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Theory of polymer breaking under tension
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We consider the breaking of a polymer molecule which is fixed at one end and is acted upon by a force at
the other. The polymer is assumed to be a linear chain joined together by bonds which satisfy the Morse
potential. The applied force is found to modify the Morse potential so that the minimum becomes metastable.
Breaking is just the decay of this metastable bond, by causing it to go over the barrier. Increasing the force
causes the potential to become more and more distorted and eventually leads to the disappearance of the
barrier. The limiting force at which the barrier disappear® is/2,D with a the parameters characterizing the
Morse potential. The rate of breaking is first calculated using multidimensional quantum transition state theory.
We use the harmonic approximation to account for vibrations of all the units. It includes tunneling contribu-
tions to the rate, but is valid only above a certain critical temperature. It is possible to get an analytical
expression for the rate of breaking. We have calculated the rate of breaking for a model, which mimics
polyethylene. First we calculate the rate of breaking of a single bond, without worrying about the other bonds.
Inclusion of other bonds under the harmonic approximation is found to lower this rate by at the most one order
of magnitude. Quantum effects are found to increase the rate of breaking and are significant only at tempera-
tures less than 150 K. At 300 K, the calculations predict a bond in polyethylene to have a lifetime of only
seconds at a force which is only half the limiting force. Calculations were also done using the Lennard-Jones
potential. The results for Lennard-Jones and Morse potentials were rather different, due to the different long-
range behaviors of the two potentials. A calculation including friction was carried out, at the classical level, by
assuming that each atom of the chain is coupled to its own collection of harmonic oscillators. Comparison of
the results with the simulations of Oliveira and Tayldr Chem. Physl01, 10 118(1994] showed the rate to
be two to three orders of magnitude higher. As a possible explanation of discrepancy, we consider the trans-
lational motion of the ends of the broken chains. Using a continuum approximation for the chain, we find that
in the absence of friction, the rate of the process can be limited by the rate at which the two broken ends
separate from one another and the lowering of the rate is at the most a factor of 2, for the parameters used in
the simulation(for polyethyleng. In the presence of friction, we find that the rate can be lowered by one to two
orders of magnitude, making our results to be in reasonable agreement with the simulations.
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[. INTRODUCTION from the data at higher temperatures. Further, such simula-
tions are constrained in that one is able to use only classical
We consider the breaking of a polymer subjected to amechanics. From Doerr and Taytomnd Oliveira and

force at one of its ends, a problem that has attracted quite Baylor? it is found that vibrations of neighboring bonds play
bit of attention in the recent past. Doerr and Taylbave an important role in determining the rate of breaking—they
analyzed a harmonic-oscillator model for the breaking. Theynay force the atoms to come back and heal the bond. Nord-
assume the breaking to occur if the bond length of any parholm et al* studied the dynamics of a one-dimensional mon-
ticular bond exceeds a critical distancgand obtain an ex- atomic chain under tensile stress using molecular dynamics.
pression for the rate, by an analysis similar to that of Slater'SThey too found that chain healing in the simulated motion
theory of unimolecular reactiorfsThe rate has the expected causes a significant deviation from the rates calculated using
Arrhenius form, the activation energy equal to the energyRice, Ramsperger, Kassel, and Mar¢RRRKM) theory.
required to stretch the length of a bondxia At the simplest In the following, we use multidimensional quantum tran-
level, the coupling to other bonds is not important. They alscsition state theoryQTST) to derive expressions for the rate
find corrections to the rate due to the fact that the rate obf breaking of a long polymer molecule subject to a force.
breaking is calculated in the absence of actual breaking, anthe analysis is straightforward and allows one to draw con-
find that collective vibrational motion is important. To verify clusions with a minimum amount of labor. It is to be noted
this, Oliveira and Taylotperformed an interesting molecular that the multidimensional version of transition state theory
dynamics simulation of the breaking process and found théhat we use is very powerful and is capable of reproducing
collective motion of the atoms of the chain to be important.results that are obtained from the Fokker-Planck equation.
Such simulations have the disadvantage of being rather timéhe multidimensional QTST works in terms of normal
consuming and somewhat difficult to use to arrive at generainodes, appropriate for motion in the vicinity of the saddle
conclusions. Many a time, the events do not happen on point. Hence, within the limits of the harmonic approxima-
time scale that is accessible to such simulations. Thus Olkion, it automatically accounts for these effects. We report
iveira and Taylot were not able to do direct simulation of results for both classical and quantum versions of the transi-
polyethylene at room temperature, but had to extrapolatéon state theoryTST). To compare with the simulations, we
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extend our calculations to include friction and do a classicalvhere E, is the activation energy of the reaction apd
multidimensional TST calculation. On comparing the results=1/(kgT). Q* denotes the partition function for the transi-
with those of Oliveira and Taylotwe find the TST results to tion state, with only the stable modes includégl.is the

be larger by orders of magnitude. To understand this discrepartition function for the initial stateQ)/4wsin(8#()/2) arises
ancy, we go beyond TST and consider the dynamics of sepdrom the unstable mode. This expression includes tunneling
ration of the two broken ends, after the polymer has beemoo and is valid only if the temperatuieis greater thar;
broken. Using a continuum approximation, we find the rate=#%Q/(2kgm) [see Eq.(3.7) of Nikitin'®]. Under the har-

at which the two ends separdt®oerr and Taylorand Ol-  monic approximation for all the modes, the rate is

iveira and Taylot made use of the Lennard-JongsJ) po-

tential to represent the potential energy of a bond as a func- H [ Bho;

tion of its length. In the following, we make use of the Morse Q ; sin 5

potential as well as the LJ potential for the calculations. A R= BhaT P e PEa (2
somewhat similar investigation already exists in the Zwsin( ) 11 sinr( Bho; )

literature’ However, these authors did not calculate the rate 2 i 2

and their investigation was much less detailed. A related in-

vestigation is that of Oliveifawho used a one-particle model Whereg’J_ Is the frequency of theth mode for the initial state
and transition state theory for the dissociation. and w;j is the corresponding frequency for the transition

We now give an outline of the paper. In Sec. II, we give aState. In the above equation, the product for the transition
very brief description of the multidimensional version of the Staté does not include the unstable mode and this is indicated
transition state theory that we use. The version that we use &Y the superscript 3 on the product. In the linfit w;/2
quite powerful and is valid provided the temperature is<<1 one gets the classical result
greater than a critical temperature. This is followed in Sec.

[Il by a discussion of the model that we study. Section IV H Y
gives the simplest model that one could adopt, viz., the rate A —_pE
of breaking calculated assuming that the dynamics of only RC'aSSZE ¥ e )
one bond is important. Section V gives the details of the H wf
J

normal-mode analysis that we perform for the initial and

transition states. These are used to derive an expression for

the rate in Sec. VI A. The results are presented for the case Ill. THE MODEL
where there is no friction acting on the atoms of the chain. . . .
As the simulations are performed in the presence of friction, W& consider a polymer molecule having one end fixed

we present results also for this case, without giving detaile(gmd\";1 force afﬂ”ﬁ on the gther end, as ISh(_)Wn n fF'g' 1. van
derivations, as they are similar to the case with friction. It sd€" Vegteetal.™ have used a magnetic levitation force mi-

found that the results are not in agreement with the simulaS0ScoPe to study the breaking at the point of attachment of

tions. In Sec. VII A, we outline our procedure for going be- such a sy_stefn(laz th'i_bon.d V\|«I]asbth|i Wfah"hs‘?]uf anag/ms,

yond the transition state theory, by taking into account thé‘nowever, IS for breaking in the bulk of the chain and not at
: ethe end. We imagine the polymer to be a chain of units of

broken bonds. We keep our discussions on this at a classicg]3SSm joined together by b_o_nds obeying the Morse poten-
tial. Thus, denoting the position of theth atom asu,, and

level, becausé) the simulations have been done at the clas- Kina th ber of bond ite th
sical level, (i) quantum effects are not important unless thet@King the number of bonds to ¢ we can write the poten-

temperature is very low, andi) quantum effects have been i@l energy of the system to be

analyzed in an interesting paper by Leviteval® who de- N
veloped the ideas of Dyakond?. VtOta':nZl Vi (Up— Uy 1—b)— Fuy. (4)
Il. MULTIDIMENSIONAL TRANSITION STATE
THEORY—A BRIEF OVERVIEW We takeu, to be equal to zero. In the above, the Morse

potentialV,, is defined byV,,(y)=D(1—e ®)2. D, anda
QTST provides a simple approach to the calculation of theare parameters characterizing the Morse potential. The force

rate of a reaction. We make use of a multidimensional veracting on the last atom i and it causes the terrfRuy.
sion that has been applied successfully to calculate the rate from the variablesi,,, it is convenient to change over to a
a variety of problems:**?It works under the harmonic ap- new set of variableg, = u,— u,_; — b, with the distortion of
proximation for all the vibrations and the reaction coordi-the nth bond from its equilibrium lengtib. Then we can
nate, and has the advantage of havingneling contribu-  write
tions included in the rateSmall amplitude motion in the

vicinity of the saddle point will have one unstable direction, N

and the angular frequency associated with it shall be denoted Vtotalznzl V(yn) —NbF ()
as(). The QTST expression for the ratéds
Q o* with the modified potential for each bond(y), defined by
- _.BEa
R 47sin(BrOI2) Q S @ V(y)=Dg(1—e &)2—Fy. (6)
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V(y)/De >

ay >

FIG. 2. Shapes of the modified Morse potential plotted against
ay, for different values of,=2F/(D.a).

Ea=V(y-)—V(y+)

o] s P
=D VI-F,+ 2'”[1+J1——F1] . @)

As one increase$; the values ofy, andy_ get closer.
Also, there is lowering of the barrier for dissociation. For
F,=1y,=y_ and activation energy is zero. This limiting
force isF=Dga/2.

IV. THE SINGLE BOND BREAKING RATE

The simplest approach to the calculation of the rate would
be the following: We consider the vibrational motion of just
one bond that may break and neglect coupling to the rest of
the system. This kind of approach, but with coupling to the
rest included as friction, was considered by Oliveitale do
not include the coupling to the rest of the system in this
section. As the motion involves stretching of the bond be-
tween two units, each unit having a mass the reduced
mass for the vibrational motion i®/2. The potential energy

FIG. 1. The model investigated in the paper consist oiits for vibration in the neighborhood of the minimum of the

each of massm, joined together by bonds obeying the Morse Potential s V(Y )(y—y+)?  where  V(y,)
(Lennard-Jonaspotential. It is fixed at one end and is acted upon =Dea?(yV1—F;+1—F;). So the frequency of vibration of
by a forceF at the other end. the diatomic molecule is wg=ay2D./m(y1-F;+1
—F,)*2 In a similar manner, the frequency of the unstable
The last term in Eq(6) is of no consequence and shall be mode isQ=a\2D./m (JV1—F;—1+F;)¥2 Using these
neglected. Thus we see that the effect of an externally apfrequencies and the version of QTST in Sec. Il, we get the
plied force at one end is just to change the potential of eachate to be
bond from the Morse potential to this new modified Morse

potential. To understand the form of this potential, we give . [hBwg

plots of its functional form for different values of the dimen- st'n"< > )

sionless forceF;=2F/(Dga) in Fig. 2. The figure shows Rszwe*ﬁa. (8)
that for any nonzero value for the foréq, the potential has 27rsin( S)

two extrema, one being a minimum and the other a maxi- 2

mum. The values ofy for the two arey.=1/aln[2/1

+J1—F;]. Note that the above definition implieg. V. THE NORMAL-MODE ANALYSIS
<y_. For any 0<F;<1, each bond is metastakleece Fig.
2). It can go over the barrier if it gets a certain activation
energy, resulting in the breaking of the bond and conse- We now proceed to make a multidimensional calculation
quently of the polymer. The activation energy for this pro-of the rate. This requires a normal-mode analysis of vibra-
cess is tions of the chain around the equilibrium position as well as

A. The eigenvalue problem
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around the saddle point. In the following, we calculate thisare taken to be large numbers. We have to calculate the fre-
for the transition state. The calculations are similar and simguency of the unstable mode and the ratios of the partition
pler for vibrations around the equilibrium position. The equi- functions in Eq.(2). These quantities are very conveniently
librium state has &/,,:5 Minimum and this is obtained by found using the partitioning technique and Green’s matrix.
having ally;=y, . There areN saddle points wher¥,,., is

an extremum, corresponding to the breaking of each oNthe
bonds. At a given saddle point, one of the bonds is stretched
(the one that breaksthe bond length is/_ which corre- Green’s matrix is

sponds to the maximum of the potentidly). All the other

bonds have an equilibrium bond length equalto, which on == .

is the minimum of the potentia/(y). On crossing each G0 =[w"=Dy] " (13
saddle point, breaking would occur. There are other extrema

too, but they all occur at higher activation energies. To anawe denote the first diagonal element of Green's matrix

lyze the motion around a saddle point, we denote the disg0n(,2). Partitioning Green’s matrix as in the following
placement of th¢'" atom from its equilibrium position by,

equation,
and take the bond between the atom numipesisdn+1 to
be the one that will break. Then, for small amplitude vibra-
tions around the saddle point, we have the Hamiltonian

B. The Green’s matrix

: (14)

GO,r‘I(EZ) — w )
W wz_anl

and using the formulas of Appendix A leads to the first diag-

N J— J—
onal element of Green's matrix to b8%(w?)=(w?—2
X Mw? (&— & _ 2—mwz_ - 2], _q,— L _11
j:1;n+1 H(E78-0) (€nv1= &) — G Y(w?) "L In the limit wheren is very large

) —m), the first diagonal element of Green’s matrix has to be
N _ ~independent oh. That is,GM(w?)~G¥' *(w?) . We shall
The quantitiese . and o_ are defined by the equation hen omit the superscriptsandn—1, and we get the result
mw2 =+V'(y.) and are given by

2 0/ " 2\_( 2 _o5_ 0, 2\\-1
wi:Dleﬂa (\/1——Fli(1—F1)). (10 Gi(w%)=(0"—2—Gj(w)) . (15
The angular frequencies of the normal modes are the eiger']r_rys_ezquatpn may be S_(),Ived 0 %et_t?e matnx_(zalement
values of the matrix Gll(r) )(.j Using the condition thaGi(w“)—0 as w”—
+oo |eads to
anl _LJt
: “U 1y oy 0,2 _1— [a_, 2, i 2
Dy= o0 y 1y —w | (11 Gi(w )=§(w —2+Vo'—40°) if 0°<0
—W Dn-n-1
whereU=[00 ... 1,W=[10...0], andy=w?/w? . The L 2viVaer—ah if 0<a’<a4
matrix D,,_; is (n—1)X(n—1) given by 2
- 2 -1 ] 1
-1 2 -1 =5 (0*=2-Vo'~40?) if w’>4
Dn-1= -1 2 -1 .12 (16)

-1 2 -1
In determining the matrix element for<O0w?<4, we have
assumed»? to have a small negative imaginary part.

The matrixD}, would have one unstable mode, which cor-

responds to the crossing of the barrier and is the reaction

coordinate. We shall in the following assume that the poly- C. The frequency of the unstable mode

bmer Is fairly _Iong anld. that it is a b_ond in the bulk that is The frequencies of the modes are determined by the de-
roken, as this simplifies our analysis. One can analyze other ” ) ) + =,

cases also, but the analysis is tedious. Further, we do n&grminential equatiofiw”—Dy| = 0. Denotingo”= w*/w’ ,

expect the rates to be very different even if it is not a bond irthis equation may be written abuz—Dm =0, with Dﬁ

the bulk that is broken. The above implies timandN—n =Dﬁ/wz+ . Using the partitioning technique, we get
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|w2—Df|=| w2~ Dy_4||@*~ Dy_n_1 G%(w?). This givesQ=2y/\1+ 2y, which leads to
w?—1+y— G- Y w?) — 202
x de Q=0 0= ——. (18)
-y ’ \/a)?+ +20?%
- VI. TRANSITION STATE THEORY
X_Z ON n-1,"2 =0. (17)
w°—1+y— (w?) A. The rate

We now proceed to the calculation of the rate of breaking

The unstable mode can be found by puttiog= — 02, with ~ USing Eq.(2). Under the harmonic approximation, the rate
._given by this equation can be calculated exactly. Using infi-

o real, replacing the matrix elements of Green's matrix in ;o product expansions for sigj(and sinhg), we can write
the above equation wits9,(—Q?), and using Eq(16) for  the rate given by Eq2) as

hoj ho;\?
faac)) g facy
Q i 2 =1 2lm
R= Z_eiﬁEn 3 2y * F 1\ 2 (19)
™ (,Bﬁﬂ I {1- BRQO 11 Bhoy Bhoy
2 =1 2|7T k 2 =1 2l
|
Puttingz=Bhw, /(27), and definingp, by now use the above expressions to calculate the rate of the
dissociation of a bond of a polyethylene molecule that is
T 02+ (zo; l0,)?) subject to stress. For the calculations, following Oliveira and
i 1 Taylor? we take the value dD, to be 360 kJ/mole anth as
pi= : (200 the mass of the CHunit. For the Morse potential, the force
1T (|2+(ij_t/w+)2) constant for small amplitude vibrations near the minimum is

] 2D.a?. Following Oliveira and Taylo?, we take this to be
280 N/m, and use this to fix the value of the Morse parameter
a. We give in Fig. 3 a plot of the logarithm of the lifetime of
o) * the bond against the applied force for several temperatures.
= 2—( \/WH p,) e BEa, (22 The limiting force at which the barrier disappears is found to
™ 1=0 be 4.574 nN. Increasing the temperature by 50 K, keeping
We can write the classical expression for the rdegting 7  the force fixed, would typically increase the rate by two or-
—0) as ders of magnitude. The lifetimes calculated using the single
bond breaking formula in Eq(8) are compared with the

we get

Q pEa results of multidimensional transition state theory in Fig. 4
Rclass 2 |p0|e (22)
5 S Ky
wherep is found in Appendix Bsee Eq(B6)]. This gives CoNN 100K
KIS N 150K
A \ \
R 1 2w +W_ _BE (23) ’é‘ \\ \ - gggﬁ
e —— | a, > | \ \\ o
class— 5 = /—wi+2w2, g 1 \\\ \ —300K
— \ \\
The fully quantum-mechanical rate may be written as g 1t \\
on \, AN
O N\
R=kRqass: (24) = 4 N S
N\ .
where \\\
-5 ) L
: 0.5 0.6 0.7 0.9
V2 —15|nh(z\/§7r)
Y (25) Fi->

Bsinz2y—1m) -
FIG. 3. Plot of logarithm of(lifetime/s) against the applied
(see Appendix B for the definition ot;). We refer tox as  force, for polyethylene at different temperatures, using the Morse
the quantum correction factor. Having obtained the rate, on@otential and transition state theory. Note that=F/(D.a/2) and
can also calculate the lifetime of a bond=as(1/R). We can  for polyethylene, the limiting force i®.a/2=4.574<107° N.
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5 16
e —100K
v » 3%%1; bond 150K
100K \- 12 ~-350K

log(lifetime/s)->
quantum factor->
o0

0.7 08 09

Fi->
Fi1->
FIG. 6. Plot of the quantum correction factor for the rate as a

FIG. 4. The figure ComP?reS the Ilfetlmes_qalculated using Eqfunction of the force, for different temperatures. Calculations were
(8) and the result of multidimensional transition state theory. ltdone using the Morse potential

shows that at high temperatures, a rough estimate of the rate can be

obtained by a simple approximation that considers the dynamics Oﬁotentials lead to rather different estimates of the rate of
only the bond that breaks. breaking. The reason for this is that the LJ potential vanishes
) rather slowly in comparison with the Morse potential, which
for the two temperatures 100 K and 300 K. Itis seen that thgjpes so exponentially. Consequently, the LJ potential leads to
many-body effects lower the results by approximately a facrather longer bond lengths for the breaking bond, making the
tor of 2. The expression for the rate is valid onlyTi>T;  activation energies very different for the two potentials. Fig-
=hQ/(2mkg) [see the Eq(3.39 of Nikitin*°]. Putting in  yre 6 gives a plot of the quantum correction factor for the
the values for polyethylene, we finl.~50 K. Thus the rate for a range of temperatures. At very low temperature
formula works at any temperature greater than this, fand (<50 K for polyethyleng one expects the rate to be domi-
all values of the forcelf the temperature drOpS below thiS, nated by quantum tunne”ing, and to become independent of
Eqg. (25) would break down. In this region, the formula has athe temperature. One has to use the approach of Levitov
divergence due to the vanishing of the sine function in thest 312 in this regime. In the region investigated by us, quan-
denominator. Figure 5 compares the result for the Morse poum transition state theory always leads to higher rates than
tential and the LJ potentidlvith the parameters anda,;  classical transition state theory. The correction, however, is
chosen so as to reproduce the dissociation energy and forg@portant only if the temperature is less than 150 K. A gen-
constant of the bond, see Appendi¥.0he LJ potential eral conclusion from the calculations is that for polyethylene
leads to a smaller limiting force, equal to 4.101 nN. Theat normal temperatures, if the force is somewhat greater than
lifetime is also smaller, typically by a few orders of magni- half the limiting force, then the bond would break in a matter
tude. This means that if one fits the potential using the expf seconds. On examining Fig. 3 it is seen that the variation
perimental values of the force constant and dissociation enf the lifetime is exponential and that in a somewhat small
ergy to determine the parameters, then Morse and Lgange of forces, the lifetime varies rapidly from®518 to
107° s. This high sensitivity is a result of the shift of the

20 length of the breaking bond at the saddle point, which varies
100K rapidly as one changes the applied force. In comparison, the
. LY el ; . .
A 15F — Morse equilibrium bond length varies slowly with the force. This
= L leads to a rather large change in the activation energy, result-
2 10F ing in the sharp variation of the lifetime with force. It has to
= be remembered that these results are for the lifetime of one
P 5t 300K bond. The polymer has a large numiiiy of such bonds. All
%o these bonds, except the ones near the two ends, would have
= ol the same rate of breaking and therefore the rate of polymer
breaking would be equal tN times the rate calculated from
. . . " . Eq. (24).
03 0.4 0.5 0.6 0.7 0.8
F1> B. Classical TST in presence of friction

FIG. 5. Plot of logarithm of the lifetime/s against the applied ~ AS the simulations of Oliveira and Tayfbincluded fric-
force, for polyethylene at 100 K and 300 K, using Morse andtion, we now include the effect of friction on the dynamics of
Lennard-Jones potentialsee Appendix € The limiting forces are ~ barrier crossing. For this, we follow the procediteised for
different for the two potentials. For polyethylene, the limiting force the study of barrier crossing and other dynamical problems
is 4.574<10°° N if one used the Morse potential while it is in the presence of friction. As in the simulations, the noise
4.101x10°° N with the LJ potential. acting on each atom is assumed to be independent of one
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another, and we imagine that each unit of the polymer is 5[
coupled linearly with a set of harmonic oscillatgesach unit
has its own set of oscillatorsThus for the transition state,

— simulation
--- TST with friction

instead of the Hamiltonian in E¢9), we need to consider  _ 4}
5]
p2 1 N E
= i B 206 g 2 © |
H 2 2m+2j:;¢n mw+(§] gj—l) ué 3
&
_ lmw2 (g _ é; )2+§ % pjza B 2r “-_—““—--h_“»-_““'" ________________________
2 ekl oent e e 2m,, e T
1NN c 2 1 Lo ‘ ‘
ja 0.030 0.035 0.040
+ 5 Zl Z]_ mjawjza( Xja™ —- ! 2 gl) . (26) >
a=1] mjawja s

In the aboveja denotes a harmonic oscillator having a po-  FIG. 7. Plot of logarithm of the lifetime against the strain for the
sition X and momentun’pja, coupled to thejth normal Lennard-Jones potential for transition state theory without friction
mode of the polymer. It has a frequenoya and massn., . (qlotted_line), tran;itio_n state theory with frictiotdashed ling and
¢;, determines the coupling of the oscillatps to the jth simulations qf Oliveira anq TgylotRef. 3 (full line). The resqlts
mode. The above Hamiltonian can be analyzed just as earligf"® réported in terms of units in which the length of the LJ bond

In order to have ohmic friction, it is enough to taﬂﬁ(w) the absence of exterpal fonces tall<en as the unit of Iength, the
— /s (C_z Im;o;.) (w—o;,)=Myw. Now, using depth of the LJ potential as the unit of energy, and the time for one
a=1\Zja"" ja T Ja yo. ' oscillation (under the harmonic approximatipof CH, in this po-

the partitioning technigue, one can eliminate all the oscilla-_ . . ) . . N e =
torspfrom thegproblerT? and this leads to a matrix identicalt:ers]t'?;:;s-kt?g_ﬂngegf time. The unit of time isza/matf72e
to the one in Eq(11), except that thgth diagonal element ' '
is now given by w?—20? —34_ (2 /mm)([Lw?] =207+ w2 160* +2720° + Y20’ — y(20% + ©2) ]2

+[llw?~w?,]). Proceeding as before, we find (20®+w?). Further, we find thap,=—w?%/w? , so that
the unstable mode to have the frequency) the rate in the presence of friction is

a)Jr(\/2a)2,+w2+ \/16wf+272w2,+ yzwi— ‘y(2wz,+w2+)) o

BEa
Aro_(2w? + wi)

frict _
I:zclass_

Figure 7 shows a plot of a logarithm of the lifetime for one VII. BEYOND TRANSITION STATE THEORY
bond calculated with the above theories, as a function of the
amount strain(s), and compares them with the results of
Taylor and Oliveira® The results are reported in terms of  The breaking of the polymer requires activation energy to
units in which the length of the LJ bor(h the absence of be possessed by a bond to dissociate, the probability of this
external forcgis taken as the unit of length the depth of the beinge™#Ea. If thermal fluctuations give the bond the energy
LJ potential as the unit of energy, and the time for one osE,, then it can dissociate, with a frequen€¥/(27)\[po|
cillation (under the harmonic approximatipof CH, in this  [see Eq.(22)]. The time of crossing the barrier ig,qss
potential as the unit of time. The unit of time is = 1(Q1(27) \/W) However, even if crossing has occurred
2m\mal/72¢=5.72477% 10 ** sec. Their simulations cor- (i.e., the bond is brokenit is not necessary that the reaction
respond to a temperature of 2167 K, which is a very highshould occur. Once the crossing has occurred, the two ends
temperature, so high that the polymer would degrade immehave to separate by a minimum distance, within which it is
diately at this temperature, as is obvious from the lifetimepossible for the broken ends to come back and heal the bond.
that they find, which is of the order of nanoseconds. Or\We now calculate the time required for the two broken ends
comparing results of such calculations with the simulationto separate by this minimum distance. The two broken ends
we find that the results of simple multidimensional transitionseparate from one another by translational motion. The po-
state theory are roughly 500 times too small. With frictiontential energy of the system decreases as a function of the
included, this difference reduces from 500 to roughly 250separation of the two ends and since the bond is already
and these results are not in agreement with the simulation®roken, this decrease is mostly due to the externally applied
We now analyze the reason for this. Our analysis is at dorce. This is obviously linearly dependent on the separation.
classical level. It is tough to do this for the quantum problemDenoting the minimum distance &g, we find the average

(of importance at very low temperatujemn which there ex- time required to move apart by this distance. The classical
ists an interesting paper by Levit@t al® Hamiltonian describing the motion is

A. Rate of separation of the broken ends
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N N _ o _ —
Her S mes S (pS+ TW) E(W,S) =« + pE(W.0)+ pSEW.0), (3D
2= 215y S
mei(fj _fj—l)z_a(gnJrl_gn)- (27)  Where g_t(w,O)=_f(°)°dx§t(x,0)cos(/vx). Solving for E(w,s)
and taking the inverse transforms leads to

In the aboveg is the slope of the potential-energy curve, in
the region where the potential is linear in distance of sepa-
ration [i.e., linear in p+&,,,—&,)]. On looking at the
equations of motion, one realizes that they separate into two
uncoupled parts, one for each broken part. It is enough to
analyze only one of them, as the behavior of the other is X
identical(provided both the chains are longo we consider
the part of the Hamiltonian corresponding jten. Renum-  where£ ~* stands for the Laplace inverse. As we are inter-
bering the atomsr(+1,n+2,...) as 0,1,2...), andtak-  ested only in the motion of the end of the chain, we put
ing the chain to be very longN—<), we can write the =0 in the above to get
Hamiltonian as

1

ZJ“
—| dwcogwx)————
mJo : )(pSZ+TW2)

Exty=L£71

, (32

g+ pE(W,0) +SpE(W,0)

a
® °° §(0)= —=t+{(1) (33
1 . 1
Hbrokenzz jZO mgiz_FEjZl mwi(gj_gj—l)z_afo- ) \/?P
29) with
L(t) =1 (t) + £a(1). (34)

The problem now is to calculate the time that it talégso

exceed the valué. given that its initial value was zero, and Here
that the chain is at a temperatufe Obviously, as both the

ends are executing translational motion, the distance that 2 ([ — . pS

each one has to cover would bg=d,/2. The time should be av= ;jo dwé(w,0) £ (p2+Tw?)
determined mainly by the long-wavelength modes of the P

chain. To describe these modes, one can use a continuum 2 (= —

approximation to the above Hamiltonian. The continuum :;jo dwé(w,0)cogcot) =&(X,0)x=ct (35
version has the advantage that one can obtain analytical re-

sults. The Hamiltonian is Hyoer=3pSodx&(x,1)?  and

+ 3T 5 dxE (X, 1)2— a&(0}). p is the density of the chain

per unit length €m/b, ,b, being the length of a stretched _ EJOO — 1 p
bond, at its equilibrium positiorand 7= mb, ? is the ten- £2(1) 7)o dwg(w,0) L (ps?+ Tw?)
sion in the chain. The speed of sound in the chain is given by _

c=\7Ip. We imagine that(0,t)=0 until t=0, with the rest sin(cwt)

2 (o
= ;Jo dwé(w,0) (36)

of the chain at thermal equilibrium, appropriate to a tempera- cw

tureT. Up to this time, the last term iH,oxen IS NOt present . )
in the Hamiltonian. At=0, the chain is broken, and the last Equation(33) shows that the broken end of the chain under-

term is now present, and it represents the fact that the cha@€s _translational motion with a uniform  velocity
can lower its potential energy by moving its end. Writing the = @/+/Zp. In addition, it undergoes diffusive motion, due to

equation of motion for the string gives the forced wave equathermal fluctuations which is represented by the t¢(t). In
tion Appendix D, we calculate the correlation function for this

and show that
pE(X, ) =TE (X, 1) + ad(X). (29

2kgT
. ) t)Z(t1))= ——min(t,t;). (37
To solve the above equation, we use transform techniques. () pc (Lt

We first dwefine the Fourier cosine transform &(X,t) by  The above correlation function is just that for Brownian mo-
§(w,t) = Jodx¢&(x,t)coswy). The Fourier cosine transform tion, with a diffusion coefficienD=kgT/pc. Thus the mo-

of Eq. (29) gives tion of the end of the chain is the same as that of a Brownian
particle of mass unity, drifting with a velocity in the posi-
pEn(W,t) + TW2E(W,t) = a— TE,(O}t). (30) tive direction, having the diffusion coefficief.
Once the chain is broken, the end of the chain is not under B. The first passage time

strain and hence we puﬁf(x,t)/ﬁx)xz_ozo. Now we intro- In our problem we need the average time that such a

duce the Laplace transform of(w,t) by E(w,S)  Brownian particle spends in a region wigh ¢, before go-
= [5dté(w,t)e” St This obeys the equation ing out for the first time from this region. It is given that it

024304-8



THEORY OF POLYMER BREAKING . .. PHYSICAL REVIEW B66, 024304 (2002

starts até=0, drifts in the positive direction with a velocity
v towards the poing.(>0), and it also undergoes diffusive
motion. This is essentially a first passage problem and may

be solved by finding the probability densiB(¢,t) for the A
particle to be at at the timet, given that it was aE=0 at ?
the timet=0. P(¢,t) obeys the diffusion equation g AE
= linear part
PU(&D=DP(£1) 0P (&), C- !
This has to be solved subject to the condition tR&t. ,t) ‘g

=0. Then, one has to calculate the survival probability

& :
Peun(t) = f dEP(£,D) (39 _
- bond length->

from Wh.'Ch the average time that it spends in the region may FIG. 8. The figure shows that beyond the transition state poten-
be obtained as tial energy is approximately a linear function of bond lengthbAt
" the potential energy of the bond is equal to its equilibrium value.
= | dtPa 0. 0
0 propagates at the speed of soundSo, when the end is
To solve Eq.(38) we use Laplace transform techniques. Webroken, it starts moving and in a tintethe segments within
first defineﬁ(g,s)=f‘§,°dtP(§,t)e*St. It obeys the differen- & lengthct from the end start moving. K is larger, then the

tial equation mass of the portion that is set in motion is correspondingly
larger and hence the distance that the broken end travels is
SP(£,5)~DP(£,5)+uP(£,5)=8(6). (41  smaller

Now one has the problem of choosing the valuedpf
This equation is to be solved, subject to the condition thafrhe simplest estimate that one can make is that the ends
E(gc,s)zo, The solution is found to be should be separated by a distance equal to the stable bond
length. Letb, represents the position corresponding to the
vé—|€\v?+4Ds bond length such that energy of the final state is equal to the
N ex 2D energy of the initial statésee Fig. 8. We take the potential
P(&,s)= 075 aDs betweenb_ andb, to be linear, neglecting the curved por-

tion near the top of the barrier. Lé&=b.,—b_. Then, the
;{Ug_(g +é— &) b2+ 4Ds slopea of the potential is given byr=AE/I, which leads to
Cc Cc
ex
2D

the crossing time aét)=Id.pc/(2AE). Using this expres-

_ . (42 sion, we have estimated the time of crossing the distapce
Ju2+4Ds for the Lennard-Jones model. The calculations show that in
, , _the small force regime, the first passage rate is considerably
From this, we obtain the Laplace transform of the survivaligyer than that of the crossing rate and hence is the rate
probability determining step. The actual crossing frequency may be ob-
e tained by adding the two times and then taking its inverse.

P(S):J déP(&,s) The logarithm of the lifetime so obtained is plotted in Fig. 9

(the dotted curve Again, on comparison with simulations,
1 p(véc—éc\/vz+4DS>
—ex .

1
s

we find that the lifetime in the simulations is about 250 times
(43) larger, demonstrating that friction plays an important role.
2D

The average survival time is the{m>=lims_>05(s)=§clv. C. First passage with friction

Interestingly, this is just the time that one would have esti- We now calculate the analysis for the motion of the chain
mated neglecting the diffusive motion of the chain end. Now,in the presence of friction. In the presence of friction, the
taking £&.=d./2 and usingv = a/\/7p, we find the average problem can no longer be described by a simple Hamiltonian
passage time of the two ends, over the distasiceto be as in the previous section. But we can write the continuum

version of their equations of motion, which is
(ty=d.pc/(2a). (44)

This result may look surprising at first, because the time  P&u(X,t) +py&(X,t) =T (X, 1) + ad(X) + f(X,1),
(t) is proportional tcc, the speed of sound in the chain. Thus (45
the greater the speed of sountthe greater the tension in the
chain, the greater the time required for the ends to separatevherey is the friction coefficient, and(x,t) is the fluctuat-
This is due to the following: Any disturbance in the chaining force, having the mean zero and the correlation
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5 A [2 (=
_ ioula _ oY
e fcnon o -£ = “aw—, .
-+ no friction | TJo S(ps”+ pys+Tw?)
~~ 4 [
Q
E a
b [P —
€ 31 TR | pcsys®+ ys
= | T
[=)

B @ .
................................................. = ote IG(2) + 1y (n12)].
(48)
1 L L L
0.030 0.035 0.040 In the above] ,(yt/2) denotes a modified Bessel function of
s > ordern.!® As was done earlier, the average survival time is

FIG. 9. The figure shows comparison of lifetimes against thed!Ven by _solvmg the equaﬂo@’f_(o,t))ZdC/Z for the timet to
strains, calculated with(a) the rate calculated taking into account find the time for traveling a distanak/2 by one end of the
healing(dotted ling, (b) healing in the presence of frictiqulashed ~ chain. This is the survival probability of the chain. This re-
line), and (c) simulations(full line). Results are in dimensionless Sult is only an approximation. Strictly speaking, we should
units. write down an analog of the diffusion E8) for this prob-
lem and solve it to find the survival time. As the random
terms in this equation are more complex than the ones in the
Eqg. (38), we have not done this. In the earlier problem we
saw that the random terms had no effect on the average sur-
vival probability. So we neglect their influence in this prob-
This stochastic wave equation can be analyzed just as wagm too.
done earlier. Following the same procedure, we get Using this, we have estimated the time of crossing the

distanced,. in the presence of friction, as was done earlier. In
Fig. 9 we compare the resultdashed lingwith simulations.

(f(xq,t1)f(X2,12)) =2pykg T 8(X1 —X5) 8(t; — t5).
(46)

2 (w 1 We find that the lifetime from the simulations is approxi-
Exy=£1 —f dw cogwx) > > mately within about 30 times the calculated rdtee two
mJo (ps”+pys+Twe) agree within roughly an order of magnityde
o R J—
X g-I-pft(W,O)+Sp§(W,0)+(I)(W,S)) : VIIl. CONCLUSIONS
We have derived formulas and methods for the calculation
of the rate of polymer breaking and applied it to the breaking
In the above,

of polyethylene. This includes multidimensional TST results
at classical and quantum levels. Our version of the QTST is
. . valid only if T>T;(~50 K for polyethyleng In our calcu-
<I>(w,s)=f dtf dx cogwx)f(x,t)e St (47) lations, we fitted the potential with Morse and Lennard-Jones
0 0 potentials using the bond breaking energy and force con-
stants. We found that the lifetime of the bond is very sensi-
tive to the potential that is used in the calculations—using
Pennard-Jones or Morse potentials lead to rather different
answers, this being due to different behaviors of the two at
longer distances. In the absence of friction, a rough estimate
of the rate can be obtained by a simple approximation that
Efmdw 1 considers the dynamics of only the bond that breaks and
mJo  (pSP+pys+Tw?) neglects the coupling to neighboring bonds. Dynamics of
neighboring bonds would decrease the rate, but usually not
a — — — by more than one order of magnitude. For the breaking of
g+p§‘(w'0)+Sp§(w’o)_p%t(w’0) polyethylene, quantum effects are important only for tem-
peratures below 150 K. For polyethylene the lifetime
strongly depends on the force and as the force varies over
a narrow range, the lifetime varies rapidly from®18 to
10" ° s. This extreme sensitivity of the rate on the force is
due to rapid change of the location of the transition state
All terms other than the first term on the right-hand side argsaddle pointon the externally applied force. In the presence
random, arising from thermal fluctuations. So on calculatingof friction, the rate determining step for the process in most
the average of both the sides, we get cases is the separation of the broken ends from one another.

As in the previous case, we are interested only in the positio
of the end of the chain, which is

fop)=L"1

X

+<I>(W,s))
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This is particularly true, if there is friction on the two ends
from the surroundings. If this is included, then there is fair

agreement of the theory with the simulations.
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APPENDIX A: PARTITIONING FORMULA

The matrix identities that we use in the text are given
below. For any square matrix of the fofng 31, with A and
D square matrices, one has

Sciences also supported her through a summer visiting pro-

gram.

A B]! (A—-BD 1C)?
C D] |-D-(-CA!B) lcal

APPENDIX B: EXPRESSION FOR THE RATE
From the definition ofp, in Eqg. (20),

_[12+2°Dy|

= (B1)
|12+ 22Dj|

Py

Using the same patrtitioning as in E41) for both numerator
and denominator gives

124+22°2—7*X,,_, -z2
_ —27? 124222 — 2*Xn-n_1
P 12+ (1— )= 2*X_1 Y
yz? 124+ (1—y) 22— 2*Xn_p_1

(B2)

Again we use the same partitioning as in Efjl) for both
numerator and denominator. In the abo¥g, ; is the last
diagonal element ofl?+z?D,_;]" . In the case wher@

andN—n—1 are both large, this would be independennof

and we will denote it byX. It is easily found from the rela-
tion X=(12+22%>—z*X) ! that

1
X=—(12422°— (1?4 22°)*— 42%). (B3)
27
Using this in Eq.(B2), we get
R[I,—1]
= B4
PRI Y] =Y

with
RII, 7]=[|2+ \/(—|2+_22W_ 2722]2—4)/224.
(BS)

We can now find the value gf, by takingl —0 as a limit
and this gives
Po=—1y=—w?lw? . (B6)

In the limit | —o, p;—q,, where

A B i
de c D =detA defD—CA™"B] (A1)
and
—-A(A-BD !C)"BD?
(b—cA 1B)? (A2)
[
=31, —1]/9l,v], (B7)

with S[ I, y]=[212+27%(1— v)]°— 4y?Z*. The infinite prod-
uct 1T, p; can be rewritten as below:

© o g RIL-1] (S
Mol (Haje s
with q,=9[1,—11/[m, y].
_ﬁ R[m,—1]/9m,—1]
T RIMl/SIm, ]
(R[m,—l]_S[m,—l])
_ﬁ r1+ S[mv_l] ] (Bg)
1 [H(R[m,y]—s[m,y])]
Sm,y]

The infinite productl,_,q, can be analytically evaluated, in
terms of the gamma functioh' (see Refs. 16 and 17 for
detailg to be

ﬁ _\/27—1sinh(z\/§w)
oy V3sinzy2y—1m)

The productk; can be evaluated numerically and is found to
be rapidly convergent.

(B10)

APPENDIX C: CALCULATIONS
FOR THE LENNARD-JONES POTENTIAL

The modified potentiaV/(y), if one assumed a Lennard-
Jones potential for the interaction between two successive
atoms, separated by a distangas given by

(2)12_2
y

6
ayg

y

V(y)=¢ —Fy. (Cy
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Just as in the case of the Morse potentiak; if 0, thenV(y) G[j(x),k(x)]
also has a minimumy(,) and a maximum(_) for realy
>0. These values of are equal t@, ;x wherex satisfies the keT (1 (= , 1 )
equation =exp—- —J dxj(x)=+ §f dxk(x)<| |.
pJo 0

fxB3+1-x5=0 (C2 (D3)

with Using this, one obtains
Fa KgT 8(Xy—Xq)
fio o (o) (600060 0)=——=—= (09

Numerical investigation shows that the two roots coalesce eand
f,=0.224158408 1. Hence the potential would cease to

have a minimum if the force at the end of the polymer ex- kg T o(Xo—X1)

ceedsF,=12:(0.224 158 408 14, ;. (6x(x0,0),E(X,0)= —————. (D5)
From this, we evaluateé(x;,0),£(x,,0)). As £(0,0)=0, we

APPENDIX D: THE CORRELATION FUNCTIONS can write #(x1,0).£(x2,00 ¢€00)
From Eq.(35) in the text,{1(t) = &£(x,0)y—¢;. Therefore,

to evaluate the correlation function ¢@f we need that of [y, ,

£(x,0). To find this, we consider the chain to be semi- §(x,0)—fodx & (X,0).

infinite, with the end of the chain held fixed, and the Hamil-

tonian to be Hence

1 o 1 © — " ' 2 " ' "
Hfixedzfpfo dx& (x,t)%+ ETJO dxé&,(x, )2 (D1) <§(X1,0)15(X2-0)>—J0 dx fo dx"(&x(X",0),&x(X",0))

Before the breaking, the chain is at equilibrium at a tempera- keT
ture T. At the time of breaking t(=0), the positionst(x,0) = —min(xy,Xz). (D6)
and velocitiest,(x,0) have the generating functiofl

Using this, we find

G[j(x),k(x)]=N | D&(x,0)D&(x,00exp(—Hyixea) KeT
J t e (G2t a(ta)= - cmin(ty ). (07)
Xex;{( fo dx&(x,0)j (X) Similarly, one can show
kgT
© ({a(t1) a(t)) = —min(ty,ty) (D8)
- f dxgx(x,O)k(x)) : (D2) pc
0 and
whereN is such thatG[j(x),k(x)]=1. The functional can
be easily evaluated and one obtains ({o(t1)L4(12))=0 (D9)
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