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Scattering of elastic waves by a periodic monolayer of spheres
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Using the multiple-scattering formalism we developed in a previous work, and extended here, we analyze
available experimental data on the transmission of longitudinal waves in the system: water-slab of polyester-
water, the slab of polyester having a plane of glass or lead or steel spheres in the middle. The theoretical results
reproduce accurately the measured spectra and provide a transparent physical picture of the underlying pro-
cesses. In particular, the dips in the observed spectra are attributed to multiple wave scattering between the
spheres, and are related to hybridization-induced gaps in the frequency band structure of the longitudinal
elastic modes of a corresponding infinite crystal.
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I. INTRODUCTION relevant experimental data and provide a consistent interpre-
tation of the transmission spectra of these systems.

The propagation of elastic waves in inhomogeneous me-
dia has attracted_a Iot_of _at'Fention over the years as it _relates Il. ELASTODYNAMIC RESPONSE OF A PLANE
to many and varied disciplines ranging from geophysics to OF SPHERES
mechanical engineering, and to diverse applications such as
the quantitative nondestructive evaluation, the design of ul- The present paper is motivated to a large degree by some
trasound absorptive materials, etc. More recently there ha@cent work of Kinra and co-workéts’ concerning the scat-
been growing interest in a special type of inhomogeneoutering of elastic waves by a plane of nonoverlapping spheres
materials, the so-called phononic crystals: the elastic conof radiusS, centered on the sites of a 2D lattice. The plane of
stants vary periodically in space. It has been pointed out thaiPheres is placed in the middle of a solid slab of polyester
in such systems the possibility exists of absolute spectrdlp=1220 kg/ni, ¢;=2490 m/secc,=1180 m/sec), 7 cm
gaps, i.e., regions of frequency over which elastic waves carthick, which is immersed in water p(,=1000 kg/ni,
not propagate in the material, which in turn promises interCy=1480 m/sec, ¢,;=0). The spheres themselves are
esting applications such as nonabsorbing mirrors anehade of glass fs=2490 kg/n?, cy=5660 m/sec, cy
vibration-free cavities. Phononic crystals are also interestings 3300 m/sec), lead p=11300 kg/ni, c5=2210 m/sec,
from a basic physics point of view, for example, in relation Cs;=860 m/sec), or steel pg=7800 kg/ni, cg=5940
to Anderson localization of classical waves: one expects than/sec, c,;=3200 m/sec). Absorption is not negligible in
the introduction of a certain amount of disorder will lead to polyester ¢,=0.17 nepers/cm at 1 MHz,«;=0.35
the localization of the vibrational modes near the edges of aepers/cm at 1 MHzand in lead ¢5=0.13 nepers/cm at 1
spectral gap. Numerous studies of phononic crystals in ondyiHz); this is taken into account in our calculations unless
two, and three dimensions have been reported in the last featherwise stated. An elastic wave in watenly longitudinal
years(see, e.g., Ref. 1, and references therditowever, the  waves exist in waterof given angular frequency is inci-
intermediate structure, an elastic matrix containing a singlelent normally on the polyester slab containing the plane of
layer of inclusions, has received considerably less attentiorspheres, and is partly reflected, partly transmitted and partly

We have developed a formalism for the calculation of theabsorbed by it. The corresponding transmittance defined, as
frequency band structure of phononic crystals consisting ofisual, as the ratio of transmitted over incident flux of energy,
nonoverlapping spheres in a host medium of different elastits denoted byT. Similarly a wave in water, of the same
constant$. The formalism allows one to also calculate the frequency, incident normally on the slab of polyester when
transmission, reflection, and absorption coefficients of arthere are no spheres of any kind in it, will be partly trans-
elastic plane wave incident, at any angle, on a slab of thenitted, reflected and absorbed by it. We denote the corre-
material and, therefore, it can describe the physical situatiogponding transmittance by, and refer to the ratid/T, as
in an actual transmission experiment. The slab may consighe normalized transmittance, which is the quantity measured
of a single plane of spheréa two-dimensional2D) periodic  in the experiment§=® Typical experimental results are
array of spheres corresponding to a given crystallographishown in Fig. 1, by the squares, for glass, lead, and steel
plang or a stack of such planes. We have already applied thepheres. In all cases, the spheres are centered on a square
method to some cases of practical intefestin this paper lattice of lattice constana,; therefore a larger lattice con-
we use it to study the transmission of elastic waves througlstant corresponds to a lower coverage by the spheres. Similar
periodic monolayers of spheres. We compare our results withesults were obtained for a hexagonal lattice as for
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FIG. 1. Normalized transmittance for a longitudinal elastic wave
incident normally on a square lattice @df) glass spheres§
=0.56 mm, a;=2.63 mm), (b) lead spheres§=0.60 mm, a,
=2.63 mm),(c) steel spheres3=0.585 mm,ay=3.95 mm),(d)
steel spheresS=0.585 mm,a,=2.63 mm), in the middle of a
polyester slab, 7 cm thick, immersed in water. The theoretical re-
sults are shown by the solid lines and the experimental data by the FIG. 2. Normalized transmittance for a longitudinal elastic wave
squares. incident normally on a square latticHa) a;=3.95 mm @;

=0.07), (b) ag=1.17 mm @;=0.79)] of steel spheres of radius

the square one. The most striking feature of the experiment&=0.585 mm in the middle of a polyester slab, 7 cm thick, im-
curves is the pronounced dip belod,=way/(27wc;)=1.  mersed in water, calculated usihg,~=1 (thin lines and | =6
This dip is deeper for the lead and steel spheres compared (thick lines.
the glass spheres, and becomes more pronounced by increas-
:ggvgrlea(t:or\]/i(geLaegref.r;—(;féﬁc?éz alll_ioe SS%TOT ?Src\jl'ggr;ﬁlgg)s’ls;zét al® presented an approximate theoretical treatment of

- . C ; L multiple scattering, assuming that spherical waves with
theoretical curves obtained using our formal&his for-

malism takes fully into account the multiple scattering of the 1 do not scatter significantly by any single sphere of the

. . lane of spheres. This, and to a lesser degree other approxi-
glastlc wave by the 2D array of sphergs. However,. in Ref. ér)nations in their approach concerning the determination of
it was assumed that the host mediuipolyester in the

resent cageextends to infinity on either side of the plane of the total incident wave on a given sphere, means that their
P . Y Plane ot i o atment breaks down, as they themselves point out, when
spheres. In the experimefits the slab of polyester contain-

— 21,2 H
ing the spheres is immersed, as we have already stated, Eﬂe coverage by the sphereg— mS'/ay, exceed; a certain
water. and therefore the formalism of Ref. 2 needs to bé/alue. In terms of the formalism of Ref. 2, their treatment
extended to take into account the scattering of the elastifMounts essentially to keeping only terms with1 in the

wave at the two polyester-water interfaces. The way to dospherical-wgve expansions gf the elastic figld. 'The ingd-
this is summarized in the Appendix. As can be seen from I:igequacy of this approximation is demonstrated in Fig. 2 which

1 our theoretical results are in very good agreement with thehows the normalized transmittance for two cases, one of

experimental data. relat!vely Io_w_coverage /(\f=0.07),. wh(_are.convergence is
We note in passing that the extended formalism now inobtamed within the above approximation; and one of high

place can be used to study other problems of interest, e.g., fV€rage &= 0.79, which corresponds to touching sphéres
the acoustic microscopy of liquid-loaded surfaces of periodié"’her,e one needs to keep terms up to and inclublipg=6 to
structure<® Multiple reflections between the slab-water in- OPt@in convergence. We should say, however, that for a

terfaces lead to the periodiclike oscillations, so obvious indualitative understanding of the physics involved in the
the theoretical curves. The period of these oscillationsP'€Sent case, the scatteringlef1 waves is sufficient, and

known as Fabry-Perot-type oscillations, is inversely propor-this is because the scattering of longitudinal and transverse

tional to the thickness of the polyester slab, and it is practiaves by a glass, lead, or steel sphere in polyester, is domi-

cally the same ifT, for the homogeneous polyester slab ang"at€d byl =1 waves ovgé the considered frequency range.
in T for the one containing the spheres. These oscillations !t Nas been suggested that the abovementioned dips in

survive very well in the theoretical normalized transmittancel'€ transmittance are somehow related to the so-called Wood

T/To, but they do not show so clearly in the experimentalanoma“esl' which in turn relate to threshold frequencies

curves of Fig. 1, because of the spectral resolution of thé{thCh arise as follows. _The elastic field outside the sphe_res
experiment$° (in polyestey can be written as a sum of plane waves with

We now turn our attention to the dips in the normalizedWave vecto
transmittance shown in Fig. 1, which are so nicely repro-
duced by the theory. They are of course due to the multiple . ) 212
scattering of the elastic wave by the plane of spheres. Maslov Kg, =K +9=[a;—(kj+9) 1", (N
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FIG. 3. Transmittance for a longitudingthick line (a)] and a
transverse[thick line (b)] elastic wave incident normally on a 0.0
square latticed,=2.63 mm) of steel sphere§€0.585 mm) em- 08
bedded in an infinite, nonabsorbing polyester matrix. The different
vertical lines on the abscissa show the threshold frequencies for

7

which q,=|g| for sets ofg vectors of increasing magnitude;, 04} T .
=I,t. The thin line refers to the normalized transmittand@éT(,)
and is the same as in Fig(d). 0.0 N=8 . . |N=8 |

0.0 0.5 1.00.0 0.5 1.0
wherek| is a reduced wave vector within the surface Bril- Q

louin zone corresponding to the plane of spheseslane, !

g are the 2D reciprocal vectors corresponding to the given FIG. 4. Transmittance for a longitudingd) and a transversg)
lattice, andéz is the unit vector normal to the plane of elastic wave incident normally on a slabMflayers of a fcc crystal
spheresiq,=q,=w/c, for a longitudinal wave andj,=q, (a=3.72 mm), parallel to thé001) surface, of steel spheres (

= wlc, for a transverse wave. Our calculations are done for- 0.585 mm) in an infinite, nonabsorbing polyester matrix. The
kH:O' which relates to normal incidence. In this case, a SeEhin lines show the results of the effective-medium approximation.
of g vectors of the same magnitudigl >q, define a corre-

sponding set of evanescent waves, which means that the cofur analysis of the physics of this dip, we can assume that
tribution of these beams to the elastic field decays exponerihe host medium of polyester extends to infinity and that it is
tially with the distance from the plane of the spheres. Ashot absorbing.

w, and thereforeg,, increases, we reach a threshold fre-

quency above which this set of beams become propagating IIl. PHYSICAL ORIGIN OF THE DIPS

(|g|<q,,) One eXpeCﬂg and finds some structure in the IN THE TRANSMISSION SPECTRA

transmittance associated with these threshold frequencies

(Wood anomaligsas shown in Fig. 3. We note, however, that ~We believe that the physical reason for the observed dips
to obtain the thick curves of this figure, we have assumedn the transmission spectra results from the multiple scatter-
that the mediunipolyestey in which the plane of spheres is ing between the spheres of the plane, and is more akin to the
embedded extends to infinity on either side of this plane antvay hybridization gaps open up in a bulk crystal. To begin
that it is not absorbing. In this caséunlike in the experi- With, we calculatgthick lines in Figs. 4 the transmittancé
ments of Refs. 6-9the incident wave may be longitudinal of a plane elastic wavéongitudinal or transvergencident

or transverse. The abovementioned threshold frequencies argrmally on a slab consisting dfi=1,2,8 planes of steel
indicated by the vertical lines in Fig. 3; one, 84=2.11, spheres of radiu$=0.585 mm. The planes are arranged
refers to a longitudinal beam, all the rest refer to transverséelative to each other as successi@®1) planes of a fcc
beams. It is evident that the minor structure associated witlerystal of lattice constard= \/§a0=3.72 mm. In all cases
the above threshold frequencies is different in nature fronthe host medium which extends to infinity on either side of
the considerable dips in the transmission spectrum belowhe slab is nonabsorbing polyester. In the same figures we
Q=1 and from the shallower dips at higher frequencies;show by thin lines the transmittance for an effective homo-
when absorption is taken into account, any minor structurgyeneous slab, of the appropriate thicknBssNa/2, in poly-
associated with Wood anomalies is smoothed out to a vergster, using the effective-medium approximation of Gaun-
large degredsee Fig. 3. aurd and Wertmahi in the long wavelength limit §—0).

In Fig. 3 we show also, by the thin line, our results for the The effective-medium results show quite clearly the Fabry-
actual experimental setup: a layer of steel spheres in thBerot-type oscillations; one can see that the period of these
middle of a polyester slab immersed in waltdre same as in  oscillations is inversely proportional to the thickness of the
Fig. 1(d)]. Comparison of the thick linéa) with the thin line  slab. But the effective-medium approximation does not re-
of Fig. 3 shows that the main dip &,=0.79 is not con- produce the observed dips we are interested in.
nected with or affected in any way by multiple reflections at  One can see that the dips in the transmittance of the one-
the polyester-water interfaces or by absorption. Therefore, iplane structure develop into practically forbidden géibe
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FIG. 5. The phononic frequency band structure normal to the F|G, 6. Schematic representation of a hybridization-induced

(001 surface of a fcc crystalg=3.72 mm) of steel spheresS( gap. The solid(dotted lines show the hybridizedunhybridized
=0.585 mm) in nonabsorbing polyester. The thihick) solid bands.

lines refer to longitudinaltransversg bands and the dotted lines

refer to deaf bands. . .
the above flat band. Because an interaction between them

elastic wave does not penetrate the slab the number of does exist, they hybridize and we obtain the bands repre-
planes increases. To make the point clearer we present in Figented by the solid lines in Fig. 6, which are similar to the
5 the frequency band structure normal to @1 surface actual bandsthin solid lines in Fig. 5. Naturally the modes
for the (infinite) fcc crystal of steel spheres in nonabsorbingat the top of the lower bangelow the gapand those at the
polyester. The thin solid lines in Fig. 5 denote longitudinalbottom of the higher bandabove the gapare hybridized
bands, while the thick solid lines are transverse bands, anghodes in the above sense. An incident longitudinal wave
will couple with, respectively, longitudinal and transverseexcites these bands, leading to finite transmission through a
elastic waves incident normally on(801) slab of the mate- finite slab of the material, as shown in Figay By the same
rial. The dotted lines are deaf bands which practically do notoken, the hybridization-induced gap is responsible for the
couple with elastic waves incident normally on the s(ids  dips in the transmission spectra at the corresponding fre-
a clarification of what is meant by longitudinal, transverse,quenciegsee Fig. 4a)]. That the mechanism we have de-
and deaf bands in phononic crystals see Sec. VIl of Ref. 2 scribed is effective even for a single plane of spheres, should
Looking at the transmittance of transverse walfeg)s.  not surprise; in the present case, it is the interaction between
4(b)] we can readily see that the lower frequency dip, whichthe virtual bound state on the single plane and the propagat-
appears in the transmission spectra of slabs two and eigiiig modes in the host effective medium which determines
layers thick about(),=0.68, corresponds to a Bragg gap the physics of the situation. As the coverage increases, the
opening up, about the same frequency, between the first arelronger interaction between the spheres results in virtual
second transverse bands of Fig. 5. We note that a similar gdgound states on the plane of larger frequency widtiorter
for longitudinal waves appears at much higher frequenciefifetime) which, in turn, leads to more effective hybridization
(outside the region considered in Figs.ahd, therefore, one with the host medium and hence to more pronounced dips in
does not see the corresponding dip in the transmittance dhe transmission spectfaee Figs. (c),1(d)].
longitudinal waves in Fig. @). One can interpret the transverse bands of Fig. 5 as a result
The dips in the transmittance of longitudinal and trans-of hybridization between a wide band corresponding to
verse waves through the monolayer of steel sph@t&s 4,  propagation in an effective host medium and more than one
N=1) correspond to hybridization-induced gaps in the fre-relatively narrow bands originating from virtual bound states
guency bands of these waves opening up about the frequenoy the planes of spheres, in a manner similar to that we have
positions of the above dips, as shown in Fig. 5. Thedescribed for the longitudinal bands. The detailed structure
hybridization-induced gap in the longitudinal bands is per-of the shown hybridized bands is more complicated because
haps easier to explain. We have establis¢h&tthat when a  of the greater number of unhybridized bands involved. We
single plane of steel spheres is placed in polyester there eshall not be concerned with a detailed analysis of the trans-
ists, at{);=0.81, a virtual bound stat@a resonant state of verse bands, especially since they are not directly relevant to
finite lifetime) of the longitudinal displacement field, fégy  the experimental data. Whatever the physical interpretation
=0, which peaks about the said plane but falls to a muctof the origin of these bands, they are consistent with the
lower value away from it. Therefore, virtual bound states ontransmission spectra of Fig(l3); for example, the gap about
neighbor planes of spheres will couple weakly with each);=0.94 in Fig. 5 leads to the observed dip in the transmit-
other, resulting in a relatively flat band as shown schematitance about the same frequency in Fig)4
cally in Fig. 6 (we always assume th&=0). On the same Phenomena analogous to the ones described here, which
figure we also show the band corresponding to the longituean be interpreted on the basis of hybridization between
dinal displacement field in the homogeneous effective mestates localized on planes of spheres and extended states in
dium that one would obtain in the absence of interaction withen effective host medium, have also been discussed in rela-
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tion to metallodielectric photonic crystal$Another feature, (p or s polarized wavg and there,, e; denote the polar and

common to both situations, is the crowding of the Fabry-azimythal unit vectors, respectively, which are orthogonal to
Perot-type oscillations in the vicinity of the gap, shown S \We can now write the corresponding transmitted and
clearly in Figs. 4a), 4(b) for N=8, which is due to the Gij - P 9

flattening of the bands near the edges of the 'Gap. reflected waves in the form

3
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us (N=2 [ugl “exdia, - (r—As)la, (A3)
APPENDIX i=1

In this appendix we derive explicit expressions for the tivelv. Th litud fthe t itted and reflected
transmission and reflection matrices which describe the scatESPECtVely. The amplitudes of the transmitied and refiecte
tering of an elastic plane wave, of angular frequengyin- waves are related to that of the incident wave through the

cident on a homogeneous and isotropic plate, of thickdess equations

sandwiched between two semi-infinite homogeneous and

isotropic media. Though similar expressions can be found in 3

the literature, we thought it necessary to include this appen- [u 5= > Nﬁ/,s'[uin]is,' ,

dix to provide the formulas in a form compatible to the for- i'=1

malism we have developed in Ref. 2. The plate is normal to

thez axis, the direction of whiclileft to right) is specified by 3

the unit vectore,. The elastic properties of the different me- [u ]_—s': E NTS’S’[u- ]_s’ (A%)
diaj (j=1,2,3 from left to right, are characterized by the AR L e

mass densitiep; and the longitudinal and transverse propa-

gation ve!ocmechj ' vv_herev=l andt, resp_ec'qvely. We note Allowing for multiple reflections at the interfaces, one can
that the final expressions for the transmission and reflection

matrices, given below, remain valid wheh=0, in which show that the matriceNss which describe the transmission

case they describe the transmission and reflection at an intdflrough and the reflection by the plate can be written in the
face between the two semi-infinite medip=(1 andj=3). 'ellowing form:
In this case, the actual values of the elastic constants of the
plate (j=2) are irrelevant.

Taking advantage of the translation invariance parallel to
the interfaces, at=0 andz=d, we write the wave vector of
a plane wave in mediunasq,; =q;*[(w/c,)?~qf1*?&,,
whereq; is the component of the wave vector parallel to the
interfaces and thet(—) sign denotes propagation to the
positive (negative z direction. We refer the waves on the left
side of the plate to an origiA . =(0,0,0) and the waves on
the right side of the plate to an origih_=(0,0d).

We assume, to begin with, that all three media are solid,

N+ +_ T(2,3)[ | — PR(Z,l)PR(2,3)] - lPT(l’Z),

N+ - — R(3’2)+ T(2,3)PR(2,1)[| _ PR(2,3)PR(2,1)] - lPT(B’Z),

N~ +_ R(l,2)+ T(Z,l)PR(2,3)[I _ PR(Z,l)PR(Z,S)] - lPT(l’Z),

-——_72r _ 2,3 2,1)1-1 3,2
and write the displacement vector associated with a plane N~ = =TI —PREIPRED)1PTE2), (AS)
elastic wavgit can be longitudinal or transvensimcident on
the plate, as follows: wherel is the 3x 3 unit matrix andP is a diagonal matrix,

with elements Py;=exp(|qz]d), P2o=Pss=exp(|di,d),
) s . , ) which describes the propagation of a plane wave in the plate.
Uisn(f):_z [uin] exdiay, - (r—=Ag)le ., (A1) The 3x3 matricesT("") andRU-") describe the transmis-
bt sion and reflection of an elastic plane wave incident from
mediumj on the interface between mediandj’; they are
obtained by imposing the boundary conditions of continuity
) A of the displacement vector and of the surface traction at the
=1) has only one componerit,=1, and th/erel denotes the  interface. For ,i")=(1,2),(2,3) (incidence from the lejt
radial unit vector along the direction me ; for v'=t the  the nonzero elements of these matrices are found by solving
nonzero components of the incident wave are twe;,2 or 3 the following three systems of linear equations:

wheres’=+(—) corresponds to a wave incident from the
left (right). We note that a longitudinal incident wave'(

024303-5



SAINIDOU, STEFANOU, PSAROBAS, AND MODINOS

PHYSICAL REVIEW B6, 024303 (2002

—sing; COS6y; siné; COSby;:
cosé; sinéy cosé; —sing,;, R sing,
RY;1) cosb;
) Ci pir [ Cijs Ci pir Ciir C 21 - 1j
sin26; ——cos 26, —'( 0 ) —Lsin26,, —- =L Zlcos 26, ain | =1 sinze. |+ (A®
tj Pi\ Gl ¢y Pj Ci Gy T lj
T —COS 20
. . . 21
Cij . pj CI] pjr Cyjr .
COosS 20y  —sin 26, - — 0S 26, —— ——sin 26,
Cij Pi C'J P Ci
Sin 6 cosd; Sin 6 Cosb);
i i (.") .
Cost; sing; Cosb; S RY5 —sin,
R{1" Cosb;
r C ir Cyir 12 tj
sin26;  —cos20,; - —Lsin 26, —p—JI—JCOSZHW iin | = sinza. | (A7)
t] j Clj pJ CIj T2]2’l Sin 0t]
T COS 20
tj I Ctj pJ' Ctj’ Ctj’ 12
—COS20y;  —sin 26; €0s 20, —— —— ——sin26;;,
lj i Cij Pj Ci Cijr
|
1 -1 P sin 6y, COs6 CoSb,;:
R -1 ! ! ! RU;")
COSb; p—’—cosﬁ T ~costy)’ — COS 20 ﬁsin 26, 0 -
! pj Ci v 33 E (A8) ! Cj 1 R(lJZ'J,)
. Ci i1 Crivr i’
Cij P Gy
where  sig,;=|qjlc,j/w, co0sf,=+(1-sir?,) % For _sing.
(j,i"=(2,1), (3 2) (incidence from the right the corre- U
sponding transmission and reflection matrices are also deter- =| cos 2% (A10)
mined by Eqs(A6)—(A8) with the difference that the non- sin 26y,
diagonal elements offi") and RU4") appear in these
equations with the opposite sign. RUJD—1 (A11)
3=

If one, or more, of the media under consideration are
fluid, where transverse waves cannot exist, the nonzero eléer an
ments of T4:1") and RU-I") entering Eq.(A5) are evaluated dium;
by imposing the boundary conditions at the interfaces appro-
priate in this case. In this way, instead of EG&6)—(A8), we

interface between a soli&ft) and a fluid(right) me-

obtain cos6; cosbj: —sin Oy
1! C i’
1 A s 2, P G n 26,
pi Cij pj Cij
cosé; Sin 0y coséj: . "
) Clj Rg-jil ) 0 C—lSIH 29”/ COos 20”-/
sin26;; — —cos 26;; 0 Qi 1j’
€ Rai R(:I")
o [ cosé
Cij . pjr Cyjr TG0 1 lj
COS 20;; —Sin 26;; - 11
g ! pj Cij x| T = 1 (A12)
0030” T(2]il ") 0
=| sin2g; (A9)

—COS 20y dium, and
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cosé; coséj: RUi") —dl(dr) from A_(A_). Referred to these origins the trans-
oo R cosd; mission and reflection matrix elements of the homogeneous
sing; - p—'sin 6 |\ T —sing; plate become
j

(AL3) ngi;g’i’:599'NiT’+eXn:i(ng:3'dr+K;’V’:1'd|)]’

for an interface between two fluid media.
Since our method of calculatiéris meant to deal with Qgi;g,i,=5gg,Nfi’,_ex;ii(ng;3-dr—K;V,;g-dr)],

composite layered structures of phononic crystals, where a

plate or an interface constitutes a component of a unit slice Qgi',g,i,: ng,Nijfexp[—i(Kgy.l. d— K;w-l'dﬂ],

which in general contains, in addition, planes of spheres of ’ ' ’

given 2D periodicity, it is convenient to write the parallel

component of the wave vector in the fop=k;+g, where

g is a certain reciprocal vector, and then express the waves

on the left (right) of the plate with respect to an origin whereK;;j=k”+gi[(w/cyj)2—(kH+g)2]1’2éZ.

Qq-grir = gy Ny X =i (Kg,q-di+ Ky, 5-0p)],
(A14)
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