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Macroscopic anisotropy in superconductors with anisotropic gaps
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It is shown within the weak-coupling model that the macroscopic superconducting anisotropy for materials
with a gap varying on the Fermi surface cannot be characterized by a single number, unlike the case of clean
materials with isotropic gaps. For clean uniaxial materials, the anisotropy parapi@dedefined as the ratio
of London penetration depthk./\,, is evaluated for alll’'s. Within the two-gap model of MgB y(T) is
an increasing function of.
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INTRODUCTION case. It is shown that for MgB \./\, should increase with
increasingT, the result that calls for experimental verifica-
A remarkable confirmation for the observed two-gaption.
structuré=° of superconducting MgBcame from solving the We begin with the quasiclassical version of the BCS
Eliashberg equations for the gap distribution on the Fermtheory for a general anisotropic Fermi surfale,
surface®’ According to this, the gap on the four Fermi-

surface sheets of this material has two sharp maxiftna: VITF=2Ag/% =201 +(g(f) = 1{g))/ 7, @
~1.7 meV at the twor bands and\,~7 meV at the two —VII* " =2A*g/h —20f "+ (g(f )= f(g))/7, (2
o bands. Within each of these groups, the spread of the gap 5 .

values is small, and the gaps can be considered as constants, ge=1-ff", (€)
the ratio of which is nearlyl independent. In this situation, a wp

weak-coupling model with two gaps on two parts of the A(r,v)=27TN(0) 2 (V(V,V)F (V' .F o))y . (4
Fermi surface may prove useful in relating various macro- ®>0

scopic properties of MgRB Starting with Ref. 8, the two-

band models were studied by many, see, e.g., Ref. 9 and j=—4m|e/N(0)T Im > (vg). (5)

references therein. The focus of this work is on the macro- ©=0

scopic superconducting anisotropy To a large extent, mo- Herev is the Fermi velocityll=V +27i A/ ¢q; A is the gap

tivation for this work was to understand why experiments onfunction, f(r,v,w), f*, andg are Eilenberger Green’s func-

different samples of MgB done with different techniques tions,N(0) is the total density of states at the Fermi level per

yield widely varying values fory.*0-16 one spin;iw=7T(2n+1) with an integem. Further, 7 is
The anisotropic Ginzburg-Landa(GL) equations, de- the scattering time on nonmagnetic impurities am;hg the

rived for clean superconductors with an arbitrary gap anisotP€Pye frequency. The averages over the Fermi surface

ropy in the seminal work by Gorkov and weighted with the local density of statesl/|v| are defined

Melik-BarkhudaroV'’ led to the commonly used concept of a &S

single parametey defined ast,/é.=\./\, (& is the coher- d?ke

ence length) is the penetration depth, aidc are principal <X>:f mx' ©®)

crystal directions Formally, this came out because the same

“mass tensor” enters both the first GL equation that deter- Commonly, the interactio/ is assumed factorizabfe,

mines the anisotropy of (and of the upper critical fields V(v,v')=VQ(v)Q(v'), and one looks forA(r,T;v)

H.,) and the equation for the current which defines the an="Y(r,T)(v). Then, the self-consistency E@}) takes the

isotropy of A\. However, it has been shown by Choi and form

Muzikar® and later by Pokrovsky and PokrovsRyin the “D

work on the GL equations for anisotropic gaps in the pres- W(r,T)=2aTN(0)Vy >, (QV)f(V,r,w)). (7
ence of impurities, thay, in fact, depends on the impurity =0

scattering, i.e., it might be sample dependent. The functionQ(v) can be normalized by requiring that

In the literature the superconducting anisotropy is com+he critical temperatur&, for the cleanmaterial (r— ) is
monly referred to as the ratid ., ,/H¢, ¢, an important fig-  given by the standard isotropic weak-coupling model with
ure for applications, but a difficult quantity to evaluate for the effective interactioVy,2?
anisotropic Fermi surfaces, not to speak about anisotropic

gaps. Theoretically, the ratios ¢f.,’s and of \'s are not (Q?%)=1. ®
necessarily the same, except n&arwhere their equality is As usual, we incorporat@,, in the Eilenberger system
provided by the GL theory. using the identity

In the following the neaif; result of Ref. 19 is repro- wp
duced using the Eilenberger formalism. Moreover, the ratio 1 :Inl+27rT2 i (9)
\¢/\, for arbitrary temperature$ is derived for the clean N(O)Vo  Teo oo hw’

0163-1829/2002/6@)/0205094)/$20.00 66 020509-1 ©2002 The American Physical Society



RAPID COMMUNICATIONS

V. G. KOGAN PHYSICAL REVIEW B 66, 020509R) (2002
We substitute this in Eq7) and replacesp with infinity due ~ Substituting this in Eq(1) one obtaing= —1/2. The second
to the fast convergence, GL equation follows by using Ed5) in which we substitute
g~1—ff*/2 with f’s of Eq. (16),
hd | Z ( (Qf)) (10 le]
P n—— , 7¢(3)|e|AN(0)
27TT T w>0 hz—%(ﬂzvivk) Im \P*Hkq’. (17)
47T TCO
EFFECT OF NONMAGNETIC IMPURITIES ON T, In the London limit¥ =W ,e'? with a constantV,, and
It is long known that scattering by nonmagnetic impurities cé 20
suppresdT . provided the gap is weakly anisotropic? The ji=— 4—0()\2)&1 Vo+ (?A) , (18
0

suppression is readily obtained from Eilenberger equations
without assuming that the anisotropy is weak. In zero fieldwith

k

all quantities are coordinate independent; besides,Tas ) 14¢(3)e2N(0) )
—T¢, g—1. Then, Eq(1) gives (\?)it= > THQ%vjvy). (19
TC TCO
fo ( (A) ) D (11) The anisotropy parameter follows,
o' 2(")7- ho' )\2 <QZU2>
wherew’ = w+ 1/27. Substitute this in Eq(10) to obtain Y(To)=— —. (20)
)\aa <Q UC>
|nhz 7T_TC(1_<Q>2) E i (12) In fact, this is the result of Ref. 17.
T hr o' In the presence of impurities, the first-order term in the

HenceT.=T., for 7— and any gap anlsotropy the same expansion16) should have the fornil1). With D defined in
is true for the isotropic gap{=1) and anyr. This equation ~ EQ. (11), we verify readily that
can be written as

f= b _ vib +0(6t%? (21
+ P ,
|n$=<1—<9>2> w(l% —y %) .y ho'  2ho'?
¢ satisfies Eq(1). Writing D in the form,
where u=n1/27T.7 and ¢ is the digamma function. For a
weak amsotroij}z—l x with y<<1, this reduces to Ho- D=wv| 0+ u) Q! 22
henberg’s resuft® Although Eq.(13) is reminiscent of the wT '

case of magnetic impurities, the facto1{Q)? makes a we obtain, with the help of Eq$5) and(21),
difference. Foru<1, one has
_ 27|e|N(0)T « (Q'?; vk>
ji=-— — 2 T IMPEILY. (293
h o '
For largeu’s, unlike the case of the magnetic pair breaking,In the London limit, we have
we obtain 1672e?N(0) T, (Q v vk>
- 2 1_ 2
To=Tedl Ag(0) 741 1, 15 R R (> 4
whereA(0)=1.76Ty. Therefore T, does not turn zero at a and
finite 7, unless (Q)=0 as, e.g, for the d-wave

Th
Te=Teo— g~ (1-()?). (14)

superconductors) \2 > Q%3 '3
cc @
Y(T)=—F=—"— (25)
ANISOTROPY NEAR T, Naa E (Qrz 2>/w

As is seen from Eq(11), impurities cause isotropization
of f, and one expects the macroscopic anisotropy to be sug-his is the result of Refs. 18 and 19. In the clean limit it
pressed by scattering. To address this question, one has teduces to Eq(20), whereas the effect of impurities on
derive the GL equations in the presence of impurities follow-depends on the order-parameter symmetry.
ing basically the work for cleansuperconductors. As men- ~ For thed-wave symmetryA)=0 andQ’'=Q. In other
tioned above, the same mass tensor enters both the first am@rds, the strond . suppression notwithstanding, nonmag-
the second GL equations. We focus on the current equationetic impurities do not affecy. For order parameters with a
because this is an easier t&8kyVithin Eilenberger formalism nonzero(A), the strong scattering erases the effect of gap
this is done in the clean case by expandimgarT. in two  anisotropy ony altogether,

small parametersA/fw~ /6t and VIIA/fw?~ &AlET, (v2)
~ 6t (here 8t=(T,—T)/T, and &, is zeroT coherence yﬁmy=—2- (26)
length, . e .
A VITA H.ence, in the dirty I|m|t! all parts of the Fermi _surface con-
f=-—+a— +0(5t3). (16)  tribute evenly to the anisotropy parameter as is the case for
ho  ~ fw? isotropic gaps.
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T DEPENDENCE OF y=A¢c/\, 2 — ]

To address this question in the full temperature range one \
has to study weak supercurrents, i.e., turn to &j. We 1 s
consider only the clean case for whi€f,g, in the absence ’

of currents are I

e

A B
fom =2 @

5 Gom . BRSO (20 \\
in general, botm\, and 8 depend orkg . A weak supercur- o

rent causes the order parameterand the amplitude$ to ’ |

acquire an overall phasé(r). We look for the perturbed \
solutions in the form

A=Age?, f=(fyo+f))e'”,

0.2 0.4 0.6 0.8 1

_ FIG. 1. The gapsA; ,=W¥(T) Q,, versusT/T,. The upper
fr=(fo+f)e '’ g=go+01, (28)  curve isA, /T, the lower one is\;/T,, and the middle curve is

where the subscript 1 denotes corrections. In the Londorf (T)/Tc evaluated as described in the text.

limit, the only coordinate dependence is that of the phase

i.e..f,,g; can be taken asindependent® Equations(1)—(3) It is of interest to examine the consequences of our results

for MgB,. The reportedy’s vary from 1.7 to 8°"*2or even

then give, ) higher as in Ref. 16. In all these reports, different techniques
Aog1—hwfy=ihfovP/2, for extracting the anisotropy and samples with different re-
. sistivity ratios were used.
Aogr —hof] =ififouPl2, (29 Cor¥sider a model material with the gap anisotropy given
20091=—fo(f1+17). by
Here, P=V@+27Alp,=2malp, with the “gauge- Q(V)=Q15, VeFyy, (34)
invariant vector potentiala. To evaluate the curreit), one  whereF,,F, are two sheets of the Fermi surface. Denoting
solves the systert29) for gy, the densities of states on the two partd\gs, and assuming
AS the quantityX bging constant at each sheet, we obtain for the
g,=ih 2_ﬁg\,p_ (30) general averagingB)
Then one obtains the London relation between the current (X)= XN+ XN IN(O) = waXy Fw2Xe, (35)
and the vector potential,#j; /c=—(\?); . a, with where we introduce normalized densities of state,
=N »/N(0) for brevity. We have then instead of E@®),
2 71_16'772921— AgUiUk '
(=5 —N(O) X = | @D 020+ 0%,=1, vy tw,=1. (36)

We also assume that the two parts of the Fermi surface have

The anisotropy parameter now reads the symmetries of the total, e.gv), =0 where the average

- 4 is performed only over the first Fermi sheet. Within this
\2 VALY B model, Eq.(32) reads
o tcc @
2T oo (32
= (02835 57) S 0D S 4
2 _3 '}’2: il i:lyzy (37)
As T—0, we have ZTAZ, B °—1, and 2 ViQi2<U§>i2 Bi—s
2 | [0}
2 <Ua>
y(0)=—-. (33 whereg;=h%w?+ yA(T)O2.
(ve) Based on the band-structure calculations, the relative den-

Note that the gap and its anisotropy do not enter this resulsities of statesr; and v, of our model are~0.56 and
The physical reason for this is in the Galilean invariance 0f0.4427° The ratioA,/A;=Q,/Q,~4. If one takes the av-
the superfluid flow in the absence of scattering: all charge@rages of 6.8 and 1.7 meV for the two groups of distributed
particles take part in the supercurréht. gaps as calculated in Ref. 6, then, the normalizati®®)
NearT,, =,8 3—7¢(3)/87°T3, and we obtain the GL vyields;=0.36 and(),=1.45.
result (20) that amplifies contribution of the Fermi-surface  Now, we have all parameters needed to solve the self-
pieces with large gap to the parameterThus, the anisot- consistency equatiofi0) for ¥ (T) with f=A/B (the clean
ropy parameter depends dnthe feature absent in supercon- case. This is done numerically and the result is shown in
ductors with isotropic gaps. Fig. 1 along with two gapg;(T).
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termediate magnetic fields tilted relative to the principal
crystal directiong® Some torque data for MgBwere re-
ported by Angset al!* (and recently in Refs. 29 and Bbut
the T dependence was not examined in detail. The ratio
2 Heoan/Heoe Was shown to drop with increasing from
about 6 at 15 K to 2.8 at 35 Ksee also Refs. 31 and BAt
T., this ratio is estimated to be2.3-2.7** Near T, the
ratio of H.,'s should coincide with the ratio af’s. In this
1.5 work we estimate the latter as2.6, see Fig. 2. Given this
agreement and the prediction made here thd 5, should
drop with decreasind whereas the experiment shows in-
—— crease OfHq,ap/Heoe, the detailed studies of =N /\,p
are desirable.

0.2 0.4 0.6 0.8 1

FIG. 2. The anisotropy parameter=\./\, versusT/T. for
clean MgB, calculated using parameters given in the text. ACKNOWLEDGMENTS
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