
PHYSICAL REVIEW B 66, 024304 ~2002!
Theory of polymer breaking under tension
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We consider the breaking of a polymer molecule which is fixed at one end and is acted upon by a force at
the other. The polymer is assumed to be a linear chain joined together by bonds which satisfy the Morse
potential. The applied force is found to modify the Morse potential so that the minimum becomes metastable.
Breaking is just the decay of this metastable bond, by causing it to go over the barrier. Increasing the force
causes the potential to become more and more distorted and eventually leads to the disappearance of the
barrier. The limiting force at which the barrier disappears isDea/2,De with a the parameters characterizing the
Morse potential. The rate of breaking is first calculated using multidimensional quantum transition state theory.
We use the harmonic approximation to account for vibrations of all the units. It includes tunneling contribu-
tions to the rate, but is valid only above a certain critical temperature. It is possible to get an analytical
expression for the rate of breaking. We have calculated the rate of breaking for a model, which mimics
polyethylene. First we calculate the rate of breaking of a single bond, without worrying about the other bonds.
Inclusion of other bonds under the harmonic approximation is found to lower this rate by at the most one order
of magnitude. Quantum effects are found to increase the rate of breaking and are significant only at tempera-
tures less than 150 K. At 300 K, the calculations predict a bond in polyethylene to have a lifetime of only
seconds at a force which is only half the limiting force. Calculations were also done using the Lennard-Jones
potential. The results for Lennard-Jones and Morse potentials were rather different, due to the different long-
range behaviors of the two potentials. A calculation including friction was carried out, at the classical level, by
assuming that each atom of the chain is coupled to its own collection of harmonic oscillators. Comparison of
the results with the simulations of Oliveira and Taylor@J. Chem. Phys.101, 10 118~1994!# showed the rate to
be two to three orders of magnitude higher. As a possible explanation of discrepancy, we consider the trans-
lational motion of the ends of the broken chains. Using a continuum approximation for the chain, we find that
in the absence of friction, the rate of the process can be limited by the rate at which the two broken ends
separate from one another and the lowering of the rate is at the most a factor of 2, for the parameters used in
the simulation~for polyethylene!. In the presence of friction, we find that the rate can be lowered by one to two
orders of magnitude, making our results to be in reasonable agreement with the simulations.

DOI: 10.1103/PhysRevB.66.024304 PACS number~s!: 47.50.1d, 36.20.Ey
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I. INTRODUCTION

We consider the breaking of a polymer subjected to
force at one of its ends, a problem that has attracted qu
bit of attention in the recent past. Doerr and Taylor1 have
analyzed a harmonic-oscillator model for the breaking. Th
assume the breaking to occur if the bond length of any p
ticular bond exceeds a critical distancexc and obtain an ex-
pression for the rate, by an analysis similar to that of Slat
theory of unimolecular reactions.2 The rate has the expecte
Arrhenius form, the activation energy equal to the ene
required to stretch the length of a bond toxc . At the simplest
level, the coupling to other bonds is not important. They a
find corrections to the rate due to the fact that the rate
breaking is calculated in the absence of actual breaking,
find that collective vibrational motion is important. To verif
this, Oliveira and Taylor3 performed an interesting molecula
dynamics simulation of the breaking process and found
collective motion of the atoms of the chain to be importa
Such simulations have the disadvantage of being rather
consuming and somewhat difficult to use to arrive at gen
conclusions. Many a time, the events do not happen o
time scale that is accessible to such simulations. Thus
iveira and Taylor3 were not able to do direct simulation o
polyethylene at room temperature, but had to extrapo
0163-1829/2002/66~2!/024304~13!/$20.00 66 0243
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from the data at higher temperatures. Further, such sim
tions are constrained in that one is able to use only class
mechanics. From Doerr and Taylor1 and Oliveira and
Taylor,3 it is found that vibrations of neighboring bonds pla
an important role in determining the rate of breaking—th
may force the atoms to come back and heal the bond. N
holm et al.4 studied the dynamics of a one-dimensional mo
atomic chain under tensile stress using molecular dynam
They too found that chain healing in the simulated moti
causes a significant deviation from the rates calculated u
Rice, Ramsperger, Kassel, and Marcus~RRKM! theory.

In the following, we use multidimensional quantum tra
sition state theory~QTST! to derive expressions for the rat
of breaking of a long polymer molecule subject to a forc
The analysis is straightforward and allows one to draw c
clusions with a minimum amount of labor. It is to be note
that the multidimensional version of transition state theo
that we use is very powerful and is capable of reproduc
results that are obtained from the Fokker-Planck equatio5

The multidimensional QTST works in terms of norm
modes, appropriate for motion in the vicinity of the sadd
point. Hence, within the limits of the harmonic approxim
tion, it automatically accounts for these effects. We rep
results for both classical and quantum versions of the tra
tion state theory~TST!. To compare with the simulations, w
©2002 The American Physical Society04-1
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extend our calculations to include friction and do a class
multidimensional TST calculation. On comparing the resu
with those of Oliveira and Taylor,3 we find the TST results to
be larger by orders of magnitude. To understand this disc
ancy, we go beyond TST and consider the dynamics of se
ration of the two broken ends, after the polymer has b
broken. Using a continuum approximation, we find the r
at which the two ends separate.6 Doerr and Taylor1 and Ol-
iveira and Taylor3 made use of the Lennard-Jones~LJ! po-
tential to represent the potential energy of a bond as a fu
tion of its length. In the following, we make use of the Mor
potential as well as the LJ potential for the calculations
somewhat similar investigation already exists in t
literature.7 However, these authors did not calculate the r
and their investigation was much less detailed. A related
vestigation is that of Oliveira8 who used a one-particle mode
and transition state theory for the dissociation.

We now give an outline of the paper. In Sec. II, we give
very brief description of the multidimensional version of t
transition state theory that we use. The version that we us
quite powerful and is valid provided the temperature
greater than a critical temperature. This is followed in S
III by a discussion of the model that we study. Section
gives the simplest model that one could adopt, viz., the
of breaking calculated assuming that the dynamics of o
one bond is important. Section V gives the details of
normal-mode analysis that we perform for the initial a
transition states. These are used to derive an expressio
the rate in Sec. VI A. The results are presented for the c
where there is no friction acting on the atoms of the cha
As the simulations are performed in the presence of fricti
we present results also for this case, without giving deta
derivations, as they are similar to the case with friction. It
found that the results are not in agreement with the sim
tions. In Sec. VII A, we outline our procedure for going b
yond the transition state theory, by taking into account
breaking process and the possibility of the healing of
broken bonds. We keep our discussions on this at a clas
level, because~i! the simulations have been done at the cl
sical level,~ii ! quantum effects are not important unless t
temperature is very low, and~iii ! quantum effects have bee
analyzed in an interesting paper by Levitovet al.9 who de-
veloped the ideas of Dyakonov.10

II. MULTIDIMENSIONAL TRANSITION STATE
THEORY—A BRIEF OVERVIEW

QTST provides a simple approach to the calculation of
rate of a reaction. We make use of a multidimensional v
sion that has been applied successfully to calculate the ra
a variety of problems.5,11,12It works under the harmonic ap
proximation for all the vibrations and the reaction coor
nate, and has the advantage of havingtunneling contribu-
tions included in the rate. Small amplitude motion in the
vicinity of the saddle point will have one unstable directio
and the angular frequency associated with it shall be den
asV. The QTST expression for the rate is13

R5
V

4psin~b\V/2!

Q‡

Q
e2bEa, ~1!
02430
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where Ea is the activation energy of the reaction andb
51/(kBT). Q‡ denotes the partition function for the trans
tion state, with only the stable modes included.Q is the
partition function for the initial state.V/4psin(b\V/2) arises
from the unstable mode. This expression includes tunne
too and is valid only if the temperatureT is greater thanTc
5\V/(2kBp) @see Eq.~3.7! of Nikitin13#. Under the har-
monic approximation for all the modes, the rate is

R5
V

2psinS b\V

2 D
)

j
sinhS b\v j

2 D
)

j

‡

sinhS b\v j
‡

2 D e2bEa, ~2!

wherev j is the frequency of thej th mode for the initial state
and v j

‡ is the corresponding frequency for the transiti
state. In the above equation, the product for the transi
state does not include the unstable mode and this is indic
by the superscript ‡ on the product. In the limitb\v j /2
,,1 one gets the classical result

Rclass5
1

2p

)
j

v j

)
j

‡

v j
‡

e2bEa. ~3!

III. THE MODEL

We consider a polymer molecule having one end fix
and a force acting on the other end, as shown in Fig. 1.
der Vegteet al.14 have used a magnetic levitation force m
croscope to study the breaking at the point of attachmen
such a system~as this bond was the weakest!. Our analysis,
however, is for breaking in the bulk of the chain and not
the end. We imagine the polymer to be a chain of units
massm joined together by bonds obeying the Morse pote
tial. Thus, denoting the position of thenth atom asun and
taking the number of bonds to beN, we can write the poten-
tial energy of the system to be

Vtotal5 (
n51

N

VM~un2un212b!2FuN . ~4!

We takeu0 to be equal to zero. In the above, the Mor
potentialVM is defined byVM(y)5De(12e2ay)2. De anda
are parameters characterizing the Morse potential. The fo
acting on the last atom isF and it causes the termFuN .
From the variablesun , it is convenient to change over to
new set of variablesyn5un2un212b, with the distortion of
the nth bond from its equilibrium lengthb. Then we can
write

Vtotal5 (
n51

N

V~yn!2NbF ~5!

with the modified potential for each bond,V(y), defined by

V~y!5De~12e2ay!22Fy. ~6!
4-2
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THEORY OF POLYMER BREAKING . . . PHYSICAL REVIEW B66, 024304 ~2002!
The last term in Eq.~6! is of no consequence and shall b
neglected. Thus we see that the effect of an externally
plied force at one end is just to change the potential of e
bond from the Morse potential to this new modified Mor
potential. To understand the form of this potential, we g
plots of its functional form for different values of the dime
sionless forceF152F/(Dea) in Fig. 2. The figure shows
that for any nonzero value for the forceF1, the potential has
two extrema, one being a minimum and the other a ma
mum. The values ofy for the two are y651/aln@2/1
6A12F1#. Note that the above definition impliesy1

,y2 . For any 0,F1,1, each bond is metastable~see Fig.
2!. It can go over the barrier if it gets a certain activati
energy, resulting in the breaking of the bond and con
quently of the polymer. The activation energy for this pr
cess is

FIG. 1. The model investigated in the paper consists ofN units
each of massm, joined together by bonds obeying the Mor
~Lennard-Jones! potential. It is fixed at one end and is acted up
by a forceF at the other end.
02430
p-
h

i-

-
-

Ea5V~y2!2V~y1!

5DeFA12F11
F1

2
lnH 12A12F1

11A12F1
J G . ~7!

As one increasesF1 the values ofy1 and y2 get closer.
Also, there is lowering of the barrier for dissociation. F
F151,y15y2 and activation energy is zero. This limitin
force isF5Dea/2.

IV. THE SINGLE BOND BREAKING RATE

The simplest approach to the calculation of the rate wo
be the following: We consider the vibrational motion of ju
one bond that may break and neglect coupling to the res
the system. This kind of approach, but with coupling to t
rest included as friction, was considered by Oliveira.3 We do
not include the coupling to the rest of the system in t
section. As the motion involves stretching of the bond b
tween two units, each unit having a massm, the reduced
mass for the vibrational motion ism/2. The potential energy
for vibration in the neighborhood of the minimum of th
potential is 1

2 V9(y1)(y2y1)2 where V9(y1)
5Dea

2(A12F1112F1). So the frequency of vibration o
the diatomic molecule is vs5aA2De /m(A12F111
2F1)1/2. In a similar manner, the frequency of the unstab
mode isVs5aA2De /m (A12F1211F1)1/2. Using these
frequencies and the version of QTST in Sec. II, we get
rate to be

Rs5

VssinhS \bvs

2 D
2psinS \bVs

2 D e2bEa. ~8!

V. THE NORMAL-MODE ANALYSIS

A. The eigenvalue problem

We now proceed to make a multidimensional calculat
of the rate. This requires a normal-mode analysis of vib
tions of the chain around the equilibrium position as well

FIG. 2. Shapes of the modified Morse potential plotted aga
ay, for different values ofF152F/(Dea).
4-3
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ROSABELLA K. PUTHUR AND K. L. SEBASTIAN PHYSICAL REVIEW B66, 024304 ~2002!
around the saddle point. In the following, we calculate t
for the transition state. The calculations are similar and s
pler for vibrations around the equilibrium position. The eq
librium state has aVtotal minimum and this is obtained b
having allyi5y1 . There areN saddle points whereVtotal is
an extremum, corresponding to the breaking of each of thN
bonds. At a given saddle point, one of the bonds is stretc
~the one that breaks!; the bond length isy2 which corre-
sponds to the maximum of the potentialV(y). All the other
bonds have an equilibrium bond length equal toy1 , which
is the minimum of the potentialV(y). On crossing each
saddle point, breaking would occur. There are other extre
too, but they all occur at higher activation energies. To a
lyze the motion around a saddle point, we denote the
placement of thej th atom from its equilibrium position byj j
and take the bond between the atom numbersn andn11 to
be the one that will break. Then, for small amplitude vib
tions around the saddle point, we have the Hamiltonian

H5(
j

pj
2

2m
1

1

2

3S (
j 51Þn11

N

mv1
2 ~j j2j j 21!22mv2

2 ~jn112jn!2D .

~9!

The quantitiesv1 and v2 are defined by the equatio
mv6

2 56V9(y6) and are given by

v6
2 5

Dea
2

m
~A12F16~12F1!!. ~10!

The angular frequencies of the normal modes are the ei
values of the matrix

D N
‡ 5v1

2 F Dn21 2Ut

2U 12g g

g 12g 2W

2Wt DN2n21

G , ~11!

whereU5@00 . . . 1#,W5@10 . . . 0#, andg5v2
2 /v1

2 . The
matrix Dn21 is (n21)3(n21) given by

Dn215F 2 21

21 2 21

21 2 21

21 2 21

. . . . . .

G . ~12!

The matrixD N
‡ would have one unstable mode, which co

responds to the crossing of the barrier and is the reac
coordinate. We shall in the following assume that the po
mer is fairly long and that it is a bond in the bulk that
broken, as this simplifies our analysis. One can analyze o
cases also, but the analysis is tedious. Further, we do
expect the rates to be very different even if it is not a bond
the bulk that is broken. The above implies thatn andN2n
02430
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are taken to be large numbers. We have to calculate the
quency of the unstable mode and the ratios of the parti
functions in Eq.~2!. These quantities are very convenient
found using the partitioning technique and Green’s matri

B. The Green’s matrix

Green’s matrix is

G0,n~v̄2!5@v̄22Dn#21. ~13!

We denote the first diagonal element of Green’s ma
G11

0,n(v̄2). Partitioning Green’s matrix as in the followin
equation,

G0,n~v̄2!5F v̄222 W

Wt v̄22Dn21
G , ~14!

and using the formulas of Appendix A leads to the first dia
onal element of Green’s matrix to beG11

0,n(v̄2)5(v̄222

2G11
0,n21(v̄2))21. In the limit where n is very large (n

→`), the first diagonal element of Green’s matrix has to
independent ofn. That is,G11

0,n(v̄2)'G11
0,n21(v̄2) . We shall

then omit the superscriptsn andn21, and we get the resul

G11
0 ~v̄2!5~v̄2222G11

0 ~v̄2!!21. ~15!

This equation may be solved to get the matrix elem
G11

0 (v̄2). Using the condition thatG11
0 (v̄2)→0 as v̄2→

6` leads to

G11
0 ~v̄2!5

1

2
~v̄2221Av̄424v̄2! if v̄2,0

5
1

2
~v̄2221 iA4v̄22v̄4! if 0 ,v̄2,4

5
1

2
~v̄2222Av̄424v̄2! if v̄2.4.

~16!

In determining the matrix element for 0,v̄2,4, we have
assumedv̄2 to have a small negative imaginary part.

C. The frequency of the unstable mode

The frequencies of the modes are determined by the
terminential equationuv22D N

‡ u50. Denotingv̄25v2/v1
2 ,

this equation may be written asuv̄22DN
‡ u50, with DN

‡

5D N
‡ /v1

2 . Using the partitioning technique, we get
4-4
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uv̄22DN
‡ u5uv̄22Dn21uuv̄22DN2n21u

3detF v̄2211g2G11
0,n21~v̄2!

2g

3
2g

v̄2211g2G11
0,N2n21~v̄2!

G50. ~17!

The unstable mode can be found by puttingv̄252V̄2, with
v̄ real, replacing the matrix elements of Green’s matrix

the above equation withG11
0 (2V̄2), and using Eq.~16! for
on

02430
G11
0 (v̄2). This givesV̄52g/A112g, which leads to

V5v1V̄5
2v2

2

Av1
2 12v2

2
. ~18!

VI. TRANSITION STATE THEORY

A. The rate

We now proceed to the calculation of the rate of break
using Eq.~2!. Under the harmonic approximation, the ra
given by this equation can be calculated exactly. Using in
nite product expansions for sin(x) and sinh(x), we can write
the rate given by Eq.~2! as
R5
V

2p
e2bEa

)
j

Fb\v j

2 )
l 51

` H 11S b\v j

2lp D 2J G
S b\V

2 D)
l 51

` H 12S b\V

2lp D 2J)
k

‡ Fb\vk
‡

2 )
l 51

` H 11S b\vk
‡

2lp D 2J G . ~19!
the
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Puttingz5b\v1 /(2p), and definingpl by

pl5

)
j

~ l 21~zv j /v1!2!

)
j

~ l 21~zv j
‡/v1!2!

, ~20!

we get

R5
V

2p S Aup0u)
l 50

`

pl D e2bEa. ~21!

We can write the classical expression for the rate~letting \
→0) as

Rclass5
V

2p
Aup0ue2bEa, ~22!

wherep0 is found in Appendix B@see Eq.~B6!#. This gives

Rclass5
1

2p

2v1v2

Av1
2 12v2

2
e2bEa. ~23!

The fully quantum-mechanical rate may be written as

R5kRclass, ~24!

where

k5
A2g21sinh~zA3p!

A3sin~zA2g21p!
k1 . ~25!

~see Appendix B for the definition ofk1). We refer tok as
the quantum correction factor. Having obtained the rate,
can also calculate the lifetime of a bond ast5(1/R). We can
e

now use the above expressions to calculate the rate of
dissociation of a bond of a polyethylene molecule that
subject to stress. For the calculations, following Oliveira a
Taylor,3 we take the value ofDe to be 360 kJ/mole andm as
the mass of the CH2 unit. For the Morse potential, the forc
constant for small amplitude vibrations near the minimum
2Dea

2. Following Oliveira and Taylor,3 we take this to be
280 N/m, and use this to fix the value of the Morse parame
a. We give in Fig. 3 a plot of the logarithm of the lifetime o
the bond against the applied force for several temperatu
The limiting force at which the barrier disappears is found
be 4.574 nN. Increasing the temperature by 50 K, keep
the force fixed, would typically increase the rate by two o
ders of magnitude. The lifetimes calculated using the sin
bond breaking formula in Eq.~8! are compared with the
results of multidimensional transition state theory in Fig.

FIG. 3. Plot of logarithm of~lifetime/s! against the applied
force, for polyethylene at different temperatures, using the Mo
potential and transition state theory. Note thatF15F/(Dea/2) and
for polyethylene, the limiting force isDea/254.57431029 N.
4-5



th
ac

s,
a

th
p

fo

he
i-
ex
e
L

of
hes
ch
s to
the
ig-
he
re
i-
t of
itov
n-
han
, is
n-
ne
han
ter
ion
all

e
ies
the

is
sult-
to
one

have
mer

of

ms
ise
one

Eq
I
n
s

ed
nd

ce
s

s a
ere
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for the two temperatures 100 K and 300 K. It is seen that
many-body effects lower the results by approximately a f
tor of 2. The expression for the rate is valid only ifT.Tc
5\V/(2pkB) @see the Eq.~3.36! of Nikitin13#. Putting in
the values for polyethylene, we findTc'50 K. Thus the
formula works at any temperature greater than this, andfor
all values of the force. If the temperature drops below thi
Eq. ~25! would break down. In this region, the formula has
divergence due to the vanishing of the sine function in
denominator. Figure 5 compares the result for the Morse
tential and the LJ potential~with the parameters« and aLJ
chosen so as to reproduce the dissociation energy and
constant of the bond, see Appendix C!. The LJ potential
leads to a smaller limiting force, equal to 4.101 nN. T
lifetime is also smaller, typically by a few orders of magn
tude. This means that if one fits the potential using the
perimental values of the force constant and dissociation
ergy to determine the parameters, then Morse and

FIG. 4. The figure compares the lifetimes calculated using
~8! and the result of multidimensional transition state theory.
shows that at high temperatures, a rough estimate of the rate ca
obtained by a simple approximation that considers the dynamic
only the bond that breaks.

FIG. 5. Plot of logarithm of the lifetime/s against the appli
force, for polyethylene at 100 K and 300 K, using Morse a
Lennard-Jones potentials~see Appendix C!. The limiting forces are
different for the two potentials. For polyethylene, the limiting for
is 4.57431029 N if one used the Morse potential while it i
4.10131029 N with the LJ potential.
02430
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potentials lead to rather different estimates of the rate
breaking. The reason for this is that the LJ potential vanis
rather slowly in comparison with the Morse potential, whi
does so exponentially. Consequently, the LJ potential lead
rather longer bond lengths for the breaking bond, making
activation energies very different for the two potentials. F
ure 6 gives a plot of the quantum correction factor for t
rate for a range of temperatures. At very low temperatu
(,50 K for polyethylene!, one expects the rate to be dom
nated by quantum tunnelling, and to become independen
the temperature. One has to use the approach of Lev
et al.9 in this regime. In the region investigated by us, qua
tum transition state theory always leads to higher rates t
classical transition state theory. The correction, however
important only if the temperature is less than 150 K. A ge
eral conclusion from the calculations is that for polyethyle
at normal temperatures, if the force is somewhat greater t
half the limiting force, then the bond would break in a mat
of seconds. On examining Fig. 3 it is seen that the variat
of the lifetime is exponential and that in a somewhat sm
range of forces, the lifetime varies rapidly from 105 s to
1025 s. This high sensitivity is a result of the shift of th
length of the breaking bond at the saddle point, which var
rapidly as one changes the applied force. In comparison,
equilibrium bond length varies slowly with the force. Th
leads to a rather large change in the activation energy, re
ing in the sharp variation of the lifetime with force. It has
be remembered that these results are for the lifetime of
bond. The polymer has a large number~N! of such bonds. All
these bonds, except the ones near the two ends, would
the same rate of breaking and therefore the rate of poly
breaking would be equal toN times the rate calculated from
Eq. ~24!.

B. Classical TST in presence of friction

As the simulations of Oliveira and Taylor3 included fric-
tion, we now include the effect of friction on the dynamics
barrier crossing. For this, we follow the procedure,15 used for
the study of barrier crossing and other dynamical proble
in the presence of friction. As in the simulations, the no
acting on each atom is assumed to be independent of

.
t
be

of

FIG. 6. Plot of the quantum correction factor for the rate a
function of the force, for different temperatures. Calculations w
done using the Morse potential.
4-6
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THEORY OF POLYMER BREAKING . . . PHYSICAL REVIEW B66, 024304 ~2002!
another, and we imagine that each unit of the polyme
coupled linearly with a set of harmonic oscillators~each unit
has its own set of oscillators!. Thus for the transition state
instead of the Hamiltonian in Eq.~9!, we need to consider

H5(
j

pj
2

2m
1

1

2 (
j 51Þn

N

mv1
2 ~j j2j j 21!2

2
1

2
mv2

2 ~jn112jn!21(
i 51

N

(
j 51

N pj a
2

2mj a j

1
1

2 (
a51

N

(
j 51

N

mj av j a
2 S xj a2

cj a

mj av j a
2

j j D 2

. ~26!

In the above,j a denotes a harmonic oscillator having a p
sition xj a and momentumpj a , coupled to thej th normal
mode of the polymer. It has a frequencyv j a and massmj a .
cj a determines the coupling of the oscillatorj a to the j th
mode. The above Hamiltonian can be analyzed just as ea
In order to have ohmic friction, it is enough to takeJj (v)
5p/2(a51

N (cj a
2 /mj av j a)d(v2v j a)5mgv. Now, using

the partitioning technique, one can eliminate all the osci
tors from the problem and this leads to a matrix identi
to the one in Eq.~11!, except that thej th diagonal elemen
is now given by v222v1

2 2(a51
N (cj a

2 /mmj a)(@1/v j a
2 #

1@1/v22v j a
2 #). Proceeding as before, we fin

the unstable mode to have the frequencyV
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5A2v2
2 1v1

2 A16v2
4 12g2v2

2 1g2v1
2 2g ( 2v2

2 1 v1
2 ) / 2

(2v2
2 1v1

2 ). Further, we find thatp052v1
2 /v2

2 , so that
the rate in the presence of friction is

FIG. 7. Plot of logarithm of the lifetime against the strain for th
Lennard-Jones potential for transition state theory without frict
~dotted line!, transition state theory with friction~dashed line!, and
simulations of Oliveira and Taylor~Ref. 3! ~full line!. The results
are reported in terms of units in which the length of the LJ bond~in
the absence of external force! is taken as the unit of length, th
depth of the LJ potential as the unit of energy, and the time for
oscillation ~under the harmonic approximation! of CH2 in this po-
tential as the unit of time. The unit of time is 2pAma2/72e
55.72477310214 sec.
Rclass
f rict 5

v1~A2v2
2 1v1

2 A16v2
4 12g2v2

2 1g2v1
2 2g~2v2

2 1v1
2 !!

4pv2~2v2
2 1v1

2 !
e2bEa.
to
this
y

d
n
nds
is
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ds

nds
po-
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Figure 7 shows a plot of a logarithm of the lifetime for on
bond calculated with the above theories, as a function of
amount strain~s!, and compares them with the results
Taylor and Oliveira.3 The results are reported in terms
units in which the length of the LJ bond~in the absence o
external force! is taken as the unit of length the depth of t
LJ potential as the unit of energy, and the time for one
cillation ~under the harmonic approximation! of CH2 in this
potential as the unit of time. The unit of time
2pAma2/72e55.72477310214 sec. Their simulations cor
respond to a temperature of 2167 K, which is a very h
temperature, so high that the polymer would degrade im
diately at this temperature, as is obvious from the lifetim
that they find, which is of the order of nanoseconds.
comparing results of such calculations with the simulati
we find that the results of simple multidimensional transiti
state theory are roughly 500 times too small. With fricti
included, this difference reduces from 500 to roughly 2
and these results are not in agreement with the simulati
We now analyze the reason for this. Our analysis is a
classical level. It is tough to do this for the quantum proble
~of importance at very low temperatures! on which there ex-
ists an interesting paper by Levitovet al.9
e

-

h
e-
e
n
,

0
s.
a

VII. BEYOND TRANSITION STATE THEORY

A. Rate of separation of the broken ends

The breaking of the polymer requires activation energy
be possessed by a bond to dissociate, the probability of
beinge2bEa. If thermal fluctuations give the bond the energ
Ea , then it can dissociate, with a frequencyV/(2p)Aup0u
@see Eq.~22!#. The time of crossing the barrier istcross

51/„V/(2p)Aup0u…. However, even if crossing has occurre
~i.e., the bond is broken!, it is not necessary that the reactio
should occur. Once the crossing has occurred, the two e
have to separate by a minimum distance, within which it
possible for the broken ends to come back and heal the b
We now calculate the time required for the two broken en
to separate by this minimum distance. The two broken e
separate from one another by translational motion. The
tential energy of the system decreases as a function of
separation of the two ends and since the bond is alre
broken, this decrease is mostly due to the externally app
force. This is obviously linearly dependent on the separat
Denoting the minimum distance asdc , we find the average
time required to move apart by this distance. The class
Hamiltonian describing the motion is
4-7
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H5
1

2 (
j 51

N

mj̇ j
21

1

2 (
j 51Þ(n11)

N

3mv1
2 ~j j2j j 21!22a~jn112jn!. ~27!

In the above,a is the slope of the potential-energy curve,
the region where the potential is linear in distance of se
ration @i.e., linear in (b1jn112jn)#. On looking at the
equations of motion, one realizes that they separate into
uncoupled parts, one for each broken part. It is enough
analyze only one of them, as the behavior of the othe
identical~provided both the chains are long!. So we consider
the part of the Hamiltonian corresponding toj >n. Renum-
bering the atoms (n11,n12, . . . ) as (0,1,2. . . ), andtak-
ing the chain to be very long (N→`), we can write the
Hamiltonian as

Hbroken5
1

2 (
j 50

`

mj̇ j
21

1

2 (
j 51

`

mv1
2 ~j j2j j 21!22aj0 .

~28!

The problem now is to calculate the time that it takesj0 to
exceed the valuejc given that its initial value was zero, an
that the chain is at a temperatureT. Obviously, as both the
ends are executing translational motion, the distance
each one has to cover would bejc5dc/2. The time should be
determined mainly by the long-wavelength modes of
chain. To describe these modes, one can use a contin
approximation to the above Hamiltonian. The continuu
version has the advantage that one can obtain analytica
sults. The Hamiltonian is Hbroken5

1
2 r*0

`dxj t(x,t)2

1 1
2 T*0

`dxjx(x,t)22aj(0,t). r is the density of the chain
per unit length (5m/b1 ,b1 being the length of a stretche
bond, at its equilibrium position! andT5mb1v1

2 is the ten-
sion in the chain. The speed of sound in the chain is given
c5AT/r. We imagine thatj(0,t)50 until t50, with the rest
of the chain at thermal equilibrium, appropriate to a tempe
tureT. Up to this time, the last term inHbroken is not present
in the Hamiltonian. Att50, the chain is broken, and the la
term is now present, and it represents the fact that the c
can lower its potential energy by moving its end. Writing t
equation of motion for the string gives the forced wave eq
tion

rj tt~x,t !5Tjxx~x,t !1ad~x!. ~29!

To solve the above equation, we use transform techniq
We first define the Fourier cosine transform ofj(x,t) by
j̄(w,t)5*0

`dxj(x,t)cos(wx). The Fourier cosine transform
of Eq. ~29! gives

rj̄ tt~w,t !1Tw2j̄~w,t !5a2Tjx~0,t !. ~30!

Once the chain is broken, the end of the chain is not un
strain and hence we put (]j(x,t)/]x)x5050. Now we intro-
duce the Laplace transform ofj̄(w,t) by J̄(w,s)
5*0

`dtj̄(v,t)e2st. This obeys the equation
02430
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~rs21Tw2!J̄~w,s!5
a

s
1rj̄ t~w,0!1rsj̄~w,0!, ~31!

where j̄ t(w,0)5*0
`dxj t(x,0)cos(wx). Solving for J̄(w,s)

and taking the inverse transforms leads to

j~x,t !5L 21F 2

pE0

`

dw cos~wx!
1

~rs21Tw2!

3S a

s
1rj̄ t~w,0!1srj̄~w,0! D G , ~32!

whereL 21 stands for the Laplace inverse. As we are int
ested only in the motion of the end of the chain, we pux
50 in the above to get

j~0,t !5
a

ATr
t1z~ t ! ~33!

with

z~ t !5z1~ t !1z2~ t !. ~34!

Here

z1~ t !5
2

pE0

`

dwj̄~w,0!L 21
rs

~rs21Tw2!

5
2

pE0

`

dwj̄~w,0!cos~cvt !5j~x,0!x5ct ~35!

and

z2~ t !5
2

pE0

`

dwj̄ t~w,0!L 21
r

~rs21Tw2!

5
2

pE0

`

dwj̄ t~w,0!
sin~cwt!

cw
. ~36!

Equation~33! shows that the broken end of the chain und
goes translational motion with a uniform velocityv
5a/ATr. In addition, it undergoes diffusive motion, due
thermal fluctuations which is represented by the termz(t). In
Appendix D, we calculate the correlation function for th
and show that

^z~ t !z~ t1!&5
2kBT

rc
min~ t,t1!. ~37!

The above correlation function is just that for Brownian m
tion, with a diffusion coefficientD5kBT/rc. Thus the mo-
tion of the end of the chain is the same as that of a Brown
particle of mass unity, drifting with a velocityv in the posi-
tive direction, having the diffusion coefficientD.

B. The first passage time

In our problem we need the average time that suc
Brownian particle spends in a region withj,jc before go-
ing out for the first time from this region. It is given that
4-8
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starts atj50, drifts in the positive direction with a velocity
v towards the pointjc(.0), and it also undergoes diffusiv
motion. This is essentially a first passage problem and m
be solved by finding the probability densityP(j,t) for the
particle to be atj at the timet, given that it was atj50 at
the timet50. P(j,t) obeys the diffusion equation

Pt~j,t !5DPjj~j,t !2vPj~j,t !. ~38!

This has to be solved subject to the condition thatP(jc ,t)
50. Then, one has to calculate the survival probability

Psurv~ t !5E
2`

jc
djP~j,t ! ~39!

from which the average time that it spends in the region m
be obtained as

^t&5E
0

`

dtPsurv~ t !. ~40!

To solve Eq.~38! we use Laplace transform techniques. W
first defineP̄(j,s)5*0

`dtP(j,t)e2st. It obeys the differen-
tial equation

sP̄~j,s!2DP̄jj~j,s!1v P̄j~j,s!5d~j!. ~41!

This equation is to be solved, subject to the condition t
P̄(jc ,s)50. The solution is found to be

P̄~j,s!5

expFvj2ujuAv214Ds

2D G
Av214Ds

2

expFvj2~jc1uj2jcu!Av214Ds

2D G
Av214Ds

. ~42!

From this, we obtain the Laplace transform of the survi
probability

P̄~s!5E
2`

1`

dj P̄~j,s!

5
1

s F12expS vjc2jcAv214Ds

2D D G . ~43!

The average survival time is then^t&5 lim
s→0

P̄(s)5jc /v.

Interestingly, this is just the time that one would have e
mated neglecting the diffusive motion of the chain end. No
taking jc5dc/2 and usingv5a/ATr, we find the average
passage time of the two ends, over the distancedc , to be

^t&5dcrc/~2a!. ~44!

This result may look surprising at first, because the ti
^t& is proportional toc, the speed of sound in the chain. Th
the greater the speed of soundc ~the greater the tension in th
chain!, the greater the time required for the ends to separ
This is due to the following: Any disturbance in the cha
02430
y

y

t

l

i-
,

e

e.

propagates at the speed of soundc. So, when the end is
broken, it starts moving and in a timet, the segments within
a lengthct from the end start moving. Ifc is larger, then the
mass of the portion that is set in motion is correspondin
larger and hence the distance that the broken end trave
smaller.

Now one has the problem of choosing the value ofdc .
The simplest estimate that one can make is that the e
should be separated by a distance equal to the stable
length. Letbc represents the position corresponding to t
bond length such that energy of the final state is equal to
energy of the initial state~see Fig. 8!. We take the potentia
betweenb2 and bc to be linear, neglecting the curved po
tion near the top of the barrier. Letl 5bc2b2 . Then, the
slopea of the potential is given bya5DE/ l , which leads to
the crossing time aŝt&5 ldcrc/(2DE). Using this expres-
sion, we have estimated the time of crossing the distancdc
for the Lennard-Jones model. The calculations show tha
the small force regime, the first passage rate is consider
lower than that of the crossing rate and hence is the
determining step. The actual crossing frequency may be
tained by adding the two times and then taking its inver
The logarithm of the lifetime so obtained is plotted in Fig.
~the dotted curve!. Again, on comparison with simulations
we find that the lifetime in the simulations is about 250 tim
larger, demonstrating that friction plays an important role

C. First passage with friction

We now calculate the analysis for the motion of the ch
in the presence of friction. In the presence of friction, t
problem can no longer be described by a simple Hamilton
as in the previous section. But we can write the continu
version of their equations of motion, which is

rj tt~x,t !1rgj t~x,t !5Tjxx~x,t !1ad~x!1 f ~x,t !,
~45!

whereg is the friction coefficient, andf (x,t) is the fluctuat-
ing force, having the mean zero and the correlation

FIG. 8. The figure shows that beyond the transition state po
tial energy is approximately a linear function of bond length. Atbc

the potential energy of the bond is equal to its equilibrium valu
4-9
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^ f ~x1 ,t1! f ~x2 ,t2!&52rgkBTd~x12x2!d~ t12t2!.
~46!

This stochastic wave equation can be analyzed just as
done earlier. Following the same procedure, we get

j~x,t !5L 21F 2

pE0

`

dw cos~wx!
1

~rs21rgs1Tw2!

3S a

s
1rj̄ t~w,0!1srj̄~w,0!1F~w,s! D G .

In the above,

F~w,s!5E
0

`

dtE
0

`

dx cos~wx! f ~x,t !e2st. ~47!

As in the previous case, we are interested only in the posi
of the end of the chain, which is

j~0,t !5L 21F 2

pE0

`

dw
1

~rs21rgs1Tw2!

3S a

s
1rj̄ t~w,0!1srj̄~w,0!2rgj̄ t~v,0!

1F~w,s! D G .

All terms other than the first term on the right-hand side
random, arising from thermal fluctuations. So on calculat
the average of both the sides, we get

FIG. 9. The figure shows comparison of lifetimes against
strains, calculated with~a! the rate calculated taking into accou
healing~dotted line!, ~b! healing in the presence of friction~dashed
line!, and ~c! simulations~full line!. Results are in dimensionles
units.
02430
as

n

e
g

^j~0,t !&5L 21F 2

pE0

`

dw
a

s~rs21rgs1Tw2!
G

5L 21F a

rcsAs21gs
G

5
a

rc
te2gt/2@ I 0~gt/2!1I 1~gt/2!#.

~48!

In the above,I n(gt/2) denotes a modified Bessel function
order n.16 As was done earlier, the average survival time
given by solving the equation̂j(0,t)&5dc/2 for the timet to
find the time for traveling a distancedc/2 by one end of the
chain. This is the survival probability of the chain. This r
sult is only an approximation. Strictly speaking, we shou
write down an analog of the diffusion Eq.~38! for this prob-
lem and solve it to find the survival time. As the rando
terms in this equation are more complex than the ones in
Eq. ~38!, we have not done this. In the earlier problem w
saw that the random terms had no effect on the average
vival probability. So we neglect their influence in this pro
lem too.

Using this, we have estimated the time of crossing
distancedc in the presence of friction, as was done earlier.
Fig. 9 we compare the results~dashed line! with simulations.
We find that the lifetime from the simulations is approx
mately within about 30 times the calculated rate~the two
agree within roughly an order of magnitude!.

VIII. CONCLUSIONS

We have derived formulas and methods for the calculat
of the rate of polymer breaking and applied it to the break
of polyethylene. This includes multidimensional TST resu
at classical and quantum levels. Our version of the QTST
valid only if T.Tc(;50 K for polyethylene!. In our calcu-
lations, we fitted the potential with Morse and Lennard-Jon
potentials using the bond breaking energy and force c
stants. We found that the lifetime of the bond is very sen
tive to the potential that is used in the calculations—us
Lennard-Jones or Morse potentials lead to rather differ
answers, this being due to different behaviors of the two
longer distances. In the absence of friction, a rough estim
of the rate can be obtained by a simple approximation t
considers the dynamics of only the bond that breaks
neglects the coupling to neighboring bonds. Dynamics
neighboring bonds would decrease the rate, but usually
by more than one order of magnitude. For the breaking
polyethylene, quantum effects are important only for te
peratures below 150 K. For polyethylene the lifetim
strongly depends on the force and as the force varies o
a narrow range, the lifetime varies rapidly from 105 s to
1025 s. This extreme sensitivity of the rate on the force
due to rapid change of the location of the transition st
~saddle point! on the externally applied force. In the presen
of friction, the rate determining step for the process in m
cases is the separation of the broken ends from one ano

e

4-10



s
ai

t
o

pr

en

THEORY OF POLYMER BREAKING . . . PHYSICAL REVIEW B66, 024304 ~2002!
This is particularly true, if there is friction on the two end
from the surroundings. If this is included, then there is f
agreement of the theory with the simulations.
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APPENDIX A: PARTITIONING FORMULA

The matrix identities that we use in the text are giv
below. For any square matrix of the form@ C D

A B#, with A and
D square matrices, one has

detFA B

C DG5det A det@D2CA21B# ~A1!

and
FA B

C DG21

5F ~A2BD21C!21

2D2~2CA21B!21CA21

2A~A2BD21C!21BD21

~D2CA21B!21 G . ~A2!
n
r

to

-
sive
APPENDIX B: EXPRESSION FOR THE RATE

From the definition ofpl in Eq. ~20!,

pl5
u l 21z2DNu

u l 21z2DN
‡ u

. ~B1!

Using the same partitioning as in Eq.~11! for both numerator
and denominator gives

pl5

U l 212z22z4Xn21 2z2

2z2 l 212z22z4XN2n21
U

U l 21~12g!z22z4Xn21 gz2

gz2 l 21~12g!z22z4XN2n21
U .

~B2!

Again we use the same partitioning as in Eq.~11! for both
numerator and denominator. In the above,Xn21 is the last
diagonal element of@ l 21z2Dn21#21. In the case wheren
andN2n21 are both large, this would be independent on
and we will denote it byX. It is easily found from the rela-
tion X5( l 212z22z4X)21 that

X5
1

2z4
~ l 212z22A~ l 212z2!224z4!. ~B3!

Using this in Eq.~B2!, we get

pl5
R@ l ,21#

R@ l ,g#
~B4!

with

R@ l ,g#5@ l 21A~ l 212z2!224z422gz2#224g2z4.
~B5!

We can now find the value ofp0 by taking l→0 as a limit
and this gives

p0521/g52v1
2 /v2

2 . ~B6!

In the limit l→`, pl→ql , where
ql5S@ l ,21#/S@ l ,g#, ~B7!

with S@ l ,g#5@2l 212z2(12g)#224g2z4. The infinite prod-
uct ) l 51

` pl can be rewritten as below:

)
l 51

`

pl5)
l 51

`
R@ l ,21#

R@n,g#
5S )

l 51

`

ql D k1 ~B8!

with ql5S@ l ,21#/S@m,g#.

k15 )
m51

`
R@m,21#/S@m,21#

R@m,g#/S@m,g#

5 )
m51

` H 11
~R@m,21#2S@m,21# !

S@m,21# J
H 11

~R@m,g#2S@m,g#!

S@m,g# J . ~B9!

The infinite product) l 51
` ql can be analytically evaluated, i

terms of the gamma functionG ~see Refs. 16 and 17 fo
details! to be

)
l 51

`

ql5
A2g21sinh~zA3p!

A3sin~zA2g21p!
. ~B10!

The productk1 can be evaluated numerically and is found
be rapidly convergent.

APPENDIX C: CALCULATIONS
FOR THE LENNARD-JONES POTENTIAL

The modified potentialV(y), if one assumed a Lennard
Jones potential for the interaction between two succes
atoms, separated by a distancey, is given by

V~y!5«F S aLJ

y D 12

22S aLJ

y D 6G2Fy. ~C1!
4-11



e

x

i
il

ra

ROSABELLA K. PUTHUR AND K. L. SEBASTIAN PHYSICAL REVIEW B66, 024304 ~2002!
Just as in the case of the Morse potential, ifF.0, thenV(y)
also has a minimum (y1) and a maximum (y2) for real y
.0. These values ofy are equal toaLJx wherex satisfies the
equation

f 1x13112x650 ~C2!

with

f 15

FaLJ

12«
. ~C3!

Numerical investigation shows that the two roots coalesc
f 150.224 158 408 1. Hence the potential would cease
have a minimum if the force at the end of the polymer e
ceedsFc512«(0.224 158 408 1)/aLJ .

APPENDIX D: THE CORRELATION FUNCTIONS

From Eq.~35! in the text,z1(t)5j(x,0)x5ct . Therefore,
to evaluate the correlation function ofz1 we need that of
j(x,0). To find this, we consider the chain to be sem
infinite, with the end of the chain held fixed, and the Ham
tonian to be

H f ixed5
1

2
rE

0

`

dxj t~x,t !21
1

2
TE

0

`

dxjx~x,t !2. ~D1!

Before the breaking, the chain is at equilibrium at a tempe
ture T. At the time of breaking (t50), the positionsj(x,o)
and velocitiesj t(x,0) have the generating functional18

G@ j ~x!,k~x!#5NE Dj~x,0!Dj t~x,0!exp~2H f ixed!

3expF S E
0

`

dxj t~x,0! j ~x!

1E
0

`

dxjx~x,0!k~x! D G , ~D2!

whereN is such thatG@ j (x),k(x)#51. The functional can
be easily evaluated and one obtains
12

02430
at
to
-

-
-

-

G@ j ~x!,k~x!#

5expFkBT

2 S 1

rE0

`

dx j~x!21
1

TE0

`

dxk~x!2D G .
~D3!

Using this, one obtains

^j t~x1,0!,j t~x2,0!&5
kBTd~x22x1!

r
~D4!

and

^jx~x1,0!,jx~x2,0&5
kBTd~x22x1!

T . ~D5!

From this, we evaluatêj(x1,0),j(x2,0)&. As j(0,0)50, we
can write

j~x,0!5E
0

x

dx8jx8~x8,0!.

Hence

^j~x1,0!,j~x2,0!&5E
0

x1
dx8E

0

x2
dx9^jx8~x8,0!,jx9~x9,0!&

5
kBT

T min~x1 ,x2!. ~D6!

Using this, we find

^z1~ t1!z1~ t2!&5
kBT

rc
min~ t1 ,t2!. ~D7!

Similarly, one can show

^z2~ t1!z2~ t2!&5
kBT

rc
min~ t1 ,t2! ~D8!

and

^z2~ t1!z1~ t2!&50 ~D9!
.A.

t.

.

-
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