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Effect of the electron-phonon interaction on the shift and attenuation of optical phonons

L. A. Falkovsky
L. D. Landau Institute for Theoretical Physics, 2 Kosygin Street, Moscow 117334, Russia

~Received 5 March 2002; published 2 July 2002!

Using the Boltzmann equation for electrons in metals, we show that the optical phonons soften and have a
dispersion due to screening in agreement with the results reported recently@M. Reizer, Phys. Rev. B61, 40
~2000!#. Additional phonon damping and frequency shift arise when the electron-phonon interaction is properly
included.

DOI: 10.1103/PhysRevB.66.020302 PACS number~s!: 63.20.Dj, 63.20.Kr, 78.30.2j
ur

d
s
s

ns

d
o
u

y
-

a
ly
th

an

-
n

pe
r

lcu

a

rs

pr
m

s
a
to
o
n
re
n
e
l’s
n

sion
ve-
f
fer-
less
non
for

i-
the

the
ny
i-
fects
ces
the

nu-
unt
in

cal
e-

on-
-

l
ct to

s
the

c
e-
m-
Despite attracting considerable interest for half a cent
since the pioneering work by Fro¨hlich, the problem of
electron-phonon interaction is still far from being solve
Migdal1 developed a consistent many-body approach ba
on the Fro¨hlich Hamiltonian for the interaction of electron
with acoustic ~sound! phonons. As Migdal showed~the
Migdal theorem!, the vertex corrections for acoustic phono
are small by theadiabaticparameterAm/M , wherem andM
are the electron and ion masses, respectively. The theory
scribed correctly the electronic lifetime, renormalization
the Fermi velocityvF , and acoustic phonon attenuation, b

resulted in a strong renormalization of the sound velocits̃
5s(122l)1/2, wherel is the dimensionless coupling con
stant. For sufficiently strong electron-phonon couplingl
→1/2, the phonon frequency approached zero marking
instability point of the system. Instead, one would intuitive
expect the phonon renormalization to be weak along with
adiabatic parameter.

This discrepancy was resolved by Brovman and Kag2

almost a decade later~see also Ref. 3!. They demonstrated
the shortcomings of the Fro¨hlich model that gave an anoma
lously large phonon renormalization. Employing the Bor
Oppenheimer~adiabatic! approximation~see, e.g., Ref. 4!,
they found that there are two terms in the second-order
turbation theory, which compensate each other making a
sult small by the adiabatic parameter. Namely, when ca
lating the phonon self-energy functionP(v,k) with help of
the diagram technique, one should eliminate an adiab
contribution of the Fro¨hlich model by subtractingP(v,k)
2P(0,k).

The interaction of electrons with optical phonons was fi
considered by Engelsberg and Schrieffer5 within Migdal’s
many-body approach for dispersionless phonons. They
dicted a splitting of the optical phonon at finite wave nu
bersk into two branches. Ipatova and Subashiev6 calculated
later on the optical phonon attenuation in the collisionle
limit and pointed out that the Brovman-Kagan renormaliz
tion should be carried out for optical phonons in order
obtain correct phonon renormalization. In Ref. 7, Alexandr
and Schrieffer corrected the calculational error of Ref. 5 a
argued that no splitting was found in fact. Instead, they p
dicted an extremely strong dispersion of optical phono
vk5v01lvF

2k2/3v0, due to the coupling to electrons. Th
large phonon dispersion is a typical result of Migda
theory8 using the Fro¨lich Hamiltonian. No such dispersio
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y

.
ed

e-
f
t

n

e

-

r-
e-
-

tic

t

e-
-

s
-

v
d
-

s,

has ever been observed experimentally. The usual disper
of optical phonons in metals has the order of the sound
locity. In a recent paper, Reizer9 stressed the importance o
screening effects which should be taken into account. Re
ences 7 and 9 are limited to the cases of both collision
electron and phonon systems. Moreover, only the pho
renormalization was considered with no results available
the attenuation of optical phonons.

An approach different from many-body technique sem
classical approach based on the Boltzmann equation and
equations of the theory of elasticity, was developed in
papers by Akhiezer, Silin, Gurevich, Kontorovich, and ma
others~see Ref. 10!. This approach was compared with var
ous experiments, such as attenuation of sound waves, ef
of strong magnetic fields, crystal anisotropy, sample surfa
on the sound attenuation, and so on. It can be applied to
problem of the electron-optical-phonon interaction11 as well.
In the present paper we develop a theory for both the atte
ation and frequency shifts of optical phonons with acco
for effects of the Coulomb screening as well as collisions
the electron and phonon systems.

It is instructive to recapitulate the results of the dynami
theory of elasticity for the renormalization of the sound v
locity ds5 s̃2s and acoustic attenuationG in metals. For a
phonon with a wave numberk and frequencyvk5sk, they
are given by10

ds

s
2 i

G

vk
5lH s2

vF
2 2 i

ps

2vF
for kvF.uvk1 igu

vk

vk1 ig
for kvF,uvk1 igu,

~1!

whereg is the electronic scattering rate, and the dimensi
less coupling constantl is proportional to the electronic den
sity of statesn0 at the Fermi surface~for the isotropic case
n05m* pF /p2, m* is the effective electron mass! and to the
squared deformation potentialz ik . The deformation potentia
describes the change in the spectrum of electrons subje
lattice deformation«(p,r ,t)5«0(p)1z ik(p)uik(r ,t), where
uik is the strain tensor. Equations~1! give the correct answer
in various known regimes: for the sound attenuation in
hydrodynamic limit (vk!g and k→0), for the zero sound
(vk@g andk→0), for the Landau damping in the ballisti
limit ( kvF@uvk1 igu). In the latter case, both the sound v
locity shift and attenuation are small by the adiabatic para
©2002 The American Physical Society02-1
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eters/vF contrary to the results of the Fro¨hlich model. Note
also that Eqs.~1! show hardening of the phonon frequen
due to the electron-phonon interaction in contradiction w
Migdal’s result.

For the case of optical phonons, two known types of
electron-phonon interaction are the deformation poten
and the interaction with the electrical polarization induced
optical vibrations. We consider here for simplicity a cub
crystal with two different atoms in a unit cell. Then, there a
three optical modes, and the interaction with the induc
polarization has the Fro¨hlich form

«~p,r ,t !5«0~p!1z~p!“•u~r ,t !, ~2!

where the scalar functionz(p) of the electron momentum i
the coupling with the optical displacementsu. In order to
compare our results with previous ones, here we conside
interaction in the same form~2! as in Refs. 7–9. One can se
that the principal characteristic features of the phenome
are retained for the deformation interaction,d«
5z i(p)ui(r ,t), where the coupling is a vector function. Th
distinction is that only the longitudinal mode interacts w
electrons in the case of induced polarization~2!, and the
interaction approaches zero in the long-wave limit. The
fore, we concentrate on the propagation of the longitudi
mode along the symmetry axis when this mode is not mi
with transverse ones. Note also that the electric field play
important role especially when the different atoms are in
unit cell so that the dipole moment is excited under the at
vibrations.

The main point of the theory is the equation of motion
the long-wave approximation (k!1/a) for the Fourier com-
ponents of the optical-phonon displacementuj ,

~vk
22v2!uj~k,v!5

Z

M 8
Ej1

ik j

M 8N
E 2d3p

~2p!3
z~p!d f p~k,v!,

~3!

whereEj is the electric field associated with vibrations,N is
the number of unit cells in 1 cm3, M 8 is the reduced mas
of two atoms in the unit cell, andZ is the effective ionic
charge. The nonperturbed phonon frequencyvk should be
considered in the absence of the electric field and with
any nonadiabatic corrections. In the long-wave limit, we c
roughly describe it asvk

25v0
26s2k2 with the magnitude ofs

being of the order of the typical sound velocity in metals. W
should mention that the optical phonons always have
so-called natural widthGnat;v0Am/M . The natural width
results from decay processes into two~or more! acoustic or
optical phonons, which are possible even at zero temp
ture. We can add this width tovk in the form2 iGnat/2.

The last term in Eq.~3! presents the driving force from
the nonadiabatic electron system due to the devia
d f p(r ,t) from the local-equilibrium distribution function
f 0@«(p,r ,t)2m#.

Then, we have the Boltzmann equation
02030
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2 i ~v2k•v!d f p~k,v!1g@d f p~k,v!2^d f p~k,v!&#

52@vz~p!k•u~k,v!1ev•E#
d f0

d«
~4!

in the approximation of relaxation rateg, which holds at low
temperatures when the electron-impurity interaction do
nates as well as at temperatures higher then the Debye
perature when the phonon-phonon collisions can be con
ered as elastic. The term in the angular brackets in Eq.~4!,
which denote the average over the Fermi surface,

^•••&5
1

n0
E ~••• !

2dSF

v~2p!3
,

arises from the out term in the collision integral. Notice, th
the condition ^z(p)&50 should be fulfilled, because th
number of electrons in the local-equilibrium sta
f 0@«(p,r ,t)2m# is conserved. The validity conditions o
Boltzmann’s equation~4! arek!pF andv!«F . Let us em-
phasize that Eqs.~3! and~4! are nothing but the equations fo
the phonon and electron self-energy, respectively, of the
gram technique.

With the help of the Maxwell equations, the electric fie
is expressed in the terms of polarizationP as follows:

E524pk~k•P!/k2, ~5!

provided that phonons are excited in the optical regionk
@v/c, where the wave vector is determined by the incide
light k;v ( i )/c and the frequencyv is of the order of the
optical phonon frequencyv0. It is seen that the electric field
is longitudinal and only the longitudinal component of pola
ization Pz (k is taken along thez axis! plays a role being
related to the phonon displacement and the electric field
the equation

Pz5NZuz1aE1
ie

k E 2d3p

~2p!3
d f p~k,v!, ~6!

where the first term is caused by ionic motion,a is the po-
larizability of filled bands, and the last term is the carri
contribution defined by the variation of the electron dens
r (e)52 ik•P(e).

Equations~3!–~6! give the complete system of our prob
lem. The Boltzmann equation~4! has the solution in the form

d f p~k,v!52xp~k,v!
d f0

d«
,

where

xp~k,v!5 i @ev•E1vz~p!k•u1g^xp~k,v!&#/D, ~7!

^xp~k,v!&5 i ^@ev•E1vz~p!k•u#/D&/~12 i ^g/D&!,

and we setD5v2k•v1 ig.
Using this solution, we obtain the polarization~6! and

rewrite the electric field~5! in terms of the longitudinal dis-
placementuz ,
2-2
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«e~k,v!E524pb f duz , ~8!

where we introduce the field-displacement response func

b f d5NZ2evn0

^z~p!/D&
12 i ^g/D&

. ~9!

The electron contribution into the dielectric function has t
known form

«e~k,v!2«`52
4pe2n0^vz /D&
k~12 i ^g/D&!

, ~10!

where the high-frequency permittivity«`5114pa.
Now, we consider the equation of motion~3! using the

solution of the Boltzmann equation~7!. The term propor-
tional to uz of the driving force can be included in the ph
non frequency,

ṽ25vk
21

n0vk2

M 8N
S K z2~p!

D L 1
ig^z~p!/D&2

12 i ^g/D& D , ~11!

so that Eq.~3! reads

~ṽ22v2!uz5Z̃E/M 8, ~12!

where the renormalized ionic charge

Z̃5Z2
en0k

N S K z~p!vz

D L 1 ig
^vz /D&^z~p!/D&

12 i ^g/D& D .

Using the condition̂ z(p)&50 we obtainZ̃5b f d /N.
Then, we can express the displacementuz from Eq. ~12!

in terms ofE and, substituting this value into Eq.~8!, obtain
the dielectric function of the electron-ion system,

«~k,v!5« (e)~k,v!14pNZ̃2/M 8~ṽ22v2!. ~13!

The frequency of the longitudinal mode is defined by t
condition«(k,v)50, i.e.,

v25ṽ214pNZ̃2/M 8«e~k,v!. ~14!

In the absence of free electrons, the density of statesn0

50 and Eq.~14! gives for the LO modevLO
2 5vk

21vpi
2 ,

where vpi
2 54pNZ2/M 8«` is the squared ion-plasma fre

quency of the order ofv0
2. For the TO mode, when the elec

tric field E50, we obtainvTO
2 5vk

2 .
Free electrons in metals make the large contribution i

the dielectric function@see, Eq.~10!#. Expanding in powers
of k we have in the zero order

« (e)~k,v!2«`52«`vpe
2 /v~v1 ig!, ~15!

which corresponds simply to the Drude conductivity with t
electron-plasma frequency

vpe
2 5

e2

3p2«`

E vdSF .

For largekvF.uv1 igu, the electron contribution~10! de-
scribes the Debye screening,
02030
n

o

« (e)~k,v!2«`5«`

k0
2

k2~11 ipv/2kvF!,

where a term of the order ofv/kv is kept and the Debye
parameterk0

254pe2n0 /«` .
Therefore, we can solve Eq.~14! for v!vpe , using the

iteration procedure to a first approximation. The solution
complex valued, and its real and imaginary parts give the
phonon frequency and width

vLO
2 2 ivLOG5vk

21
k2vkn0

M 8N
K z2~p!

D L 1
vpi

2 «`

« (e)~k,vk!
.

~16!

In the case of smallkvF,uvk1 igu, expanding ink pow-
ers, we obtain

vLO
2 2 ivLOG5vk

22vk~vk1 ig!
vpi

2

vpe
2

1
lvks

2

vk1 ig
k2,

~17!

where the dimensionless coupling constantl
5^z2(p)&n0 /rs2 contains the factorapFm* /m and the
metal densityr.

In the case of largek, expanding inuvk1 igu/kvF , we
obtain

vLO
2 2 ivLOG5vk

22 i
pvks

2k

2vF
S l1

vpi
2

s2k0
2D 1

vpi
2

k0
2

k2,

~18!

where the coupling constantl is defined, when the
asymptotic value of the integral is calculate
n0^z

2(p)/D&/M 8N52 ips2l/2kvF . Note, that the value of
l in Eq. ~18!, as well as in Eq.~17!, vanishes for the case o
isotropy due to the condition̂z(p)&50.

Hence, the squared frequency of the longitudinal opti
mode is essentially less~by the factorvpi

2 ) than for insula-
tors, due to screening of the electric field by free electro
The additional phonon softening, width, and dispersion
Eq. ~17! involve the adiabatic parameter (v0 /vpe)

2;m/M ,
and they are small compared withGnat;v0Am/M . In the
region where Eq.~18! is valid, we see the additiona
k-dependent width~terms in the parentheses!, which is com-
parable toGnat. Here, thel term conditioned by the electron
phonon interaction is similar to the damping of the acous
phonons@see the first formula in Eqs.~1!#. Now we omit the
shift containing the small factor (s/vF)2. The second term in
the parentheses as well as the last term in Eq.~18!, giving the
k dispersion, are induced by screening andl are indepen-
dent. Sincevpi

2 /k0
2.s2, this dispersion has a typical value fo

the phonon branches.
Let us rewrite in our notations the respective results

Ref. 9, Eqs.~9! and ~7!, retaining only main terms:

vLO
2 5vk

22
vpi

2 ~vpi
2 1vk

2!

vpe
2 ~122l ln 2!

, kvF,vk , ~19!
2-3
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vLO
2 5vk

21
vpi

2

3vpe
2 ~kvF!2, kvF.vk . ~20!

Comparing with Eqs.~17! and~18! we see that thek disper-
sion coincides practically. Next, we agree that the contri
tion vpi

2 vanishes from the frequency of the LO mode. T
softening and damping due to both the electron-phonon s
tering (g) and the phonon decay processes (Gnat) were ig-
nored in Ref. 9. Concerning the electron-phonon interac
l, the reason of disagreement was discussed in the begin
of the paper: this is a shortcoming of the diagram techni
based on the Fro¨hlich model. But the most essential diffe
ence is thek-dependent width in Eq.~18!, which is missed in
Eq. ~20!.

In conclusion, let us make several remarks. The cas
the large k-values ~18! is most interesting because th
electron-phonon and electrodynamic contributions into
phonon width~first and second terms in the parentheses,
s

02030
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spectively! can compete. The result depends on the De
screening and the wave vectork. In Raman experiments, th
parameterkvF /uv01 igu;v ( i )vF /cv0.0.3 if v ( i ).104 K
and v0.102 K, and for metalsvF.108 cm/s. Therefore,
the high incident-light frequency or neutron experiments
desirable. It is more simply to observe the electrodynam
effect in semiconductors, wherek0 is smaller. We have an
example of such experiments in works in Ref. 12, where
metal-insulator transition was observed in the GaN crys
under pressure. For the conducting phase, the longitud
mode softens and obtains the additional damping in comp
son with the insulator state. Then, using Eq.~17!, we
calculate13 the collision rateg which is consistent with the
value obtained from the conductivity.

The author thanks E. G. Mishchenko for fruitful discu
sions. The work was partially supported by the RFB
~Project No. 01-02-16211!.
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