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Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy ina-quartz
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The neutral oxygen vacancy in SiO2 is important both through its role in controlled refractive index changes
and as an archetypal intrinsic defect. We have studied the very significant effects of lattice relaxation on the
structure and properties of this defect in both pure and Ge-dopeda-quartz using a hybrid classical–ab initio
embedded-cluster method. The neutral vacancy induces very strong and anisotropic lattice distortion. At the
vacancy site, the Si-Si distance ina-quartz relaxes to the same spacing as in elemental Si. The long-range
distortion components extend further than 13 Å from the vacant site. The displacements of surrounding atoms
are strongly asymmetric with respect to the vacancy, contrary to previous theoretical results. We predict a
strong relaxation in the lowest triplet excited state of the vacancy and small~less than 1 eV! triplet lumines-
cence energy. The strong dependence of the defect properties on the radius of the relaxed region is demon-
strated and the applicability of small molecular cluster models is discussed.
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I. INTRODUCTION

Silicon dioxide is an exceptionally important and versat
dielectric. It forms the passivating layer in metal oxide sem
conductor technologies, it is the basis of most optical fibe
and its crystalline form,a-quartz, is important in oscillato
technologies. In all of these applications, the nature
number of point defects is crucial to the reliability. As
consequence, the fundamental defects in both crystalline
a-SiO2 have been studied intensely for the last 40 years.
far the most important defect is the oxygen vacancy. T
vacancy has been implicated as the fundamental pos
charge trap in bulk and thin-filma-SiO2 . It has also been
considered as a model for one of the so-called oxyg
deficient centers~ODC’s! in silica1,2 that play an important
role in the UV-induced refractive index changes in silic
based optical fibers~see, for example, Refs. 2–7!. The ex-
perimental evidence reviewed in Refs. 1 and 8 suggest th
is a good candidate for a defect responsible for the 7.6
absorption band.

While there is much agreement about the qualitative
ture of the oxygen vacancy, quantitative aspects of its st
ture in all charge states are not universally excepted.1,8 One
difficulty is that there is no universal method for calculati
of defect properties. Both density-functional theory with p
riodic boundary conditions and finite molecular cluster c
culations, which have been widely used to study defect
silica, have their own limitations. In the next section w
briefly review the existing theoretical calculations and de
onstrate that in all of them the defect-induced lattice def
mation is confined to a very small region and does not
clude the full extent of the lattice perturbation by a defe
Full lattice relaxation can be accounted for in the embedd
cluster method, which treats a defect in aninfinite polariz-
able lattice.

To address some of the deficiencies in existing theoret
methods, we have developed a hybrid technique9–11 in which
a quantum-mechanical atomic cluster is embedded in a c
sical atomistic representation of the solid. Details of t
0163-1829/2002/66~2!/024108~14!/$20.00 66 0241
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method are given below. As an application of this method
defects in ionic-covalent materials we have studied the n
tral oxygen vacancy in quartz. The main result of this work
that the crystal deformation in the defect ground and fi
excited states exhibit strong anisotropy with significant d
placements of the crystal ions within about 13 Å from t
center of the vacancy. This result alters our understandin
the model of this defect, which has been viewed as a S
bond formed due to symmetric displacements of two Si io
from their perfect lattice sites. Our results clearly demo
strate that the extent of the lattice deformation accounted
in the calculations can strongly affect other defect propert
Detailed analysis of the dependence of optical excitation
luminescence energies and defect formation energies on
extent of the lattice relaxation and on various parameter
the embedded-cluster model and the basis set shows s
limitations of the existing methods in terms of their ability
make reliable predictions of formation energies and optic
absorption spectra of ODC’s ina-quartz. Strong relaxation
of the excited state leads to a very small luminescence
ergy, suggesting that nonradiative transition may be m
more effective. Although the atomic displacements in t
diamagnetic defect cannot be compared directly with exp
mental data, we believe that the effect of long-range cry
deformation is general for other defects in silica, includi
E8 and peroxy centers, and can be relevant to photoindu
densification of amorphous silica.

The balance of the paper is organized as follows. In S
II we review previous theoretical calculations to put the c
rent work in context, and to demonstrate the unsettled s
of the problem. In Sec. III we present a discussion of
embedding method. In Sec. IV we give our results, and c
clude in Sec. V.

II. PREVIOUS THEORY

The neutral oxygen vacancy in silica is a diamagne
defect and is usually characterized theoretically in terms
its geometric structure, formation energy, optical properti
©2002 The American Physical Society08-1



f
t
y
ee
pr
t

r
t

um
l
22
h
th

a
i-
a
c

ra
o

ha
ax
r

is
e
e
o
eu

ta
n

al
d
ra
e

th
an
io

nd
as
e

n
at
ng
it
io
n-
ne
e
eV

O

ode

ar-
et
r to
ed

the

ith
As
ifi-
el

n
he
n
a-

ty-
l

-

dy-
r

nt

d-
al-
all

tion
on

t

the

l of
ide

t,
in-
t of

in-
n-
ts

lar,
us

ion

oup

SULIMOV, SUSHKO, EDWARDS, SHLUGER, AND STONEHAM PHYSICAL REVIEW B66, 024108 ~2002!
and its relation to theE8 center. All existing calculations o
the neutral oxygen vacancy ina-quartz predict a significan
displacement of the two Si atoms neighboring the vacanc
one another, and the formation of a chemical bond betw
them. The equilibrium distance between these atoms
dicted in mostab initio and semiempirical modified neglec
of differential overlap~MNDO! cluster calculations12–19is in
the range of 2.3–2.5 Å. The dependence of this paramete
the cluster size has recently been studied in Ref. 20 using
mechanical embedding methodONIOM. A larger Si-Si dis-
tance of 2.68 Å has been obtained by the quant
embedded-cluster method.21 Periodic density-functiona
theory ~DFT! plane-wave calculations reported in Refs.
and 23 predict 2.5 Å and about 2.7 Å, correspondingly. T
periodic DFT calculations using gradient corrections and
projector augmented wave method24 predict 2.44 Å. The
Si-Si distance at the vacancy site is similar to the Si-Si sp
ing in elemental Si~2.35 Å! and much shorter than the equ
librium distance of 3.08 Å between the two Si atoms in ide
a-quartz. This is in marked contrast with cubic oxides, su
as MgO,13,25and the more complex ZrO2 ,26,27where, despite
the substantial ionic polarization, the formation of a neut
oxygen vacancy leads to only very small displacements
the surrounding metal atoms. It is interesting to note t
there is almost no discussion in the literature of the rel
ation of the atoms surrounding the neutral vacancy. The
laxation of surrounding atoms proved to be vital for ex
tence of the second, puckered configuration of the positiv
charged oxygen vacancy~see Refs. 19 and 23 and referenc
therein!. As we will show below, the extent and character
this relaxation strongly alters the existing model of the n
tral vacancy and affects the calculated defect properties.

Optical absorption energy is crucial for experimen
identification of this diamagnetic defect. In early calculatio
using non-self-consistent tight-binding methods~see refer-
ences in Ref. 17!, and in later, more rigorous semiempiric
MNDO studies,16–18 the absorption and luminescence ban
of the neutral vacancy were related to the one-electron t
sition between the two states in the forbidden gap form
mainly by the bonding and antibonding combinations of
sp orbitals of the two silicon atoms adjacent to the vac
site. The energy of the lowest singlet-to-singlet excitat
calculated by the MNDO method16–18was 5.0 eV. Furtherab
initio calculations in isolated clusters by Stefanov a
Raghavachari12 did not confirm these results. Instead, it w
suggested that the lowest excitation has a much higher
ergy of ;7 eV and corresponds to a transition of differe
character: from the Si-Si bonding orbital to a diffuse st
~i.e., a Rydberg-type excitation, not the bondi
→antibonding transition between strongly localized orb
als!. On the other hand, the cluster calculations by Pacch
et al.,13–15 which also included diffuse atomic orbitals, co
firmed the bonding-antibonding nature of the lowest o
electron allowed transition between the two vacancy lev
in the gap. The energy of this transition was also 7–8
similar to the result of Stefanov and Raghavachari,12 and
much higher than estimated with the semiempirical MND
method in Refs. 16–18. Recentab initio calculations of the
oxygen vacancy in b-cristobalite, using the quantum
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embedded-cluster method implemented in the computer c
EMBED,21 again suggested the bonding→antibonding transi-
tion model for the lowest vacancy excitation proposed e
lier. The value of 8.3 eV for the lowest singlet-to-singl
excitation energy calculated in Ref. 21 corresponds bette
theab initio results obtained in Refs. 13–15 with the isolat
cluster approach. Overall, according toab initio calculations,
the neutral oxygen vacancy is a good candidate for
ODC~I! center with the absorption band at 7.6 eV.1

Calculations also give the vacancy formation energy, w
respect to the free oxygen atom in its lowest triplet state.
for the optical energies, previous predictions vary sign
cantly.Ab initio calculations using the isolated cluster mod
give estimates of 5.5 and 6.7 eV at the Hartree-Fock~HF!
level without and withd functions, respectively. The electro
correlation correction calculated at the MP2 level for t
basis set containingd functions brings the vacancy formatio
energy to 8.5 eV.12,13 Quantum embedded-cluster calcul
tions at the Hartree-Fock level21 give about 6.6 eV for the
vacancy formation energy ina-quartz and about 7.9 eV in
b-cristobalite, respectively. The plane-wave densi
functional theory~DFT! calculations in a periodic mode
give 6.97 eV ina-quartz28 ~with respect to the half of the
energy of the oxygen molecule!. Other DFT plane-wave cal
culations have given larger values of 7.85 eV~Ref. 29! and
8.64 eV~Ref. 30! for a-quartz, and 9.3 eV~Ref. 31! and 8.92
eV ~Ref. 30! for b-cristobalite. Thus most of theab initio
results lie between 6.5 and 9.5 eV. The proposed thermo
namic estimate32 of the vacancy formation energy is large
than 7.3 eV.

The calculations described above employ differe
quantum-mechanical methods~Hartree-Fock and DFT! and
basis sets~atomic orbitals and plane waves! as well as dif-
ferent crystal models~periodic, isolated cluster, and embe
ded cluster!. Therefore the apparent discrepancies in the c
culated values are not easy to rationalize. However, they
suffer from the same problem—the defect-induced relaxa
of the surrounding lattice is confined to a fairly small regi
around the defect. In the periodic calculations23,28–31the re-
laxation is limited by the size of periodic cell, which did no
exceed 72 atoms. In the isolated cluster model,12–15 clusters
are much smaller and the dangling bonds of the atoms at
cluster border are saturated by Hydrogen atoms.33 These cal-
culations do not take into account the Madelung potentia
the infinite lattice and neglect the lattice relaxation outs
the cluster. The embedded-cluster calculations by theEMBED

program16,21 take into account the Madelung potential, bu
due to time-consuming calculations, practically do not
clude the long-range lattice relaxation. Thus the full exten
the lattice relaxation caused even by one of the simplest
trinsic defects in quartz—neutral oxygen vacancy—is u
known. As will be shown below, the atomic displacemen
strongly affect all calculated defect properties. In particu
the lattice relaxation usually taken into account in previo
calculations provides only about 50% of the total relaxat
energy.

III. DETAILS OF CALCULATIONS

The embedded-cluster technique developed in our gr
and implemented in theGUESS computer code9–11,34 allows
8-2
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us to study point defects in crystals and amorphous so
combining quantum-mechanical treatment of atoms s
rounding a defect with the shell model35 representation of the
rest of the solid. The main difference of this technique fro
the mechanical embeddingONIOM method employed in Ref
20 is that it provides the consistent Madelung potential at
site of interest and allows one to account for both ionic a
electronic contributions to the polarization of the defect e
vironment.

In this approach, the infinite system with a single po
defect is divided into several regions, as shown in Fig. 1
spherical region I includes:~i! a quantum cluster with a de
fect and surrounding atoms treated quantum mechanic
~ii ! an interface region, which connects the quantum clu
with the rest of the solid treated classically;~iii ! a classical
region, which includes up to several hundred atoms. Reg
I is surrounded by a finite region II, which is treated ato
istically, and region III, which is treated in the approximatio
of polarizable continuum. Region III conforms geometrica
to the boundary between regions I and II but extends to
finity ~see Fig. 1!. The classical ions in regions I and II ar
treated in the shell model35 and interact between themselv
via interatomic potentials.36 Both quantum and classical a
oms in region I are allowed to relax in the course of calc
lations. Atoms in region II are kept fixed in their ideal, bu
positions and provide correct variations of the electrost
potential inside region I. Region III is used to calculate t
polarization energy of the infinite lattice due to the prese
of a defect in region I using the Mott-Littleton approach. O
setup is very similar to the original Mott-Littleton method
calculating point defects in polar solids.37 It has then been
refined inGULP,38 and similar atomistic codes, as well as
theICECAP embedding scheme.39,40The original computation
scheme implemented inGUESSand applied to defect studie
in ionic crystals has been described in Refs. 10, 11, 34,
41. One of its main advantages is that it allows us to cal
late forces on quantum-mechanical and classical ions
simultaneously optimize their positions using an effect
energy minimization scheme.

In this work, we modify this scheme and apply it to a
ionic-covalent system,a-quartz, which has directed bond
Such systems present a challenge for cluster calculations
to the dangling bonds formed at the cluster border. The e
tronic states associated with these bonds strongly perturb

FIG. 1. General setup for the embeded-cluster calculations.
text for sizes of each region.
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cluster electronic structure and make it a poor mimic of
infinite system. Therefore in most cases these bonds are
rated by real or pseudohydrogen atoms. This method is
cussed in detail in Ref. 33. Our approach is different in t
it embeds a quantum-mechanical~QM! cluster into a con-
tinuous crystal instead of treating it as a molecule. Theref
the interface atoms play a special role in this procedure
described below.

All QM clusters in our calculations are terminated by
atoms, with one neighboring O atom always belonging to
QM cluster and with the other three neighboring O ato
belonging to the classical environment. These terminat
~interface! Si species are called pseudo-Si atoms (Si* ) and
perform dual functions, as illustrated in Fig. 2.

The first function of Si* atoms is to describe a Si-O bon
directed inside the QM cluster~see Fig. 2!. For the electrons
and cores inside the QM cluster they look like a one-elect
atom with the effective charge equal to that on a regu
lattice Si atom and ansp orbital centered on it. Since effec
tive charges on Si atoms in quartz are about12.4 ueu ~e is the
electron charge! it represents a strong attractive center f
cluster electrons. To compensate locally the resulting str
electrostatic potential, an effective repulsive electronic p
tentialV(r )5A3exp(2Br) is added to mimic a screening o
the Si core potential by valence electrons. The parameter
this potential and of the basis set for the Si* atoms were
optimized to satisfy the following conditions.~i! The elec-
tronic charge is evenly distributed within the QM cluster o
in other words, the effective charge modulus on Si* is ap-
proximately equal to1

4 of that on regular quantum Si atom
and 1

2 of that on quantum O atoms.~ii ! The electronic states
associated with Si* atoms do not have substantial contrib
tions at the top of the valence band or at the bottom of
conduction band. The short-range interaction between
boundary Si* atoms and their nearest oxygen neighbors
the QM cluster is modelled using a Morse-type classical
tential, which ensures a good approximation of the int
atomic distance between the two species.

The second function of Si* atoms is to interact with the
shell-model ions outside the QM cluster. This interaction h
Coulomb and short-range components. The interaction

ee

FIG. 2. Model for the interface between quantum cluster a
classical environment. The boundary Si* is split into quantum-
mechanical and classical parts. See text for details.
8-3
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point charges representing cores and shells of classical
in regions I and II with the electron on thesp orbital of Si*
is included in the Fock matrix via the matrix elements of t
same type as the electron-nuclei interaction. In additi
these ions interact classically with the34 of the effective
charge of the classical Si ion also centered on Si* . Thus Si*
might be envisaged as comprising1

4 from quantum parts and
3
4 from classical parts~see Fig. 2!. Note that the effective
charge of Si* can vary, as it depends on the population of
sp orbitals. The short-range terms are described by in
atomic potentials.36 These originally rigid ion potentials wer
modified by including shells on oxygen ions. They are a
used in order to describe the interactions between the cla
cal atoms in region I and between the classical and quan
atom. The latter are introduced in order to mimic the e
change and resonance component of the interaction betw
the classical and quantum atoms across the QM clu
boundary. The expression for the total energy of the sys
is given in the Appendix.

The electrostatic potential produced by classical ions
regions I and II depends on their effective charges, which
parameters of interatomic potentials. The potentials36 used in
this work have been fitted using fractional ionic charg
(QSi52.4 ueu,QO521.2ueu) to reproduce accurately sever
of the SiO2 polymorphs. These ionic charges have been
tained fromab initio calculations of small clusters using th
6 – 31G* basis set.36 As is shown below, these charges a
fairly close to those obtained in our embedded-cluster ca
lations using natural population analysis~NPA!.42 The latter
depend, however, on a basis set. In a fully consistent
proach, the charges on ions in QM clusters and those
classical ions in the perfect lattice should be the same. In
present work we tried many different basis sets and this c
dition is not fully satisfied for all of them. Nevertheless w
believe that this does not affect our qualitative conclusio
regarding the extent and character of the lattice relaxa
around the defect.

Region I1II may have different shapes and should
neutral and have zero total dipole moment. To build t
region we used Si~O1/2)4 units, which provide convenien
stoichiometric elements with a very small~often practically
zero! dipole moment. With this choice, a spherical region
1II gives the fastest convergence for the electrostatic po
tial. In our present calculations, region I1II has radius 30 Å
and contains 9270 atoms. The finite size of the system res
in a spread of the electrostatic potential at atomic si
which should be equivalent in the infinite crystal. For t
region I1II used in this work, the spread of the potenti
within region I was less than 0.01 eV, which indicates th
the system was large enough to mimic the electrostatic
tential in the infinite crystal. In most calculations discuss
below region I had a radius of 13.07 Å and contained 7
atoms.

Because region II remains fixed, its geometric struct
can affect the positions of atoms in region I and in the Q
cluster when they have been allowed to relax in defect
culations. In building region I1II one has a choice of the
experimental structure or those determined in shell-mo
and quantum-mechanical calculations of the perfect sys
02410
ns

,

r-

o
si-
m
-
en
er
m

n
re

s

-

u-

p-
n
e

n-

s
n

s

I
n-

lts
s,

t
o-
d
8

e

l-

el
m

in the periodic model. These structures differ slightly and
checked the effects of these differences on defect proper
For that purpose we optimized the geometry ofa-quartz us-
ing theGULP code38 and the pair potentials.36 Then the region
I1II was built using these geometric parameters and the
cancy structure and its formation energy were calculat
The same procedure was repeated using the besta-quartz
structure found in the Hartree-FockCRYSTAL calculations.43

The thus calculated formation energies differ by less th
0.03 eV. The shell-model ions in perfecta-quartz are polar-
ized, i.e., positions of ionic shells differ from positions
cores, which results in a small dipole being associated w
each ion. We have also checked that far from the vaca
these small dipoles do not affect the results of defect ca
lations and one can treat region II in a point-ion model.

The GUESScode provides an effective interface betwe
the quantum-mechanical treatment of QM clusters using
GAUSSIAN98 code44 and the classical treatment of the rest
the system. The electronic structure of QM clusters was
culated using the unrestricted Hartree-Fock~UHF! method
and different standard basis sets ranging from 3–21G
6–311G* for both silicon and oxygen atoms. QM clusters
different sizes and topology have been considered: Si2O7Si6*
~cluster 1!, Si8O25Si18* ~cluster 2!, Si10O30Si20* ~cluster 3!, and
Si18O49Si26* ~cluster 4! with the oxygen atom in the cente
~see Fig. 3!. Note that all these clusters are stoichiometr
i.e., the ratio of the numbers of oxygen and silicon ato
~Si* being the quantum-mechanically treated1

4 of a silicon
atom, as discussed above! is equal to 2. Indeed, each boun
ary Si* atom is treated as a Si1/4 species and therefore eac
cluster can be viewed as built from Si1/4O1/2 bondlike ele-
ments, which are stoichiometric. When increasing the clu
size we aimed to satisfy the additional criterion that the cl
ter must be compact. The compactness of a given cluster
be defined as the ratioh5Ncluster/Ncrystal, whereNcluster is
the sum of quantum-mechanically treated nearest neigh
for each atom in the cluster andNcrystal is the sum of all
nearest neighbors of the cluster atoms in the crystal. For
infinitely large clusterh51; for the clusters used in th
present study,h increases from 0.58 for cluster 1 to 0.72 f
cluster 4.

To test our embedding scheme we carried out so-ca
‘‘perfect lattice test’’ calculations for each cluster. In the
calculations a nondefective QM cluster was embedded in
rest of the lattice and the whole system was allowed to re
In the case of ‘‘ideal’’ embedding, no atoms in region
should displace from their original sites. In practice, we o
served a relatively small relaxation associated with the in
face region, where the maximum displacements of ato
changes in the interatomic distances, and changes of
‘‘soft’’ Si-O-Si angles with respect to their original value
were less than 0.15 Å, 4%, and 5% respectively. Distortio
in the rest of the system were at least three times smaller.
also checked that after relaxation the electronic structure
the cluster did not undergo any noticeable modification, i
there was no change in electron-density distribution wit
the QM cluster or in the density of states.

When a neutral vacancywSi—Siw is created by remov-
ing the central oxygen atom in one of the QM clusters m
8-4
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FIG. 3. Quantum clusters~in-
cluding Si* atoms! used in the
calculations shown in the sam
projection.~a! cluster 1;~b! clus-
ter 2; ~c! cluster 3;~d! cluster 4.
Additionally, ~a! shows atoms in-
cluded into partial relaxation nea
the vacancy~see also Table I!; ~b!
shows Si atoms A1 and A2 an
their nearest Si atoms, which ar
labeled Si1 , Si2 , Si3 ~see discus-
sion in the text!.
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tioned above~Fig. 3!, the formation energy is calculated a

Efor5Etot~V!1E~O!2Etot~perfect!, ~1!

whereEtot(V) and Etot(perfect) are the total energies of th
system with the vacant site and the perfect system, res
tively, andE(O) is the UHF energy of the free oxygen ato
in the ground triplet state. To model oxygen vacancies as
ciated with substitutional Ge atoms@Ge ODCs~Ref. 45!#, we
considered oxygen vacancies with one or two neighbor
silicon atoms substituted by germanium atoms~i.e., vacan-
cieswSi—Gew andwGe—Gew!. Their formation ener-
gies were calculated using a definition analogous to Eq.~1!.
However, in these cases, the perfect system cont
one or two germanium atoms~wSi—O—Gew and
wGe—O—Gew!.

Unless otherwise stated, all calculations included a co
terpoise correction for the basis set superposition e
~BSSE! ~Ref. 46! ~see also recent discussion in Ref. 47!. This
means that the oxygen basis set remained centered in
vacancy when an oxygen atom was removed to form a
cancy. Similarly, the oxygen atom energy was calculated
cluding the basis sets of all other atoms in each partic
QM cluster centered at the positions of these atoms aro
the vacancy.

We used several methods for calculating the optical e
tation and luminescence energies in the Franck-Condon
proximation. Calculations were performed for the defect
ometries corresponding to the fully relaxedS0 state ~S0*
→T1 in our tables! and T1 state (T1* →S0). In these nota-
tions ~* ! means a fully relaxed state. The excitation energ
02410
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from the ground singlet stateS0 to the lowest triplet stateT1
and the luminescence energies from the relaxed triplet s
were calculated taking the differences between the total
ergies of the system in the triplet and singlet states~DSCF!.
To pinpoint excitations associated specifically with the bon
ing and antibonding orbitals of the vacancy site~e.g., S0*
→S1 , S0* →T1 in our tables! and estimate oscillator strengt
of dipole electronic transitions we used a configuration int
action technique which takes into account single-electron
citations~CIS!,48 as implemented in theGAUSSIAN98 code.44

Finally, more accurate calculations for luminescence en
gies were carried out using a coupled cluster method w
double excitations~CCSD!.49

IV. STRUCTURE AND PROPERTIES OF ANION
VACANCY

A. Defect structure in the ground state

In Sec. II we observed that, whereas previous calculati
predicted similar structures for the neutral oxygen vacanc
a-quartz, the energies predicted depended on particular
tails of the method used. In our embedded-cluster appro
we find that the quantitative results also depend on the b
set and, to a smaller extent, on the shape and size of the
cluster. We shall analyze this dependence in more detail
low. In this section we will focus on the effects of the lattic
relaxation on defect structure and properties. The full ext
of this relaxation can be established only from an embedd
cluster technique such as that employed in this work, or fr
a solid-state calculation with a very large supercell. The m
8-5
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FIG. 4. Total displacements o
atoms resulting from the relax
ation near the vacancy. Atoms pa
ticipating in the relaxation of A
and B types are shown as triangle
and squares, respectively. Num
bering of the atoms corresponds
that in Figs. 3~b!, 5, and 6.
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results can be clearly seen in the calculations of two sma
clusters 1 and 2@Figs. 3~a! and ~b!# in the 6–31G basis set

The results of these calculations suggest that the res
the lattice allows the Si atoms to relax without serious in
bition, driven by bond formation. Nevertheless, their stro
displacement induces a complicated distortion of the wh
region I. The atomic displacements decrease for distan
oms, but the number of these atoms increases rapidly an
resulting effect on defect properties is not negligible. T
absolute values of atomic displacements from the nonde
tive lattice sites as a function of their distance from the
cant oxygen site are presented in Fig. 4. One can clearly
that displacements decrease to almost zero values~0.01 Å!
only at the outer boundary of region I~13.07 Å!. They are
still about 0.2–0.4 Å at 5 Å from the vacant site~the sixth
neighboring shell! and are not negligible even at 10.0 Å fro
the vacancy. We have analyzed whether the noted decrea
atomic displacements with the distance from the defect c
ter R could be described by anR22 dependence, which on
could expect from a continuum model. However, it turn
out that the defect-induced displacement field is more co
plicated and cannot be easily fitted by this simple functio

Further analysis of the character of atomic displaceme
demonstrates that they can be clearly divided into two typ
shown in Figs. 4 and 5~a! and ~b!. Type A is extremely an-
isotropic due to the absence of the center of inversion
quartz. It involves large displacements of the silicon a
oxygen atoms directed towards the vacancy approxima
along the line connecting the two Si atoms neighboring
vacancy. The displacements of the silicon atoms, A1, A2,
A6, A8 are smaller and die much more rapidly than those
the oxygen atoms marked as A3, A5, A7, A9 in Figs. 4 a
5~a!.

Atomic displacements of the second type, marked B
Figs. 4 and 5~b!, are more isotropic and correspond predom
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nantly to the relaxation of Si-O-Si angles. This peculiar
laxation demonstrates high flexibility of the quartz structu
It is long range and far exceeds the size of any molecu
cluster or periodic cell used in previous calculations. D
placements of Si atoms are much smaller than displacem
of oxygens. For example, there are only two Si atoms~those
near the vacancy site! in the whole region I, which relax by
more than 0.2 Å, while there are 16 such O atoms.

We may check whether the size of region I is sufficient
describing such a strong long-range relaxation by increas
its radius to 15.03 Å, which corresponds to including al
gether 1120 atoms. This had a very small effect on the
tance between the silicon atoms adjacent to the vacant
~;0.01 Å! or on the vacancy formation energy~;0.03 eV!.
The additional displacements of atoms situated at a dista
less than 13 Å from the vacancy are also very small. Ato
participating in relaxation of types A and B were additiona
displaced by no more than 0.03 Å, while typical displac
ments were less than 0.01 Å. Thus we conclude that
lattice relaxation induced by neutral oxygen vacancy
a-quartz is highly anisotropic and has a radius of about 1
Å. The relaxation certainly will differ for different defec
types ~e.g., impurities, interstitials, etc.!, but one could ex-
pect equally strong or even larger relaxation for the exci
state of the neutral vacancy and for the vacancy in differ
charge states.

The two neighboring Si atoms which bond on forming t
neutral oxygen vacancy are not equivalent in the perf
a-quartz structure due to the absence of the center of in
sion. Once the vacancy has been formed these Si at
therefore havedifferent displacements near the vacancy. A
can be seen in Fig. 4, one of the Si atoms~A2! is displaced
by about 0.5 Å and the other~A1! only by about 0.3 Å from
the nondefective lattice sites. Thea-quartz structure can be
viewed as a network of corner-sharing tetrahedra where
8-6
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FIG. 5. Projections of direc-
tions of atomic displacements nea
the vacancy. The length of eac
arrow corresponds to the magn
tude of actual displacement multi
plied by a factor of 4 for better
visibility. Note that atoms are
shown in their positions in the
nondefective lattice. Notations
and numbering correspond t
those in Figs. 3~b!, 4, and 6.
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two Si atoms near the vacancy site are each at the center
corresponding tetrahedron@Fig. 3~b!#. The effect of this
structure on the relaxation of the Si atoms, A1 and A2, c
be understood analyzing the geometry of the Si sublatt
The difference in A1-A2-Sik(A2) and Sik(A1)-A1-A2
angles with surrounding three Si atoms@wherek51,2,3; see
Fig. 3~b!# is a measure of the difference in the arrangem
of the tetrahedral units in the vicinity of the vacancy site. F
the perfect structure the A1-A2-Sik(A2) angles are 139°
107°, and 91°, while the Sik(A1)-A1-A2 angles are 123°
108°, and 90°. The values of the first angle are significan
different and determine the magnitude of relaxation. T
asymmetric arrangement of neighbors around an oxygen
cancy has first been discussed in slightly different terms t
used here by Griscom and Cook50 and by Rudra and
Fowler.51

We have estimated that the dipole moment of the rela
vacancy in the both ground and excited triplet electro
states is equal to about 1.9 D and is directed approxima
perpendicularly to the line connecting the two Si atoms
and A2. This can be qualitatively explained if we note th
each of the elementary structural units Si1/4-O-Si1/4 of the
quartz structure also has a dipole moment of the same o
oriented in opposite direction. The total dipole of the ide
crystal is equal to zero due to cancellation of the above
pole moments. However, creation of the vacancy and
asymmetry results in an uncompensated dipole mom
which is a collective effect of the whole distorted lattice. W
should note that the electron density is distributed alm
equivalently between the Si atoms A1 and A2 and theref
their contribution to the dipole moment of the vacancy
insignificant.

B. Effect of lattice relaxation on defect properties

It is instructive to see how the defect properties depend
the extent of the lattice deformation accounted for in
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calculations. In Table I we present the main characteristic
the vacancy as a function of the number of neighboring
oms, which were allowed to relax. Notations 0, 1, 12, 12
and ‘‘full’’ have the following meanings@see Fig. 3~a!#: 0: no
atoms were relaxed; 1: two silicon atoms neighboring
vacancy relaxed; 12: as in 1 with a further six oxygen ato
relaxed; 123: as in 12 with a further six Si atoms relaxe
‘‘full:’’ relaxation of all species in region I~including shells
on the classical atoms!. For comparison, a commonly use
molecular cluster Si2O6H6 with fixed border H atoms would
correspond to the relaxation type ‘‘12’’ in this notation. A
one can see, the equilibrium Si-Si distance changes by a
0.8 Å dependent on the number of degrees of freedom
volved in geometry optimization. With full relaxation, th
equilibrium distance between the two Si atoms is equa
2.36 Å, essentially identical to the Si-Si spacing in elemen
silicon. These values remain practically the same for lar
clusters calculated in the same, 6–31G, basis set.

The number of quantum and classical atoms included
the relaxation has a dramatic effect on the vacancy forma
energy. The values presented in Table I in rows mark
0–123~calculated with respect to the free oxygen atom in
ground triplet state! do not include the BSSE correction
They demonstrate that the vacancy formation energy
creases by about 2 eV as increasing number of O and
neighbors are allowed to relax. Inclusion in the relaxation
the more distant atoms from the fourth and further neighb
ing shells results in the further energy decrease of ab
0.75–0.93 eV~Table I!, which is more than a third of the
total energy gain during the relaxation. The value for t
vacancy formation energy, calculated with the BSSE corr
tion, is found to be about 3.6 eV~see Table I! for both clus-
ters 1 and 2 in 6–31G basis set.

A qualitatively similar dependence of the defect prop
ties on the number of surrounding atoms accounted for in
8-7
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TABLE I. Properties of the neutral oxygen vacancy calculated using Si2O7Si6* and Si8O25Si18* clusters in the 6–31G basis set. Notatio
0–123 represent different types of relaxation accounted for in calculations~see text for details!. Efor is the formation energy of the relaxe
vacancy in the ground singletS0* state. The asterisk~for example,S0* ! means that the equilibrium geometry of the respective state has
used.RS andRT are the equilibrium distances between the two central Si~or Ge! atoms for theS0* andT1* states, respectively.«b2Ev is the
difference between the one-electron energy level of the vacancy«b and the level representing the top of the valence bandEv . The values in
the S0* →S1 column are the absorption energies~left! and oscillator strengthsf, calculated using CIS. Energies of theS0* →T1 and T1*
→S0 transitions are also calculated using the CIS method. The values ofT1* →S0 luminescence energies given in brackets in the last colu
are calculated by the CCSD method. ‘‘BSSE’’ marks the properties calculated including the BSSE correction. All energies are in
distances in Å.

Cluster
type

Relaxation
type Efor RS «b2Ev S0* →T1 S0* →S1 RT T1* →S0

Si2O7Si6* E, eV f
0 ~no relaxat.! 6.88 3.13 5.08 1.26 5.26 '1 3.13 1.26
1 ~relax 2Si! 6.56 2.86 3.11 2.65 6.16 '1 3.20 0.91

12 ~relax 116O! 6.09 2.70 2.63 3.55 6.57 0.82 3.18 0.91
~embedded! 123 ~relax 1216Si! 5.62 2.52 2.11 4.96 7.18 0.48 3.28 0.41

full ~relax region I! 4.84 2.36 1.96 6.01 7.58 0.25 3.36 20.32 ~0.49!
full1BSSE 3.58 2.32 1.67 6.13 7.52 0.13 3.21 0.28~1.05!
Si-Ge, full 4.27 2.38 1.62 6.00 7.55 0.27 3.34 20.34 ~0.47!

Si-Ge, full1BSSE 3.01 2.35 1.29 6.12 7.50 0.12 3.19 0.35~1.07!
Ge-Ge, full 3.73 2.40 1.81 5.95 7.51 0.30 3.41 20.59 ~0.22!

Si2O7Si6* fixed H 5.76 2.61
~isolated! relaxed H 4.58 2.32

Si8O25Si18* Si-Si, full 4.55 2.35 1.92
~embedded! Si-Si, full1BSSE 3.55 2.32 1.68

Si-Ge, full 3.92 2.38 1.73
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geometry relaxation has also been noted in Ref. 20. The
sults presented in Table I allow us to make a direct comp
son with the results of other calculations using molecu
clusters and similar basis sets. These can be divided rou
into two groups:~i! with fixed positions of saturating hydro
gen atoms, and~ii ! those where the saturating hydrogen
oms were also allowed to relax. The relaxation in the fi
group was in most cases restricted to the type ‘‘12’’ in Ta
I and the Si-Si distance obtained in these calculations
about 2.55 Å~see, for example, Refs. 13–15!. Clusters in the
second group correspond to full relaxation but are mu
‘‘softer’’ due to the absence of constraints on displaceme
of boundary atoms. This leads to much shorter Si-Si d
tances, such as 2.32 Å obtained in Ref. 12.

For comparison, we performed similar calculations o
selves~see Table I!. These calculations for a small cluster
and the 6–31G basis set demonstrated that the cluster
fixed H atoms gives much larger Si-Si distance and vaca
formation energy and that the cluster with relaxed H ato
correspondingly smaller values than obtained in o
embedded-cluster calculations. The effect of restricted re
ation has also been observed in other calculations. For
ample, the Si-Si distance of 2.68 Å obtained with theEMBED

method21 is considerably larger than 2.36 Å reported he
This is because the atomic relaxation only included Si an
atoms nearest to the vacancy. It is interesting to note tha
Si-Si distance found in periodic DFT calculations is also s
tematically longer than 2.4 Å,22–24 which again reflects sig
nificant constraints on the lattice relaxation around a de
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imposed by the size of the unit cell. Due to the same rea
all previous calculations failed to find the asymmetry in t
relaxation around the vacancy.

Table I also demonstrates the effect of the lattice rel
ation on other defect properties calculated in clusters 1 an
In particular, the position of the double occupied level of t
neutral vacancy with respect to the top of the valence b
shifts markedly as more atoms are allowed to relax and
bilizes at about 1.7–2.0 eV when the full relaxation is i
cluded. This level has a bonding character with respect to
AO’s of the two neighboring silicon atoms. In the small clu
ter 1 in the 6–31G basis set the first unoccupied state in
one-electron spectrum is also located in the band gap and
an antibonding character with some contributions of nei
boring oxygen AO’s.

The lowest singlet-to-triplet (S0* →T1) and singlet-to-
singlet (S0* →S1) optical transitions calculated using the C
method are dominated by the one-electron transitions
tween these two localized states. The calculated lowestS0*
→S1 excitation energy for the fully relaxed vacancy~see
Table I! is equal to 7.6 eV. This energy is close to one of t
observed defect absorptions, but we believe that the ag
ment is likely to be coincidental. Note again the drama
dependence of the excitation energies on the number o
oms included in the lattice relaxation seen in Table I.

C. Neutral vacancy in Ge-dopeda-quartz

We have also performed calculations for the vacan
where one or two Si atoms were substituted by Ge. T
8-8
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FIG. 6. ~a! Displacements of atoms near th
vacancy after the relaxation in the triplet excite
state calculated with respect to the geometry
the vacancy ground state.~b! similar displace-
ments calculated with respect to the geometry
the nondefective lattice. The length of each arro
corresponds to the magnitude of actual displa
ment multiplied by a factor of 4 for better visibil
ity. Note that atoms are shown in their position
in the nondefective lattice. Notations and num
bering correspond to those in Figs. 3~b!, 4, and 5.
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Si-Ge spacing~Si-Ge vacancy! is 2.38 Å, and the Ge-Ge
spacing~Ge-Ge vacancy! 2.40 Å, very close to the Ge-G
spacing of 2.45 Å in elemental Ge. Analysis of the charac
of the lattice relaxation demonstrates very similar feature
those discussed above.

The formation energy of the vacancy with one or tw
neighboring silicon atoms substituted by a germanium a
is lower than that for the pure quartz because of the wea
Ge-O bond. This result is similar to that obtained in Ref.
using the semiempirical MNDO method. The lower form
tion energy may explain the well-known experimental fa
that in Ge-doped silicaglassonly Ge ODC’s are observed
Thus if ODC’s are vacancies, then onlywSiuGew and
wGeuGew defects are observed; there are nowSiuSi
w defects. The following structural transformations are e
thermic in Ge-doped silica:

wSiuSiw1wSiuOuGew→wSiuGew

1wSiuOuSiw1ER1 ,

wSiuGew1wSiuOuGew→wGeuGew

1SiuOuSiw1ER2 .

For both reactions, the calculated energy gain is almost
same:ER1.ER2.0.6 eV, suggesting that formation of G
ODC’s is indeed energetically profitable. Electronic exci
tion, whether by an electron beam or by ultraviolet exci
tion, should stimulate these processes, since excita
causes oxygen motion.
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D. Excited triplet state

As noted above, the triplet excited state is as poorly
derstood as the singlet one. The results presented in Ta
~which are also confirmed using different clusters and ba
sets! demonstrate that in spite of high excitation energy,
energy of the luminescence transitionT1* →S0 is very small.
This results from a strong relaxation in the excited trip
state which moves the Si~or Ge! atoms apart from the vacan
site. This relaxation is due to the repulsion between the
Si atoms adjacent to the vacant site.17 As one can see in Fig
6, this repulsion drives the lattice relaxation back beyond
perfect lattice configuration; indeed, the distance between
two Si atoms A1 and A2 even exceeds that in the perf
lattice ~Table I!. However, the vacancy remains in the co
figuration where the vertexes of the two SiO3 pyramids are
pointing towards the vacant site~see Fig. 3!.

As one can see in the last column of Table I, the lumin
cence energies calculated using the CIS method are neg
when the oxygen basis set is not retained in the vacant
The same tendency is observed in theDSCF calculations.
However, more accurate calculations using the CC
method give positive luminescence energies in all cases
sidered~see Table I!. The relatively largeS0* →T1 absorption
energy and lowT1* →S0 emission energy correspond to
large relaxation energy of 2.85 eV in the excited state. B
transitions will be relatively weak, since they are spin forb
den, and are allowed only when spin-orbit coupling is
cluded. Therefore optical absorption will take place into t
singlet state with further spin conversion. Ge has a mu
larger spin-orbit coupling than Si, so the Ge centers could
visible in triplet absorption. Further, the large relaxation e
ergy in the triplet excited state implies a large Huang-Rh
8-9
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TABLE II. Parameters of the oxygen vacancy and of the perfect crystal calculated for the cluster Si2O7Si6* using different basis sets. O1

is the central oxygen ion in the cluster. The BSSE correction is a sum of the correction to the energy of the vacancy and that to th
of the free oxygen atom in the ground~triplet! state. The latter can be quite large. It is about 0.5 eV for the 6 – 21G* basis set and exceed
2.0 eV for the 3–21G basis set. Other notations are as in Table I.

Basis set Vacancy Perfect crystal

Si O
Efor*
eV

Si-Si
Å

qSi

ueu
«b2Ev

eV
Si-O1

Å
Si-O-Si

°
qO

ueu
qSi

ueu
BSSE

corr. eV

3–21 G 3–21 G 4.65 2.21 1.95 1.23 1.62 147 21.27 2.51 2.65
3–21 G* 3–21 G 5.63 2.31 1.96 2.03 1.60 146 21.29 2.56 1.90
6–21 G 6–21 G 5.02 2.34 1.93 2.00 1.62 146 21.26 2.51 1.81

6–21 G* 6–21 G 6.34 2.36 1.94 2.41 1.61 145 21.28 2.54 0.46
6–21 G* 6–21 G* 6.63 2.38 1.89 2.35 1.61 142 21.28 2.51 0.75
6–31 G 6–31 G 3.58 2.32 2.22 1.67 1.61 151 21.33 2.82 1.26

6–31 G* 6–31 G* 6.08 2.37 2.12 2.17 1.59 147 21.35 2.76 0.36
6–21 G* 6–31 G* 6.42 2.41 2.14 2.22 1.59 150 21.35 2.79 0.44

aBasis set~Ref. 43!.
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factor and linewidth at zero temperature. However, the la
cannot be easily estimated from a simple theory52 as the
profile of the adiabatic potential of theT1* state is very dif-
ferent from that of theS0* state. The large relaxation energ
ER also indicates that the excited state should recover n
radiatively, since the ratioER/absorption energy is much big
ger than1

4 ~see Ref. 52!.
Finally, we note that the results obtained in this basis

for a larger cluster 2 are very similar to those describ
above~see also Table I!. More significant quantitative varia
tions obtained for different basis sets are discussed in
next section.

V. EFFECT OF COMPUTATIONAL PARAMETERS

Cluster calculations in localized basis sets are inevitab
compromise between cluster size and basis set. The clu
size is generally determined by the strength of the def
induced perturbation and one tries to use as wide a basi
as practical. However, there is always a question as to w
extent the results are affected by these two factors. We t
to address some of these issues by systematically increa
the basis set for a relatively small cluster and then consi
ing several clusters in selected basis sets.

A. Effect of basis set

The results calculated in cluster 1 for the perfect and
fective systems for several basis sets are summarize
Table II. First, one can see that the characteristics of
perfect crystal are quite close for all basis sets. The S
distance in the quantum part of the cluster tends to decr
by about 0.01 Å for more extended basis sets includind
orbitals, such as 6–31G* . Variations of the Si-O-Si angle
presented in Table II are of the order of 5°. The effect
atomic charges are almost the same for all the basis sets
Si-Si distance in the relaxed vacancy also remains broa
the same for all the basis sets. Therefore the character o
lattice relaxation is qualitatively very similar to that di
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cussed in the previous section. The creation of the vaca
results in a considerable increase of the electron density
the two silicon atoms adjacent to the vacant site and in
respective decrease of their effective charges as a resu
elimination of the electronegative oxygen atom. Howev
these charges do not change significantly for extended b
sets~see Table II!. We have also checked the basis set d
pendence of our results for an isolated Si2O7H6 cluster
where all atoms were allowed to relax. We considered ba
sets from STO-3G to double zeta with polarization functio
with and without an oxygen basis at the center of the S
bond. These results demonstrate essential convergence
6–31G level. The Si-Si distance increased by about 0.0
as the basis was extended from 3–21G to DZ1d level.
These results are again in qualitative agreement w
embedded-cluster calculations shown in Table II.

The vacancy formation energy, however, strongly depe
on the basis set, and varies in the range of 3.6–6.6 eV. Th
strong variations are difficult to rationalize and we belie
that they are partly due to narrow basis sets employed
partly due the QM cluster boundary effects. This is also
flected in the values of BSSE corrections shown in Table
Inclusion of d orbitals reduces the variations in formatio
energies to 1 eV. The importanced orbitals on oxygen atoms
for the correct description of different crystalline modific
tions of SiO2 has been noted by Civalleriet al.43 who found
a minimal ‘‘good’’ basis set for SiO2 ~our results for this
basis set are also given in Table II!.

B. Effect of cluster size

We have also studied the dependence of vacancy for
tion energy on the cluster size for the 3–21G and 6–3
basis sets. The calculations performed for all four clust
demonstrate that the formation energy changes only wi
0.5 eV. This is hardly surprising because the electron-den
redistribution is localized preferentially on two Si ions an
therefore the formation energy depends mainly on the lat
8-10
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ASYMMETRY AND LONG-RANGE CHARACTER OF . . . PHYSICAL REVIEW B 66, 024108 ~2002!
relaxation. If the same number of atoms participates in
calculation of the lattice relaxation, the formation ener
should depend insignificantly on the cluster size. A rela
issue concerns the effect of Si* ions on the relaxation. To
check this we compared the displacements of the inter
Si* atoms in cluster 1 with those of the corresponding
atoms in cluster 3. The latter were treated as all-elect
quantum-mechanical atoms. In both cases the displacem
were calculated with respect to the corresponding fully
laxed nondefective structures. The absolute values of dif
ences in displacements are quite small with the largest re
ing 0.077 Å. These discrepancies can be made much sm
by more careful adjustment of the basis set and embed
potential.

C. Optical excitation energy

The optical transition energy is strongly affected by bo
the basis set and the cluster size. As the cluster size
creases, the empty antibonding orbital associated with
vacancy moves into the group of empty levels represen
the conduction band. This is due to the fact that
conduction-band width is increasing with cluster size and
corresponding states move as a function of the charge d
bution in the cluster and its relaxation. Calculations of op
cal excitation energies in cluster 2 using the CIS meth
gives about 10 eV for the first strong transition localized n
the vacancy. This effect has not been mentioned in prev
publications due to the restricted atomic relaxation in R
21, small clusters employed in Refs. 12–15, and the na
of MNDO method employed in Refs. 16–18, which does n
allow proper description of the excited states. As has b
pointed out in Ref. 12, neither the 6–31G basis set nor
CIS method is adequate for calculating optical properties
this defect due to importance of the electron correlation.
therefore expect that the electron correlation will stron
reduce the excitation energy. Indeed, theS0* →T1 transition
energies calculated in cluster 1 and the 6–31G basis se
ing the coupled cluster method with single and double e
tron excitations are reduced by about 0.5 eV with respec
those calculated at the CIS level.

Finally we note that the vacancy relaxation in the exci
triplet stateT1 in larger clusters is similar to that found i
cluster 1. In particular, the Si-Si distance calculated in clus
3 in the 6–31G basis set also increased to 3.36 Å after
laxation as in a small cluster 1. The calculated luminesce
energies are all less than 1 eV.

VI. DISCUSSION

In this work we further developed the embedded clus
method9–11 in order to study defects in ionic-covalent mat
rials and applied it to the neutral oxygen vacancy
a-quartz. The improved embedding technique allowed us
perform a comprehensive analysis of the full extent and ch
acter of the lattice relaxation around this defect and to sh
that it induces very strong and anisotropic lattice distorti
which extends further than about 13 Å from the vacant s
We also predict the strong backward relaxation in the low
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triplet excited state of the vacancy~Fig. 6! and small lumi-
nescence energies. These results significantly alter the e
ing model of the neutral oxygen vacancy in SiO2 as merely a
symmetric displacement of the two silicon atoms towa
each other due to formation of a chemical bond betwe
them. They demonstrate that in spite of the rigidness of S
bonds the character of defect-induced lattice distortion
SiO2 can be much more long range than intuitively anti
pated and predicted in previous calculations. This sho
hold also for charged vacancy, peroxy linkage, and ot
defects in SiO2 . For comparison, the relaxation of atom
surrounding a neutral vacancy in some other oxides, suc
ZrO2 and MgO, is much smaller. In the case of MgO, ion
displacements are isotropic and at the distance of 8.0 Å fr
the neutral vacancy are less than 0.002 Å. A double p
tively charged anion vacancy in MgO produces a mu
stronger perturbation, but again, the displacements of the
tice ions decrease relatively rapidly and do not exceed 0
Å at the distance 8.0 Å from the vacancy. This results fro
different structure and chemical bonding in these materi
In particular, in MgO, unlikea-quartz, the oxygen site is th
center of inversion. The peculiar structure ofa-quartz is also
manifested in the strong asymmetry of the relaxation of
two Si atoms neighboring the vacancy~Figs. 4–6!.

Our results clearly demonstrate that defect parame
strongly depend on the extent of the lattice relaxation
counted for in calculations and on the cluster size and b
set. The vacancy formation energies calculated at the
level in extended basis sets~see Table II! are broadly in
agreement with those found byab initio methods in Refs.
13–15, 20, 22 and 53, and also with those obtained by
MNDO method in Refs. 16–18. A meaningful quantitativ
comparison could be made with the results of Ref. 53 p
dicting 6.7 eV in the DZ1d basis set on both Si and O
atoms. Our value of 6.08 eV in the 6 – 31G* basis set is
predictably smaller due to a much larger relaxation ene
Taking further account of the electron correlation at the
level with single and double excitations~CISD! increased the
vacancy formation energy by 1 eV~for the 6 – 31G* basis
set, cluster 1! in agreement with Ref. 53. Although furthe
calculations are certainly needed to reach convergence,
should not affect our conclusion that formation of Si-Ge a
Ge-Ge oxygen vacancies in quartz is energetically m
profitable than Si-Si vacancies.

The calculations with extended basis sets show that
optical-absorption energy of the neutral vacancy ina-quartz
should be larger than 5 eV. A more quantitative statem
would be misleading due to the strong dependence of
results on parameters discussed above and on the me
used for calculating the excited states. The small lumin
cence energy found in our calculations suggests that the
a high probability of a nonradiativeT1* →S0 transition. A
qualitatively similar result has been obtained in Refs. 13,
and 18. Therefore we expect that the luminescence of
defect will be strongly suppressed. We also predict that
double occupied energy level of the vacancy should be s
ated at about 2 eV above the top of the valence band. If
assume that the lowest optical excitation energy of the
cancy is 7.6 eV, its first excited state should be very close
8-11
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the bottom of the conduction band. Thus such excitation
result in the electron promotion into the conduction band a
ionization of the vacancy.

Finally, we should note that the large radius of the latt
relaxation around the neutral vacancy ina-quartz found in
this work should be characteristic to other defects, such
E8 centers. The relaxation around these defects in am
phous silica is the subject of our current investigations a
will be published separately. The radius of relaxation is co
parable or even larger than the characteristic thicknes
currently attainable oxide layers on silicon and dimensio
of silica nanocrystals.54 This suggests that properties of the
defects may strongly depend on their position with respec
surfaces of respective systems. The strong lattice defor
tion and the dipole moment of neutral vacancies should
fect their interaction. Our results suggest that this interac
could be affected by external electric field, which could
relevant for explaining the effects of poling of silica glass55
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APPENDIX: EXPRESSION FOR THE TOTAL ENERGY AS
APPLIED TO SiO 2

For simplicity we attribute the interface Si* atoms to the
quantum cluster. We will also draw no distinction betwe
the classical atoms in region I and those in region II.

The total energy is given by

E5Eqm1Ecl1EML ,

whereEqm is the total energy of the QM cluster in the p
tential of the classical environment,Ecl is the total energy of
the classical environment, andEML is Mott-Littleton polar-
ization energy of the crystal lattice outside region I.

The Eqm is a sum of the quantum-mechanical energy
the cluster in the external potential due to the environm
Venv and classical correction termWSi* ,qm describing the in-
teraction of the interface Si* atoms with their O neighbors in
the QM cluster. External potentialVenv5Venv

Coul1Venv
short in-

cludes an electrostatic part and a short-range part; the latt
used to mimic the exchange and resonant contributions to
interaction energy:

Eqm5^FuH01Venv
CouluF&1Venv

short1WSi* ,qm,

where
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WSi* ,qm5(
i

NO

(
j

NSi*

Wi j
Morse~Ri2Rj !.

In the expressions aboveNqm andNe stand for the total num-
ber of atoms and electrons in the QM cluster, respectiv
~with NSi* being the number of interface pseudo-Si ato
and N0 the number of their quantum-mechanically treat
oxygen neighbors!, Ncl is the total number of classical atom
Ncor and Nshe are the total number of classical cores a
shells, respectively,Z, Qcor, Qsheare charges of nuclei in the
QM cluster and of the classical cores and shells, respectiv
Rqm andr are coordinates of nuclei and electrons in the Q
cluster,Rcor and Rshe are coordinates of the classical cor
and shells. The HamiltonianH0 includes the kinetic energy
of the electrons, the electrostatic interaction of the electro
and nuclei in the QM cluster~electron-nucleus, electron
electron, nucleus-nucleus!, and an effective core potential fo
the interface Si* atoms. The external potentialVenv

Coul includes
interaction of classical cores and shells with the electr
and nuclei of the QM cluster. The termsVenv

short andWSi,qm are
both represented by pairwise Buckingham or Morse-ty
classical potentials.

The total energy of the classical region is given by

Ecl5(
i

Ncl

Wi
spring1(

i

Ncl

(
j Þ i

Ncl

~Wi j
Coul1Wi j

Buck!,

where

Wi
spring5

ki

2
uRi

cor2Ri
sheu2

and
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In the aboveWspring is the polarization energy of the atoms
the electrostatic field due to the defect~k is related to the
polarizability of ions in the crystal!, WCoul is the electrostatic
energy of the cores and shells of all pairs of classical ato
WBuck is the pairwise atomic interactions represented us
classical Buckingham-type potentials.
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