1. Panelga), (b), and(c) show the results for the = |, 4¢3 andg=1. Panelga), (b), and(c) show the results for

same baS|s_sets as |n_F|g. .3' With Increasing r.‘”mber of states,_ “iﬁe same basis sets as in Fig. 3. The area of the broadened spectra is
spectral weight of the individual states in the higher energy region ,-malized to 0.45

decreases. Therefore, the y-axis scaling and the normalization of the
broadened spectra is different in each papktea = 0.5 in panel

(a), area= 0.3 in panel(b), and area= 0.09 in panelc) ] discussion of PTCDA and other quasi-one-dimensional crys-

tals(see Sec.)l Letc;f be the creation operator for a nearest

neighbor CT state in which an electron is transferred from

lattice siten to siten+f (f==1). The molecular limit is

again defined as the case where no transfer interactimis

ther Frenkel exciton transfer nor charge transfer nor
renkel-CT interactionsare considered. Then, the electronic
T Hamiltonian is

Fig. 6(c). The energy of the lowest state changes from
—1.46955 to—1.46961 and then agrees up to five significant
figures with the results from Ref. 53.

For values ofl much above 1, the Lang-Firsov basis be-
comes increasingly inefficient. While approaching the stron
electronic coupling regimég>g, the lattice displacement is
not localized around the exciton anymore in very contrast to
the premises of our truncation scheme. In the strong coupling HCT= DE c; Cnt (44)
limit, the exciton hopping is “fast” compared to the exciton nfo
gﬁgﬂﬁnbzogggﬁg d?gihtgivﬁgli:c(r)ypspt);n:semiroﬁggxézﬁtm%th D being the on-site energy of a CT state in the molecu-

] ) - ) lar limit (relative to the Frenkel exciton on-site energy at
33). The total lattice displacemeBt(\ ) =g is now equally

o zero in our energy unijs
distributed over theN—o molecules. Therefore, the total  The electron or hole excitation of the CT state are as-

relaxation energfErc=g?= (A )2 tends to zero. Figuratively sumed to couple to the same effective vibrational coordinate
speaking, the very fast exciton looses its phonon cloud) as the Frenkel exciton. With the electron-phonon coupling
Compared to the molecular limitowest state aE=0), the  constantg, and the hole-phonon coupling constayt, the
lowest state will now be given by the purely electronic bandiinear coupling between CT states and phonons is described
at E=2J cosk+g? Because of the vanishing relaxation en- by the Hamiltonian

ergy, higher vibronic states have no spectral weight and the

absorption spectrum consists of a narrow line at the elec-

tronic energy. HCT’ph:; ¢} iCn sl —an(b}+by)
IV. INCLUSION OF CT STATES ~0e(bls ¢+ bnir) + 97 +02]. (45)

The Holstein Hamiltonian for Frenkel excitof¥) can be These expressions are analogous to the Frenkel-exciton-
very naturally extended to include charge-transf@T) phonon coupling in Eq(4). The termgﬁ+ gg is the vibra-
states. The relevance of CT states is a major point in théonal relaxation energy of a CT state in the molecular limit.
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As in Eq.(4), this term is added to align the on-site eneRyy straightforward way. The final expressions become lengthy

of the CT states to its value in the molecular limit. due to various overlap factors and we omit them here. The
The mixing between Frenkel and CT excitons can be debasis can be reduced to a manageable size by a truncation
scribed by the Hamiltonian scheme as for the Frenkel problem. Then, the eigenstates
|‘lfj(k)> atk=0 or k= can again be obtained by standard
HFE—CT:E [te(aICn,+1+alCn,71) d|ag0nal|zat|on methods for real matrices.
n From the eigenstates, the transition dipole moments can

be reduced to the transition moments of the basis states. The
Frenkel excitonsa'|0) give rise to a Frenkel transition di-

. ) pole operator as in Sec. Il C:
The charge-transfer integrals (t,,) describe the transfer of

an individual electronhole) between the site of a Frenkel R 1 .
exciton and its nearest neighb@ee Refs. 24, 25We ne- Pee(Q)= — 2 e"q”(ah ap). (51
glect the dispersiofthopping of CT states since this would YN

involve a simultaneous hop of two particles and is expectethn equivalent operator can be introduced for CT states. In

to be on a much smaller energy scale. Thus, the extendagijs case, the most elementary excitation always involves a
Holstein-Hamiltonian for Frenkel and CT excitons becomesynit of two molecules ah andn=+1. As argued in Ref. 25,

the symmetric CT excitation

+tp(@lcnir 1t aico-11)+H.Cl.  (46)

Hio =Hp5+HCT+HCTPh HFECT (47

This Hamiltonian corresponds to the dimer Hamiltonian used _(Cg +1+CE+171)|0>
\/E , )
in Ref. 24.

A natural extension of the basis stafag) from Eq.(5)is  can have a significant transition dipole momeg¢. On the
obtained by including the new electronic degree of freedonother hand, the transition dipole of the antisymmetric CT
f. The valuef=0 shall denote the former Frenkel exciton excitation
basis states

1
[Infr)]i—o=Inv). (48) E<c2,+1—c$+1,_1>|0>
A Lang-Firsov-type basis for CT state$< = 1) is defined s strictly zero for symmetry reasons. Therefore, we analyze
by | only the g-dependent symmetric CT transition operator
Infvy=c; [0 x (bf—gn) 0|0 T i
v)=cn, = (a8 710 . 1 et et
ool Ber(q)— = S eian 1Ot )
elec g, displaced on n \/N n \/E
(52)
1
X (bl —g.)¥|0¢ Then,
\/V_f! +f 8 | > A
Prg (K)=(¥;(k)|Pre(k)[0") (53

g, displaced on n+f
gives the Frenkel part of the transition dipole anTn\g and

1
x 11 SO 10 g

70,1 Per(K)=(W;(K)|Pcr(k) |0 (54)

undisplaced otherwise gives the CT part of the transition dipole alopgy. At k

~h . . . =0, the absolute transition dipole for absorption of visible
Here,|0,) is a ground state oscillator function displaced bylight is obtained as

the hole-phonon coupling constagy and|5§> is an oscilla-

tor function correspondingly displaced . bl—g, and P;=Peg(0)pum+ Per(0)per- (55)
T_ . . . . . _
?c?rs ge Create phonon excitations in these displaced OSCIIIaThese transition dipoles are now determined by two indepen-

dent contributions. However, in a first approximation the CT
fansition dipole will be small an@j will mainly be given
by its Frenkel component. As for the Frenkel problgsee
E(2:1. (19)], the k-dependent spectral Weighl?,ﬁEj(k) and
Kfv)= i 2 &hlnt,). 50 z(é}jrgg)crgpgfztearlg J.the electronic charactérenkel or sym-

VN A representative calculation is shown in Figs. 7 and 8 for
As for the Frenkel problem, the matrix elements of thethe parameterd§=0.5,g=1, D=0, t.=t,=0.5. The Fren-

Frenkel-CT Holstein Hamiltoniait47) can be derived in a kel part of this parameter set corresponds to the calculation

The real-space basis states from E4Q) can again be
Fourier transformed to momentum-space basis states wi
total momentunk:
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in Fig. 1. The basis cut-off vector for the phonon-space was
|v)M¥= | 123454321) with vjie*=5, resulting in 4332 basis
FE character states. An additional CT state is assumed at resonance with
the Frenkel state{=0). The charge-transfer integrals
andt,, are chosen equal to the Frenkel hopping integral to
give an illustration for strong Frenkel-CT mixing.

For the electron and hole coupling parameters, we used
Je=0n=9/+2, which gives equal relaxation energy for the
CT state and the Frenkel exciton. Perylen@’ssystem is
alternant. Simple Hekel theory then gives equal and oppo-
site charges in the cation and anion, with half-filled HOMO
and LUMO, respectively, while both are half-filled in the
excited state. We hawg.= g,,=g/2 for noninteracting elec-
trons. The Pariser-Parr-Pople model of interactingelec-
trons yieldsg.= g, for systems with electron-hole symmetry.
The bond order changes and relaxation energy of the singlet
excitation in anthracene or trans-stilbene are now approxi-
mately half that of the triplet, which in turn is comparable to

‘: the relaxation energy of dication or diani&tt® Our initial
! choice of equal relaxation energy for the Frenkel and CT
1 I . . . .
0.3 00 0.3 excitation follows the correlated case, although this is a
Pe,” P guess and PTCDA does not hageh symmetry.
At the top of the bandK=0), the energetic degeneracy

FIG. 7. Eigenstates of the extended Holstein model forgng the large charge-transfer integrals lead to a strong mixing
Frenkel-CT mixing(47) at total momentunk=0. Parameters  of Frenkel and CT states throughout the whole spectrum. The
=05,9=1, D=0, te=t,=0.5, ge=g,=1/y2. The Frenkel pa- oyerall distribution of the spectral weights gives more Fren-
rameters and the illustration correspond to FigP: shows the kel character to the higher states as a result of the positive
spectral weight§Frenkel charactgnf the Frenkel-partP2; shows The FE character in Fig. 7 should be compared to the
the spectral weights_ of the symmetric CT part. The broadened Spe‘l‘frenkel-only problem from Fig. 1. In the Frenkel-only prob-
tra are both normalized to an area of 0.5. lem, the lowest state gave rise to a single peak in the broad-

ened spectrum d&~0. This peak is now split into two well
separated peaks Bt~—1 andE~O0. In such a way, strong
5r mixing with CT states can add new features to the absorption
spectrum even if their intrinsic transition dipoles are zero
(5CT=O). This phenomenon is commonly described by the
FE character figurative phrase that the CT states “borrow” oscillator
strength from the Frenkel states.

At the bottom of the bandk(= 7, Fig. 8, the symmetry of
the CT integrals {.=t,,) in this special case decouples the
electronic Frenkel and CT statésee Ref. 211 Therefore, the
spectral weight of all states has either pure Frenkel or pure
CT character. Only some indirect mixing is introduced by the
phonon part of the Hamiltonian, which mainly affects the
vibronic structure of the CT-character states.

k=0 ;

]
)
4  CTcharacter :'

-

~o

e

CT character

-

V. DESCRIPTION OF EXPERIMENTAL ABSORPTION
SPECTRA

-
-

N

In Sec. IV, the energieE; and transition dipole®; (55)
of the eigenstates of the one-dimensional Holstein problem
were obtained. These quantities are essential but not yet suf-
ficient for the description of a real absorption spectrum of a
quasi-one-dimensional molecular crystal. Let us first return
from the dimensionless quantiti&s J, D, t, andP to abso-
lute values, which are denoted by a tilde to prevent confu-
FIG. 8. Eigenstates of the extended Holstein model forsion. The absolute excitation energy of stile;) is then
Frenkel-CT mixing(47) at total momentunk= 7. Parameters as in given by
Fig. 7. Because of,=t,,, the electronic FE and CT states do not .
mix and all eigenstates have either pure FE or pure CT character. Ej=EgtE; - fiw, (56)

e R

) .
0.5

=] 2

cT
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where Eq is the absolute energy of the lowest eigenstatéﬁere,ezg is a background dielectric constant that represents
with respect to the electronic and vibrational ground state ofhe value ofe;(0) corresponding to a crystal in which the
the crystal. Furthermore, we will only consider the Frenkelconsidered lowest electronic excitation would not ex‘igﬁjs

contribution to the transition dipoles in E(Y5): a screening factor describing the modification of the acting
~ field by the higher transitions. Furthermore, the higher tran-
szﬁM.PFEj_ (57)  sitions will modify the Frenkel exciton hopping integral

and thereby all the eigenstates of the system. Since we treat
In PTCDA and MePTCDI and many other organic Crys- j s an effective fitting parameter anyway, the effect of the
tals, the unit cell contains two nonequivalent molecules. Weyigher transitions ontd is not important here but should be
now assume thaall interstack interactions are on a much \omembered in any microscopic interpretationJoSuch a
smaller energy scale than the in-stack '|nteragtﬂonThat background modification of the dielectric function was dis-
means, the energy spectrum of the O”G'd'me”S'O”?'_mOd@ Eussed for a simple model system of one purely electronic
in first approximation not afiected. Only the transition di- Frenkel exciton in a cubic crystal in Ref. 39. In our general

poles of the two molecules A and B couple and form two : o .
Davydov componentsd= p,s) with two orthogonal transi- case, the effect of the higher transitions represented in the
y P P 9 background parameters is also anisotropic in nature.

tion dipoles . . . ) .
P The dielectric function63) includes a Lorentzian broad-
~ 5 (A)+ D (B ening of the individual eigenstates due to a finite lifetime
= pu(A)=pu(B) 1 . o
Pis= Peg . (58)  I'"*. In a typical situation, however, there are several other
V2 sources of a much larger broadeniiig:coupling to further

If ¢ is the angle between the two nonequivalent moleculalow-energy vibrations(ii) splitting of the main vibrational
transition dipoles, the absolute value of the Davydov compomode, which consists actually of several nearly degenerate

nents can be written as modes, andiii) inhomogeneous broadening. To account for
all these effects empirically, we replace each eigenstate of
F’JBZ Ps Prg (59 the Holstein mode|I\Ifj> by a Gaussian distribution of states

with standard deviationr; as, e.g., done in Ref. 74. The
individual broadenings; have no microscopic meaning and
P should be seen as no more than a convenient tool to compare
Pp=Pwm COS, (60)  the spectrum from the eigenstates of the Holstein model to
an experimental spectrum. Practically, we assigned constant
values ofo; for 4 separate regions of the spectrum in order
to have only four different broadening parameters. The indi-
vidual Lorentzian linewidth is assumed to be much smaller
than theo; and does not contribute anymore.

with the transition dipoles per unit cebl;:

. ¢
Ps= Pwm smE. (61

For the crystal structure of PTCDA and MePTCDI, the F h lex dielectric functiof63). th |
direction is given as the crystallograpticaxis. Thes direc- rom t_e compiex 2|e ectric functio(63), t € compiex
tion lies approximately in th&102 plane because the mo- refracitlve index O+ik)“=e€ and the absorption coefficient
lecular planes of both inequivalent molecules are roughlyr=2E/(%ic) -« can be calculated for the special light waves
parallel to the(102) plane[within 5° (Ref. 70 for PTCDA that propagate perpendicular to thes plane and are polar-
and within 10° for MePTCDI, derived from Ref. T1 ized along thep or s direction. For general directions, the
Knowing the transition dipoles per unit cell, the trans- complex rules of crystal optics would have to be considered.
verse dielectric constant for perturbation by an external light For PTCDA, itis possible to create vapor-deposited poly-
wave polarized along thé=p,s directions can be expressed crystalline films with a high preferential orientation such that

as a sum over the excited statese, e.g., Refs. 72, ¥3 the (102 crystal planes always lie parallel to the substrate.
Furthermore, the anisotropy between thands direction is
0= S ngjT;j expected to be very small due to the almost right angle be-
ex(BE)=1+ —p%E ==, = (62)  tween the moleculesg(=82°). Thus,e,~ €5 can be directly
v I Ej-E°-iAl'E probed by a vertical incidence absorption measurement on
Here,v is the volume of the unit cell anB~* the life time of ~ such films. For thicknesses abowe80 nm, the influence of
the excited states. interface reflections and interference effects is small and the

Equation(62) is rigorous for any quantum system fl absorption coefficient follows directly from the optical den-
excited states are included. However, we are considering'ty and the layer thickness. The layer thickness, however, is

e - 22
only the lowest electronic excitation. Therefore, we includedifficult to determine accurately. Hasket al™" report abso-
the contribution of the higher statémixing of molecular ute absorption coefficients for PTCDA on glass, deposited at

configurations by using a phenomenologically modified for- low substrate temperature. We determined absolute absorp-

mula for the dielectric function tion coefficients for PTCDA on mica at room temperature.
The orientation of th€102 planes parallel to the substrate

_ 8 ngj“Ej was verified by x-ray diffraction and the layer thicknesses
eB(E)=629+ —(f'z,gpﬁ)ZE_ == o= (63 (e.g., 30 nm were determined by atomic force microscopic

v I Ej—E°—IRl'E investigation of step profiles. Our results for the integral ab-
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6 a) a-spec LT - T exp - 8 -— o i

o/10° [em’]

T T T T T T T T T T T T s+ 1 (model) m
i K (model)

3} b) T n (model) .

& (model)

ol
1 1 1
‘ ‘ J 2.0 2.5 3.0
0 J | J..]. doo > E
2'0 o 2'5 o 3'0 j FIG. 10. Experimental absorption spectra of MePTCDI and
' E ) model fit. Panel(a) shows the comparison for thepolarized «

spectra, the parameters are given in the text. The model spectrum is
FIG. 9. Experimental low temperature absorption spectra ofshown for a large phonon cloud basis in Fig. 7 and the molecu-
PTCDA and model fit. Panela) shows the comparison for the lar vibron model. Panelb) gives the optical constants from the
absorption coefficient. The model fit(parameters see téys done ~ model. Panelgc) and (d) show the actual eigenstates and their
with a large phonon basi@s in Fig. 7 but a comparison with the composition as explained in Fig. 9. The broadeningcjrand(d) is
molecular vibron model for the same parameters is also given¢onstante=28 meV as for the lowest peak in the experimental
Panel (b) shows the optical constants « corresponding to the spectrum. Due to the variable broadening in the fit, the second large
model fit. Panel(c) shows the actual eigenstates and the Frenkepeak at~2.3 eV from panelc) appears in ther and « spectra of
part of their spectral weight. In pan@l), the CT part of the spectral panels(@) and(b) only as a broad feature with lower peak value.
weight is given. The stick spectra are broadened by Gaussians with
a constant widthr=48 meV corresponding to the width of the crystal structure differs. The resultapipolarized spectrum
lowest state in the fit. is shown in Fig. 1(8). At this stage, we do not intend to
explain the dependence of the spectral shape on polarization.

sorption coefficient agree within 7% with the ones from Ref.Such a dependence might be affected by contributions of a
22. Using our value ofadEzZ.Zx 105 cm™! eV (inthe Nonzero intrinsic CT transition dipof&, by nonzero inter-

. 7 . . .
range 2—3 eV, we calibrate the low-temperature absorption Stack coupling” and by the anisotropy of the dielectric

spectrum of PTCDA reported in Ref. 25 to absolute valuesP@ckground — contribution. By ~concentrating on the

This spectrum is shown in Fig.(8. p-polarized spectrum, at least the CT contribution would be

For MePTCDI, the angle between the two nonequivalenfhinimized. _ _ _
molecules ise=37° (derived from Ref. 71 and thus the We note that the consideration of thbsoluteabsorption

anisotropy between thp and s direction is expected to be coefficient is esgential fqr describing thg shape qf §o|id state
strong (of)/p§=9.0). Polarized low-temperature absorption spectra. The MIcroscopic r.“o‘?'e's_ provide predlct_l_ons qnly
spectra of MePTCDI were reported in Ref. 25, but there theabOUt ther_elat|ve spe_ctral distribution of the transition di-
absolute scaling was not known. To provide an approximat®°!€S: Which determines the shape of the imaginary part
scaling, we assume that the isotropic average of the integrge(E) of the dielectric function. The shape of the absorption
absorption coefficient should equal that of PTCDA(«,, Spectruma(E), however, is strongly influenced by the varia-
+ag)dE=[a(PTCDA)JE] since the molecular transition tion of the refractive index in the absorption region
dipoles of the two materials are very simfflaand only their =E/(#c)- e,/n] and the variation ofi is again determined
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by the absolute absorption coefficient. Only df is very  tions for Figs. 7 and 8. Additionally, we show a model spec-
small, as typically for spectroscopy of solutiomsgdoes not trum for the same parametdiacluding the broadeningbut
vary and the shape of the absorption spectrum is directlysing the molecular vibron model. Molecular vibrons for the
given by the shape of the transition dipole distributiti- CT states are naturally defined by all configurations that al-
lute limit” ). The best approach would be, of course, to obtaifoW phonons only at the site of the electron or the hole. The
the complex dielectric function from experiment. Such datacomparison with the large phonon basis shows almost no
is presently available only for films of unknown degree of differences apart from the larger broadening in the large ba-
orientational ordef® sis. This close resemblance is mainly caused by the relatively

The dielectric function(63) allows a direct fit of the ab- small values of the transfer integrals and a coupling constant
sorption spectra in whick® and f*? have to be considered g~1. Thus, at least for the Frenkel part of the problem, the
as fitting parameters.sbg can be chosen from the indepen- parameters are close to the scenario of Fif),avhere the

o T molecular vibron model becomes exact.
dend criterion that the refractive indexbelow the absorp- We emphasize that similarly good fits of the experimental
tion region is matched. For PTCDA, we used the value of P Y9 P

~ spectra can be obtained for different parameter sets with
€(E=0.962 eV)=4.07/° For MePTCDI, the anisotropy in varying degree of CT mixing. Even total neglect of CT states
the (102 plane is not known. We use an estimateeQE would give a satisfactory fit with a Frenkel transfer integral
=0.962 eV)=4.66 based on long and medium axis molecu-of 70 meV. Such a value corresponds to the three-
lar polarizabilities of the PTCDA molecuie’® and the dif- dimensional Frenkel exciton model for PTCDA in Ref. 27
ferent relative orientations of MePTCDI. For such relatively with a nearest-neighbor hopping of 82 meV.

large values of the low energy dielectric constant, the precise For MePTCDI, a fitting result is shown in Fig. . The
number does not affect the results. parameters ard=46 meV, D=240 meV, =115 meV,

The eigenstatei of the Holsiein model are determined by Eu=2.13 eV. As for PTCDA, the obtained parameter
the parameterdw, J=J-fiw, g, Eqo for the Frenkel part and set represents a strong mixing of Frenkel and CT excitons.
Je: On, D=D-hw, t.=te-how, tp=t,-heo for the Since the spectrum of MePTCDI shows a more pronounced
Frenkel-CT mixing. We assume that the intramolecular vi-peak structure, there is not as much freedom in choosing the
brational quanturk w and its couplingg to the intramolecu- parameters. In particular, only the inclusion of the CT states
lar excitation are not affected by the surrounding crystal angan reproduce the typical shape with four pronounced peaks.
can be derived from the absorption spectrum of isolated molin contrast to the fit for PTCDA, in MePTCDI the molecular
ecules in solution. A fit of the solution spectrum of vibron model shows visible differences compared the large
MePTCDI in CHC} (Ref. 25 to a simple vibronic progres- phonon basis. Nevertheless, it captures the situation accu-
sion (with freely adjustable Gaussian broadeninggves rately enough regarding the overall uncertainty of the inter-
ho=0.17 eV andg=0.88. We use the same values for pretation.

PTCDA, since the absorption spectrum of PTCDA in
CH,CI, from Ref. 79 is identical within graphical accuracy VI. DISCUSSION
apart from an absolute energy shift of 23 meV. For the elec-

tron and hole coupling parameters we ugee g, =g/+2 as . In this article, we modeled absorption spectra and dielec-
in Sec. IV. Furthermore, we use only one charge-transfeF'C resp_onses_of molecula_r crystals in the simplest context of
integral t=t,=t,,, since the electronic problem &t=0 is a ong-d|men3|0nal Holstein mpdel. Qur proceqlu_re for con-
only determined by the sumy+t;,.24%>With these assump- structingk=0 ork_= 7 states with a}tanored basis is general

tions, four unknown empirical parameters remain in the H0|_and also apprpprlate for models with more coupled modeg or
stein model ak=0:J, ~E00, B. andt. This freedom in the more electronic states. However, the computational effort in-

o . - creases dramatically in particular with the number of modes.
parameter space IS still too large to obtain Qefmlte Value%ractically, only the regime of weak up to intermediate elec-
from the absorp.thn spectra alone_. We determ!ned parametgs, ;. coupling can be calculated at sufficient accuracy. For
sets by global fitting procedureg in order to find some rel'strong electronic coupling, the underlying concept of a local-
evant values that are useful to dls_c_uss the absorptlon specttg, phonon cloud becomes inappropriate.

For PTCDA, a representative f|tt|ng result_ is shown as_the We used this approach to model absorption spectra of two
model spectrum in Fig. (@) in comparison with the exper- closely related molecular crystalMePTCDI and PTCDA
mental spectrum. The parameters ale-42 meV, D At the present stage, the comparison between models and
=97 meV,t=85 meV, andEy,=2.23 eV. This parameter experimental data still involves serious compromises. The
set corresponds to a strong mixing of Frenkel and CT excimodel neglects or approximates several effects whose influ-
tons as can be seen from the FE and CT contributions showence is not accurately knowfi) three-dimensional Frenkel
in panels(c) and (d). The « spectrum follows roughly the exciton hopping(ii) coupling to several vibrational modes,
absorption index in panel(b). The characteristic difference and (iii) mixing of higher electronic states. In spite of these
between the absorptionyj spectrum in 1a) and the distri-  simplifications, the model still contains too many parameters
bution of the spectral weight in(8) is entirely caused by the to derive unique values alone from the optical absorption
spectral shape of the refractive indgxvhich becomes small spectra. Our present parameters are meant to illustrate spec-
at energies above the major absorption region. The phonainoscopic applications of Holstein models to actual materials,
basis for the model spectrum was chosen as in the calculdut their precise magnitudes remain to be found.
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We used microscopic arguments to derive the excitonRef. 24. The overall outcome is a significant Frenkel-CT
phonon coupling constangsge,_ghfrom solution spectra of mixing with, e.g., J=200 meV, D=120 meV, and (.
|solgted mqlecules. The inclusion of charge-transfer states $,)/2=90 meV for MePTCDI.
motivated (i) by the strong and nearly isotropic electro-

) . . : In Ref. 27, a three-dimensional Frenkel-exciton Hamil-
absorption response of PTCD@&s in the interpretation of

.. e tonian within the molecular vibron approximation and a di-
Ref. 24, (ii) by the polarization dependence of MePTCDI electric function model were used for modeling optical con-

spectré” and(iii) by the detailed structure of the MePTCDI stants of PTCDA. The resulting nearest-neighbor Frenkel
spectrum, which demands extensions of the pure Frenkel ex- . for | | i—82 V. Polarizati .
citon Hamiltonian from Eq(1). As a guiding principle, we exciton transfer integral 19= meV. Polarization ratios

tried to explain two related compounds within the samed"d Pavydov splittings of PTCDA were explained by the

scheme. This favors our present choice with similar excitorfii'¢&-dimensional Frenkel interactions, which are beyond
hopping integrals for PTCDA and MePTCDI. In addition, we our present study. The proposed valueJadgrees with our
concentrated on low-temperature absorption spectra. Thegeodel for PTCDA if we would neglect CT statésee Sec.
show some structure even for the broad high-energy absorbl)-
tion band of PTCDA (2.3 2.9 eV). In our present study, the changes of the absorption spectra
The differences between the scenario presented here a#d the solid state compared to the much narrower solution
other recent interpretations results from the inclusion of dif-SPectra are mainly caused by the dielectric function model,
ferent aspects. In Ref. 24, a comprehensive picture was givedy the mixing with CT states and—to a smaller degree—by
for absorption, emission, and electroabsorption of PTCDAthe positive Frenkel hopping integral. All three effects dis-
The underlying model Hamiltonian was identical with our tribute spectral weight in the absorption spectrum to a higher
present ondEq. (46)] but thek=0 states were calculated €nergy region. The Frenkel-CT mixing and the inclusion of
within a dimer approximation. Furthermore, the absorptionseparated exuton-phonqn configurations explain the ten-
spectrum was approximated in the dilute limit without usingdency towards spectra with more features spread over a wide

a dielectric function. The obtained key parameters in Ref. 2#nergy range. The scenario of Frenkel-CT mixing corre-
are3=180 meV,D=22 meV, and {,+1,)/2=89 meV sponds roughly to Refs. 24, 25, or 26. We emphasize that the
il H e .

~ . . Frenkel-CT mixing in our study is only manifested in the
The larger value o mainly results from the assignment of yqi4iled structure of the MePTCDI spectrum.

the strongly redshifted emission spectrum. Furthermore, the - 5p,iqsly, the exact situation and reliable parameter val-
mcluspn of.the dielectric functlon would red!strlbute SPEC- yes can only be obtained if all relevant effects are included in
tral weight in the absorption spectrum to higher energies, o model: separated exciton-phonon configurations, three-
This solid state effect is not included in Ref. 24 and thus iSgimensjonal interactions, the possibility of Frenkel-CT mix-
compensated by a larger value &f The general picture of ing, a dielectric model and mixing with higher states. In
strong Frenkel-CT mixing caused by a Frenkel-CT separaorder to determine the multitude of arising parameters, a
tion D in the same order as the charge-transfer integrals broad set of experimental information has to be obtained and
corresponds to our present study. critically used.

In Ref. 25, a model was used that considered Frenkel-CT The major goal of this article was to investigate the struc-
mixing as in our present study and some extensions foture of phonon clouds for molecular crystals of current inter-
three-dimensional crystals. The effect of the dielectric func-est, in which the exciton-phonon coupling constant typically
tion was approximately included by the way of extracting theis in the order of 1. We illustrated that the molecular vibron
transition dipoles from the spectra. However, the Hamil-model[Eq. (26)] with joint exciton-phonon configurations is
tonian was explicitly constructed within the molecular vibron justified only forg~1 andJ<1. This regime is approxi-
model and the vibronic replicas of the CT states were nemately realized in our interpretation of PTCDA and
glected. The obtained key parameters for MePTCDI re MePTCDI spectra{~0.27). For larger values df, the ef-
~110 meV,D=-80 meV, and{,+1,)/2=50 meV. Be- fepts of delocalized phonon clouds become signifiqaee
cause of the severe simplifications, the overall shape of thE!9S: 3 and 4 fod=0.5). Such larger values are also used

d th - | hiv d or PTCDA in the literature, and they are of interest for many
spectra and the CT positidd were only very roughly de-  iper anpjications. In these cases, an extended phonon cloud

scribed. The emphasis in Ref. 25 lay on the observed polag,gig should be used for the calculation of the vibronic states.
ization ratios and Davydov splittings. Both effects are still

beyond the presently studied Hamiltonian. The mixing of
Frenkel and CT states, which was supported by the polariza-
tion ratios, agrees qualitatively with the present study. We thank V. M. Agranovich and E. Tsiper for stimulating
In Ref. 26, a three-dimensional crystal model with Fren-discussions on the local field method and dielectric proper-
kel and several CT excitons is used for absorption and eledies. We are grateful to J. Boador providing data from Ref.
troabsorption spectra of PTCDA and MePTCDI. The mo-53 in electronic form. We gratefully acknowledge partial
lecular vibron model was used as in Ref. 25 and thesupport from the National Science Foundation through the
absorption spectrum was calculated for the dilute limit as ilMRSEC program under Grant No. DME-9400362.
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