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Effect of the electron-phonon interaction on the shift and attenuation of optical phonons
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Using the Boltzmann equation for electrons in metals, we show that the optical phonons soften and have a
dispersion due to screening in agreement with the results reported reddntBeizer, Phys. Rev. B1, 40
(2000]. Additional phonon damping and frequency shift arise when the electron-phonon interaction is properly
included.
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Despite attracting considerable interest for half a centunjhas ever been observed experimentally. The usual dispersion
since the pioneering work by Hnbch, the problem of of optical phonons in metals has the order of the sound ve-
electron-phonon interaction is still far from being solved.locity. In a recent paper, ReiZestressed the importance of
Migdal' developed a consistent many-body approach basescreening effects which should be taken into account. Refer-
on the Frdlich Hamiltonian for the interaction of electrons ences 7 and 9 are limited to the cases of both collisionless
with acoustic (sound phonons. As Migdal showedthe €lectron and phonon systems. Moreover, only the phonon
Migdal theoren, the vertex corrections for acoustic phononsrenormallzanon was considered with no results available for
are small by thediabaticparameter/m/M, wheremandM  th€ attenuation of optical phonons.

are the electron and ion masses, respectively. The theory del- An apl)proach dr:ﬁtt)aren':j frorr:hmaBn)I/t-body technlcg_ue seg"t'h
scribed correctly the electronic lifetime, renormalization of ©1assical approach based on fhe bofizmann equation and the

the Fermi velocit and acoustic phonon attenuation, but equations of the theory of elasticity, was developed in the
WE, P ’ papers by Akhiezer, Silin, Gurevich, Kontorovich, and many

resulted in a strong renormalization of the sound velo?;ity others(see Ref. 10 This approach was compared with vari-
=s(1—2\)"2, where is the dimensionless coupling con- ous experiments, such as attenuation of sound waves, effects
stant. For sufficiently strong electron-phonon coupling  of strong magnetic fields, crystal anisotropy, sample surfaces
—1/2, the phonon frequency approached zero marking aon the sound attenuation, and so on. It can be applied to the
instability point of the system. Instead, one would intuitively problem of the electron-optical-phonon interactioas well.
expect the phonon renormalization to be weak along with thén the present paper we develop a theory for both the attenu-
adiabatic parameter. ation and frequency shifts of optical phonons with account
This discrepancy was resolved by Brovman and Kaganfor effects of the Coulomb screening as well as collisions in
almost a decade latésee also Ref.)3 They demonstrated the electron and phonon systems.
the shortcomings of the Fntich model that gave an anoma- It is instructive to recapitulate the results of the dynamical
lously large phonon renormalization. Employing the Born-theory of elasticity for the renormalization of the sound ve-
Oppenheimer(adiabati¢ approximation(see, e.g., Ref.)4  |ocity 5s=s—s and acoustic attenuatidn in metals. For a
they found that there are two terms in the second-order pephonon with a wave numberand frequencyw,=sk, they
turbation theory, which compensate each other making a regre given by°
sult small by the adiabatic parameter. Namely, when calcu-

lating the phonon self-energy functidh(w,k) with help of g2 TS _
the diagram technique, one should eliminate an adiabatic s r F_iﬁ for kve>|wy+ivyl
contribution of the Frhlich model by subtractindI(w,k) _S_i_:)\ F F 1)
~11(0k). S “k for koe<|wcti]

The interaction of electrons with optical phonons was first wtiy UF KLY

considered by Engelsberg and Schrieffaithin Migdal’s

many-body approach for dispersionless phonons. They prewherey is the electronic scattering rate, and the dimension-
dicted a splitting of the optical phonon at finite wave num-less coupling constant is proportional to the electronic den-
bersk into two branches. Ipatova and Subasfieslculated sity of statesy, at the Fermi surfacéor the isotropic case
later on the optical phonon attenuation in the collisionlessyy=m*pg /72, m* is the effective electron masand to the
limit and pointed out that the Brovman-Kagan renormaliza-squared deformation potentig|, . The deformation potential
tion should be carried out for optical phonons in order todescribes the change in the spectrum of electrons subject to
obtain correct phonon renormalization. In Ref. 7, Alexandroviattice deformations(p,r,t)=eq(p)+ Zik(P)Ui(r,t), where
and Schrieffer corrected the calculational error of Ref. 5 and;, is the strain tensor. Equatioli¥) give the correct answers
argued that no splitting was found in fact. Instead, they prein various known regimes: for the sound attenuation in the
dicted an extremely strong dispersion of optical phononshydrodynamic limit <7y andk—0), for the zero sound
W= wo+ )\U,Z:k2/3w0, due to the coupling to electrons. The (w, >y andk—0), for the Landau damping in the ballistic
large phonon dispersion is a typical result of Migdal's limit (kve>|wg+iv]). In the latter case, both the sound ve-
theory’ using the Fréich Hamiltonian. No such dispersion locity shift and attenuation are small by the adiabatic param-
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eters/vg contrary to the results of the Arlich model. Note —i(0—k-v)8f (k) + ¥ 8F p(k,0) = (5F (K, w))]
also that Egs(1) show hardening of the phonon frequency
due to the electron-phonon interaction in contradiction with
Migdal’s result.

For the case of optical phonons, two known types of the ) ) ) )
electron-phonon interaction are the deformation potential” the approximation of relaxation ragg which holds atlow
and the interaction with the electrical polarization induced byt€mperatures when the electron-impurity interaction domi-
optical vibrations. We consider here for simplicity a cubic Nates as well as at temperatures higher then the Debye tem-
crystal with two different atoms in a unit cell. Then, there arePerature when the phonon-phonon collisions can be consid-
three optical modes, and the interaction with the induce@®d as elastic. The term in the angular brackets in(&x.

dfg
:_[wf(p)k'u(k,w)+ev.E]$ @

polarization has the Efdich form which denote the average over the Fermi surface,
(== [ o 22
8(p1r1t)=80(p)+§(p)vu(rat)! (2) Vo 0(277.)3’

where the scalar functiog(p) of the electron momentum is arises fro_rr_1 the out term in the collision i_ntegral. Notice, that
the coupling with the optical displacemenus In order to ~ the condition ({(p))=0 should be fulfilled, because the
compare our results with previous ones, here we consider tHa#mber of —electrons in  the local-equilibrium  state
interaction in the same fori2) as in Refs. 7—9. One can see fole(P.r,t)—u] is conserved. The validity conditions of
that the principal characteristic features of the phenomenoRoltzmann’s equatior4) arek<pg andw<sg. Let us em-
are retained for the deformation interactionge phasize that Eq$3) and(4) are nothing but the equations for

= ¢,(p)u;(r,t), where the coupling is a vector function. The the phonon_and electron self-energy, respectively, of the dia-
distinction is that only the longitudinal mode interacts with 9ram technique. _ o
electrons in the case of induced polarizatié®, and the With the hglp of the Maxwell equat_lons, the electric field
interaction approaches zero in the long-wave limit. ThereiS €xpressed in the terms of polarizatibres follows:
fore, we concentrate on the propagation of the longitudinal
mode along the symmetry axis when this mode is not mixed E=—4mk(k-P)/K%, ®)
with transverse ones. Note also that the electric field plays @Brovided that phonons are excited in the optical region
important role especially when the different atoms are in thes. /¢, where the wave vector is determined by the incident
unit cell so that the dipole moment is excited under the atoMight k~w®/c and the frequency is of the order of the
vibrations. _ _ ___optical phonon frequency,. It is seen that the electric field
The main point of the theory is the equation of motion injg jongitudinal and only the longitudinal component of polar-
the long-wave approximatiork¢<1/a) for the Fourier com- jzation P, (k is taken along the axis) plays a role being
ponents of the optical-phonon displacemapf related to the phonon displacement and the electric field by
the equation

z iki [ 2d%p . 3
(wﬁ‘wz)“i(kv“’):WEﬁM—,',J (2m3 P oK), P,=NZu,+ aE+ %fipséfp(k,w), 6)
@ (zm)

where the first term is caused by ionic motianjs the po-
larizability of filled bands, and the last term is the carrier

whereE; is the electric field associated with vibratioméjs S ) o )
contribution defined by the variation of the electron density,

the number of unit cells in 1 ¢t M’ is the reduced mass © )
of two atoms in the unit cell, and is the effective ionic P .~ —1K-P*”. _

charge. The nonperturbed phonon frequengyshould be Equations(3)-(6) give the complete system of our prob-
considered in the absence of the electric field and withouteM- The Boltzmann equatidd) has the solution in the form

any nonadiabatic corrections. In the long-wave limit, we can df

roughly describe it a&2= w3+ s?k? with the magnitude o$ 8t (K, w) = —Xp(k,w)—o,

being of the order of the typical sound velocity in metals. We de

should mention that the optical phonons always have th?vhere

so-called natural widtH™"®~ wyym/M. The natural width

results from decay processes into t¢ay more acoustic or Yo(k,w)=i[ev-E+ wl(p)k-u+ p{xp(k,@)) /A, (7)
optical phonons, which are possible even at zero tempera- P P
ture. We can add this width tﬂ)k in the form —iF“aVZ. <Xp(k w)>:i<[eV° E+ w{(p)k U]/A>/(1_|<’)//A>)

The last term in Eq(3) presents the driving force from
the nonadiabatic electron system due to the deviatiomnd we seA=w—k-v+ivy.
ofy(r,t) from the local-equilibrium distribution function Using this solution, we obtain the polarizatidf) and
fole(p,r,t)—u]. rewrite the electric field5) in terms of the longitudinal dis-
Then, we have the Boltzmann equation placemenu,,
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Se(k,w)E=—47TdeUZ, 8

where we introduce the field-displacement response function

(L(p)/A)

ﬁfd: NZ— ewvom.
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2
e(e)(k,w)—sx=sxé(l+i7Tw/2kv,:),

where a term of the order ab/kv is kept and the Debye
parameteki=4me?vy/s., .
Therefore, we can solve E¢l4) for w<wp,, using the

The electron contribution into the dielectric function has theiteration procedure to a first approximation. The solution is

known form

Ame?vo{v,/A)

k(1—i{y/A)) "’
where the high-frequency permittivity,,= 1+ 47 .

Now, we consider the equation of motid8) using the
solution of the Boltzmann equatiofY). The term propor-
tional tou, of the driving force can be included in the pho-
non frequency,

(0?— w?)u,=ZE/M’,
where the renormalized ionic charge

{(p)v, .<Uz/A><§(p)/A>)
A | YT IS G0m)

Using the condition( Z(p))=0 we obtainZ = B4/N.

Then, we can express the displacemenfrom Eq. (12)
in terms ofE and, substituting this value into E(), obtain
the dielectric function of the electron-ion system,

(10

eo(k,w)—¢e,=

iy({(p)/A)?
1-i(y/A)

vowk?
M’N
so that Eq(3) reads

(!)2_

) (1D

2
ot A

2
{ (p)> N
(12

eyok
N

e(k,w)=e@ Kk w)+47NZIM' (0?—w?). (13

The frequency of the longitudinal mode is defined by the.

conditione(k,w)=0, i.e.,

0?=0?+47NZ?M g4k, w). (14)

In the absence of free electrons, the density of stages
=0 and Eq.(14) gives for the LO modew{o= wi+ w};,
where wsi=47TNZZ/M’8x is the squared ion-plasma fre-
qguency of the order obg. For the TO mode, when the elec-

tric field E=0, we obtainw?,=w?.

Free electrons in metals make the large contribution int

the dielectric functiorisee, Eq(10)]. Expanding in powers
of k we have in the zero order

8(9)(k,w)—8w:—8wwge/a)(w+i'y), )

complex valued, and its real and imaginary parts give the LO
phonon frequency and width
£(p)
)

In the case of smakv<|wy+i7y|, expanding irk pow-
ers, we obtain

2
pi&ee
e©(k, )
(16)

) k2w v 1)

wlo—iwol=w
LO k
M'N

0 \w,S?
2 _ 2 ; pi k 2
wLo_'wLor—wk—wk(wk+|7)w—2+ wk+iyk :
17)
where the dimensionless coupling constani

=(Z%(p))vo/ps® contains the factorapem*/m and the
metal densityp.

In the case of largé, expanding in|w,+iy|/kvg, we
obtain

2 2
21,2 2
s7Kkg kg

5 i kaszk/
(l)LO_|(1)|_oF:(1)k_| ZUF \

(18

where the coupling constank is defined, when the
asymptotic value of the integral is calculated:
vo(L2(p)/AY/M'N=—ims®\/2kvg . Note, that the value of
\ in Eq. (18), as well as in Eq(17), vanishes for the case of
isotropy due to the conditiof(p))=0.

Hence, the squared frequency of the longitudinal optical
mode is essentially ledby the factorwgi) than for insula-
tors, due to screening of the electric field by free electrons.
The additional phonon softening, width, and dispersion in
Eq. (17) involve the adiabatic paramete§/wye)>~m/M,
and they are small compared with'®~ wq\/m/M. In the
region where EQ.(18) is valid, we see the additional
k-dependent widtliterms in the parenthesesvhich is com-

(Parable td" " Here, thex term conditioned by the electron-

phonon interaction is similar to the damping of the acoustic
phonongsee the first formula in Eq$1)]. Now we omit the
shift containing the small factos(vg)2. The second term in
the parentheses as well as the last term in(E8), giving the

k dispersion, are induced by screening andre indepen-

which corresponds simply to the Drude conductivity with thedent. Sincewsi/kgzsz, this dispersion has a typical value for

electron-plasma frequency

,_ ¢ J
Wpe vdS:.

T a2
37,

For largekvg>|w+iy|, the electron contributioril0) de-
scribes the Debye screening,

the phonon branches.
Let us rewrite in our notations the respective results of
Ref. 9, Egs.(9) and(7), retaining only main terms:

wgi(wgi-i— wE)
wi(1-2\1In2)’

2 _ 2
W o= Wy

kl)|:< Wy (19)
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w2 spectively can compete. The result depends on the Debye
wfoz w§+—p2'(kvp)2, kv > wy. (20 screening and the wave vectarin Raman experiments, the
Wpe parametekvg /|wo+iy|~0VvE/cwe=0.3 if 0V=10" K

Comparing with Eqs(17) and (18) we see that thé disper-  and wo=10" K, and for metalsug=10° cm/s. Therefore,
sion coincides practically. Next, we agree that the contributhe high incident-light frequency or neutron experiments are
tion wgi vanishes from the frequency of the LO mode. Thedesirable. It is more simply to observe the electrodynamic
softening and damping due to both the electron-phonon scagffect in semiconductors, wheig is smaller. We have an
tering (y) and the phonon decay process€$¥) were ig- €xample of such experiments in works in Ref. 12, where the
nored in Ref. 9. Concerning the electron-phonon interactiornetal-insulator transition was observed in the GaN crystal
\, the reason of disagreement was discussed in the beginningnder pressure. For the conducting phase, the longitudinal
of the paper: this is a shortcoming of the diagram techniquenode softens and obtains the additional damping in compari-
based on the Fhdich model. But the most essential differ- son with the insulator state. Then, using Ed.7), we
ence is the&-dependent width in Eq18), which is missed in  calculaté® the collision ratey which is consistent with the
Eq. (20). value obtained from the conductivity.

In conclusion, let us make several remarks. The case of
the large k-values (18) is most interesting because the  The author thanks E. G. Mishchenko for fruitful discus-
electron-phonon and electrodynamic contributions into thesions. The work was partially supported by the RFBR
phonon width(first and second terms in the parentheses, re¢Project No. 01-02-16211
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