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Patterning and ordering in driven alloys with coupled conserved and nonconserved
order parameters
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We study an alloy system with coupled conserved and nonconserved order parameters driven by ballistic
jumps with finite range. The dynamical stabilization of nonequilibrium steady states is investigated by using a
mean-field kinetic model and kinetic Monte Carlo simulations. We show that alloys that decompose at a
macroscopic scale at equilibrium can be stabilized into three additional steady states: homogeneous and
disordered, homogeneous and ordered, or ordered and decomposed in mesoscopic patterns. Consequences for
the synthesis of nanocomposites by energetic ion beams are discussed.
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Materials in service or during their processing are of
forced to exchange energy or matter with their environme
These forced exchanges, which can be seen as due t
externally imposed dynamics, drive materials into noneq
librium configurations, stabilize new microstructures, a
thus alter the material properties.1,2 A generic approach to
study these dissipative systems is provided by Ising-t
models with competing dynamics:3–6 an external dynamics
drives the system away from equilibrium, while its intern
dynamics tries to restore the equilibrium state. Such mod
have been used, for instance, to study ionic conduc
driven by an external electrical field,3 and alloys subjected to
sustained irradiation7,8,2,9 or sustained plastic deformation.10

The control parameters of the external dynamics, herea
referred to as the forcing parameters, determine the evolu
of the system and the steady state it may reach. A cru
question therefore resides in the proper identification of th
forcing parameters.

Until recently it was not clearly recognized that the ch
acteristic length of the external dynamics is an import
forcing parameter. This point may be fully appreciated
considering the case of alloys under irradiation. Indeed,
forced atomic relocations induced by nuclear collisions
distributed around a characteristic lengthR. This length can
be varied from one nearest-neighbor distance to a few
nometers by varying the irradiation conditions.11 If the alloy
can be fully characterized by its composition, which is
globally conserved order parameter, it has been predicted12,13

that the material can spontaneously self-organize into na
cale compositional patterns whenR exceeds a critical value
Rc . Recent experimental observations of irradiation-induc
compositional patterns are consistent with th
prediction.14,15

In many situations, however, the proper description o
system requires more than one order parameter, which c
be nonconserved, e.g., the degree of chemical order.16,2 Prior
studies on driven systems with coupled conserved and n
conserved order parameters17–19 have not investigated th
role of the relocation rangeR, with the exception of one
study20 that suggests that self-organization may take pla
based on the wave-vector dependence of a mean-field
equilibrium free energy.
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We address here this question by studying a gen
AcB12c alloy system driven by random jumps with a fini
rangeR. Borrowing from the case of alloys under irradiatio
we refer to this dynamics as the ballistic dynamics.7 At ther-
modynamic equilibrium, this alloy decomposes at a mac
scopic scale into anA-rich ordered phase and anA-lean dis-
ordered solid solution. When the alloy is driven away fro
equilibrium, we show that three new steady states can
stabilized, including a self-organized state. The conditio
for stabilizing this patterned state, however, become m
stringent as the driving force for chemical ordering increas

We consider anAcB12c binary alloy on a face-centered
cubic ~fcc! lattice. There are pairwise atomic interactions b
tween first and second nearest neighbors,Vi

XY with X,Y
5A,B and i 51,2. Defining ordering energies asVi5Vi

AB

2Vi
AA/22Vi

BB/2 for i 51, 2, we chooseV1520.08 eV and
a52V2 /V152/5 so as to stabilize at equilibrium a pha
coexistence between anA-lean fcc solid solution (A1 phase!
and anA-rich L12 ordered phase. In the absence of dynam
cal forcing, Abinandananet al.21 used kinetic Monte Carlo
~KMC! simulations to analyze the ordering and decompo
tion reactions that take place during annealing in this al
system. In this work the temperature is fixed atT
50.09 eV, and we restrict ourselves to nominal compo
tions inside theA1-L12 two-phase field, i.e., 0.06, c̄,0.21
in the mean-field model and 0.10, c̄,0.20 in the MC simu-
lations.

We first study this model alloy using a continuum on
dimensional mean-field model, with the local compositionc
and the local degree of orderS as conserved and noncon
served order parameters. For a self-consistent derivatio22

we start with a microscopic description. We consider a sta
ing of $111% planes: each plane is then equivalent with
spect to theA1 andL12 phases, and it can be decompos
into sites on ana sublattice~of proportion 1/4! and ab
sublattice~of proportion 3/4!. In the L12 phase,B atoms
occupy preferentially theb sites. The local composition an
degree of order are related to sublattice occupation proba
ties for A atoms on a given plane through:c5(Ca

A

13Cb
A)/4 andS5(Ca

A2Cb
A)/(4c). Simple algebra yields the
©2002 The American Physical Society03-1
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FIG. 1. Predicted dynamical phase diagrams based on instabilities obtained from analytical~lines! and numerical~symbols! stability

analyses of the continuum model:~a! c̄50.10,~b! c̄50.12, and~c! c̄50.15. R is the characteristic range of the forced atomic relocation
units of the ~111! interplanar spacingd111. gb is a reduced forcing frequency~see text for definition!. Four domains are identified
homogeneous and disordered~HD!, homogeneous and ordered~HO!, ordered and decomposed at a macroscopic scale (M ), and ordered and
decomposed into mesoscopic patterns (P).
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total free energy of a given@c(x),S(x)# profile as a discrete
sum over the plane index, and its continuum counterpart

F@c,S#5E dxF f ~c,S!1
1

2
Nc~“c!21

1

2
Ns~“S!2G

with

f ~c,S!5Z0V1c2F2S 12
a

2D1S2S 11
3a

2 D G
1

kT

4
@P~c13cS!13P~c2cS!#. ~1!

where Nc52zV1@12a2S2(113a)#, Ns522zV1c2(1
13a), Z0 and z are the total and interplane coordinatio
numbers (Z0512, z53), and P(x)5x ln(x)1(12x)ln(1
2x). Note thatNc andNs are function ofc andS, contrary to
assumptions sometimes made.23

We now turn to a kinetic description of this model alloy
the presence of competing dynamics. For the thermal dyn
ics we use the classical expressions for an alloy with c
served and nonconserved order parameters, the so-c
‘‘model C.’’ 16 For the forced dynamics, we derive from th
above microscopic model the rates of variation ofc andSas
a function ofR and Gb , the ballistic jump frequency. The
probability distribution of ballistic relocation distances,wR ,
is chosen to be a decaying exponential with a decay lengtR.
Indeed this functional dependence fits well molecul
dynamics simulation results of displacement cascades in
radiated solids.24 It also enables us to perform analytic ca
culations. The resulting kinetic equations are:

]c

]t
5Mc¹

2
dF

dc
2Gb~c2^c&R!, ~2!

]S

]t
52Ms

dF

dS
2GbS, ~3!

where ^c&R is the local composition convoluted bywR .12

The ballistic terms are simplified expressions that are stri
valid whenR is large. The thermal mobility coefficientsMc
andMs are calculated in a self-consistent manner.19 In order
to obtain analytical results, another simplification is ma
02030
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these mobilities are evaluated for a homogeneous disord
state. This yieldsM5Mc /Ms5(9c̄2d111

2 )/16.
We can study the local stability of steady states in t

driven alloy by performing a linear stability analysis. F
small perturbations of the form exp(vt1ikx) around a homo-
geneous steady-state profile (c̄,S̄), the perturbation ampli-
tudes (dc,dS) are solution of23

FA11 A12

A21 A22
GF dc

dSG52vF dc

dSG ~4!

with A225Ms~ f ss1k2Ns!1Gb ,

A115Mck
2~ f cc1k2Nc!1GbR2k2/~11R2k2!,

A125Mck
2f sc , A215Msf sc , ~5!

where we used the notationf c5(]/]c) f , etc. The two dis-
persion branches are given byv1 andv2, the eigenvalues of
(2A). Instabilities will take place when one or both eige
values become positive in some wave-vector interval.

Let us first consider the evolution of an alloy initiall
disordered and homogeneous, e.g., obtained by quenc
from a high-temperature state. We restrict our analysis
compositions larger than the ordering spinodal composit
(cos50.0975 at 0.09 eV!: the initial state is then stable with
respect to composition fluctuations but unstable toward c
tinuous ordering,25 provided thatGb,Gb,(1)52Msf ss ~note
that f ss is negative forc.cos). In this case, inspection o
Eqs. ~2! and ~3! reveals that there exists another homog
neous steady-state solution, which has a nonzero degre
order. This steady state thus corresponds to a long-rang
dered state.

We now perform a second linear stability analysis to d
termine the domain of stability of this ordered state. For t
purpose, we recalculate the dispersion equations becaus
coefficients in Eq.~5! depend on the degree of order. In th
absence of ballistic jumps, and for the compositions d
cussed below~see Fig. 1!, this second steady state is unstab
with respect to spinodal decomposition.25 In the presence of
the ballistic dynamics, however, two additional situations
found: the homogeneous ordered state may be locally sta
or it may become unstable toward decomposition, but o
3-2
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for an interval of wave vectors that has a nonzero low
bound. By extension of our work on alloys with one co
served order parameter with ballistic jumps,12 we anticipate
that this last reaction will lead to self-organized patter
Four stable steady states are therefore predicted to be
sible: a homogeneous disordered~HD! state, a homogeneou
ordered~HO! state, a state decomposed at the macrosc
scale (M ), and a state decomposed at a mesoscopic s
(P), i.e., with patterns. Note that the homogeneous orde
steady state can also be stablized by short-range bal
jumps.18

The boundary for the HO→M instability can be obtained
analytically since it corresponds to the (R, Gb) values for
which the curvature of the eigenvalue responsible for sp
odal decomposition changes its sign atk50. Defining a re-
duced ballistic frequency bygb5Gb /Ms , this second
boundary is given by

R(2)
2 5F f sc

2

f ss2gb
2 f ccG M

gb
for gb,gb,(1) . ~6!

The determination of the HO→P instability is more deli-
cate since it takes place at a nonzero and nonconstant w
vector. By inspection of the leading terms, we derive an
proximate expression for this third boundary:

R(3)
2 5F Q

~gb2gb
c!

GM for gb
c,gb,gb,(1) , ~7!

with gb
c5Q2/Nc , and Q5( f sc

2 2 f ccf ss)/2f ss. These three
instability boundaries are plotted in Fig. 1 for three nomin
compositions,c̄50.10, 0.12, 0.15, in the (R,gb) plane. In all
cases the boundaries determined analytically are in exce
agreement with full numerical solutions. It is predicted th
the c̄50.10 alloy can reach three different steady states, H
M, andP, similar to our previous results on alloys with on
conserved order parameter.12 As c̄ increases, however, a ne
field ~HO! appears, where the homogeneous ordered s
remains ~locally! stable. Furthermore, the boundaries H
→M and HO→P intersect atR5Rc , and forR values lower
thanRc only the HO→M instability remains@boundary~2!#.
As c̄ is increased to 0.15, the HO field becomes wider a
the minimum relocation distance necessary to stabilize
terns,Rc , becomes larger.

The above kinetic mean-field model suffers from seve
limitations. In particular, the calculated phase boundaries
late to local stability, whereas we are interested in the glo
stability of these steady states, and the alloy may re
steady states other than those considered so far. To overc
these limitations, we performed KMC simulations on a thre
dimensional fcc lattice with the same pairwise interactio
used previously~see Ref. 13 for details!. Crystals withL3

sites,L532, 64, 128, are used with a fixed vacancy conc
tration cv . Atoms migrate either by exchanging their si
with a first nearest-neighbor vacancy, through a therm
activated process, or by atom-atom permutations at a ball
frequencyGb weighted by the relocation distance prob
bility wR .
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The steady states are determined by analyzing struc
factors centered aroundk50, the Bragg peak, and aroun
ks5$100%, the L12 superlattice reflections. These structu
factors are first calculated along the trajectory of the syst
then spherically averaged, and then time averaged to en
that steady state has been reached.

The characteristics of these averaged structure fac
clearly identify the steady states: disordered or short-ra
ordered states present nearks small intensities that are inde
pendent of the crystal size; long-range ordered states, on
contrary, give rise to large intensities that scale with t
simulation volume@see Figs. 2~b! and 3~b!#. Phase decom-
position is similarly assessed by analyzing the structure
tors neark50: mesoscopic states are identified by the pr
ence of a crystal size independent peak for a nonzero w
vector neark50 @Fig. 3~a!#, whereas macroscopic decomp
sition is identified by a Bragg peak whose intensity sca
with the simulation volume.

FIG. 2. KMC structure factors at steady state, spherically av
aged~a! near the Bragg peak and~b! near the superlattice reflectio
(Dks5uk2ksu). With forcing parametersR5A54 andGb /cv52.6

3105 s21, corresponding togb5431024, this c̄50.15 alloy is
stabilized into a homogeneous long-ranged ordered state~HO!, as
assessed by the crystal size~L! dependences ofS(k) andS(Dks).

FIG. 3. KMC structure factors at steady state, spherically av
aged~a! near the Bragg peak and~b! near the superlattice reflectio
(Dks5uk2ksu). With forcing parametersR5A54 andGb /cv52.6

3104 s21, corresponding togb5431025, this c̄50.15 alloy is
stabilized into a state decomposed at a finite scale between l
range ordered and disordered regions (P), as assessed by the cryst
size ~L! dependences ofS(k) andS(Dks).
3-3
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The KMC results obtained forc̄50.15 are summarized in
Fig. 4. The four steady states identified by linear stabi
analysis, and only those, are observed. The topology of
KMC phase diagram is in very good agreement with
analytical calculations@see Fig. 1~c!#. For comparison with
the analytical model, the average thermal vacancy jump
quency is measured during thermal equilibrium KMC sim

FIG. 4. KMC (R, gb) dynamical phase diagram forc̄50.15.
The symbols correspond to following states:M (h), P(d), HO
(n), and HD (s). The dashed lines are approximate locations
the phase boundaries.
l
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lations, and is used to rescale the ballistic jump frequenc

obtain a reduced ballistic frequencygb . For c̄50.12 ~not
shown here!, the homogeneous ordered field is greatly
duced, in agreement with the analytical predictions.

The present work points to the rich phenomenology t
results from the coupling between ordering and decomp
tion in alloys driven by forced mixing with finite range
From a practical viewpoint, the competition between patte
ing and homogeneous ordering has an important con
quence: the minimum relocation rangeRc required to stabi-
lize patterns increases withc̄. For dilute alloys this minimum
range is small enough so that the actual range during
beam processing may exceedRc . Thus we predict that pat
terning can take place under appropriate irradiation con
tions, and indeed it has been recently observed in
irradiated Ni-12%Al.19 For more concentrated alloys
however, as the maximum relocation range produced by
irradiations is;1 –2 nm,11 patterning should no longer b
possible.
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