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Pressure instability of bcc iron
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First-principles total-energy calculations witkiEN97 on ferromagnetic iron in body-centered tetragonal
structure under hydrostatic pressure have shown that the body-centeredlmdiphase exists up to 1500
kbar of pressure. At that pressure a shear constant vanishes and the phase becomes unstable. A body-centered
tetragonal(bct) phase is shown to come into existence at 1300 kbar and becomes stable at 1825 kbar and
above. The minima of a free energy evaluated along the epitaxial Bain path generalized to finite pressure give
the tetragonal phases of iron under pressure. Second derivatives of the free energy at the minima define elastic
constants of both the bcc and bct phases as functions of pressure, which are appropriate to determine stability.
These elastic constants are the same functions of pressure as the usual elastic constants computed from
stress-strain relations under pressure. Minima of tetragonal energies calculated at constant volume are shown to
be unreliable for determining stability of a phase.
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[. INTRODUCTION calculation procedures and shows why the minimaGof
along the EBP give the equilibrium states at firpteSection
Under hydrostatic pressure the ferromagnéidl) bcc 11l gives the results of the calculations &f and the elastic

ground state of Fe has decreased magnetization and deenstants of the bcc and bct statespatalues up to 2000
creased stability. At the stability-limit pressupe this phase kbar. Section IV discusses the pressure dependence of elastic
of Fe becomes unstable. In previous work, the valugof constants, why constant volume calculations fail to deter-
has been estimatteds 1000 kbar and asbove 2000 kbar. mine stability, the relation of fcc Fe to bce Fe, and the status
This work fixes the value gb at 1500 kbar by evaluating as of the bct phase.

a function of pressurep the shear constanC’'=(cq;

—C12)/2 that goes to zero gi. Il. PROCEDURES
The procedure used to evalua@E(p) treats FM Fe in ] )

shows that there is a bee equilibrium structure at pressures (> €quivalently,c/a and V=ca®/2 per atom, the total en-

to ps. The equilibrium state at eagh is found from the €rgy of the body-centered tetragonal latti€a,c) can be
epitaxial Bain path(EBP) of FM Fe, which was previously calculated from first principles. In addition to the energy, the
used to find the equilibrium statesga 0 of tetragonal Fe in  Stresses in the basal plane

various magnetic phasés:or this work the EBP, which is a

special path through tetragonal states that goes through all P zi JE(a,c) 1)
the equilibrium states, has been generalized to fimite 1772 ac da |

The calculation of the EBP finds the total energyin
each tetragonal state on the path. g0 the equilibrium and out of the basal plane
states of the magnetic phases of Fe are given by the minima
of E. However, at finitep the phases are found from the _2|[dE o
minima of a free energyat zero temperatuyeG=E+pV 73732\ ac a &

evaluated along the EBP, whefds the energy per atom and

V is the volume per atom. The elastic constadtsandc,,at  can be calculated.

eachp are defined as second derivatives@®at the minima The path on the tetragonal plane called the EBP is found

of G taken with respect to particular shear strains. The presat p=0 for eacha by using Eq.(2) and the conditiono3

sure dependences 6f andc,, are shown to be the same as =0. Along the EBP the function&®8"(a) andVE&"(a) are

the pressure dependences calculated from stress-strain rethen known, and by constructi¢@E(a,c)/dc],=0 at every

tions under pressure. point of the EBP. Then at a minimum &t2(a), coordi-
The calculations ofs for increasingp show that before natesa,, ¢y, the derivative ofE(a,c) vanishes along the

the pressure reachgg, where the bcc minimum o van-  EBP and also along. Thus the two components of the gra-

ishes, a new noncubic tetragonal minimum @f forms,  dient ofE(a,c) on the tetragonal plane must both vanish and

which persists for p>ps and becomes stable ap ay, Cp give a tetragonal energy minimum and corresponds to

=1825 kbar. an equilibrium state in which the stresses given by E#s.
The paper is organized as follows. Section Il describes thand (2) vanish?
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To generalize the EBP to finife requires two changes in
the procedure used pt=0. The first change is to use EQ)
to find thec at eacha at which 3= —p. This procedure
finds the EBP atp and the functionsEf®"(a;p) and
VEBR(@;p). The notation indicates thatis a given param-
eter, andEFB” and VEBP are functions of (or c/a) alone at
thatp.

The second change is to define a free energy afptkeatd

at zero temperatuyewhich is also the enthalpy at zero tem-

perature,
G(a,c;p)=E(a,c)+pV(a,c), ()
and look for minima, coordinates,, cq, of
G®®"(a;p)=E"®"(a;p)+pV=""(a;p). 4)
At ay, cg using Eq.(2) andp=—o3
dG(a,c;p) B JE(a,c) N dV(a,c)
ac 1 ac Pl ac
ao ,CO ao 'CO aO ,Co
5 ag
=03(a,Co) 5 03(30100)7:0-
)

Since the derivative 06(a,c;p) atay, ¢ also vanishes
along the EBP,ay, cy give a tetragonal minimum of
G(a,c;p) by the same argument used fo= 0, and

dG(a,c;p) dG(a,c;p)
(“&?‘J%%:p—ﬁ%——) =0 ®

ag,Co

Furthermore ay, cq the in-plane stresses; and o, are
given by, using Egs(1), (3), and(6),

1 JE(a,c) 1 dG(a,c;p)
917927500\ oa W o ACo Ja .
0°~0 0'~0
p (dV(a,c) _ -
Tags| e |, oPTP "
0Co a9

Thus atay, ¢y the system is under hydrostatic presspyre
andG(ag,Cq;p) is a tetragonal minimum o&(a,c;p) and

an equilibrium state under pressysgi.e., no other stresses
than hydrostatiqp are required to maintain the state. This

equilibrium state will be stable iG increases for all small
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vV 6
52G:§ij2:1 Cijsigj' (9)

The stability conditions on the;; express the positive
definiteness of Eq(9) for all strains, and will be given ex-
plicitly for tetragonal and cubic symmetry below. The pres-
sure at which bcc Fe becomes unstable will be the pressure at
which Eq.(9) fails to be positive definite.

The elastic constants defined by E8). differ from elastic
constants defined by the corresponding derivatives(af c)
atag,Cq by the contribution of th@V term in Eq.(3). Letc;;
be the elastic constants fromdefined by

1 (aZE(a,c) 10

C:=—
g V (98”98]

a3,Co

Thec;; are the usual elastic constantspat 0 andag,Co
give the equilibrium state go=0, but at finitep the point
a9,Co is not at a minimum oE(a,c).

Then

2 #(pV)
Co daj

=C11

2 (0')26(a11a2 1C1p)>
- .22 =Ci1,

Cii=—
¢, FEY e
0'~0

11)

whereV=a,a,c/2 and only one side of the tetragonal base is
strained. Similarly

1 (aZG(a,c;p)

C1yt Cio=— 2 ) =CytCiptp, (12
Co Ja 2.6
2cy [ 9*G(a,c;p) —
C33= 2\ ez =C3z3, (13
0 ay,Cq
2 [d°G(a,c,01,;p) P
Co6=~ .2 262 =Ce6™ 5> (14
Cog 12 ag,Co. /2

where to second order ¥, V= (ca?/2)(1— 50%2/4); simi-
larly

2 [ 9°G(a,c,b,3;p)
Cy4= Cee=
447 Cos™ ¢ 2 262, o
0:C0 ™
_ P _ p
=Caa— 5 =Cs5 5 (15

strains, not just strains that preserve tetragonal symmetrfthen c,;;=c5+p can be found from the curvature of the
The stability can be tested by well-known algebraic condi-EBP ata,

tions on elastic constantsee, for example, Ref. 5, p. 142
defined by

1 (aZG(a,c;p)

Cij=qg 7,95, )a c,|,J=l to 6. (8
0'~0

\%

Then the variation ofs around the extremurag,c, for

small strains is a quadratic function of the strains given by

,_1[d’G™a;p) Cls
Y' = C_ T =C11+ Cio— C_ (16)
0 ag 33
For a cubic structure;zs=cy;, C13=Cqo, and
Cq1t+2Cqp)(Ciy—C
Y’=( 11 12)(C11 12). (17)

2Cqy
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FIG. 2. The local magnetic moments of FM Fe in the bcc and
bct phases as functions of pressure. The solid lines interpolate be-
0 tween the calculated points.

0 |
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curvature at pressures above 1500 kbar, indicating that the
c/a bcc state is unstable at=1500 kbar.

FIG. 1. GFB (c/a;p) curves in the vicinity of the bcc point Figure 1 also shows that a new bct statecet=0.877
(cla=1) at pressures of 0, 300, 500, 1000, 1300, 1500, and 2000€Vvelops starting from p=1300kbar at which the
kbar. E, is the energy per atom in the bcc FM ground state at zerd352" (c/a;p) curve has a minimum in addition to the bcc
pressure. For clarity, th&F5” (c/a; p) curves at pressures from 300 state. With increasing pressure the minimum becomes deeper
to 2000 kbar are shifted towafg, by 145, 233, 441, 555, 625, and corresponding to a larger positive curvature. Similar to the
798 mRy/atom, respectively. The solid lines interpolate between thécc state the bct state is also ferromagnetic. Figure 2 shows
calculated points. the local moments of both the bcc and bct states as functions

of pressure.
Hence bothC’'=(c,;—C1»)/2 andY' vanish together for a To study the stability of both the bce and the bet phases of
cubic structure. FM Fe we have calculated the elastic constants of each phase

The EBP’s of FM tetragonal Fe as a function of pressureusing Eqs(11)—(16). Figures 3a) and 3b) show the elastic
were found by first-principles total-energy calculationsconstants;;, €1, C44, the shear consta@’ and the modi-
using the full-potential linearized-augmented-plane-wavefied Young’s modulusy’ of the bcc phase as functions of
(FLAPW) method with the Perdew-Burke-Ernzerhof pressure. Since the system is at zero temperature, stability
exchange-correlation potential in a generalized-gradient afhere means mechanical stability. For a cubic crystal the sta-
proximation (GGA).° A plane-wave cutoff RyrKmnax=9,  bility condition$ can be given in terms of the three elastic
Gmax=14 and 300k points in the irreducible wedge of the constants; they express the positive definiteness of the strain
Brillouin zone were used in all the calculations reportedenergy with respect to all small deformations of the lattice.
here. We found that, although it takes much longer computThese conditions are
ing time, it is necessary to us®,r=1.5 a.u. in order to get

rid of the ghost bands in th&@F27(a;p) calculations at finite ci>|c1d, €11t2¢15>0, cy>0. (18)
pressure. Th&-space integration was done by the modified
tetrahedron methotlA two-atom tetragonal unit cell with Figure 3a) shows that the bcc state is stable mt

parallel spins was used. All the calculations were highly con<<1500 kbar since all three conditions in E48) are satis-
verged. Tests with larger basis sets and different Brillouinfied. Figure 8b) shows that bothC’ and Y’ vanish atp
zone samplings yielded only very small changes in the re=1500 kbar, which is then the precise value of the stability-
sults. The convergence criterion on the energies is set at Bmit pressureps. At p>pg bothC' andY’ become nega-
%X 10" 3 mRy per atom. tive, which indicates that the bcc state has become unstable
due to the violation of the first stability condition in EJ.8).
IIl. RESULTS The elastic constants;;, €15, C13, Ca3, Caa, Cgg, and the
) . shear constant’ of the bct phase as functions of pressure
Figure 1 shows th&=""(c/a;p) curves of FM tetragonal  4re shown in Fig. 4. The stability conditions for a tetragonal
Fe in the vicinity of the bcc pointd/a=1) at pressures from  crystaf are
zero to 2000 kbar, where the reference endfgyis the en-
ergy per atom in the bcc FM ground state at zero pressure. > + ~2c2 = ~0.
For clarity, theGE®"(c/a;p) curves at pressures from 300 to Cu” iz, (Cuat€12)Cas> 2615 Cae=0, Coc=0. (19
2000 kbar are shifted towalie, by 145, 233, 441, 555, 625, The first stability condition in Eq(19) is equivalent toC’
and 798 mRy/atom, respectively. TI&F5" (c/a;p) curve >0, which is violated ap< 1825 kbar as shown in Fig. 4,
has a minimum at the bcc point at pressures less than 1500dicating that the bct state is unstable at pressures less than
kbar, becomes flat at-1500 kbar and then has a negative 1825 kbar. Comparison of E¢L9) with Eq. (16) reveals that
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FIG. 4. The elastic constants;, C12, C13, C33, Ca4, Cgg, and
the shear consta®’ of the bct phase of FM Fe afa=0.877 as a
--------------------------------------------------- — function of pressure. The change in sign ©f at p=1825 kbar
indicates that the bct phase becomes stablp>at825 kbar. The
solid lines interpolate between the calculated points.

(b)

Elastic Constant ( Mbar ) Elastic Constant ( Mbar )

o L l ! I
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comes positive ap> 1825 kbar, when all four of the condi-

Pressure ( kbar ) tions in Eq.(19) are satisfied and the bct state becomes stable
at p>1825 kbar.

For comparison of the present work with previous
publicationé~*°we tabulate in Table | the values of the elas-

FIG. 3. (a) The elastic constants;;, C12, C44 Of the bcc state of
FM Fe as a function of pressurgn) The shear consta®’ and the
modified Young's modulusy’ of the bcc phase of FM Fe as a F
function of pressure. BotlC’ and Y’ vanish atp=1500 kbar, i€ constantsi;, Cip, C44, the shear constar@’, and the
which is the precise value of the stability-limit pressyre The ~ Modified Young's modulu¥” of bcc FM Fe as functions of
solid lines interpolate between the calculated points. pressure. The calculated elastic constants of the bct phase are

plotted in Fig. 4, but to our knowledge no elastic constants of

the second stability condition in Eq19) is equivalent to the bct state have been reported.

Y’'>0. As mentioned above, ti@=BP (c/a;p) curve of the

bct state shown in Fig. 1 has a positive curvature correspond-

ing to a positiveY' for p>1300 kbar. Hence the second V. DISCUSSION

stability condition in Eq.(19) is always satisfied. The third The elastic constants defined here by E§s.and(8) are
and fourth conditions in Eq19) are also satisfied sinag,  second derivatives of the free ener@fa,c;p) at equilib-
and cgg of the bct state are positive in the entire region ofrium for eachp. They are the quantities needed in the stabil-
pressure shown in Fig. 4. The shear cons@ntfirst be- ity conditions(18) and(19) to prove thatG is a minimum at

TABLE |. Elastic constant€,;, C15, C44, Y', andC’ of FM bcc Fe as a function of pressure.

Pressure Vo C11 C1o Caa C’ Y’
(kban (A3/atom) (Mbar) (Mbar) (Mbar) (Mbar) (Mbar)
Present 0 11.576 2.852 1.394 0.995 0.729 2.174
work
300 10.357 5.656 2.507 1.182 1.575 5.190
500 9.908 5.372 3.261 1.932 1.056 4532
1000 8.857 6.856 4971 2.850 0.943 4,779
1500 8.130 6.738 6.772 2.801 0 0
Ref. 7 0 11.40 2.79 1.40 0.99 0.69
Ref. & 0 11.78 2.431 1.381 1.219 0.525
Ref. & 10 2.62 1.55 1.28 0.54
Ref. 1¢ 46 2.81 1.44 1.23 0.69

8Experimental results.
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equilibrium for all small strains, i.e., that the equilibrium increases more slowly than the bcc phase with increasing
state is stable. We compare tbg with the elastic constants pressure and the fcc phase becomes more stable than the bcc
cﬁK derived by Barron and Klefi from stress-strain rela- phase at some pressure. From Ref. 13 this phase transition
tions under pressure and used, for example, by Ketrkil}>  could take place around 300 kbar. But the hcp phase, also
to find instabilities. The comparison shows that all the ~ NM, has still lower free energy and the transition from the
have the sam@ dependences as tmﬁK; thus from Egs. _bcc phage occurs at a Iovyer pressure. The NM _fcc Fe pha_se
(11)-(15) and Egs.(5.7) and (B4) of Ref. 11 c®=c,;; IS best discussed along with the hcp phase and is not consid-
ered in this paper.

Brown et al*® observed experimentally a sound velocity
giscontinuity in Fe at 2000 kbar and suggested that it was a
solid-solid transition at the-e phase boundary. Ross all*
ec,uggested that the shock anomaly at 2000 kbar may be the

=Ci1, C35 =C1p=Cyo+ P, Co4=Cas=Cas— P/2.

By their construction the;; are appropriate elastic con-
stants to determine phase stability. Our construction als
gives thec;; and the equilibrium value d& directly as func-
tions of p. Hence a thermodynamic phase transition could b o . X .
easily determined by the crossing pressure of @(@) (or transition to a new hlghz—pressure sobid phas,e with a bce
enthalpy curves. These curves could be for the bce and hegtructure. Sderlind et al” suggested that the” phase cor-
phases of Fe to fix the pressure of the bcc to hcp phasr@S,pondS to a bt state el_t'azo'.875 W'tzh sqbstantlal mag-
transition. The differences of the enthalpy curves of bcc andietic moment. However, Serlind et al” pointed out that

fcc Fe from hep Fe as functions pfare plotted by Stixrude they did not know whether this bct state is stable at high
and Cohert? to show the bce> hcp transition at about 100 pressure. We have shown here from the _free enaby’
Kbar. (c/a;p) and the elastic constants calculations that the bct

Stixrude etal® estimated p,=1000 kbar from two state att/a=0.877 develops starting from= 1300 kbar and

E(c/a) curves at constant volume—one\at 70 a.u. corre- becomes stable @at>1825 kbar. Stable here could be called
sponding top=0 shows a minimum at/a=1 and one at metastable because the hcp phase has a IGvwer enthalpy

V=50 a.u. corresponding tp=2000 kbar shows a maxi- value than the bct phase; stable also could be called me-
mum a.t .c/a=1 Saderlind etal? concluded thatp chanically stable since the calculations arél'at0. But the
. : s

>2000 kbar because théi,(c/a) curve showed a shallow ;%Cé éhkag the ECt phﬁse’bek::omgs st:ble in deSt ihe re(g:)m
minimum atc/a=1 atV=7.55 A3=50.9 a.u. corresponding arwhere thea" phase is observed supports the sug-

to 2000 kbar(their Fig. 6. Reference 1 missed the shallow gestion of Sderlind et al:2 The a’ phase cannot be the ch .
minimum at 2000 kbar because the valuesk#f used were phase because bcc Fe is unstable above 1500 kbar, which is
not spaced closely enough. We have verified the shallowe!l Pelow the observation pressure of thé phase.

minimum at 2000 kbar. But our Fig. 1 shows clearly that There is still a considerable difference in t@evalues of
GEBP (c/a:p) at p=200.0 kbar has a.maximum ala=1 the bct and hcp phases @t=0, which could be called a

indicatingY’ <0 and instability. Thus conclusions about sta- thermodynamic instability of the bct phase. The sign of the

bility from minima of Ey(c/a) curves are not reliable. ?|fferencte mqfstﬂl])e l;e\t/ersed by t?e bentropy tt?]rm‘; iat h'%h tat
Our value of 1500 kbar for the critical pressure of bcc Fe emperature It the bct phase 1S to become the ground state.
is also the value given in Ref. 13. Reference 13 uses thgrOOf 9f S.UCh a reversal requires quantitative _evgluaﬂon of
disappearance of the minimumaa=1 in a tetragonal en- entropies in each phase. However, some qualitative support
mes from the low value o€’ for the bct phase shown in

ergy calculation at constant volume, the same procedure . L
was used in Refs. 1 and 2. However. Ref. 13. similar to Ref '9- 4, which could make the bct vibrational entropy unusu-
' | ! . ally large.

1, misses the minimum at 2000 kbar found in Ref. 2. Henc«'!f1||y
the correspondence of the estimate of critical pressure to ours
is accidental.

In addition to the bcc phase at the minimumG§=(a; p) The calculations were carried out using the computational
atc/a=1, there is a second minimum @ta nearv2 in each  resources provided by the MDRCF, which is funded jointly
magnetic phase. These phasesydie have been studied at by the NSF and FAU. Hong Ma wishes to thank the financial
p=0.2* In particular a nonmagnetiéNM) phase has fcc support from the Department of Physics at Florida Atlantic
structure with an energy substantially larger than the bcdJniversity. P. M. M. thanks IBM for providing facilities via
phase. The free energy or enthalpy of the NM fcc phasehe Thomas J. Watson Research Center.
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