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Pressure instability of bcc iron
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First-principles total-energy calculations withWIEN97 on ferromagnetic iron in body-centered tetragonal
structure under hydrostatic pressure have shown that the body-centered cubic~bcc! phase exists up to 1500
kbar of pressure. At that pressure a shear constant vanishes and the phase becomes unstable. A body-centered
tetragonal~bct! phase is shown to come into existence at 1300 kbar and becomes stable at 1825 kbar and
above. The minima of a free energy evaluated along the epitaxial Bain path generalized to finite pressure give
the tetragonal phases of iron under pressure. Second derivatives of the free energy at the minima define elastic
constants of both the bcc and bct phases as functions of pressure, which are appropriate to determine stability.
These elastic constants are the same functions of pressure as the usual elastic constants computed from
stress-strain relations under pressure. Minima of tetragonal energies calculated at constant volume are shown to
be unreliable for determining stability of a phase.
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I. INTRODUCTION

Under hydrostatic pressure the ferromagnetic~FM! bcc
ground state of Fe has decreased magnetization and
creased stability. At the stability-limit pressureps this phase
of Fe becomes unstable. In previous work, the value ofps
has been estimated1 as 1000 kbar and as2 above 2000 kbar.
This work fixes the value ofps at 1500 kbar by evaluating a
a function of pressurep the shear constantC8[(c11
2c12)/2 that goes to zero atps .

The procedure used to evaluateC8(p) treats FM Fe in
body-centered tetragonal~bct! structure at a givenp and
shows that there is a bcc equilibrium structure at pressure
to ps . The equilibrium state at eachp is found from the
epitaxial Bain path~EBP! of FM Fe, which was previously
used to find the equilibrium states atp50 of tetragonal Fe in
various magnetic phases.3 For this work the EBP, which is a
special path through tetragonal states that goes throug
the equilibrium states, has been generalized to finitep.

The calculation of the EBP finds the total energyE in
each tetragonal state on the path. Atp50 the equilibrium
states of the magnetic phases of Fe are given by the min
of E. However, at finitep the phases are found from th
minima of a free energy~at zero temperature! G>E1pV
evaluated along the EBP, whereE is the energy per atom an
V is the volume per atom. The elastic constantsC8 andc44 at
eachp are defined as second derivatives ofG at the minima
of G taken with respect to particular shear strains. The p
sure dependences ofC8 andc44 are shown to be the same a
the pressure dependences calculated from stress-strain
tions under pressure.

The calculations ofG for increasingp show that before
the pressure reachesps , where the bcc minimum ofG van-
ishes, a new noncubic tetragonal minimum ofG forms,
which persists for p.ps and becomes stable atp
>1825 kbar.

The paper is organized as follows. Section II describes
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calculation procedures and shows why the minima ofG
along the EBP give the equilibrium states at finitep. Section
III gives the results of the calculations ofG and the elastic
constants of the bcc and bct states atp values up to 2000
kbar. Section IV discusses the pressure dependence of e
constants, why constant volume calculations fail to de
mine stability, the relation of fcc Fe to bcc Fe, and the sta
of the bct phase.

II. PROCEDURES

At each point on the tetragonal plane~coordinatesa andc
or, equivalently,c/a and V5ca2/2 per atom!, the total en-
ergy of the body-centered tetragonal latticeE(a,c) can be
calculated from first principles. In addition to the energy, t
stresses in the basal plane

s15s25
1

ac S ]E~a,c!

]a D
c

~1!

and out of the basal plane

s35
2

a2 S ]E

]c D
a

~2!

can be calculated.
The path on the tetragonal plane called the EBP is fou

at p50 for eacha by using Eq.~2! and the conditions3
50. Along the EBP the functionsEEBP(a) andVEBP(a) are
then known, and by construction@]E(a,c)/]c#a50 at every
point of the EBP. Then at a minimum ofEEBP(a), coordi-
natesa0 , c0 , the derivative ofE(a,c) vanishes along the
EBP and also alongc. Thus the two components of the gra
dient ofE(a,c) on the tetragonal plane must both vanish a
a0 , c0 give a tetragonal energy minimum and corresponds
an equilibrium state in which the stresses given by Eqs.~1!
and ~2! vanish.4
©2002 The American Physical Society13-1
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To generalize the EBP to finitep requires two changes in
the procedure used atp50. The first change is to use Eq.~2!
to find the c at eacha at which s352p. This procedure
finds the EBP atp and the functionsEEBP(a;p) and
VEBP(a;p). The notation indicates thatp is a given param-
eter, andEEBP andVEBP are functions ofa ~or c/a! alone at
that p.

The second change is to define a free energy at thatp ~and
at zero temperature!, which is also the enthalpy at zero tem
perature,

G~a,c;p![E~a,c!1pV~a,c!, ~3!

and look for minima, coordinatesa0 , c0 , of

GEBP~a;p![EEBP~a;p!1pVEBP~a;p!. ~4!

At a0 , c0 using Eq.~2! andp52s3

S ]G~a,c;p!

]c D
a0 ,c0

5S ]E~a,c!

]c D
a0 ,c0

1pS ]V~a,c!

]c D
a0 ,c0

5s3~a0 ,c0!
a0

2

2
2s3~a0 ,c0!

a0
2

2
50.

~5!

Since the derivative ofG(a,c;p) at a0 , c0 also vanishes
along the EBP,a0 , c0 give a tetragonal minimum o
G(a,c;p) by the same argument used forp50, and

S ]G~a,c;p!

]a D
a0 ,c0

5S ]G~a,c;p!

]c D
a0 ,c0

50. ~6!

Furthermore ata0 , c0 the in-plane stressess1 and s2 are
given by, using Eqs.~1!, ~3!, and~6!,

s15s25
1

a0c0
S ]E~a,c!

]a D
a0 ,c0

5
1

a0c0
S ]G~a,c;p!

]a D
a0 ,c0

2
p

a0c0
S ]V~a,c!

]a D
a0 ,c0

502p52p. ~7!

Thus ata0 , c0 the system is under hydrostatic pressurep,
andG(a0 ,c0 ;p) is a tetragonal minimum ofG(a,c;p) and
an equilibrium state under pressurep, i.e., no other stresse
than hydrostaticp are required to maintain the state. Th
equilibrium state will be stable ifG increases for all smal
strains, not just strains that preserve tetragonal symm
The stability can be tested by well-known algebraic con
tions on elastic constants~see, for example, Ref. 5, p. 142!
defined by

ci j 5
1

V S ]2G~a,c;p!

]« i]« j
D

a0 ,c0

,i , j 51 to 6. ~8!

Then the variation ofG around the extremuma0 ,c0 for
small strains is a quadratic function of the strains given b
02411
ry.
-

d2G5
V

2 (
i , j 51

6

ci j « i« j . ~9!

The stability conditions on theci j express the positive
definiteness of Eq.~9! for all strains, and will be given ex-
plicitly for tetragonal and cubic symmetry below. The pre
sure at which bcc Fe becomes unstable will be the pressu
which Eq.~9! fails to be positive definite.

The elastic constants defined by Eq.~8! differ from elastic
constants defined by the corresponding derivatives ofE(a,c)
at a0 ,c0 by the contribution of thepV term in Eq.~3!. Let c̄i j
be the elastic constants fromE defined by

c̄i j 5
1

V S ]2E~a,c!

]« i]« j
D

a0 ,c0

. ~10!

The c̄i j are the usual elastic constants atp50 anda0 ,c0
give the equilibrium state atp50, but at finitep the point
a0 ,c0 is not at a minimum ofE(a,c).
Then

c115
2

c0
S ]2G~a1 ,a2 ,c;p!

]a1
2 D

a0 ,c0

5 c̄111
2

c0

]2~pV!

]a1
2 5 c̄11,

~11!

whereV5a1a2c/2 and only one side of the tetragonal base
strained. Similarly

c111c125
1

c0
S ]2G~a,c;p!

]a2 D
a0 ,c0

5 c̄111 c̄121p, ~12!

c335
2c0

a0
2 S ]2G~a,c;p!

]c2 D
a0 ,c0

5 c̄33, ~13!

c665
2

c0a0
2 S ]2G~a,c,u12;p!

]u12
2 D

a0 ,c0 ,p/2

5 c̄662
p

2
, ~14!

where to second order indu12 V5(ca2/2)(12du12
2 /4); simi-

larly

c445c555
2

c0a0
2 S ]2G~a,c,u23;p!

]u23
2 D

a0 ,c0 ,p/2

5 c̄442
p

2
5 c̄552

p

2
. ~15!

Then c135 c̄131p can be found from the curvature of th
EBP ata0

Y85
1

c0
S d2GEBP~a;p!

da2 D
a0

5c111c122
2c13

2

c33
. ~16!

For a cubic structure,c335c11, c135c12, and

Y85
~c1112c12!~c112c12!

2c11
. ~17!
3-2
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Hence bothC8[(c112c12)/2 andY8 vanish together for a
cubic structure.

The EBP’s of FM tetragonal Fe as a function of press
were found by first-principles total-energy calculatio
using the full-potential linearized-augmented-plane-wa
~FLAPW! method with the Perdew-Burke-Ernzerh
exchange-correlation potential in a generalized-gradient
proximation ~GGA!.6 A plane-wave cutoff RMTKmax59,
Gmax514 and 300k points in the irreducible wedge of th
Brillouin zone were used in all the calculations report
here. We found that, although it takes much longer comp
ing time, it is necessary to useRMT51.5 a.u. in order to ge
rid of the ghost bands in theGEBP(a;p) calculations at finite
pressure. Thek-space integration was done by the modifi
tetrahedron method.6 A two-atom tetragonal unit cell with
parallel spins was used. All the calculations were highly c
verged. Tests with larger basis sets and different Brillou
zone samplings yielded only very small changes in the
sults. The convergence criterion on the energies is set
31023 mRy per atom.

III. RESULTS

Figure 1 shows theGEBP(c/a;p) curves of FM tetragona
Fe in the vicinity of the bcc point (c/a51) at pressures from
zero to 2000 kbar, where the reference energyE0 is the en-
ergy per atom in the bcc FM ground state at zero press
For clarity, theGEBP(c/a;p) curves at pressures from 300
2000 kbar are shifted towardE0 by 145, 233, 441, 555, 625
and 798 mRy/atom, respectively. TheGEBP (c/a;p) curve
has a minimum at the bcc point at pressures less than 1
kbar, becomes flat at;1500 kbar and then has a negati

FIG. 1. GEBP (c/a;p) curves in the vicinity of the bcc poin
(c/a51) at pressures of 0, 300, 500, 1000, 1300, 1500, and 2
kbar.E0 is the energy per atom in the bcc FM ground state at z
pressure. For clarity, theGEBP (c/a;p) curves at pressures from 30
to 2000 kbar are shifted towardE0 by 145, 233, 441, 555, 625, an
798 mRy/atom, respectively. The solid lines interpolate between
calculated points.
02411
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curvature at pressures above 1500 kbar, indicating that
bcc state is unstable atp>1500 kbar.

Figure 1 also shows that a new bct state atc/a50.877
develops starting from p51300 kbar at which the
GEBP (c/a;p) curve has a minimum in addition to the bc
state. With increasing pressure the minimum becomes de
corresponding to a larger positive curvature. Similar to
bcc state the bct state is also ferromagnetic. Figure 2 sh
the local moments of both the bcc and bct states as funct
of pressure.

To study the stability of both the bcc and the bct phases
FM Fe we have calculated the elastic constants of each p
using Eqs.~11!–~16!. Figures 3~a! and 3~b! show the elastic
constantsc11, c12, c44, the shear constantC8 and the modi-
fied Young’s modulusY8 of the bcc phase as functions o
pressure. Since the system is at zero temperature, sta
here means mechanical stability. For a cubic crystal the
bility conditions5 can be given in terms of the three elas
constants; they express the positive definiteness of the s
energy with respect to all small deformations of the lattic
These conditions are

c11.uc12u, c1112c12.0, c44.0. ~18!

Figure 3~a! shows that the bcc state is stable atp
,1500 kbar since all three conditions in Eq.~18! are satis-
fied. Figure 3~b! shows that bothC8 and Y8 vanish atp
51500 kbar, which is then the precise value of the stabili
limit pressureps . At p.ps both C8 and Y8 become nega-
tive, which indicates that the bcc state has become unst
due to the violation of the first stability condition in Eq.~18!.

The elastic constantsc11, c12, c13, c33, c44, c66, and the
shear constantC8 of the bct phase as functions of pressu
are shown in Fig. 4. The stability conditions for a tetragon
crystal5 are

c11.uc12u, ~c111c12!c33.2c13
2 , c44.0, c66.0. ~19!

The first stability condition in Eq.~19! is equivalent toC8
.0, which is violated atp,1825 kbar as shown in Fig. 4
indicating that the bct state is unstable at pressures less
1825 kbar. Comparison of Eq.~19! with Eq. ~16! reveals that

0
o

e

FIG. 2. The local magnetic moments of FM Fe in the bcc a
bct phases as functions of pressure. The solid lines interpolate
tween the calculated points.
3-3
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the second stability condition in Eq.~19! is equivalent to
Y8.0. As mentioned above, theGEBP (c/a;p) curve of the
bct state shown in Fig. 1 has a positive curvature correspo
ing to a positiveY8 for p.1300 kbar. Hence the secon
stability condition in Eq.~19! is always satisfied. The third
and fourth conditions in Eq.~19! are also satisfied sincec44
and c66 of the bct state are positive in the entire region
pressure shown in Fig. 4. The shear constantC8 first be-

FIG. 3. ~a! The elastic constantsc11, c12, c44 of the bcc state of
FM Fe as a function of pressure.~b! The shear constantC8 and the
modified Young’s modulusY8 of the bcc phase of FM Fe as
function of pressure. BothC8 and Y8 vanish at p51500 kbar,
which is the precise value of the stability-limit pressureps . The
solid lines interpolate between the calculated points.
02411
d-

f

comes positive atp.1825 kbar, when all four of the condi
tions in Eq.~19! are satisfied and the bct state becomes sta
at p.1825 kbar.

For comparison of the present work with previo
publications7–10 we tabulate in Table I the values of the ela
tic constantsc11, c12, c44, the shear constantC8, and the
modified Young’s modulusY8 of bcc FM Fe as functions o
pressure. The calculated elastic constants of the bct phas
plotted in Fig. 4, but to our knowledge no elastic constants
the bct state have been reported.

IV. DISCUSSION

The elastic constants defined here by Eqs.~3! and~8! are
second derivatives of the free energyG(a,c;p) at equilib-
rium for eachp. They are the quantities needed in the stab
ity conditions~18! and~19! to prove thatG is a minimum at

FIG. 4. The elastic constantsc11, c12, c13, c33, c44, c66, and
the shear constantC8 of the bct phase of FM Fe atc/a50.877 as a
function of pressure. The change in sign ofC8 at p51825 kbar
indicates that the bct phase becomes stable atp.1825 kbar. The
solid lines interpolate between the calculated points.
TABLE I. Elastic constantsc11, c12, c44, Y8, andC8 of FM bcc Fe as a function of pressure.

Pressure
~kbar!

V0

~Å3/atom!
c11

~Mbar!
c12

~Mbar!
c44

~Mbar!
C8

~Mbar!
Y8

~Mbar!

Present
work

0 11.576 2.852 1.394 0.995 0.729 2.174

300 10.357 5.656 2.507 1.182 1.575 5.190
500 9.908 5.372 3.261 1.932 1.056 4.532
1000 8.857 6.856 4.971 2.850 0.943 4.779
1500 8.130 6.738 6.772 2.801 0 0

Ref. 7 0 11.40 2.79 1.40 0.99 0.69

Ref. 8a 0 11.78 2.431 1.381 1.219 0.525

Ref. 9a 10 2.62 1.55 1.28 0.54

Ref. 10a 46 2.81 1.44 1.23 0.69

aExperimental results.
3-4
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equilibrium for all small strains, i.e., that the equilibriu
state is stable. We compare theci j with the elastic constant
ci j

BK derived by Barron and Klein11 from stress-strain rela
tions under pressure and used, for example, by Karkiet al.12

to find instabilities. The comparison shows that all theci j

have the samep dependences as theci j
BK ; thus from Eqs.

~11!–~15! and Eqs.~5.7! and ~B4! of Ref. 11 c11
BK5c11

5 c̄11, c12
BK5c125 c̄121p, c44

BK5c445 c̄442p/2.
By their construction theci j are appropriate elastic con

stants to determine phase stability. Our construction a
gives theci j and the equilibrium value ofG directly as func-
tions ofp. Hence a thermodynamic phase transition could
easily determined by the crossing pressure of twoG(p) ~or
enthalpy! curves. These curves could be for the bcc and
phases of Fe to fix the pressure of the bcc to hcp ph
transition. The differences of the enthalpy curves of bcc a
fcc Fe from hcp Fe as functions ofp are plotted by Stixrude
and Cohen,13 to show the bcc→hcp transition at about 100
kbar.

Stixrude et al.1 estimated ps51000 kbar from two
E(c/a) curves at constant volume—one atV570 a.u. corre-
sponding top50 shows a minimum atc/a51 and one at
V550 a.u. corresponding top52000 kbar shows a maxi
mum at c/a51. Söderlind et al.2 concluded that ps
.2000 kbar because theirEV(c/a) curve showed a shallow
minimum atc/a51 atV57.55 Å3550.9 a.u. corresponding
to 2000 kbar~their Fig. 6!. Reference 1 missed the shallo
minimum at 2000 kbar because the values ofc/a used were
not spaced closely enough. We have verified the shal
minimum at 2000 kbar. But our Fig. 1 shows clearly th
GEBP (c/a;p) at p52000 kbar has a maximum atc/a51,
indicatingY8,0 and instability. Thus conclusions about st
bility from minima of EV(c/a) curves are not reliable.

Our value of 1500 kbar for the critical pressure of bcc
is also the value given in Ref. 13. Reference 13 uses
disappearance of the minimum atc/a51 in a tetragonal en-
ergy calculation at constant volume, the same procedur
was used in Refs. 1 and 2. However, Ref. 13, similar to R
1, misses the minimum at 2000 kbar found in Ref. 2. Hen
the correspondence of the estimate of critical pressure to
is accidental.

In addition to the bcc phase at the minimum ofGEBP(a;p)
at c/a51, there is a second minimum atc/a near& in each
magnetic phase. These phases ofg-Fe have been studied a
p50.14 In particular a nonmagnetic~NM! phase has fcc
structure with an energy substantially larger than the
phase. The free energy or enthalpy of the NM fcc ph
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increases more slowly than the bcc phase with increas
pressure and the fcc phase becomes more stable than th
phase at some pressure. From Ref. 13 this phase trans
could take place around 300 kbar. But the hcp phase,
NM, has still lower free energy and the transition from t
bcc phase occurs at a lower pressure. The NM fcc Fe ph
is best discussed along with the hcp phase and is not con
ered in this paper.

Brown et al.15 observed experimentally a sound veloci
discontinuity in Fe at 2000 kbar and suggested that it wa
solid-solid transition at theg-« phase boundary. Rosset al.14

suggested that the shock anomaly at 2000 kbar may be
transition to a new high-pressure solida8 phase with a bcc
structure. So¨derlind et al.2 suggested that thea8 phase cor-
responds to a bct state atc/a50.875 with substantial mag
netic moment. However, So¨derlind et al.2 pointed out that
they did not know whether this bct state is stable at h
pressure. We have shown here from the free energyGEBP

(c/a;p) and the elastic constants calculations that the
state atc/a50.877 develops starting fromp51300 kbar and
becomes stable atp.1825 kbar. Stable here could be calle
metastable because the hcp phase has a lowerG ~or enthalpy!
value than the bct phase; stable also could be called
chanically stable since the calculations are atT50. But the
fact that the bct phase becomes stable in just the region~from
2000 kbar! where thea8 phase is observed supports the su
gestion of So¨derlind et al.2 The a8 phase cannot be the bc
phase because bcc Fe is unstable above 1500 kbar, whi
well below the observation pressure of thea8 phase.

There is still a considerable difference in theG values of
the bct and hcp phases atT50, which could be called a
thermodynamic instability of the bct phase. The sign of t
difference must be reversed by the entropy term inG at high
temperature if the bct phase is to become the ground s
Proof of such a reversal requires quantitative evaluation
entropies in each phase. However, some qualitative sup
comes from the low value ofC8 for the bct phase shown in
Fig. 4, which could make the bct vibrational entropy unus
ally large.
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