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Differentiability breaking and Schwarz theorem violation in an aging material
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Dielectric constant measurements are performed in the frequency range from 1 kHz to 1 MHz on a disor-
dered material with ferroelectric properti€kTa; ,Nb,O; crystalg after isothermal aging at the plateau
temperaturd,=10 K. They show that the derivatives of the complex capacitance with respect to temperature
and time present two very peculiar behaviors. The first point is that the first and second derivatives against
temperature are not equal on the two side$ gf this is differentiability breaking. The second point is that the
two crossed second derivatives against temperature and time are notirdeedl they have opposite signs
this is a violation of Schwarz theorem. These results are obtained on both the real part and the imaginary part
of the capacitance. A model, initially imagined for aging and memory of aging, attributes the time-dependent
properties to the evolutiofgrowth and reconformation®f the polarization domain walls. It is shown that it
can also explain the observed differentiability breakimagd in particular its logarithmic increase with the
plateau duratiorty) and the violation of Schwarz theorem.
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I. INTRODUCTION Indeed, the capacitance is a complex quantity and the
quoted properties are valid for both its real part and its
Aging is said to occur if the evolution of a system, mea-imaginary part.

sured through some susceptibility or some extensive param- We have performed a large number of experiments, with
eter, is nonstationary and depends on the thermal history. It {¢arious plateau durations and several measuring frequencies.
a consequence of disorder and frustration. Aging was noticebfowever, we present in great detail only one complete set of
on the elastic complianceof polymers a long time agbit data with the idea that_a unique c_:oun'gerexample is suff_icient
has also been observed in many solids: on the magnetic sul® rule out a theorengindeed to invalidate the underlying
ceptibility x of spin glasse&;® on the elastic constamtand ~ NyPotheses
on the dielectric constant of disordered dielectriés® and
of structural glasses. [l. EXPERIMENTS

As_somated with aging, reJuvenat|c_(|evqut|on opposite The pure potassium tantalate KTafystal belongs to the
to aging observed when temperature is lowgeetl memory . . . . ) .
cubic perovskite family. If a fractiox of tantalum ions is

(sequel of aging seen after_ a bfiCk and forth temperaturandomly substituted by isoelectronic niobium ions, the
sweep are also present in disordered and frustrate

1015 Ta; ,Nb,O5 crystal thus obtained is ferroelectric if the

materials.”™** . , . niobium concentratiorx is superior tox,=0.008. For the

Recently, differentiability breaking Ghas been put in evi-yyq samples used in the preliminary study of differentiability
dence in KTa_,Nb,O5 (KTN) crystals'® If after an isother- breaking® we have observed broad transitions at the tem-
mal plateau at temperatuflg, held during the lapse of time peraturesT, =31 and 38 K, defined by the maxima of the
ty, @ small temperature changd is imposed, it induces a real parts’ and the imaginary pag” of the dielectric con-
small capacitance change from which the partial derivativestant, which are almost independent of the measuring fre-
dC/dT can be deduced. The point is that the derivative is notjuencyf. From the phase diagrdfwe inferred that the
the same fodT>0 anddT<0 (except ift,=0). Therefore, niobium concentrations are=0.022 (sample A and x
the left-hand derivative and the right-hand derivative must be=0.027 (sample B, respectively. The experiments reported
distinguished and, strictly speaking, the functioft,,T) is  below are new; moreover, detailed experiments performed
not differentiable with respect t® since the value of#C/dT on sample B in its ferroelectric phase are analyzed following
is not unique at the point &ty , T=T,). In other words, the @ modified method. _
function C(t,,T) has a cusp iT=T,. This is differentia- Using a Hewlett-Packard 4192A impedance analyzer, we
bility breaking; it is related to rejuvenation. have measured the electric capacitance and the dielectric loss

In the present paper we report on new results concerningt frequencied, ranging from 1 kHz to 1 MHz. They can
some among the derivatives 6{T,t) with respect to tem- easily be transformed into the real partand the imaginary

perature and time. More precisely, we have found that part ¢” of the complex dielectric constant. Practically, the
data are given in terms of the complex capacita@eeC’

(i) As the first derivativedC/JT does, the second deriva- —iC"”, proportional toe=¢'—ig” (the rule is thatC

tives 9°C/dT?, 9°ClaTat, and 9>C/ataT also show differ- =1 pF corresponds te= 16 for sample B, which was mea-

entiability breaking; sured as a function of time while the sample temperature
(i) Moreover, the second crossed derivative€/JT ot T(t) was a controlled function of time.

andd°C/atdT are not equalviolation of Schwarz theorem The following procedure was systematically used. After
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annealing near 55 K and initial rapid cooling across the tran- 0 — T T
sition temperaturd@,, down toT=22 K, cooling is continued
at the cooling rate =—5.9mKs !, down to the plateau
temperaturél ,,. The duration of the plateau tg,. All steps 1k -
before the plateau constitute what is called the thermal his-
tory of the sample.

Q' (fFfs)

|
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IIl. METHOD AND PREVIOUS RESULTS

The original principle of our method has been described
elsewheré? It consisted in the study of small variations of " os 04 0
the complex capacitance as responses to small temperature dT (K)
and time variations. We have measured the response in the
vicinity of some remarkable poinfl(,t) in the (T, t) space.

Taking C(T,,to) as reference, the deviation from this value curring at the end of the aging plate@it=t,) as a function of the

is dCZC(T0+dT’t0+ dt) _C(TO'tO)' For infinitesimal jump magnitudedT. The lines represent the fits with two different
changesdC is the sum of an instantaneous change proporgecong degree polynomials: one for the data recorded dfith 0

tional todT and of a decrease due to aging, proportional tosquarey the other for those recorded withT <0 (diamonds. The
dt. This reads experimental conditions werd =10 kHz, t,=500s, and Ty

=10.1K.
dC: P(Tp|, tp|)dT+Q(Tp|, tp|)dt,

0.4 0.8

FIG. 1. Plot of the real pa®’ of the capacitance time deriva-
tive Q(T,+dT, t,) after the temperature jumpy,=Ty+dT oc-

not the same on the left-hand side and on the right-hand side.
This is differentiability breaking.

Indeed, this calculation was crucially based on the hy-
pothesis that the coefficie® has the same value whatever
the temperature increments are: this means Q&iT,)
Q(dT,). In other words, it was assumed that the tempera-
re increments are sufficiently small to be considered as
infinitesimal. The validity of this assumption is now ques-
tioned. Therefore, while keeping for the time interval the
tals in the following way. Let there be two experiments, la-S@Mme very small valuelt, hereafter th? temperature incre-
beled 1 and 2, corresponding to two small temperature steﬂgentd.-r is supposed to be small but finite and we push the
dT, anddT, (both positive or both negatiyeerformed dur- analysis up to second order. The results reported below show

ing the same time intervadt following the plateau. If the that the systematic error introduced by this assumption is of

steps are supposed to be infinitesimal, they induce the fof_he same magnitude that the experimental error; therefore, it

lowing two complex capacitance changes does not invalidate our previous conclusions.

where it is explicitly put thafT, is the plateau temperature
Tp and that the plateau durationtis (the origin of time is
chosen at the instant whéh, is reachefl The complex co-
efficientsP(T,,t,) andQ(T,,t,) are the partial derivatives
of C(T,t) with respect tol' andt calculated atTy,t,). The
coefficientP depends on temperature and time. The real anq
imaginary parts of the coefficiel®, which measure the ef- u
fect of isothermal aging, are negative.

In a recent study the method was applied to KTN crys-

dC,=PdT,;+Qdt and dC,=PdT,+Qdt, IV. NEW ANALYSIS AND PRELIMINARY RESULTS
with a unique coefficient. Then the complex coefficient We have determined by direct measurements how the co-
P=P’'—iP" is easily deduced as efficient Q(T,+dT, t,) depends ordT. After the plateau
lasting t, at T, the temperature is suddenly changed to
dC,—dC, Tp+dT, with |dT|=<0.6 K, and a second plateau is started at
= m this temperature. Then, by means of a least square method,

we determine the best fit for the time variation of the capaci-

For a given temperature stepr, different temperature [@nce€C(Ty+dT, 1) with the data recorded for=t,+dt
stepsdT, were used. Our experimental errors aké’ and we extrapolate it to=t,. The fit function is a stretched
=+0.2 pFK L andAP"=+0.1 pFK"L. Using these differ- exponential. Once the free parameters of the fit function are

ent steps we obtained, with errors smaller thanP2 and ~ known, we are able to obtai@(Ty+dT, tp), the capaci-
2AP”, the same values for the real pat and the imagi- tance time derivative an|+gIT, and th_e capacitance jump
nary partP”, respectively. This result is a good check of the PetweenTy and Ty +dT, which respectively read
validity of our method. In all our experiments we used the JC
time intervaldt= 20 s while the temperature steps were such Q(Ty+dT, ty)=—-
that|dT,|=0.125 K andd T,=4d T, which provide us with dt Ty+dT
a good accuracy.

The main result was different values for bd® and P”
on the two sides of the plateau: they are larger for positive _ _
temperature jumps than for negative temperature jumps. This dC(TptdT, tp)=CTp+dT, to)=Cl(Tpi, o).
means that the derivatives Gf andC” with respect tol are  The data forQ(T,+dT, t,) are shown in Fig. 1real parj

and

024105-2



DIFFERENTIABILITY BREAKING AND SCHWARZ . . . PHYSICAL REVIEW B 66, 024105 (2002

0 T T T 0.4 T T T
02 ]
_ 02 | 4
© -04 | N -
£ J
o 06 } ",‘ i o
Sl _
L d =
08 | h i P
0.8 3 —
1 .5‘. 1 | L 1 . s | | |
0.8 0.4 0 0.4 0.8 0. ' ! '
dT (K) 0.8 0.4 0.4 0.8

0
dT (K)
FIG. 2. Plot of the imaginary pa®” of the capacitance time

derivative Q(T,+dT, t,) after the temperature jump,=T
+dT occurring at the end of the aging plate@it=t,) as a func-
tion of the jump magnituddT. The lines represent the fits with two
different second degree polynomials: one for the data recorded wit

dT>0 (squarey the other for those recorded withT<<0 (dia- . .
monds. The experimental conditions wefe=10 kHz, t,=500's, >0 (squarep the other for those recorded withT <0 (diamonds.

andT,=10.1 K. 'theoelxgerlmental conditions weffe= 10 kHz, t;=500s, andT

FIG. 4. Plot of the imaginary partiC” of the capacitance
changedC(T,+dT, t,) after the temperature jumpy,=Ty+dT
occurring at the end of the aging plate@it=t,) as a function of
hhe jump magnitudeT. The lines represent the fits with two differ-
ent second degree polynomials: one for the data recordedddith

and Fig. 2(imaginary part; those fordC(T,+dT, t,) are V. AN IMPORTANT QUALITATIVE RESULT

displayed in Fig. 3(_“%" par}_ and Fig. 4(imaginary part Before we turn to give quantitative results, we show now
We must underline the d|ﬁere?ges between the two formsy, o+ \ve can infer an interesting property only from a quali-

of the method. In the initial forff"'8the studied capacitance tative result.

change is from the pointT(,, tp) to the point T, +dT,t, On the one hand, thénegative coefficients Q'(T
+dt) In the fOI’m Used.he-re, the.ChaI’lge IS froﬁb}( tp|.) tO +dT’ tpl) and Q”(Tpl_’_ dT, tpl) decrease from the ValueS
(Tp+dT, ty). The variation during the lapsét is elimi- Q'(Ty, ty) and Q"(Ty, ty) for both dT>0 and dT<0

nated by extrapolation from the data fort,+dt. (see Figs. 1 and)2This means that

As a first result, the data of Fig. 1 and 2 provide an upper
limit of the bias introduced in Ref. 16 when assuming ¢Q’ 9*C’ Q" a*C”
Q(dT;)=Q(dT,): we know now that the deviations were W) ~ITat and W) :(ﬂ'at)
smaller than [Q’(0)—Q’(*0.5K)]dt=0.015pF and Toi-tp Toi-tp Toi-tp Toi-tp

[Q"(0)—Q"(+0.5K)]dt=0.01 pF fordt=20s; this was paye their sign opposite to the sign .

close to the experimental errors. Our previous data were on the other hand, we know from previous experiménts

practically correct. and from the analysis done below that the isothermal capaci-
tance jump can be written in first approximation,

6 . ; : ; . ; : dC(Ty+dT, t,)=PdT,
4 . where the coefficienP depends o, . Its time variation is
, L ] P(Tpi,tp) =Po+MIn(t,) for t;;>200s where the coeffi-
o cientsM’ andM” have the sign ofiT. It follows that
g ]
& 5 w7 1 IP’ #*C’ M’ g aP"
“r - 7] - = =—-— ana ——
3 1 ot otaT t ot
4 - 0"'.’ ] Tpl'tpl Tpl 'tpl Pl Tpl ’tpl
P r ) | . | . | . 1 _(92(://) B M/r
0.8 -0.4 0 0.4 0.8 - i
T ataT Tt tol
FIG. 3. Plot of the real pardC’ of the capacitance change where the sign of these derivatives is thatddt
dC(Tp+dT, ty) after the temperature jumpy=T,+dT occur- Consequently, the two pairs of derivatives
ring at the end of the aging platedat t=t) as a function of the
jump magnitudedT. The lines represent the fits with two different 92C’ 92C’
second degree polynomials: one for the data recorded avith O ) , ——
(square the other for those recorded withf <0 (diamonds$. The JTot ol Lol atat Toitpl
experimental conditions were =10kHz, t;=500s and Ty,
=10.1K. on the one hand, and
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J2C” J2C” A. Isothermal aging
aTat) . TootaT T In the model, aging properties are attributed to the slow
pl+7pl pl>'pl evolution of the area of domain walls. The average domain
on the other hand, have opposite signs. sizeR always increases in a ferroelectric phase. If we assume

Only from these qualitative results we are allowed tothat the timet necessary to a domain wall of sif in a
claim that Schwarz theoregequality of the two crossed de- crystal lattice of parametes, to overcome a barrier energy
rivatives is violated when applied to the capacitance afterscalel’ at temperaturd is

aging.
ging t=7.exg'(R/a)’(kgT)],
VI. MATHEMATICAL ANALYSIS AND RESULTS with #=1, we deduce that after a plateau duratignthe

. domain has reached the size
We turn now to the numerical results of our measure-

ments. They were performed with different plateau durations a keTy tol

t, =100, 500, and 2000 s at the temperatiiyg=10.1 K. R(tp) =Ro) 1+ = In| 1+

b Ro I 7(Ro, Tp1)
The data were recorded &t 10 kHz.

In order to gather and classify the whole set of our results, a kgTp th
we write down the Taylor expansion of the complex capaci- ~Rpj 1+ R_o T In (R, T/ |
tance after the end of the isothermal agiidgring the time TP
ty at the temperatur@): where the characteristic time is 7(Ro,Tp)
= 7. exgI'(Ry/a)/(kg T 1.
C(Ty+dT,ty+dt) The wall area contribution to the capacitance is propor-
5 tional to the total wall area multiplied by the density of do-
=C) eust &) dT+§) dt +E d C) dT2 mains. Therefore, domain growth induces a decresx€e
eop T2 2/D3 ~ T
aT cop at cop 21T cop «R4/R°=1/R of the susceptibility because the total wall
5 5 5 area decreasdthe area of a domain increases but the num-
9°C 9°C 9°C ) ber of domains decreases more strongNeglecting the dis-
+——| dTdtq+—=| dtdT+—=| dt N . ;
atoT aTat at tribution of size, the aging part reads
eo eo eop
+ 257} gt ame other third order ac=— =K}, 2T In( i )
6| Tt . otherfhird orderterms “R(tw Ro|™ Ry Ty \7(Ro,Tp)/)"

where the lower index “eop,” which stands fofTg,ty), The coefficientK_ is a constant with the needed d.imensi.ons.
means “end of plateau.” In this expansion we have shownT herefore, the time-dependent part of the capacitance is
only the measured coefficients and we have assumed that the

Schwarz theorerfequality of the two crossed second deriva- AC(tp)
tives) could possibly not hold.

The three sets of data show differentiability breaking of . o
C(T,t) and confirm the violation of the Schwarz theorem.igfére{s.‘s)es as the logarithm of the plateau duratiory, if
g 0+ ! pl)-

However, it would be tedious and unsurprising to reproduce Growth is not the only possible motion of the domain

all of them. Therefore, only one set of data is reported inwall' rearrangement@econformation modasf some parts
detail in the Appendix. : g p

of the wall also play a rolé? The characteristic time(l, T)
of the domain wall motion is a rapidly increasing function of
VIl. MODEL the size of the displaced portion of aréda=1x1 of wall,
Nonergodic isothermal agingevolution at constant tem- according to7(l,T) = 7. exqI'(/a)/(ksT)]. The lengthl is
perature towards a limit that depends on thermal higfory necessarlly s.maller than the domain sRequII-sme mo-
rejuvenation(evolution opposite to aging after a temperaturetlons are fast; they corr_espond_to reconformations of parts of
jump) and memory(sequel of aging after a back-and-forth domain walls. Large73|ze mouor(wherelzR) are slow;
journey to lower temperaturgsan be explained in the frame they gorreqund to_Increases of the domf”"” size. Indeed,
of a model that attributes the time-dependent effects to relN€re is a continuous distribution of the moving portion sizes
conformation and growth of the walls of the polarization and a correlative distribution of their characteristic times:
domainst®~2! Here we scrutinize the appropriateness of the
model to explain the main two features reported in the

K Ka Ty

=——=——""n i
R(tay)  R5 T

7(Ro, Tp)

Tmin= T XA '/ (KgT)]

present paper: 7, T)
(i) The second derivative/dt(dC/dT) =3P/t has the < 7. exgI'(R/a)/(kgT)]= Tmax-
same sign thal T=T—T;
(i) The second derivative/ dT(JC/dt) = dQ/ T has its sign This real-space language can be translated into terms of
opposite to that ol T=T—T. travel of a representative point over energy barries3,
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=I'(l/a) in the phase space. Small-size motions correspondffects of all the reconformations of this size. This provides a
to jumps over low barriers and large-size motions to jumpsontribution of the Langevin-Debye type to the capacitance,

over high barriers. with the form
To simplify, reconformation of the areA=1X| means
the equilibration between two possible configurations of this dC(w, ot, 1) G(1)
part of the wall. This occurs according td(t) =Xeqt (Xo @%b 1+tior(l, Ty’

—Xegexd —t/7(l, T,)], wherex(t) is the difference of the o _
probabilities to find the domain wall either in a configuration Then the contributions of all the reconformation lengths on a
or in the other andk, is the initial value. The equilibrium given domain wall have to be added. Indeed, as it was shown

value is Xq Tp) =tanh(T, /T,), where XgT,=2A is the above, the sum is practically Iimi.ted to those Wiﬂﬂwlin
free-energy difference between the two minima of the double=7(l, Tp) <4t or a<I<I(ét, T,). Finally, the summation
well associated with the two configurations. The characterisOver all the domains gives the total effetC(w, 6t).

tic time of the evolution is(, T). During domain growth, A rigorous calculatlon_|s out of the scope o_f the present
with the typical timerma,= 7. exd(Ra)/(ksT)], all the re-  Paper. However, accordmg to the previous discussion one
conformations are achieved in time#, Ty)<7pa. There- ~ Can guess thaAC(w, 4t) is proportional to secT, /Ty)

fore, except at the very beginning, during isothermal aging<(dT/Tp). Itis positive becausd T>0. o
the reconformations of the wall are permanently in quasi- Since the material is disordered, one may expect a distri-
equilibrium with the sizeR: the bottleneck(the slowest bPution of the parameters, andT,. However, most of the
mode of isothermal aging is due to domain growth. In other contributed domains are such thai<Tg and T,<Tp,.
words, the wall reconformations only play a minor role dur-Otherwise, the occupation function tafk(T,)=1 would
ing isothermal aging. On the contrary, their role is essentiabe insensitive to temperature changes and the relaxation time

after temperature changes. 7(Ro, Tp) = 7 exdI'(Ro/a)/(kgTy) ] would be too long.
Moreover, an important point to emphasize is that the

number of reconformations increases as the A(gg) of the
domain wall at the end of the plateau. Since
We first examine the case when the sample is pushed out
of its quasiequilibrium because the temperature is suddenly a Ty ty
142 — —In| —=—%—| {,
Ro Tp | 7(Ro, Tp)

B. Rejuvenation upon cooling

lowered toT,—dT in the short lapset. The configurations A(ty) *R(ty) =R3
that were equilibrated af, must evolve, starting from the _ _
initial value Xo=>Xe{Tp) =tanh({,/T,) towards the new Itis expected that the time-dependent parAa® is propor-
equilibrium  value Xeq=Xef Tp— dT) =tani T, /(T,—dT)]. tional to Ity /7(Ry, Ty ] for long enougtty,. This is actu-
The corresponding possible evolution magnitude is ally observed. Finally, we get

—Xo= (T /Ty)sech(T,/Ty)(dT/T dC
Xeq— Xo (Ta pl) (Ta pl)( pl) P= [?_T%po_M |n[tp|/T(R0, Tpl)]-
while the kinetics of the evolution is governed by

The coefficientM is positive. The ternP, is the volume

X(t) =Xo=(Ta /Ty sech(To/Tp)(dT/Ty) contribution, due to the variation of the coherence length
&(T) with temperature that increases when approacfiipng
X[1—exp{—t/7(1,Tp)}]. The derivative is

Very schematically, the reconformations that have enoughgP/dt) go,= 9°CldtaT) eor~ — M/ty<0 for T=T,—dT.
time to achieve this evolution duringt are those withr,;,
<7(,Ty)<é&t, or equivalently a<I<I(st, T,), where

(61, Tp)=a(ksTy/T)In(Ur.). This leads to an “immedi- C. Relaunching of isothermal aging

ate” response that reads The coefficienQ(T, t,) is the measure of aging veloc-
ity. During isothermal aging at temperatufg the evolution
X(8t) —Xo=(Tx /Tp|)secﬁ(TA/Tp|)(dT/Tp|). slows down as time elapses, according to
Those withI(dt, T,)<I<R(t,) are frozen in during the aC a Ty 1
time St. This leads to Q(tpO—E——KR—OzT—bt—m-
X(6t) —xo=0. After a long aging, the system is old, as shown @y,

<Cp and — Qeop< — Qo (the inequalities on complex quan-

A portion of wall bears the average dipolar momenttities must be understood as valid for their two parts, sepa-
ma(l, t)=pu(1/a)?x(t), whereu is the elementary moment rately), because the capacitance decrease is governed by
of an off-center tantalum ion. The moment is coupled withgrowth of large domains with the characteristic tirg.
the oscillating electric field&E(w). The corresponding contri- However, it seems younger immediately after the tempera-
bution to the dielectric constant of a domain of sRedue to  ture jump since an initial enhancement of the aging velocity
the reconformations of sizeis obtained when adding the (sometimes called relaunchinig observed. This is also seen
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in negative temperature cycle experiments performed on
KTN (Ref. 8 and on spin-glasses tdd.This feature can be I(6t, Ty+dT)=I(6t, Tpy)
explained by the model.

Indeed, the system that begins to evolvé=at,+ 6t and . o
T=T,—dT is in a mixed state since short conformation Consequently, there are more reconformations implied in
modes are in equilibrium while long modes are not. In thispositive jumps than in negative ones in the “immediate”
picture, the wall is seen as wearing small crenels or cape&sponse. This lack of symmetry may explain differentiabil-
that are the fastest forerunners of the domain growth. Ity breaking® From this analysis we are led to assume that
other words, the wall is already prepared to grow becausthe small size reconformations responsible for the “immedi-
many dipoles already have the right orientation and the ferroate” response are not the sanié they were the same, a
electric interactions can more easily align the other dipolesdecrease of the capacitance would be observed, in contradic-
This explain why the domain size growth is now unexpect-tion with experiments This point needs a deeper examina-
edly fast. Consequently, after the temperature juagl the  tion.
initial decayQ(T,—dT, ty) is rapid. This is the meaning of
the observed featureQ(T,—dT, ty) <Q(Tp, ty)=Qeop
from which it is deduced thatQ/dT)es= d*ClITt)eqp

1+ 3|
T/

E. A comparison with phase transitions

>0. The semimicroscopic model described above is not fully
The comparison between the two crossed second derivaatisfying since the growing trend of the domains is intro-
tives duced as aad hochypothesis. Indeed, the features that have
to be explained are reminiscent of phase transitions where
6’2C/(9tﬁT)eop<O and 02C/&T&t)eop>0 the temperature behaviors are generally different above and

below the transition temperatufig,. For instance, Landau

shows tha_t th_e model qualitatively explains the SChWarztheory predictgand experiments confimthat the tempera-
theorem violation(here, for the left-hand-side temperature ture variations of the susceptibility do not have the same

derivatives. Moreover, the logarithmic variation of the coef- critical exponent on the two sides df,. The reason is

fr'&':rgfFt’h;agri;xvggégeaﬂgtgsﬁt;Lﬁg'?nm‘}'héd%eoé%fhe simple: forT>T, and T<T,, the landscapes of the phase
: space are different and, consequently, the equilibrium posi-
tions correspond to minima of the free energy with different
D. Behavior upon heating curvatures. The analogy between aging and a phase transi-
Now we compare the two thermal ways of pushing thetion has been already pointed out for the case of Spin
sample out of equilibrium, either by a negative temperatur@lasse$ with the very puzzling circumstances that rejuve-
jump from T, to T,—dT (as seen aboYeor by a positive nation (and diﬁergntiability breaking in the case of KTN
temperature jump fronT,, to T,+dT. Indeed, what is ex- OCCUrs at any aging temperatufg and not at a single and
pected is both Symmetry and asymmetry_ The Symmetryve” defined temperatur@tr. However, this Slmllarlty could
comes from the ferroelectric nature of the phase. As a usefie a path to explore. Along this line, one may assume that a
comparison, we first recall what happens in a paraelectri€émperature change, either positive or negative, modifies the
phase as in K ,Li,TaOs, where the domain size is limited landscape in the phase space in such a way that the natural
by the coherence lengtf(T) that is a decreasing function of evolution is in both cases towards larger polarization do-
temperature. In such a material, after a long enough isothefains. Following this view, the forerunnefthe small size
mal aging afT,, many domains have reached their limit size reponformatlon)squoted above would correspon_d to the cre-
£(T,); then upon cooling aT,—dT or heating aff y+dT gtlon of dau_ght_er valleyéseparated by low barriers easy t_o
two antisymmetrior opposite behaviors are observed: ini- JUMP 0V49293 Inside mother valleys, as proposed for spin
tial increase for cooling and decrease for heating. On th@lasses:*?>
contrary, in the ferroelectric phase of KTN the domain size
may, in principle, go to infinityor practically, to the sample
sizg. Then upon cooling or heating, increase of the the do-
main size is expected in both cases. Therefore, the forerun- Several phenomena observed in KTN present some analo-
ners (the fastest reconformations moglesust act in the gies(but also differenceswith those observed in ferromag-
same way: rejuvenation is also expected when heating frometic or ferroelectric materials such as cusps at the end of the
Ty to T, +dT. Indeed, this is not totally true because thingshysteresis cycle. This feature, which corresponds to differen-
do not change at the same rat@gt-dT and atT,+d T and tiability breaking, is discussed in this section. However, to
this difference introduces asymmetry. A more precise examithe best of our knowledge, there is no equivalent of the ex-
nation shows that the length of the reconformations becomplicit violation of Schwarz theorem in these experiments.
ing equilibrated during the lapsét are limited by Ferromagnetic materials and ferroelectric materials ex-
hibit hysteresis cycles: when an alternative figttagneticH
or electricE) is applied the magnetizatioM (H) or polar-
1- T_|) izationP(E) curves are loops. If the amplitude of the applied
. field Hy or Eq is not too strong in order that the saturation is
and not reached, there is a cusp at each end of the cycle. This

F. Comparisons

I(é\t, Tp|_dT):|(5t, Tp|)
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means that the derivativekM/dH atH, or dP/dE atEy are  namics to aging systems, a debate recently illustrated by the
not the same according to the direction of variation of theviolation of the fluctuation-dissipation theoréft?’
field. This is nothing else but differentiability breaking.
Hysteresis cycles are explained as the motior{fefro-
magnetic or ferroelectrjcdomain walls under the action of ACKNOWLEDGMENTS
the applied field. Similarly, the current model of aging in o
KTN also attributes the observed evolution to the displace- Ve thank S. Ziolkiewicz who has grown the KTN crystals
ment of polarization domain walls. However, in cycle experi-2nd B. Bonello for a critical reading of the manuscript and
ments in the vicinity of the cusps the derivatives with respecflumerous discussions.
to the field are both positive, for increasing or decreasing
field. On the contrary, in our experimenfieported in the
present paper and in Ref. lthe derivatives with respect to APPENDIX
temperature may have opposite signs for increasing or de- . .
creasing temperature. This rejuvenation effect is attributed to For the measurements reported here the index _€op” cor-
supplementary degrees of freeddneconformations of the €SPONdSs tdy=500s andT,=10.1 K. The measuring fre-
walls) which do not appear in cycle experiments. quency wasf =10 kHz. In.addlltlon to the nume_rlcal yalyes
But an important point has to be underlined. The symmefor the real part and the imaginary part, we briefly indicate
try of the differential parameter is quite different in the two how the data are obtained.
cases: the temperatufeis a scalar while the fielddd or E)

are vectors.
1. The coefficientQq.p, and its derivatives

VIll. MATHEMATICAL COMMENT The two time derivatives are measured during isothermal
aging atTy,, hence fordT=0. Here too, the aging function

is determined by means of a least square method and, once
the free parameters are known, the derivatives may be nu-
merically calculated. This leads to

The existence of the two second derivativé$/dx> and
9*f1ay? of the functionf(x,y) is a sufficient condition for
the equality 9°f/dyox= 3*f/oxdy (Schwarz theoreim We
have shown that the second derivati#feC/dt? of the func-
tion C(T,t) exists on the pointT,t,). Consequently, if the
second derivative9’C/aT? would exist too, the equality JC
#*CldTat=9*>ClataT should be fulfiled. Indeed, we have Q)eop=—)
found that, on the one hand?C/JT? does not exist on the M/ o
point (T,,t,) and that, on the other handj>C/dTat
#9°CltdT on the same point. These two features are in
mutual agreement.

P
={(—0.78+0.03 —i(—0.22+0.03} fFs1,

IX. CONCLUSION &Q) (92C)
. at eop atz eop

We have put in evidence two properties of the derivatives
of the complex capacitander of the complex dielectric con- ={(+15+0.1)~i(+0.4+0.1)} aF s 2.
stan) after aging. They are: on the one hand, the second
derivativesd®>C/dT?, 9°ClaTat, andd>ClatdT show differ- o o
entiability breaking(the left-hand and the right-hand deriva- ' "€ COefficienQeq, depends on the plateau duratlron; it also
tives are different as it was already observed for the first 4€pends on the measuring frequeni@co] and|Qg,] are
derivative 9C/4T:1® on the other hand, the second crossedarger for lower frequencies. _
derivativess?C/aTat andd2C/dtaT are not equalviolation The tempgrature derivatives are palculated starting from
of Schwarz theorein These features are qualitatively ex- the data of Fl_gs. 1 and 2. Indee_d, it is clear from the curves
plained in the framework of a model that attributes thethat the functions are not analytic. Consequently, we have to
sample evolution to polarization domain dynamics by mean§0nsiderQ(dT) as a piecewise function made of two pieces:
of their wall reconformation and growth. one fordT>_O and another fod T<0. Then we write down

The nonequalityd?C/dTdt+# d?ClatdT is a remarkable WO expansions,
result. However, it would be also very interesting to look for
a possible violation of Schwarz theorem when the two vari-
ables are both relevant intensive parameters, such as tefR- (TptdT, tp)

perature and biasing electric field, for instance. In that case, g0\ * 1 .5%2Q\*
Schwarz equality corresponds to one of the Maxwell rela-  =Q(T, tpl)+_) dT+——2) (dT)2+---.
tions, well kwown in thermodynamics. Experiments aimed at a 24T eop

checking or invalidating such a relation are now in progress.
These experiments and those reported in the present paper
enter the debate on appropriateness of standard thermody- We obtain
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2
&Q) _7 C) ={(—-0.9+0.3—i(—0.55+0.15} fFs 1K™?

T oy 0T o
*Q 9°C for dT>0.
= —i_ VR L
aT?)eop T2t at)eop {(-4.01.5-i(-3.0x0.6)} fFs 'K
aQ) 620) {(+1.65£0.1)—i(+0.9x0.D)} fFs 'K™!
R = = . 1D —1 9+0. S
d eop JITot eop
*Q 9°C for dT<O.
aT?) :(9T_2_0’)t) ={(-5.0:0.4—i(-1.4£0.3} fFs 1K™
eop eop

The data clearly show that the left-hand derivatives and+dT,t,) as a piecewise function made of two pieces: one
the right-hand derivatives are not equal: there is differentiafor dT>0 and another fod T<0. Then we write down the
bility breaking. two following expansions:

P\ *
i . . Pi(Tp|+dT, tpl):P:(Tph tp|)+_ dT+
For the temperature derivatives, we easily see that the al eop
curve ofdC(Tp+dT,t,) as a function ofdT is not analytic
(see Figs. 3 and)4Here too, we have to consideiC(Ty, We obtain

2. The coefficientP¢,, and its derivatives

aC
P)eopzﬁ) ={(+7.6£0.1)—i(+0.4=0.)} pFK™?!

eop

JP 22C for dT>0,
Nl _ o -2
(ﬂ_) - ) {(+1.6=0.5—i(+0.5+0.2} pFK
eop eop
dC ) .
P)eop:a_T ={(+6.7£0.)—i(+0.2:0.05} pFK
op (92Ce°p for dT<O.
R __ — i -2
aT) aTZ) {(+0.60.2—i(+0.2+0.1)} pFK
eop eop

={(—0.45-0.19—i(—0.28-0.08} pFK*

All the data clearly show that the left-hand derivatives 5Q)
eop

and the right-hand derivatives are not equal: there is differip|ﬁ
entiability breaking.

The time derivative of the first term of the expansions is if dT>0,
dP/dt) eo=M/tp . From the preceding experiments we ob-
tain
9Q . i,
eop
if dT<O.

M” =(+0.01-0.02 pFK ! for dT>0

and The Schwarz equality is strongly violated because the

signs are not as they should be. Besides the signs, if the
M’ =-0.05 pFK'!, M”=-0.03 pFK'! for dT<0. equality was valid here, we would ha¥g(dQ/dT)gop=M

=const for long enoughy,; obviously, this is not true since
These values have to be compared with those obur data show that the value of the left-hand side depends
tp1(9Q/IT)) eop Which read ontpy.
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3. The Schwarz theorem violation (iii) the crossed second derivatives @fwith respect to

Beyond the numerical values these results put in evidenciémperature and time are such that
the following qualitative features:

(i) the functionQeopis continuous but its first and second JP 72C 72C 90
derivatives(at least with respect to temperature are not con- _) = ) + ) :_) :
tinuous(therefore Q. is Not differentiablg at cop ataT eop aTat cop aT cop

(i) the functionP,, is discontinuous and its first deriva-
tive (at least with respect to temperature and time are dis- S ]
continuous(therefore P, is not differentiablg this means violation of Schwarz equality.
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