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Scattering of elastic waves by a periodic monolayer of spheres
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Using the multiple-scattering formalism we developed in a previous work, and extended here, we analyze
available experimental data on the transmission of longitudinal waves in the system: water-slab of polyester-
water, the slab of polyester having a plane of glass or lead or steel spheres in the middle. The theoretical results
reproduce accurately the measured spectra and provide a transparent physical picture of the underlying pro-
cesses. In particular, the dips in the observed spectra are attributed to multiple wave scattering between the
spheres, and are related to hybridization-induced gaps in the frequency band structure of the longitudinal
elastic modes of a corresponding infinite crystal.
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I. INTRODUCTION

The propagation of elastic waves in inhomogeneous
dia has attracted a lot of attention over the years as it rel
to many and varied disciplines ranging from geophysics
mechanical engineering, and to diverse applications suc
the quantitative nondestructive evaluation, the design of
trasound absorptive materials, etc. More recently there
been growing interest in a special type of inhomogene
materials, the so-called phononic crystals: the elastic c
stants vary periodically in space. It has been pointed out
in such systems the possibility exists of absolute spec
gaps, i.e., regions of frequency over which elastic waves c
not propagate in the material, which in turn promises int
esting applications such as nonabsorbing mirrors
vibration-free cavities. Phononic crystals are also interes
from a basic physics point of view, for example, in relati
to Anderson localization of classical waves: one expects
the introduction of a certain amount of disorder will lead
the localization of the vibrational modes near the edges
spectral gap. Numerous studies of phononic crystals in o
two, and three dimensions have been reported in the last
years~see, e.g., Ref. 1, and references therein!. However, the
intermediate structure, an elastic matrix containing a sin
layer of inclusions, has received considerably less attent

We have developed a formalism for the calculation of
frequency band structure of phononic crystals consisting
nonoverlapping spheres in a host medium of different ela
constants.2 The formalism allows one to also calculate t
transmission, reflection, and absorption coefficients of
elastic plane wave incident, at any angle, on a slab of
material and, therefore, it can describe the physical situa
in an actual transmission experiment. The slab may con
of a single plane of spheres@a two-dimensional~2D! periodic
array of spheres corresponding to a given crystallograp
plane# or a stack of such planes. We have already applied
method to some cases of practical interest.3–5 In this paper
we use it to study the transmission of elastic waves thro
periodic monolayers of spheres. We compare our results
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relevant experimental data and provide a consistent inter
tation of the transmission spectra of these systems.

II. ELASTODYNAMIC RESPONSE OF A PLANE
OF SPHERES

The present paper is motivated to a large degree by s
recent work of Kinra and co-workers6–9 concerning the scat
tering of elastic waves by a plane of nonoverlapping sphe
of radiusS, centered on the sites of a 2D lattice. The plane
spheres is placed in the middle of a solid slab of polyes
(r51220 kg/m3, cl52490 m/sec,ct51180 m/sec), 7 cm
thick, which is immersed in water (rw51000 kg/m3,
cwl51480 m/sec, cwt50). The spheres themselves a
made of glass (rs52490 kg/m3, csl55660 m/sec, cst
53300 m/sec), lead (rs511300 kg/m3, csl52210 m/sec,
cst5860 m/sec), or steel (rs57800 kg/m3, csl55940
m/sec, cst53200 m/sec). Absorption is not negligible i
polyester (a l50.17 nepers/cm at 1 MHz,a t50.35
nepers/cm at 1 MHz! and in lead (asl50.13 nepers/cm at 1
MHz!; this is taken into account in our calculations unle
otherwise stated. An elastic wave in water~only longitudinal
waves exist in water! of given angular frequencyv is inci-
dent normally on the polyester slab containing the plane
spheres, and is partly reflected, partly transmitted and pa
absorbed by it. The corresponding transmittance defined
usual, as the ratio of transmitted over incident flux of ener
is denoted byT. Similarly a wave in water, of the sam
frequency, incident normally on the slab of polyester wh
there are no spheres of any kind in it, will be partly tran
mitted, reflected and absorbed by it. We denote the co
sponding transmittance byT0, and refer to the ratioT/T0 as
the normalized transmittance, which is the quantity measu
in the experiments.6–9 Typical experimental results ar
shown in Fig. 1, by the squares, for glass, lead, and s
spheres. In all cases, the spheres are centered on a s
lattice of lattice constanta0; therefore a larger lattice con
stant corresponds to a lower coverage by the spheres. Sim
results were obtained for a hexagonal lattice as
©2002 The American Physical Society03-1
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the square one. The most striking feature of the experime
curves is the pronounced dip belowV t5va0 /(2pct)51.
This dip is deeper for the lead and steel spheres compare
the glass spheres, and becomes more pronounced by inc
ing the coverage. There are also some additional dips, s
lower, at higher frequencies. The solid curves in Fig. 1
theoretical curves obtained using our formalism.2 This for-
malism takes fully into account the multiple scattering of t
elastic wave by the 2D array of spheres. However, in Re
it was assumed that the host medium~polyester in the
present case! extends to infinity on either side of the plane
spheres. In the experiments6–9 the slab of polyester contain
ing the spheres is immersed, as we have already state
water, and therefore the formalism of Ref. 2 needs to
extended to take into account the scattering of the ela
wave at the two polyester-water interfaces. The way to
this is summarized in the Appendix. As can be seen from F
1 our theoretical results are in very good agreement with
experimental data.

We note in passing that the extended formalism now
place can be used to study other problems of interest, e.g
the acoustic microscopy of liquid-loaded surfaces of perio
structures.10 Multiple reflections between the slab-water i
terfaces lead to the periodiclike oscillations, so obvious
the theoretical curves. The period of these oscillatio
known as Fabry-Perot-type oscillations, is inversely prop
tional to the thickness of the polyester slab, and it is pra
cally the same inT0 for the homogeneous polyester slab a
in T for the one containing the spheres. These oscillati
survive very well in the theoretical normalized transmittan
T/T0, but they do not show so clearly in the experimen
curves of Fig. 1, because of the spectral resolution of
experiments.6–9

We now turn our attention to the dips in the normaliz
transmittance shown in Fig. 1, which are so nicely rep
duced by the theory. They are of course due to the mult
scattering of the elastic wave by the plane of spheres. Ma

FIG. 1. Normalized transmittance for a longitudinal elastic wa
incident normally on a square lattice of~a! glass spheres (S
50.56 mm, a052.63 mm), ~b! lead spheres (S50.60 mm, a0

52.63 mm),~c! steel spheres (S50.585 mm,a053.95 mm),~d!
steel spheres (S50.585 mm,a052.63 mm), in the middle of a
polyester slab, 7 cm thick, immersed in water. The theoretical
sults are shown by the solid lines and the experimental data by
squares.
02430
tal

to
as-

al-
e

2

in
e
ic
o
.
e

n
to
c

n
,

r-
i-

s
e
l
e

-
le
ov

et al.9 presented an approximate theoretical treatment
multiple scattering, assuming that spherical waves witl
.1 do not scatter significantly by any single sphere of
plane of spheres. This, and to a lesser degree other app
mations in their approach concerning the determination
the total incident wave on a given sphere, means that t
treatment breaks down, as they themselves point out, w
the coverage by the spheresAf5pS2/a0

2, exceeds a certain
value. In terms of the formalism of Ref. 2, their treatme
amounts essentially to keeping only terms withl<1 in the
spherical-wave expansions of the elastic field. The in
equacy of this approximation is demonstrated in Fig. 2 wh
shows the normalized transmittance for two cases, one
relatively low coverage (Af50.07), where convergence i
obtained within the above approximation; and one of h
coverage (Af50.79, which corresponds to touching sphere!,
where one needs to keep terms up to and includingl max56 to
obtain convergence. We should say, however, that fo
qualitative understanding of the physics involved in t
present case, the scattering ofl 51 waves is sufficient, and
this is because the scattering of longitudinal and transve
waves by a glass, lead, or steel sphere in polyester, is do
nated byl 51 waves over the considered frequency rang

It has been suggested7–9 that the abovementioned dips i
the transmittance are somehow related to the so-called W
anomalies,11 which in turn relate to threshold frequencie
which arise as follows. The elastic field outside the sphe
~in polyester! can be written as a sum of plane waves w
wave vectors2

Kgn
6 5ki1g6@qn

22~ki1g!2#1/2êz , ~1!

-
he FIG. 2. Normalized transmittance for a longitudinal elastic wa
incident normally on a square lattice@~a! a053.95 mm (Af

50.07), ~b! a051.17 mm (Af50.79)# of steel spheres of radiu
S50.585 mm in the middle of a polyester slab, 7 cm thick, im
mersed in water, calculated usingl max51 ~thin lines! and l max56
~thick lines!.
3-2
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whereki is a reduced wave vector within the surface Br
louin zone corresponding to the plane of spheres (xy plane!,
g are the 2D reciprocal vectors corresponding to the gi
lattice, and êz is the unit vector normal to the plane o
spheres;qn5ql5v/cl for a longitudinal wave andqn5qt
5v/ct for a transverse wave. Our calculations are done
ki50, which relates to normal incidence. In this case, a
of g vectors of the same magnitudeugu.qn define a corre-
sponding set of evanescent waves, which means that the
tribution of these beams to the elastic field decays expon
tially with the distance from the plane of the spheres.
v, and thereforeqn , increases, we reach a threshold fr
quency above which this set of beams become propaga
(ugu,qn). One expects12 and finds some structure in th
transmittance associated with these threshold frequen
~Wood anomalies! as shown in Fig. 3. We note, however, th
to obtain the thick curves of this figure, we have assum
that the medium~polyester! in which the plane of spheres i
embedded extends to infinity on either side of this plane
that it is not absorbing. In this case~unlike in the experi-
ments of Refs. 6–9! the incident wave may be longitudina
or transverse. The abovementioned threshold frequencie
indicated by the vertical lines in Fig. 3; one, atV t52.11,
refers to a longitudinal beam, all the rest refer to transve
beams. It is evident that the minor structure associated w
the above threshold frequencies is different in nature fr
the considerable dips in the transmission spectrum be
V t51 and from the shallower dips at higher frequenci
when absorption is taken into account, any minor struct
associated with Wood anomalies is smoothed out to a v
large degree~see Fig. 3!.

In Fig. 3 we show also, by the thin line, our results for t
actual experimental setup: a layer of steel spheres in
middle of a polyester slab immersed in water@the same as in
Fig. 1~d!#. Comparison of the thick line~a! with the thin line
of Fig. 3 shows that the main dip atV t50.79 is not con-
nected with or affected in any way by multiple reflections
the polyester-water interfaces or by absorption. Therefore

FIG. 3. Transmittance for a longitudinal@thick line ~a!# and a
transverse@thick line ~b!# elastic wave incident normally on
square lattice (a052.63 mm) of steel spheres (S50.585 mm) em-
bedded in an infinite, nonabsorbing polyester matrix. The differ
vertical lines on the abscissa show the threshold frequencies
which qn5ugu for sets of g vectors of increasing magnitude;n
5 l ,t. The thin line refers to the normalized transmittance (T/T0)
and is the same as in Fig. 1~d!.
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our analysis of the physics of this dip, we can assume
the host medium of polyester extends to infinity and that i
not absorbing.

III. PHYSICAL ORIGIN OF THE DIPS
IN THE TRANSMISSION SPECTRA

We believe that the physical reason for the observed d
in the transmission spectra results from the multiple scat
ing between the spheres of the plane, and is more akin to
way hybridization gaps open up in a bulk crystal. To beg
with, we calculate~thick lines in Figs. 4! the transmittanceT
of a plane elastic wave~longitudinal or transverse! incident
normally on a slab consisting ofN51,2,8 planes of stee
spheres of radiusS50.585 mm. The planes are arrang
relative to each other as successive~001! planes of a fcc
crystal of lattice constanta5A2a053.72 mm. In all cases
the host medium which extends to infinity on either side
the slab is nonabsorbing polyester. In the same figures
show by thin lines the transmittance for an effective hom
geneous slab, of the appropriate thicknessD5Na/2, in poly-
ester, using the effective-medium approximation of Gau
aurd and Wertman13 in the long wavelength limit (v→0).
The effective-medium results show quite clearly the Fab
Perot-type oscillations; one can see that the period of th
oscillations is inversely proportional to the thickness of t
slab. But the effective-medium approximation does not
produce the observed dips we are interested in.

One can see that the dips in the transmittance of the o
plane structure develop into practically forbidden gaps~the

t
or

FIG. 4. Transmittance for a longitudinal~a! and a transverse~b!
elastic wave incident normally on a slab ofN layers of a fcc crystal
(a53.72 mm), parallel to the~001! surface, of steel spheres (S
50.585 mm) in an infinite, nonabsorbing polyester matrix. T
thin lines show the results of the effective-medium approximati
3-3



F

ng
a
a
se

no

se
2

ic
ig
p
a
g
ie

e

s

re
en
h
er

e
f

c
o
c
at

itu
e

it

hem
re-

he

ve
h a

the
fre-
e-
uld
een
gat-
es
the

tual

n
s in

sult
to

one
es
ave
ure
use

We
ns-
t to

tion
the
t
it-

hich
en

es in
ela-

th

s

ed
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elastic wave does not penetrate the slab! as the number of
planes increases. To make the point clearer we present in
5 the frequency band structure normal to the~001! surface
for the ~infinite! fcc crystal of steel spheres in nonabsorbi
polyester. The thin solid lines in Fig. 5 denote longitudin
bands, while the thick solid lines are transverse bands,
will couple with, respectively, longitudinal and transver
elastic waves incident normally on a~001! slab of the mate-
rial. The dotted lines are deaf bands which practically do
couple with elastic waves incident normally on the slab~for
a clarification of what is meant by longitudinal, transver
and deaf bands in phononic crystals see Sec. VII of Ref.!.

Looking at the transmittance of transverse waves@Figs.
4~b!# we can readily see that the lower frequency dip, wh
appears in the transmission spectra of slabs two and e
layers thick aboutV t50.68, corresponds to a Bragg ga
opening up, about the same frequency, between the first
second transverse bands of Fig. 5. We note that a similar
for longitudinal waves appears at much higher frequenc
~outside the region considered in Figs. 4! and, therefore, one
does not see the corresponding dip in the transmittanc
longitudinal waves in Fig. 4~a!.

The dips in the transmittance of longitudinal and tran
verse waves through the monolayer of steel spheres~Fig. 4,
N51) correspond to hybridization-induced gaps in the f
quency bands of these waves opening up about the frequ
positions of the above dips, as shown in Fig. 5. T
hybridization-induced gap in the longitudinal bands is p
haps easier to explain. We have established14,16 that when a
single plane of steel spheres is placed in polyester there
ists, atV t50.81, a virtual bound state~a resonant state o
finite lifetime! of the longitudinal displacement field, forki
50, which peaks about the said plane but falls to a mu
lower value away from it. Therefore, virtual bound states
neighbor planes of spheres will couple weakly with ea
other, resulting in a relatively flat band as shown schem
cally in Fig. 6 ~we always assume thatki50). On the same
figure we also show the band corresponding to the long
dinal displacement field in the homogeneous effective m
dium that one would obtain in the absence of interaction w

FIG. 5. The phononic frequency band structure normal to
~001! surface of a fcc crystal (a53.72 mm) of steel spheres (S
50.585 mm) in nonabsorbing polyester. The thin~thick! solid
lines refer to longitudinal~transverse! bands and the dotted line
refer to deaf bands.
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the above flat band. Because an interaction between t
does exist, they hybridize and we obtain the bands rep
sented by the solid lines in Fig. 6, which are similar to t
actual bands~thin solid lines in Fig. 5!. Naturally the modes
at the top of the lower band~below the gap! and those at the
bottom of the higher band~above the gap! are hybridized
modes in the above sense. An incident longitudinal wa
excites these bands, leading to finite transmission throug
finite slab of the material, as shown in Fig. 4~a!. By the same
token, the hybridization-induced gap is responsible for
dips in the transmission spectra at the corresponding
quencies@see Fig. 4~a!#. That the mechanism we have d
scribed is effective even for a single plane of spheres, sho
not surprise; in the present case, it is the interaction betw
the virtual bound state on the single plane and the propa
ing modes in the host effective medium which determin
the physics of the situation. As the coverage increases,
stronger interaction between the spheres results in vir
bound states on the plane of larger frequency width~shorter
lifetime! which, in turn, leads to more effective hybridizatio
with the host medium and hence to more pronounced dip
the transmission spectra@see Figs. 1~c!,1~d!#.

One can interpret the transverse bands of Fig. 5 as a re
of hybridization between a wide band corresponding
propagation in an effective host medium and more than
relatively narrow bands originating from virtual bound stat
on the planes of spheres, in a manner similar to that we h
described for the longitudinal bands. The detailed struct
of the shown hybridized bands is more complicated beca
of the greater number of unhybridized bands involved.
shall not be concerned with a detailed analysis of the tra
verse bands, especially since they are not directly relevan
the experimental data. Whatever the physical interpreta
of the origin of these bands, they are consistent with
transmission spectra of Fig. 4~b!; for example, the gap abou
V t50.94 in Fig. 5 leads to the observed dip in the transm
tance about the same frequency in Fig. 4~b!.

Phenomena analogous to the ones described here, w
can be interpreted on the basis of hybridization betwe
states localized on planes of spheres and extended stat
an effective host medium, have also been discussed in r

e FIG. 6. Schematic representation of a hybridization-induc
gap. The solid~dotted! lines show the hybridized~unhybridized!
bands.
3-4
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SCATTERING OF ELASTIC WAVES BY A PERIODIC . . . PHYSICAL REVIEW B 66, 024303 ~2002!
tion to metallodielectric photonic crystals.15 Another feature,
common to both situations, is the crowding of the Fab
Perot-type oscillations in the vicinity of the gap, show
clearly in Figs. 4~a!, 4~b! for N58, which is due to the
flattening of the bands near the edges of the gap.15
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APPENDIX

In this appendix we derive explicit expressions for t
transmission and reflection matrices which describe the s
tering of an elastic plane wave, of angular frequencyv, in-
cident on a homogeneous and isotropic plate, of thicknesd,
sandwiched between two semi-infinite homogeneous
isotropic media. Though similar expressions can be foun
the literature, we thought it necessary to include this app
dix to provide the formulas in a form compatible to the fo
malism we have developed in Ref. 2. The plate is norma
thez axis, the direction of which~left to right! is specified by
the unit vectorêz . The elastic properties of the different m
dia j ( j 51,2,3 from left to right!, are characterized by th
mass densitiesr j and the longitudinal and transverse prop
gation velocitiescn j , wheren5 l andt, respectively. We note
that the final expressions for the transmission and reflec
matrices, given below, remain valid whend50, in which
case they describe the transmission and reflection at an i
face between the two semi-infinite media (j 51 and j 53).
In this case, the actual values of the elastic constants of
plate (j 52) are irrelevant.

Taking advantage of the translation invariance paralle
the interfaces, atz50 andz5d, we write the wave vector o
a plane wave in mediumj asqn j

6 5qi6@(v/cn j )
22qi

2#1/2 êz ,
whereqi is the component of the wave vector parallel to t
interfaces and the1(2) sign denotes propagation to th
positive~negative! z direction. We refer the waves on the le
side of the plate to an originA15(0,0,0) and the waves o
the right side of the plate to an originA25(0,0,d).

We assume, to begin with, that all three media are so
and write the displacement vector associated with a pl
elastic wave~it can be longitudinal or transverse! incident on
the plate, as follows:

uin
s8~r !5 (

i 851

3

@uin# i 8
s8exp@ iqn8 j

s8
•~r2As8!#êi 8 , ~A1!

wheres851(2) corresponds to a wave incident from th
left ~right!. We note that a longitudinal incident wave (n8

5 l ) has only one component,i 851, and thenê1 denotes the

radial unit vector along the direction ofql j
s8 ; for n85t the

nonzero components of the incident wave are two,i 852 or 3
02430
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(p or s polarized wave!, and thenê2 , ê3 denote the polar and
azimuthal unit vectors, respectively, which are orthogona

qt j
s8 . We can now write the corresponding transmitted a

reflected waves in the form

utr
s8~r !5(

i 51

3

@utr # i
s8exp@ iqn j 8

s8
•~r2A2s8!#êi ~A2!

and

ur f
2s8~r !5(

i 51

3

@ur f # i
2s8exp@ iqn j

2s8
•~r2As8!#êi , ~A3!

respectively. The amplitudes of the transmitted and reflec
waves are related to that of the incident wave through
equations

@utr # i
s85 (

i 851

3

Nii 8
s8s8@uin# i 8

s8 ,

@ur f # i
2s85 (

i 851

3

Nii 8
2s8s8@uin# i 8

s8 . ~A4!

Allowing for multiple reflections at the interfaces, one ca
show that the matricesNss8 which describe the transmissio
through and the reflection by the plate can be written in
following form:

N115T(2,3)@ I2PR(2,1)PR(2,3)#21PT(1,2),

N125R(3,2)1T(2,3)PR(2,1)@ I2PR(2,3)PR(2,1)#21PT(3,2),

N215R(1,2)1T(2,1)PR(2,3)@ I2PR(2,1)PR(2,3)#21PT(1,2),

N225T(2,1)@ I2PR(2,3)PR(2,1)#21PT(3,2), ~A5!

whereI is the 333 unit matrix andP is a diagonal matrix,
with elements P115exp(iuql2zud), P225P335exp(iuqt2zud),
which describes the propagation of a plane wave in the pl
The 333 matricesT( j , j 8) and R( j , j 8) describe the transmis
sion and reflection of an elastic plane wave incident fro
mediumj on the interface between mediaj and j 8; they are
obtained by imposing the boundary conditions of continu
of the displacement vector and of the surface traction at
interface. For (j , j 8)5(1,2),(2,3) ~incidence from the left!
the nonzero elements of these matrices are found by sol
the following three systems of linear equations:
3-5
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cl j

cos 2u t j 8

r j 8
r j

ct j 8
cl j

sin 2u t j 8

S sinu t j cosu l j 2sinu t j 8 cosu l j 8
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r j 8
r j

cl j 8
ct j
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r j 8
r j

ct j 8
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r j

ct j 8
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ct j 8

cl j 8

sin 2u l j 8

D S R22
( j , j 8)

R12
( j , j 8)

T22
( j , j 8)

T12
( j , j 8)

D 5S 2sinu t j

cosu t j

sin 2u t j

cos 2u t j

D , ~A7!
et
-
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e

r

S 1 21

cosu t j
r j 8
r j

ct j 8
ct j

cosu t j 8
D S R33

( j , j 8)

T33
( j , j 8) D 5S 21

cosu t j
D ,

~A8!

where sinunj5uqiucn j /v, cosunj51(12sin2unj)
1/2. For

( j , j 8)5(2,1),(3,2) ~incidence from the right! the corre-
sponding transmission and reflection matrices are also d
mined by Eqs.~A6!–~A8! with the difference that the non

diagonal elements ofT( j , j 8) and R( j , j 8) appear in these
equations with the opposite sign.

If one, or more, of the media under consideration
fluid, where transverse waves cannot exist, the nonzero
ments ofT( j , j 8) and R( j , j 8) entering Eq.~A5! are evaluated
by imposing the boundary conditions at the interfaces app
priate in this case. In this way, instead of Eqs.~A6!–~A8!, we
obtain

S cosu l j sinu t j cosu l j 8

sin 2u l j 2
cl j

ct j
cos 2u t j 0

cos 2u t j
ct j

cl j
sin 2u t j 2

r j 8
r j

cl j 8
cl j

D S R11
( j , j 8)

R21
( j , j 8)

T11
( j , j 8)

D
5S cosu l j

sin 2u l j

2cos 2u t j

D , ~A9!
02430
er-

e
le-

o-

S sinu t j cosu l j cosu l j 8

2cos 2u t j
ct j

cl j
sin 2u l j 0

sin 2u t j
cl j

ct j
cos 2u t j 2

r j 8
r j

cl j 8
ct j

D S R22
( j , j 8)

R12
( j , j 8)

T12
( j , j 8)

D
5S 2sinu t j

cos 2u t j

sin 2u t j

D , ~A10!

R33
( j , j 8)51 ~A11!

for an interface between a solid~left! and a fluid~right! me-
dium;

S cosu l j cosu l j 8 2sinu t j 8

21
r j 8
r j

cl j 8
cl j

cos 2u t j 8 2
r j 8
r j

ct j 8
cl j

sin 2u t j 8

0
ct j 8

cl j 8

sin 2u l j 8
cos 2u t j 8

D
3S R11

( j , j 8)

T11
( j , j 8)

T21
( j , j 8)

D 5S cosu l j

1

0
D ~A12!

for an interface between a fluid~left! and a solid~right! me-
dium, and
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S cosu l j cosu l j 8

sinu l j 2
r j 8
r j

sinu l j 8
D S R11

( j , j 8)

T11
( j , j 8) D 5S cosu l j

2sinu l j
D
~A13!

for an interface between two fluid media.
Since our method of calculation2 is meant to deal with

composite layered structures of phononic crystals, wher
plate or an interface constitutes a component of a unit s
which in general contains, in addition, planes of spheres
given 2D periodicity, it is convenient to write the parall
component of the wave vector in the formqi5ki1g, where
g is a certain reciprocal vector, and then express the wa
on the left ~right! of the plate with respect to an origin
s

y

-

l

02430
a
e

of

es

2dl~dr! from A1(A2). Referred to these origins the tran
mission and reflection matrix elements of the homogene
plate become

Qgi ;g8 i 8
I

5dgg8Nii 8
11exp@ i ~Kgn;3

1
•dr1Kg8n8;1

1
•dl !#,

Qgi ;g8 i 8
II

5dgg8Nii 8
12exp@ i ~Kgn;3

1
•dr2Kg8n8;3

2
•dr !#,

Qgi ;g8 i 8
III

5dgg8Nii 8
21exp@2 i ~Kgn;1

2
•dl2Kg8n8;1

1
•dl !#,

Qgi ;g8 i 8
IV

5dgg8Nii 8
22exp@2 i ~Kgn;1

2
•dl1Kg8n8;3

2
•dr !#,

~A14!

whereKgn; j
6 5ki1g6@(v/cn j )

22(ki1g)2#1/2 êz .
f
of
ost

.S.
*Also at Section of Solid State Physics, University of Athen
Panepistimioupolis GR-157 84, Athens, Greece.
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