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Differentiability breaking and Schwarz theorem violation in an aging material

P. Doussineau and A. L. Levelut
Laboratoire des Milieux De´sordonne´s et Hétérogènes, Universite´ Pierre et Marie Curie, Case 86, 75252 Paris Cedex 05, France
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Dielectric constant measurements are performed in the frequency range from 1 kHz to 1 MHz on a disor-
dered material with ferroelectric properties~KTa12xNbxO3 crystals! after isothermal aging at the plateau
temperatureTpl>10 K. They show that the derivatives of the complex capacitance with respect to temperature
and time present two very peculiar behaviors. The first point is that the first and second derivatives against
temperature are not equal on the two sides ofTpl ; this is differentiability breaking. The second point is that the
two crossed second derivatives against temperature and time are not equal~indeed they have opposite signs!;
this is a violation of Schwarz theorem. These results are obtained on both the real part and the imaginary part
of the capacitance. A model, initially imagined for aging and memory of aging, attributes the time-dependent
properties to the evolution~growth and reconformations! of the polarization domain walls. It is shown that it
can also explain the observed differentiability breaking~and in particular its logarithmic increase with the
plateau durationtpl! and the violation of Schwarz theorem.

DOI: 10.1103/PhysRevB.66.024105 PACS number~s!: 77.22.Gm, 78.30.Ly
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I. INTRODUCTION

Aging is said to occur if the evolution of a system, me
sured through some susceptibility or some extensive par
eter, is nonstationary and depends on the thermal history.
a consequence of disorder and frustration. Aging was not
on the elastic compliances of polymers a long time ago;1 it
has also been observed in many solids: on the magnetic
ceptibility x of spin glasses,2–5 on the elastic constantc and
on the dielectric constant« of disordered dielectrics6–8 and
of structural glasses.9

Associated with aging, rejuvenation~evolution opposite
to aging observed when temperature is lowered! and memory
~sequel of aging seen after a back and forth tempera
sweep! are also present in disordered and frustra
materials.10–15

Recently, differentiability breaking has been put in e
dence in KTa12xNbxO3 ~KTN! crystals.16 If after an isother-
mal plateau at temperatureTpl held during the lapse of time
tpl , a small temperature changedT is imposed, it induces a
small capacitance change from which the partial deriva
]C/]T can be deduced. The point is that the derivative is
the same fordT.0 anddT,0 ~except iftpl50!. Therefore,
the left-hand derivative and the right-hand derivative must
distinguished and, strictly speaking, the functionC(tpl ,T) is
not differentiable with respect toT since the value of]C/]T
is not unique at the point (t5tpl ,T5Tpl). In other words, the
function C(tpl ,T) has a cusp inT5Tpl . This is differentia-
bility breaking; it is related to rejuvenation.

In the present paper we report on new results concern
some among the derivatives ofC(T,t) with respect to tem-
perature and time. More precisely, we have found that

~i! As the first derivative]C/]T does, the second deriva
tives ]2C/]T2, ]2C/]T]t, and]2C/]t]T also show differ-
entiability breaking;

~ii ! Moreover, the second crossed derivatives]2C/]T]t
and]2C/]t]T are not equal~violation of Schwarz theorem!.
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Indeed, the capacitance is a complex quantity and
quoted properties are valid for both its real part and
imaginary part.

We have performed a large number of experiments, w
various plateau durations and several measuring frequen
However, we present in great detail only one complete se
data with the idea that a unique counterexample is suffic
to rule out a theorem~indeed to invalidate the underlyin
hypotheses!.

II. EXPERIMENTS

The pure potassium tantalate KTaO3 crystal belongs to the
cubic perovskite family. If a fractionx of tantalum ions is
randomly substituted by isoelectronic niobium ions, t
KTa12xNbxO3 crystal thus obtained is ferroelectric if th
niobium concentrationx is superior toxc>0.008. For the
two samples used in the preliminary study of differentiabil
breaking16 we have observed broad transitions at the te
peraturesTtr531 and 38 K, defined by the maxima of th
real part«8 and the imaginary part«9 of the dielectric con-
stant, which are almost independent of the measuring
quency f. From the phase diagram17 we inferred that the
niobium concentrations arex50.022 ~sample A! and x
50.027 ~sample B!, respectively. The experiments reporte
below are new; moreover, detailed experiments perform
on sample B in its ferroelectric phase are analyzed follow
a modified method.

Using a Hewlett-Packard 4192A impedance analyzer,
have measured the electric capacitance and the dielectric
at frequenciesf, ranging from 1 kHz to 1 MHz. They can
easily be transformed into the real part«8 and the imaginary
part «9 of the complex dielectric constant. Practically, th
data are given in terms of the complex capacitanceC5C8
2 iC9, proportional to «5«82 i«9 ~the rule is that C
51 pF corresponds to«>16 for sample B!, which was mea-
sured as a function of time while the sample temperat
T(t) was a controlled function of time.

The following procedure was systematically used. Af
©2002 The American Physical Society05-1
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annealing near 55 K and initial rapid cooling across the tr
sition temperatureTtr down toT>22 K, cooling is continued
at the cooling rater 525.9 mK s21, down to the plateau
temperatureTpl . The duration of the plateau istpl . All steps
before the plateau constitute what is called the thermal
tory of the sample.

III. METHOD AND PREVIOUS RESULTS

The original principle of our method has been describ
elsewhere.18 It consisted in the study of small variations
the complex capacitance as responses to small temper
and time variations. We have measured the response in
vicinity of some remarkable point (T0 ,t0) in the ~T, t! space.
Taking C(T0 ,t0) as reference, the deviation from this valu
is dC5C(T01dT,t01dt)2C(T0 ,t0). For infinitesimal
changes,dC is the sum of an instantaneous change prop
tional to dT and of a decrease due to aging, proportiona
dt. This reads

dC5P~Tpl , tpl!dT1Q~Tpl , tpl!dt,

where it is explicitly put thatT0 is the plateau temperatur
Tpl and that the plateau duration istpl ~the origin of time is
chosen at the instant whenTpl is reached!. The complex co-
efficientsP(Tpl ,tpl) andQ(Tpl ,tpl) are the partial derivatives
of C(T,t) with respect toT andt calculated at (Tpl ,tpl). The
coefficientP depends on temperature and time. The real
imaginary parts of the coefficientQ, which measure the ef
fect of isothermal aging, are negative.

In a recent study16 the method was applied to KTN crys
tals in the following way. Let there be two experiments,
beled 1 and 2, corresponding to two small temperature s
dT1 anddT2 ~both positive or both negative! performed dur-
ing the same time intervaldt following the plateau. If the
steps are supposed to be infinitesimal, they induce the
lowing two complex capacitance changes

dC15PdT11Qdt and dC25PdT21Qdt,

with a unique coefficientQ. Then the complex coefficien
P5P82 iP9 is easily deduced as

P5
dC22dC1

dT22dT1
.

For a given temperature stepdT1 different temperature
steps dT2 were used. Our experimental errors areDP8
560.2 pF K21 andDP9560.1 pF K21. Using these differ-
ent steps we obtained, with errors smaller than 2DP8 and
2DP9, the same values for the real partP8 and the imagi-
nary partP9, respectively. This result is a good check of t
validity of our method. In all our experiments we used t
time intervaldt520 s while the temperature steps were su
that udT1u>0.125 K anddT254dT1 which provide us with
a good accuracy.

The main result was different values for bothP8 and P9
on the two sides of the plateau: they are larger for posi
temperature jumps than for negative temperature jumps.
means that the derivatives ofC8 andC9 with respect toT are
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not the same on the left-hand side and on the right-hand s
This is differentiability breaking.

Indeed, this calculation was crucially based on the h
pothesis that the coefficientQ has the same value whatev
the temperature increments are: this means thatQ(dT1)
5Q(dT2). In other words, it was assumed that the tempe
ture increments are sufficiently small to be considered
infinitesimal. The validity of this assumption is now que
tioned. Therefore, while keeping for the time interval t
same very small valuedt, hereafter the temperature incre
mentdT is supposed to be small but finite and we push
analysis up to second order. The results reported below s
that the systematic error introduced by this assumption is
the same magnitude that the experimental error; therefor
does not invalidate our previous conclusions.

IV. NEW ANALYSIS AND PRELIMINARY RESULTS

We have determined by direct measurements how the
efficient Q(Tpl1dT, tpl) depends ondT. After the plateau
lasting tpl at Tpl , the temperature is suddenly changed
Tpl1dT, with udTu<0.6 K, and a second plateau is started
this temperature. Then, by means of a least square met
we determine the best fit for the time variation of the capa
tanceC(Tpl1dT, t) with the data recorded fort>tpl1dt
and we extrapolate it tot5tpl . The fit function is a stretched
exponential. Once the free parameters of the fit function
known, we are able to obtainC(Tpl1dT, tpl), the capaci-
tance time derivative atTpl1dT, and the capacitance jum
betweenTpl andTpl1dT, which respectively read

Q~Tpl1dT, tpl!5
]C

]t D
Tpl1dT

and

dC~Tpl1dT, tpl!5C~Tpl1dT, tpl!2C~Tpl , tpl!.

The data forQ(Tpl1dT, tpl) are shown in Fig. 1~real part!

FIG. 1. Plot of the real partQ8 of the capacitance time deriva
tive Q(Tpl1dT, tpl) after the temperature jumpTpl⇒Tpl1dT oc-
curring at the end of the aging plateau~at t5tpl! as a function of the
jump magnitudedT. The lines represent the fits with two differen
second degree polynomials: one for the data recorded withdT.0
~squares!, the other for those recorded withdT,0 ~diamonds!. The
experimental conditions weref 510 kHz, tpl5500 s, and Tpl

510.1 K.
5-2
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and Fig. 2~imaginary part!; those fordC(Tpl1dT, tpl) are
displayed in Fig. 3~real part! and Fig. 4~imaginary part!.

We must underline the differences between the two for
of the method. In the initial form16,18 the studied capacitanc
change is from the point (Tpl , tpl) to the point (Tpl1dT,tpl

1dt). In the form used here, the change is from (Tpl , tpl) to
(Tpl1dT, tpl). The variation during the lapsedt is elimi-
nated by extrapolation from the data fort>tpl1dt.

As a first result, the data of Fig. 1 and 2 provide an up
limit of the bias introduced in Ref. 16 when assumi
Q(dT1)5Q(dT2): we know now that the deviations wer
smaller than @Q8(0)2Q8(60.5 K)#dt>0.015 pF and
@Q9(0)2Q9(60.5 K)#dt>0.01 pF for dt520 s; this was
close to the experimental errors. Our previous data w
practically correct.

FIG. 2. Plot of the imaginary partQ9 of the capacitance time
derivative Q(Tpl1dT, tpl) after the temperature jumpTpl⇒Tpl

1dT occurring at the end of the aging plateau~at t5tpl! as a func-
tion of the jump magnitudedT. The lines represent the fits with tw
different second degree polynomials: one for the data recorded
dT.0 ~squares!, the other for those recorded withdT,0 ~dia-
monds!. The experimental conditions weref 510 kHz, tpl5500 s,
andTpl510.1 K.

FIG. 3. Plot of the real partdC8 of the capacitance chang
dC(Tpl1dT, tpl) after the temperature jumpTpl⇒Tpl1dT occur-
ring at the end of the aging plateau~at t5tpl! as a function of the
jump magnitudedT. The lines represent the fits with two differen
second degree polynomials: one for the data recorded withdT.0
~squares!, the other for those recorded withdT,0 ~diamonds!. The
experimental conditions weref 510 kHz, tpl5500 s and Tpl

510.1 K.
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V. AN IMPORTANT QUALITATIVE RESULT

Before we turn to give quantitative results, we show no
that we can infer an interesting property only from a qua
tative result.

On the one hand, the~negative! coefficients Q8(Tpl
1dT, tpl) and Q9(Tpl1dT, tpl) decrease from the value
Q8(Tpl , tpl) and Q9(Tpl , tpl) for both dT.0 and dT,0
~see Figs. 1 and 2!. This means that

]Q8

]T D
Tpl ,tpl

5
]2C8

]T]t D
Tpl ,tpl

and
]Q9

]T D
Tpl ,tpl

5
]2C9

]T]t D
Tpl ,tpl

have their sign opposite to the sign ofdT.
On the other hand, we know from previous experiment16

and from the analysis done below that the isothermal cap
tance jump can be written in first approximation,

dC~Tpl1dT, tpl!>P dT,

where the coefficientP depends ontpl . Its time variation is
P(Tpl ,tpl)>P01M ln(tpl) for tpl.200 s where the coeffi-
cientsM 8 andM 9 have the sign ofdT. It follows that

]P8

]t D
Tpl ,tpl

5
]2C8

]t]TD
Tpl ,tpl

5
M 8

tpl
and

]P9

]t D
Tpl ,tpl

5
]2C9

]t]TD
Tpl ,tpl

5
M 9

tpl
,

where the sign of these derivatives is that ofdT.
Consequently, the two pairs of derivatives

]2C8

]T]t D
Tpl ,tpl

,
]2C8

]t]TD
Tpl ,tpl

on the one hand, and

ith

FIG. 4. Plot of the imaginary partdC9 of the capacitance
changedC(Tpl1dT, tpl) after the temperature jumpTpl⇒Tpl1dT
occurring at the end of the aging plateau~at t5tpl! as a function of
the jump magnitudedT. The lines represent the fits with two differ
ent second degree polynomials: one for the data recorded withdT
.0 ~squares!, the other for those recorded withdT,0 ~diamonds!.
The experimental conditions weref 510 kHz, tpl5500 s, andTpl

510.1 K.
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]2C9

]T]t D
Tpl ,tpl

,
]2C9

]t]TD
Tpl ,tpl

on the other hand, have opposite signs.
Only from these qualitative results we are allowed

claim that Schwarz theorem~equality of the two crossed de
rivatives! is violated when applied to the capacitance af
aging.

VI. MATHEMATICAL ANALYSIS AND RESULTS

We turn now to the numerical results of our measu
ments. They were performed with different plateau duratio
tpl5100, 500, and 2000 s at the temperatureTpl510.1 K.
The data were recorded atf 510 kHz.

In order to gather and classify the whole set of our resu
we write down the Taylor expansion of the complex capa
tance after the end of the isothermal aging~during the time
tpl at the temperatureTpl!:

C~Tpl1dT,tpl1dt!

5C)eop1H ]C

]T D
eop

dT1
]C

]t D
eop

dtJ 1
1

2 H ]2C

]T2 D
eop

dT2

1
]2C

]t]TD
eop

dT dt1
]2C

]T]t D
eop

dt dT1
]2C

]t2 D
eop

dt2J
1

1

6 H 2
]3C

]T2]t D
eop

dt dT21other third order termsJ ,

where the lower index ‘‘eop,’’ which stands for (Tpl ,tpl),
means ‘‘end of plateau.’’ In this expansion we have sho
only the measured coefficients and we have assumed tha
Schwarz theorem~equality of the two crossed second deriv
tives! could possibly not hold.

The three sets of data show differentiability breaking
C(T,t) and confirm the violation of the Schwarz theore
However, it would be tedious and unsurprising to reprodu
all of them. Therefore, only one set of data is reported
detail in the Appendix.

VII. MODEL

Nonergodic isothermal aging~evolution at constant tem
perature towards a limit that depends on thermal histo!,
rejuvenation~evolution opposite to aging after a temperatu
jump! and memory~sequel of aging after a back-and-for
journey to lower temperatures! can be explained in the fram
of a model that attributes the time-dependent effects to
conformation and growth of the walls of the polarizatio
domains.19–21 Here we scrutinize the appropriateness of
model to explain the main two features reported in
present paper:

~i! The second derivative]/]t(]C/]T)5]P/]t has the
same sign thatdT5T2Tpl ;
~ii ! The second derivative]/]T(]C/]t)5]Q/]T has its sign
opposite to that ofdT5T2Tpl .
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A. Isothermal aging

In the model, aging properties are attributed to the sl
evolution of the area of domain walls. The average dom
sizeR always increases in a ferroelectric phase. If we assu
that the timet necessary to a domain wall of sizeR, in a
crystal lattice of parametera, to overcome a barrier energ
scaleG at temperatureT is

t5t` exp@G~R/a!u/~kBT!#,

with u>1, we deduce that after a plateau durationtpl the
domain has reached the size

R~ tpl!5R0H 11
a

R0

kBTpl

G
lnS 11

tpl

t~R0 ,Tpl!
D J

'R0H 11
a

R0

kBTpl

G
lnS tpl

t~R0 ,Tpl!
D J ,

where the characteristic time is t(R0 ,Tpl)
5t` exp@G(R0 /a)/(kBTpl)#.

The wall area contribution to the capacitance is prop
tional to the total wall area multiplied by the density of d
mains. Therefore, domain growth induces a decreaseDC
}R2/R3>1/R of the susceptibility because the total wa
area decreases~the area of a domain increases but the nu
ber of domains decreases more strongly!. Neglecting the dis-
tribution of size, the aging part reads

DC5
K

R~ tpl!
>

K

R0
H 12

a

R0

Tpl

Tb
lnS tpl

t~R0 ,Tpl!
D J .

The coefficientK is a constant with the needed dimension
Therefore, the time-dependent part of the capacitance is

DC~ tpl!5
K

R~ tpl!
>2

Ka

R0
2

Tpl

Tb
lnS tpl

t~R0 ,Tpl!
D .

It decreases as the logarithm of the plateau duration iftpl
@t(R0 ,Tpl).

Growth is not the only possible motion of the doma
wall; rearrangements~reconformation modes! of some parts
of the wall also play a role.22 The characteristic timet( l ,T)
of the domain wall motion is a rapidly increasing function
the size of the displaced portion of areaA5 l 3 l of wall,
according tot( l ,T)5t` exp@G(l/a)/(kBT)#. The lengthl is
necessarily smaller than the domain sizeR. Small-size mo-
tions are fast; they correspond to reconformations of part
domain walls. Large-size motions~where l >R! are slow;
they correspond to increases of the domain size. Inde
there is a continuous distribution of the moving portion siz
and a correlative distribution of their characteristic times:

tmin5t` exp@G/~kBT!#

<t~ l , T!

<t` exp@G~R/a!/~kBT!#5tmax.

This real-space language can be translated into term
travel of a representative point over energy barrierskBTb
5-4
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5G( l /a) in the phase space. Small-size motions corresp
to jumps over low barriers and large-size motions to jum
over high barriers.

To simplify, reconformation of the areaA5 l 3 l means
the equilibration between two possible configurations of t
part of the wall. This occurs according tox(t)5xeq1(x0
2xeq)exp@2t/t(l, Tpl)#, wherex(t) is the difference of the
probabilities to find the domain wall either in a configurati
or in the other andx0 is the initial value. The equilibrium
value is xeq(Tpl)5tanh(TD /Tpl), where 2kBTD52D is the
free-energy difference between the two minima of the dou
well associated with the two configurations. The characte
tic time of the evolution ist( l , Tpl). During domain growth,
with the typical timetmax5t` exp@G(R/a)/(kBT)#, all the re-
conformations are achieved in timest( l , Tpl)<tmax. There-
fore, except at the very beginning, during isothermal ag
the reconformations of the wall are permanently in qua
equilibrium with the sizeR: the bottleneck~the slowest
mode! of isothermal aging is due to domain growth. In oth
words, the wall reconformations only play a minor role du
ing isothermal aging. On the contrary, their role is essen
after temperature changes.

B. Rejuvenation upon cooling

We first examine the case when the sample is pushed
of its quasiequilibrium because the temperature is sudd
lowered toTpl2dT in the short lapsedt. The configurations
that were equilibrated atTpl must evolve, starting from the
initial value x05xeq(Tpl)5tanh(TD /Tpl) towards the new
equilibrium value xeq5xeq(Tpl2dT)5tanh@TD /(Tpl2dT)#.
The corresponding possible evolution magnitude is

xeq2x0>~TD /Tpl!sech2~TD /Tpl!~dT/Tpl!

while the kinetics of the evolution is governed by

x~ t !2x05~TD /Tpl!sech2~TD /Tpl!~dT/Tpl!

3@12exp$2t/t~ l ,Tpl!%#.

Very schematically, the reconformations that have eno
time to achieve this evolution duringdt are those withtmin
<t(l,Tpl)<dt, or equivalently a< l< l (dt, Tpl), where
l (dt, Tpl)5a(kBTpl /G)ln(dt/t`). This leads to an ‘‘immedi-
ate’’ response that reads

x~dt !2x0>~TD /Tpl!sech2~TD /Tpl!~dT/Tpl!.

Those with l (dt, Tpl)< l<R(tpl) are frozen in during the
time dt. This leads to

x~dt !2x0>0.

A portion of wall bears the average dipolar mome
mA( l , t)5m( l /a)2x(t), wherem is the elementary momen
of an off-center tantalum ion. The moment is coupled w
the oscillating electric fieldE(v). The corresponding contri
bution to the dielectric constant of a domain of sizeR due to
the reconformations of sizel is obtained when adding th
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effects of all the reconformations of this size. This provide
contribution of the Langevin-Debye type to the capacitan
with the form

dC~v, dt, l !}
G~ l !

11 ivt~ l , Tpl!
.

Then the contributions of all the reconformation lengths o
given domain wall have to be added. Indeed, as it was sh
above, the sum is practically limited to those withtmin
<t(l, Tpl)<dt or a< l< l (dt, Tpl). Finally, the summation
over all the domains gives the total effectDC(v, dt).

A rigorous calculation is out of the scope of the prese
paper. However, according to the previous discussion
can guess thatDC(v, dt) is proportional to sech2(TD /Tpl)
3(dT/Tpl). It is positive becausedT.0.

Since the material is disordered, one may expect a dis
bution of the parametersTD andTb . However, most of the
contributed domains are such thatTD,Tpl and Tb,Tpl .
Otherwise, the occupation function tanh(TD /Tpl)>1 would
be insensitive to temperature changes and the relaxation
t(R0 , Tpl)5t` exp@G(R0 /a)/(kBTpl)# would be too long.

Moreover, an important point to emphasize is that t
number of reconformations increases as the areaA(tpl) of the
domain wall at the end of the plateau. Since

A~ tpl!}R2~ tpl!>R0
2H 112

a

R0

Tpl

Tb
lnS tpl

t~R0 , Tpl!
D J ,

it is expected that the time-dependent part ofDC is propor-
tional to ln@tpl /t(R0 ,Tpl)# for long enoughtpl . This is actu-
ally observed. Finally, we get

P5
]C

]T
'P02M ln@ tpl /t~R0 , Tpl!#.

The coefficientM is positive. The termP0 is the volume
contribution, due to the variation of the coherence len
j(T) with temperature that increases when approachingTtr .
The derivative is

]P/]t)eop5]2C/]t]T)eop'2M /tpl,0 for T5Tpl2dT.

C. Relaunching of isothermal aging

The coefficientQ(Tpl , tpl) is the measure of aging veloc
ity. During isothermal aging at temperatureTpl the evolution
slows down as time elapses, according to

Q~ tpl!5
]C

]t
52K

a

R0
2

Tpl

Tb

1

tpl
.

After a long aging, the system is old, as shown byCeop
,C0 and2Qeop,2Q0 ~the inequalities on complex quan
tities must be understood as valid for their two parts, se
rately!, because the capacitance decrease is governed
growth of large domains with the characteristic timetpl .
However, it seems younger immediately after the tempe
ture jump since an initial enhancement of the aging veloc
~sometimes called relaunching! is observed. This is also see
5-5
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in negative temperature cycle experiments performed
KTN ~Ref. 8! and on spin-glasses too.3,4 This feature can be
explained by the model.

Indeed, the system that begins to evolve att5tpl1dt and
T5Tpl2dT is in a mixed state since short conformatio
modes are in equilibrium while long modes are not. In t
picture, the wall is seen as wearing small crenels or ca
that are the fastest forerunners of the domain growth.
other words, the wall is already prepared to grow beca
many dipoles already have the right orientation and the fe
electric interactions can more easily align the other dipo
This explain why the domain size growth is now unexpe
edly fast. Consequently, after the temperature jump2dT the
initial decayQ(Tpl2dT, tpl) is rapid. This is the meaning o
the observed featureQ(Tpl2dT, tpl),Q(Tpl , tpl)5Qeop
from which it is deduced that]Q/]T)eop5]2C/]T]t)eop
.0.

The comparison between the two crossed second de
tives

]2C/]t]T)eop,0 and ]2C/]T]t)eop.0

shows that the model qualitatively explains the Schw
theorem violation~here, for the left-hand-side temperatu
derivatives!. Moreover, the logarithmic variation of the coe
ficient P5]C/]T with the plateau durationtpl ~due to the
role of the domain size! is also contained in the model.

D. Behavior upon heating

Now we compare the two thermal ways of pushing t
sample out of equilibrium, either by a negative temperat
jump from Tpl to Tpl2dT ~as seen above! or by a positive
temperature jump fromTpl to Tpl1dT. Indeed, what is ex-
pected is both symmetry and asymmetry. The symme
comes from the ferroelectric nature of the phase. As a us
comparison, we first recall what happens in a paraelec
phase as in K12yLi yTaO3, where the domain size is limite
by the coherence lengthj(T) that is a decreasing function o
temperature. In such a material, after a long enough isot
mal aging atTpl many domains have reached their limit si
j(Tpl); then upon cooling atTpl2dT or heating atTpl1dT
two antisymmetric~or opposite! behaviors are observed: in
tial increase for cooling and decrease for heating. On
contrary, in the ferroelectric phase of KTN the domain s
may, in principle, go to infinity~or practically, to the sample
size!. Then upon cooling or heating, increase of the the
main size is expected in both cases. Therefore, the fore
ners ~the fastest reconformations modes! must act in the
same way: rejuvenation is also expected when heating f
Tpl to Tpl1dT. Indeed, this is not totally true because thin
do not change at the same rate atTpl2dT and atTpl1dT and
this difference introduces asymmetry. A more precise exa
nation shows that the length of the reconformations bec
ing equilibrated during the lapsedt are limited by

l ~dt, Tpl2dT!5 l ~dt, Tpl!S 12
dT

Tpl
D

and
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l ~dt, Tpl1dT!5 l ~dt, Tpl!S 11
dT

Tpl
D .

Consequently, there are more reconformations implied
positive jumps than in negative ones in the ‘‘immediat
response. This lack of symmetry may explain differentiab
ity breaking.16 From this analysis we are led to assume th
the small size reconformations responsible for the ‘‘imme
ate’’ response are not the same~if they were the same, a
decrease of the capacitance would be observed, in contra
tion with experiments!. This point needs a deeper examin
tion.

E. A comparison with phase transitions

The semimicroscopic model described above is not fu
satisfying since the growing trend of the domains is int
duced as anad hochypothesis. Indeed, the features that ha
to be explained are reminiscent of phase transitions wh
the temperature behaviors are generally different above
below the transition temperatureTtr . For instance, Landau
theory predicts~and experiments confirm! that the tempera-
ture variations of the susceptibility do not have the sa
critical exponent on the two sides ofTtr . The reason is
simple: for T.Ttr and T,Ttr , the landscapes of the phas
space are different and, consequently, the equilibrium p
tions correspond to minima of the free energy with differe
curvatures. The analogy between aging and a phase tra
tion has been already pointed out for the case of s
glasses4,23 with the very puzzling circumstances that rejuv
nation ~and differentiability breaking in the case of KTN!
occurs at any aging temperatureTpl and not at a single and
well defined temperatureTtr . However, this similarity could
be a path to explore. Along this line, one may assume th
temperature change, either positive or negative, modifies
landscape in the phase space in such a way that the na
evolution is in both cases towards larger polarization d
mains. Following this view, the forerunners~the small size
reconformations! quoted above would correspond to the cr
ation of daughter valleys~separated by low barriers easy
jump over! inside mother valleys, as proposed for sp
glasses.3,4,23,24

F. Comparisons

Several phenomena observed in KTN present some an
gies ~but also differences! with those observed in ferromag
netic or ferroelectric materials such as cusps at the end o
hysteresis cycle. This feature, which corresponds to differ
tiability breaking, is discussed in this section. However,
the best of our knowledge, there is no equivalent of the
plicit violation of Schwarz theorem in these experiments.

Ferromagnetic materials and ferroelectric materials
hibit hysteresis cycles: when an alternative field~magneticH
or electricE! is applied the magnetizationM (H) or polar-
izationP(E) curves are loops. If the amplitude of the applie
field H0 or E0 is not too strong in order that the saturation
not reached, there is a cusp at each end of the cycle.
5-6
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means that the derivativesdM/dH at H0 or dP/dE at E0 are
not the same according to the direction of variation of
field. This is nothing else but differentiability breaking.

Hysteresis cycles are explained as the motion of~ferro-
magnetic or ferroelectric! domain walls under the action o
the applied field. Similarly, the current model of aging
KTN also attributes the observed evolution to the displa
ment of polarization domain walls. However, in cycle expe
ments in the vicinity of the cusps the derivatives with resp
to the field are both positive, for increasing or decreas
field. On the contrary, in our experiments~reported in the
present paper and in Ref. 16! the derivatives with respect t
temperature may have opposite signs for increasing or
creasing temperature. This rejuvenation effect is attribute
supplementary degrees of freedom~reconformations of the
walls! which do not appear in cycle experiments.

But an important point has to be underlined. The symm
try of the differential parameter is quite different in the tw
cases: the temperatureT is a scalar while the fields~H or E!
are vectors.

VIII. MATHEMATICAL COMMENT

The existence of the two second derivatives]2f /]x2 and
]2f /]y2 of the function f (x,y) is a sufficient condition for
the equality]2f /]y]x5]2f /]x]y ~Schwarz theorem!. We
have shown that the second derivative]2C/]t2 of the func-
tion C(T,t) exists on the point (Tpl ,tpl). Consequently, if the
second derivative]2C/]T2 would exist too, the equality
]2C/]T]t5]2C/]t]T should be fulfilled. Indeed, we hav
found that, on the one hand,]2C/]T2 does not exist on the
point (Tpl ,tpl) and that, on the other hand,]2C/]T]t
Þ]2C/]t]T on the same point. These two features are
mutual agreement.

IX. CONCLUSION

We have put in evidence two properties of the derivativ
of the complex capacitance~or of the complex dielectric con
stant! after aging. They are: on the one hand, the sec
derivatives]2C/]T2, ]2C/]T]t, and]2C/]t]T show differ-
entiability breaking~the left-hand and the right-hand deriv
tives are different!, as it was already observed for the fir
derivative]C/]T;16 on the other hand, the second cross
derivatives]2C/]T]t and]2C/]t]T are not equal~violation
of Schwarz theorem!. These features are qualitatively e
plained in the framework of a model that attributes t
sample evolution to polarization domain dynamics by me
of their wall reconformation and growth.

The nonequality]2C/]T]tÞ]2C/]t]T is a remarkable
result. However, it would be also very interesting to look f
a possible violation of Schwarz theorem when the two va
ables are both relevant intensive parameters, such as
perature and biasing electric field, for instance. In that ca
Schwarz equality corresponds to one of the Maxwell re
tions, well kwown in thermodynamics. Experiments aimed
checking or invalidating such a relation are now in progre
These experiments and those reported in the present p
enter the debate on appropriateness of standard therm
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namics to aging systems, a debate recently illustrated by
violation of the fluctuation-dissipation theorem.25–27
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APPENDIX

For the measurements reported here the index ‘‘eop’’ c
responds totpl5500 s andTpl510.1 K. The measuring fre
quency wasf 510 kHz. In addition to the numerical value
for the real part and the imaginary part, we briefly indica
how the data are obtained.

1. The coefficientQeop and its derivatives

The two time derivatives are measured during isotherm
aging atTpl , hence fordT50. Here too, the aging function
is determined by means of a least square method and,
the free parameters are known, the derivatives may be
merically calculated. This leads to

Q)eop5
]C

]t D
eop

5$~20.7870.03!2 i ~20.2270.03!% fF s21,

]Q

]t D
eop

5
]2C

]t2 D
eop

5$~11.560.1!2 i ~10.460.1!% aF s22.

The coefficientQeop depends on the plateau duration; it al
depends on the measuring frequency:uQeopu and uQeop8 u are
larger for lower frequencies.

The temperature derivatives are calculated starting fr
the data of Figs. 1 and 2. Indeed, it is clear from the cur
that the functions are not analytic. Consequently, we hav
considerQ(dT) as a piecewise function made of two piece
one fordT.0 and another fordT,0. Then we write down
two expansions,

Q6~Tpl1dT, tpl!

5Q~Tpl , tpl!1
]Q

]T D
eop

6

dT1
1

2

]2Q

]T2 D
eop

6

~dT!21¯ .

We obtain
5-7
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5
]Q

]T D
eop

5
]2C

]T]t D
eop

5$~20.960.3!2 i ~20.5560.15!% fF s21 K21

]2Q

]T2 D
eop

5
]3C

]T2]t D
eop

5$~24.061.5!2 i ~23.060.6!% fF s21 K22

for dT.0.

5
]Q

]T D
eop

5
]2C

]T]t D
eop

5$~11.6560.1!2 i ~10.960.1!% fF s21 K21

]2Q

]T2 D
eop

5
]3C

]T2]t D
eop

5$~25.060.4!2 i ~21.460.3!% fF s21 K22

for dT,0.
n
tia

th

ne
The data clearly show that the left-hand derivatives a
the right-hand derivatives are not equal: there is differen
bility breaking.

2. The coefficientPeop and its derivatives

For the temperature derivatives, we easily see that
curve ofdC(Tpl1dT,tpl) as a function ofdT is not analytic
~see Figs. 3 and 4!. Here too, we have to considerdC(Tpl
es
fe

is
b-

o
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1dT,tpl) as a piecewise function made of two pieces: o
for dT.0 and another fordT,0. Then we write down the
two following expansions:

P6~Tpl1dT, tpl!5P6~Tpl , tpl!1
]P

]T D
eop

6

dT1¯ .

We obtain
P)eop5
]C

]T D
eop

5$~17.660.1!2 i ~10.460.1!% pF K21

]P

]T D
eop

5
]2C

]T2 D
eop

5$~11.660.5!2 i ~10.560.2!% pF K22
for dT.0,

P)eop5
]C

]T D
eop

5$~16.760.1!2 i ~10.260.05!% pF K21

]P

]T D
eop

5
]2C

]T2 D
eop

5$~10.660.2!2 i ~10.260.1!% pF K22
for dT,0.
the
the

nds
All the data clearly show that the left-hand derivativ
and the right-hand derivatives are not equal: there is dif
entiability breaking.

The time derivative of the first term of the expansions
]P/]t)eop>M /tpl . From the preceding experiments we o
tain

M 18 >10.1 pF K21,

M 19 5~10.0160.02! pF K21 for dT.0

and

M 28 >20.05 pF K21, M 29 >20.03 pF K21 for dT,0.

These values have to be compared with those
tpl(]Q/]T))eop which read
r-

f

tpl

]Q

]T D
eop

5$~20.4560.15!2 i ~20.2860.08!% pF K21

if dT.0,

tpl

]Q

]T D
eop

5$~10.260.05!2 i ~10.4560.05!% pF K21

if dT,0.

The Schwarz equality is strongly violated because
signs are not as they should be. Besides the signs, if
equality was valid here, we would havetpl(]Q/]T)eop5M
5const for long enoughtpl ; obviously, this is not true since
our data show that the value of the left-hand side depe
on tpl .
5-8
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3. The Schwarz theorem violation

Beyond the numerical values these results put in evide
the following qualitative features:

~i! the functionQeop is continuous but its first and secon
derivatives~at least! with respect to temperature are not co
tinuous~therefore,Qeop is not differentiable!;

~ii ! the functionPeop is discontinuous and its first deriva
tive ~at least! with respect to temperature and time are d
continuous~therefore,Peop is not differentiable!;
d

y

ilo

.

P

B

nd

.
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~iii ! the crossed second derivatives ofC with respect to
temperature and time are such that

]P

]t D
eop

5
]2C

]t]TD
eop

Þ
]2C

]T]t D
eop

5
]Q

]T D
eop

;

this means violation of Schwarz equality.
d,
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