
PHYSICAL REVIEW B 66, 014529 ~2002!
Landau orbital description of the vortex state in a two-dimensional
extremely type-II superconductor

V. Zhuravlev and T. Maniv
Chemistry Department, Technion-Israel Institute of Technology, Haifa 32000, Israel

~Received 13 February 2002; published 18 July 2002!

We extend the application of the recently developed Landau orbital approach to the fluctuating vortex lattice
in two-dimensional~2D! extremely type-II superconductors at high magnetic fields to the region above the
melting point. We find that the abrupt incomplete melting of the quasicrystalline vortex phase atT5Tm!Tc is
followed by a broad crossover into an intermediate state with a nematic liquid-crystalline-like order without 2D
positional order. A special type of amplitude fluctuations, which can be described as classical transverse
vibrations of vortex chains~while vortices are accumulated and depleted alternately in individual chains!,
controls this crossover. Due to the 1D nature of these vibrations, the structure factor suffers thermal broadening
of the diffraction peaks, which remains effective at temperatures well below the mean fieldTc . The complete
melting into an isotropic vortex fluid is shown to occur only far aboveTm , since the energy cost of the
fluctuations which break the chain structure is of the order of the superconducting condensation energy.

DOI: 10.1103/PhysRevB.66.014529 PACS number~s!: 74.20.2z, 74.60.Ge
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I. INTRODUCTION

Melting of the lattice of the magnetic flux lines in ex
tremely type-II, layered superconductors has been inve
gated extensively during the last decade. Clear evidence
first-order melting phase transition has been found in
high-Tc compounds YBa2Cu3O7 ~Ref. 1! and
Bi2Sr2CaCu2O8 ~Ref. 2! in the high-temperature low
magnetic-field region of the phase diagram. Similar pheno
ena have been studied in low-Tc superconductors based o
the organic molecule BEDT-TTF,3 which share similar fea-
tures with the high-Tc cuprates. These materials offer
unique possibility to investigate vortex lattice dynamics
the low-temperature high-magnetic-field region of the ph
diagram due to their nearly two-dimensional~2D! electronic
structure.

In such a quasi-2D superconductor the transition to z
resistivity in the high-magnetic-field region is dramatica
broadened with respect to the zero-field transition,3 whereas
the characteristic jump of the specific heat at the transitio
the absence of a magnetic field is completely smeared
applying a moderate magnetic field.4 It is believed that ther-
mal fluctuations are responsible for these closely related p
nomena. Fluctuations of the superconducting~SC! order pa-
rameter are, indeed, expected to be enhanced significan
high magnetic fields when the Landau quantization of
Cooper-pair energy leads to an effective dimensionality
duction of 2~Ref. 5!.

Theoretically speaking it is well known that phase flu
tuations play a crucial role in controlling the stability of th
vortex lattice and its possible melting processes. In 2D s
tems the energy scale of these fluctuations is much sm
than the SC condensation energy, implying a melting te
peratureTm well below the mean fieldTc .6 Indeed, the mag-
netization irreversibility line, which follows the boundar
between the vortex solid and the vortex liquid, appears in
quasi-2D organics at temperatures far below the mean
Tc ,3,7 where magnetoquantum oscillations are detectabl8,7
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In accordance with the resistivity and specific heat data m
tioned above, the SC-induced damping of the de Haas–
Alphen ~dHvA! signal in the region around the mean fie
Hc2 was found to be a very smooth function of the magne
field.9 This behavior is consistent with the broad crosso
between the SC and normal states predicted theoretically
2D superconductors.6

The nature of the vortex lattice melting transition in 2
superconductors has been debated in the literature for m
years.9 Early proposals,10,11 based on the similarity to the
Kosterlitz-Thouless-Halperin-Nelson-Young ~KTHNY !
theory of melting in 2D solids,12 have led to the conclusion
that the melting transition is continuous. A weak first-ord
melting transition was predicted more recently, however,
several Monte Carlo simulations of the Ginzburg-Land
~GL! model,13–16 as well as of the frustratedXY model.17,18

In approaches based on the Ginzburg-Landau theory an
trary configuration ofN vortices is constructed by a superp
sition of N Landau gauge orbitals of Cooper pairs restrict
to the lowest Landau level~LLL ! in a magnetic field whose
total flux through the sample amounts toN flux quanta. Due
to the short-range repulsive interaction between vortex co
the totality of N Landau orbitals collapses in the zer
temperature limit intoAN orbitals, each of which is charac
terized by a common projection ofAN guiding centers, to
form the most uniform superfluid density allowed by th
condition of flux quantization—the Abrikosov triangular la
tice. It has been shown recently6 that shear motions of Bragg
chains along the principal crystallographic axes of the vor
lattice cost a very small fraction of the SC condensation
ergy and are responsible for the low-temperature vortex
tice melting. These fluctuations preserve the area of any
ementary cell in the fluctuating lattice, so that th
corresponding vortex network is incompressible everywh
in the sample.

The great simplicity associated with this Bragg chain p
ture is lost, however, at temperatures significantly larger t
the melting temperatureTm , where thermal excitations hav
©2002 The American Physical Society29-1
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enough energy to overcome the repulsion between vo
cores. Under these circumstances it is not allowed anym
to describe the fluctuating vortex network in terms of colle
tively moving rigid chains of vortices, since individual vo
tices tend to fluctuate independently as the temperatur
raised.

In the present paper we extend the application of the L
dau orbital approach to the vortex state above the mel
point in a 2D superconductor under high perpendicular m
netic field. We investigate in detail certain types of dev
tions from the Bragg chain model, which characterize diff
ent stages of the crossover from the Abrikosov lattice stat
low temperatures to the isotropic vortex liquid state at h
temperatures. We find that the energy cost of the fluctuat
leading to the breakdown of the vortex-chain structure is
the same order of magnitude as the SC condensation en
so that in a broad region between the melting point and
SC transition point, predicted by mean-field theory, the v
tex liquid state can be described as a collection of wea
interacting vortex chains.

II. BRAGG CHAIN APPROXIMATION

The extremely smooth crossover between the normal
the SC phases characterizing 2D superconductors at
magnetic fields implies that in a relatively broad region
the phase diagram around the mean-field SC transition
thermodynamic potential may be obtained by using the w
known GL expansion of the free energy functional in t
small SC order parameter, which in the LLL approximati
reduces to the simple form.19,13

FGL5E
pN

dxdyS 2auD~x,y!u21
1

2
buD~x,y!u4D , ~1!

wherea(T), b are phenomenological parameters andpN is
the volume of the 2D system (N→`). All lengths are mea-
sured in units of the magnetic length,aH5Ac\/eH.

The corresponding SC order parameter in the Lan
gauge can be written in the most general form as a cohe
superposition of Landau orbitals,

D~x,y!5(
n,m

cqexp@ iqx2~y1q/2!2#, ~2!

wherecq are arbitrary complex numbers defined on the q
sicontinuous latticeq5(2p/ax)(n1m/AN), n,m52AN/2
11, . . . ,AN/2, which determines the projections of the o
bital guiding centers on they axis. In the case when all th
coefficientscq are different from zero there is a one-to-o
correspondence between allN guiding centers and their pro
jections on they axis. As will be shown below, the energ
cost of this quasicontinuous configuration is a large fract
of the total SC condensation energy and is therefore unfa
able at temperatures well belowTc .

Expressing the GL functional, Eq.~1!, in terms of the
order parameter, Eq.~2!, as
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FGL~D̃2;$cq ,cq* %!5pNF2aD̃21
1

2
bba~$cq ,cq* %!D̃4G ,

~3!

with D̃2[D2[(1/pN)*dxdyuD(x,y)u2 and

ba~D!5ba~$cq ,cq* %!5uD~x,y!u4/uD~x,y!u2
2, ~4!

the partition function can be written in the form

Z5E
0

`

d~D̃2!E ) 8
n,m

dcqdcq* exp@2FGL /kBT#, ~5!

where the prime on the product symbol indicates that
integration over the global amplitude is excluded.

Evidently, in the thermodynamic limitN→`, the integral
over the global amplitudeD̃2 can be evaluated by the stee
est descent method. The corresponding stationary poin
D̃25(a/bba), and the partition function takes the form

Z5E ) 8
n,m

dcqdcq* expFpNS a2

2bba
D Y kBTG , ~6!

where the new SC free energy functionalFGL5
2pNa2/2bba is similar to the well-known mean-field ex
pression. Thus the fluctuations of the global amplitudeD̃2

vanish and the SC free energy is determined solely by
configuration~Abrikosov! functional, Eq.~4!.

The order parameter which minimizes this GL free ene
functional corresponds to a discrete configuration where
totality of N guiding centers collapses intoAN groups, ofAN
centers each, with the same projectionqn/25(p/ax)n, n5
2AN/211, . . . ,AN/2, on they axis. Thus the entire set o
guiding centers constitutes a family of parallel Bragg cha
in a 2D periodic lattice. The corresponding order parame
written as a linear combination of Landau orbitalsfn(x,y)
5exp@iqnx2(y1qn/2)2#, representing the different chains,
given by

D~x,y!5 (
n52AN/211

AN/2

cnfn~x,y!, ~7!

where the phasewn of the coefficientcn5ucnueiwn deter-
mines the relative ‘‘horizontal’’ positionxn52wn /qn of the
nth chain along thex axis. Shear fluctuations along thex axis
are therefore described by the fluctuating phaseswn . For a
regular lattice of an arbitrary geometry,wn5gn2 and cn

5cn
(0)5c0eign2

, wherec0[(2p/ax
2)1/4D̃. The parameterax

is the lattice constant in thex direction. The additional mini-
mization with respect to the variational parametersg andax
leads to the preferred geometry of the Abrikosov triangu
lattice with g5p/2, ax

252p/A3. Other lattice states with
rhombic elementary cell, which can be obtained by vary
ax , have a slightly higher free energy~within 2%! since all
the differences between them arise from small pha
dependent terms in the quartic part ofFGL @Eq. ~1!#.

The GL free energy, Eq.~1!, is invariant under continuous
rotations in the (x,y) plane and, therefore, the orientation
the x axis in Eq.~2! can be selected arbitrarily. In additio
9-2
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LANDAU ORBITAL DESCRIPTION OF THE VORTEX . . . PHYSICAL REVIEW B66, 014529 ~2002!
the ground lattice state is invariant under discrete rotation
anglep/3, leading to the existence of completly equivale
chain directions described by the same values of the par
etersax and g. In real samples this degeneracy is remov
due to various mechanisms of vortex line pinning, e.g.,
atomic lattice, the sample boundaries, the presence of
fects, etc. However, in the present model we neglect vo
line pinning, assuming that results obtained for a given ch
direction should be subsequently averaged over all o
equivalent chains. Such averaging, which does not cha
the thermodynamical properties of the system, eliminates
linear chain structure of the thermal fluctuation, and resto
the original sixfold symmetry. Nevertheless, as will
shown below, some indirect 1D properties persist regard
of the chain orientation averaging.

It should be stressed here that a Landau wave function
a given chainfn(x,y) is extended in thex direction but
localized in the perpendicular direction. The great advant
of this chain representation of the vortex state, as will
shown below, is that due to the localized nature of the L
dau orbitals in the transverse direction, the chains inte
only weakly with each other, as long as their internal str
ture is not destroyed. It is therefore clear that the Land
gauge employed here is the best choice for dealing with s
a chain structure. On the other hand, the opposite extr
situation of randomly distributed vortices is more approp
ately described in terms of the symmetric gauge Laugh
Jastrow wave function,20 where the positions of the vorte
cores ~i.e., the zeros of the order parameter! are directly
specified. Furthermore, the delocalized nature of the Lan
orbitals along thex direction makes this representation mo
sensitive to the finite size of the superconductor than
Laughlin-Jastrow representation. In a system with a fin
sizeLx along thex direction thed distribution of the coeffi-
cients cn in q space around the ideal discrete array
smeared into finite peaks with a characteristic width of
order of 1/Lx . Thus, the SC order parameter of a spatia
small system includes significant deviations from the Bra
chains approximation.

In the ground state the chains representation, Eq.~7!, is
not unique since it can be selected along any direction de
mined by each of the infinitely many families of Brag
chains. In Ref. 6 it was shown that the chains along Bra
directions with small Miller indices interact weakly wit
each other, so that the shear stiffness of the vortex lat
along these axes is quite small. In contrast, the coup
between chains within a Bragg family having larger Mill
indices become comparable to the intrachain energy q
quickly as the indices increase. Along the infinitely ma
directions of this type the shear stiffness of the lattice
therefore large and nearly isotropic. This phenomenon
nicely illustrated in Fig. 1, where the dependence of the f
energy @through the Abrikosov parameter bA

[ba($cn
(0) ,cn

(0)* %) # on the collective tilt angleg is shown
for different discrete values of the parameter

s5~p/ax!
2, ~8!

which correspond to certain Bragg families~determined by
the intrachain distanceax). A small value ofs ~i.e., a large
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ax) corresponds to a set of large Miller indices. The min
mum ~or minima! for each Bragg family corresponds to th
value ~or values! of g characterizing the Abrikosov triangu
lar lattice. The very weak shear stiffness along the princi
axis and its quick increase with increasing Miller indices a
apparent.

III. INCOMPRESSIBLE VORTEX LIQUID

The order parameter in the LLL subspace, given by E
~2!, reflects a fundamentally important property of the vort
state in extremely type-II superconductors at high magn
fields; that is, the vortex matter under these conditions
incompressible. This feature is associated with the fact
the total number of zeros ofD(rW) within a fixed macroscopic
areapN is equal to the total number of guiding centers,N,
used in constructing the wave function in Eq.~2!, which is
also equal to the total number of flux lines threading this a
~see, e.g., Ref. 16!. In the general case this is only a glob
constraint which can be violated locally by sufficiently ene
getic fluctuations ~see the next sections!. In the low-
temperature region around the melting point, where
Bragg chain approximation, Eq.~7!, is valid, this constraint
is satisfied everywhere in the superconductor since all fl
tuations are restricted to shear motions along parallel Br
chains, for which the area of each unit cell is conserved~and
equalsp).

In the present section we discuss the salient feature
this absolutely incompressible vortex phase. We start w
the GL free energy density per chain, measured in units
kBT:

f GL[
FGL

pkBTAN
52aF21

b

2
F4 ,

F25(
n

ucnu2,

F45 (
ni ,n11n25n31n4

expH 2
1

4 F( qni

2 2
1

4 S ( qni
D 2G J

3cn1

! cn2

! cn3
cn4

, ~9!

FIG. 1. The dependence of the Abrikosov parameter on the
lective tilt angle g for different values of the parameters: s1

5pA3/2, s25p/2A3, ands35pA3/26 corresponding to increas
ing values of the Miller’s index in the triangular lattice.s1 ands2

correspond to the principal axes.
9-3
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V. ZHURAVLEV AND T. MANIV PHYSICAL REVIEW B 66, 014529 ~2002!
where a5aax /A2pkBT, b5bax /A4pkBT, and ANax is
the size of the system in thex direction. The partition func-
tion in this representation is written asZ5§AN, where

§5E )
n

dcndcn* exp~2p f GL!. ~10!

A direct consequence of the representation, Eq.~9!, is that
the quadratic terms, as well as the quartic ones withn1
5n25n35n45n, which can be regarded as intrachain en
gies, do not depend on the positions~vertical,qn , as well as
horizontal,2wn /qn! of the chains. They constitute the dom
nant part of the SC condensation energy, but do not influe
the vortex structure of the condensate. The rest of the te
which describe interactions between chains, depend on
distance between neighboring chains,p/ax . Since this de-
pendence onp/ax is determined by the overlap between t
LLL Gaussian wave functions localized on neighbori
chains, the selection of the Bragg family with the large
interchain distance~i.e., with chains along the short diagon
of the rhombic unit cell! leads to interaction terms muc
smaller than the intrachain energy. The characteristic sm
coupling parameterl5exp@2(p/ax)

2# for this selection is
exp@2A3p/2#'0.066.

Expanding the quartic term inl up to second order on
finds that

F4'(
n

@ ucnu414lucnu2ucn11u2

14l2ucnu2ucn11uucn21ucosxn#, ~11!

where xn5wn111wn2122wn , which shows two types o
interactions: repulsive phase-independent two-chain inte
tions of the orderl and phase-dependent three-chain int
actions of the orderl2, which are attractive for chain con
figurations near the triangular Abrikosov lattice geome
cos(xn)521. Thus the fluctuations with the lowest energi
are shear motions of the chains along the ‘‘main crysta
graphic axis’’ of the triangular Abrikosov lattice, which ar
described by fluctuations in the phaseswn . It should be
stressed here that in the case when the long diagonal o
unit cell is selected as the chain direction the pha
dependent terms are still small, sincel(ax8)

25exp
@2A3p/3#'0.16.

In the low-temperature regime studied here the redu
partition function, Eq.~10!, can be obtained by exact inte
grations over the phaseswn and steepest descent integratio
over the amplitudesucnu. The resulting SC free energy has
form similar to the mean-field free energy,2pNa2/2bba ,
with an effective Abrikosov parameter given by6

ba5As

pS 114l24l2
I 1~t!

I 0~t! D , ~12!

where I 0(t),I 1(t) are the modified Bessel functions of o
ders 0,1 respectively,t5Tcm /T and
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~114l!

pa2

2bbA~l!
,

with bA(l)'1.159. The integration over the phase variabl
which is equivalent to averaging the free energy function
Eqs. ~9! and ~11!, over the phase fluctuations, tends to su
press the weak three-chain attractive interactions due to t
oscillatory behavior, while keeping the repulsive two-cha
interaction unchanged. This suppression takes place con
ously but rather sharply as a function of temperature wit
each family of chains~see Fig. 2!. The family of fluctuating
chains along the large diagonal (ax8

2
52A3p) is more stable

at low temperature than that along the small diagonalax
2

52p/A3) due to the relatively large value of the couplin
constantl(ax8). However, the crossover temperatureTc.m.
around which the free energy rises sharply and the ma
tude of the rise itself are higher for the former family than f
the latter, and the two curves intersect at some intermed
temperatureTm . At the crossing point~see Fig. 2! the chains
of the latter family move almost independently so that t
shear modulus drops abruptly down to a small nonzero va
and tends to zero gradually with further temperature
crease.

The first-order nature of the melting transition can be
luminated by plotting the dependence ofba on the parameter
s, defined by Eq.~8!, at different temperatures~see Fig. 3!. In

FIG. 2. Schematic temperature dependence of the SC free
ergy for two different selections of the Bragg family of chains, i.
along the two principal axes of the Abrikosov lattice.

FIG. 3. Dependence of the Abrikosov parameterba on s
5(p/ax)

2 at different values of the effective ‘‘temperature’’t5
2A2pa2/kBTb
9-4
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LANDAU ORBITAL DESCRIPTION OF THE VORTEX . . . PHYSICAL REVIEW B66, 014529 ~2002!
this plot both minima@referred to asx8 ~left! andx ~right! in
what follows#, which coincide atT50, correspond to the
same triangular Abrikosov lattice in two different orient
tions: In the first orientation the long diagonal is parallel
the x axis while in the second one the short diagonal is p
allel to this axis. At finite temperatures this degeneracy
removed due to the different coupling between chains co
sponding to different Bragg families, as explained above
should be emphasized, however, that unlike the situatio
Hamiltonian quantum mechanics, where the linearity of
Hamiltonian operator ensures that any linear combination
the two degenerate states has the same energy, in the no
ear GL theory such a superposition always corresponds
larger free energy.This feature ensures that the minimum fr
energy always corresponds to a single Bragg family of s
ing chains.

The double-minimum structure of the free energy sho
in Fig. 3 is typical to a system undergoing a first-order ph
transition, with the abscissas playing the role of an orde
parameter.21 At the melting point, where the two minim
coincide again~curve 3 in Fig. 3! the vortex system can exis
in two different phases: an ‘‘ordered’’ phase in which the
are weak shear fluctuations along thex8 chains and a ‘‘dis-
ordered’’ phase consisting of strongly fluctuatingx chains.
The transition from the ordered phase to the disordered
is associated with a small jump of entropy. It is remarka
that in both phases the mean positions of the Bragg ch
constitute an exactly periodic~but no longer rhombic! lattice.
The jump of the order parameters at the transition corre-
sponds to a small discontinuous change in the average la
constantax .

The discontinuous nature of the vortex lattice melti
transition is found in contrast to the melting~as described by
KTHNY theory12! in 2D solids. In KTHNY theory the melt-
ing mechanism is associated with the thermally activa
proliferation of dislocations, which reduce the elastic sh
modulus to zero in a continuous fashion. In the 2D Abrik
sov lattice the discontinuous transition is due to the locali
~Gaussian! nature of the ground-state Landau orbitals, wh
considerably reduces the shear stiffness along the princ
Bragg families with respect to the nearly isotropic shear st
ness characterizing Bragg families with high Miller indice

This picture is reminiscent of the Cooper-pair charg
density-wave state described by Sasik, Stroud,
Tesanovic,22 which shows, at a given configuration o
D(x,y), considerable positional disorder, while the avera
^uD(x,y)u2&, taken over the full ensemble of such configur
tions, exhibits a perfectly periodic triangular modulation.
should be stressed, however, that in the Bragg chain m
the average superfluid density^uD(x,y)u2& is not a perfect
periodic function ofx,y; only the positions of the vortice
form a perfectly periodic lattice~see Fig. 4!. Also note that,
in contrast to the average superfluid density which exhi
long-range positional order perpendicular to the chain a
the SC order parameter decays to zero over a distance
few chains only@see the plot ofu^D(x,y)&u2 in Fig. 4#. This
picture is similar to the 2D flux-line-lattice phase describ
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by Kato and Nagaosa,14 which has a strong positional corre
lation and nonvanishing shear modulus without long-ran
superconducting order.

This unusual incompressible ‘‘Bragg liquid’’ exists a
long asT;Tcm;l2Tc(H). At higher temperatures, wher
thermal excitations can overcome the repulsion between
tex cores, the Bragg chain structure is distorted and the
responding network of vortices becomes locally compre
ible. In the next sections we will discuss various types
deviations from the Bragg chain approximation, which ch
acterize different stages of the broad crossover from the l
temperature incompressible vortex liquid phase to the hi
temperature isotropic vortex fluid.

IV. INTERMEDIATE ‘‘NEMATIC’’ VORTEX STATE

The energy cost of the phase fluctuations which con
the Bragg liquid phase discussed in the previous sections
very small (;l2) fraction of the total SC condensation e
ergy, «05pa2/2bbA (bA.1.159). As will be shown later,
the energy cost of the amplitude fluctuations in the Bra
chain free energy functional, Eq.~9!, is of the order of«0,
which is much higher than that of the phase fluctuations
considering intermediate deviations from the sliding Bra
chain approximation, there is a special type of amplitu
fluctuations which break the quasi-long-range translatio
order but preserve the long-range orientational order cha
terizing the sliding Bragg chains. This is achieved by p
serving the integrity of all chains but allowing their vertic
positions to fluctuate.

Let us study this type of fluctuations in some detail. O
formal starting point is thus the partition function, Eq.~5!,
obtained by integrating over all possible configurations
the SC order parameter in the LLL. As in Sec. II, we pile t
total N guiding centers intoAN groups ofAN centers with
the same projectionqn on they axis, but now allowqn to
deviate slightly from the periodic arrayqn

(0)5(2p/ax)n,
namely, takeqn5qn

(0)1jn , with ujnu!p/ax . Note that since
qn must coincide with one of the lattice pointsq5(2p/ax)
3(n1m/AN), the small displacementjn is equal to
2pm/axAN with the integerm varying in a regionumu
!AN/2. Each selection ofjn is actually a special case o
amplitude fluctuations when the strength ofucq

n
(0)u is trans-

ferred entirely toucqn
u. Thus, in addition to the phase fluc

FIG. 4. Contours of̂ uD(x,y)u2& ~a! andu^D(x,y)&u2 ~b!, calcu-
lated within the framework of the Bragg chain model att[Tm /T
52 ~i.e., below the melting point!. Note the perfect periodic lattice
created by the minima of these contours, which is, however,
torted with respect to the triangular Abrikosov lattice.
9-5
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V. ZHURAVLEV AND T. MANIV PHYSICAL REVIEW B 66, 014529 ~2002!
tuationswn , describing the longitudinal displacements of t
chains, the relevant amplitude fluctuationsucqu can be repre-
sented as fluctuating transverse displacementsjn , so that the
corresponding partition function can be written in the sim
chain form

§5E )
n

dwndjnexp@2p f GL~$wn ,jn%!#. ~13!

Obviously these fluctuations do not destroy the perio
structure of individual chains along thex axis. However, they
break the global periodicity by changing the period with
each fluctuating chain. Indeed, such a fluctuation, e.g., w
jn.0, is associated with a vertical displacementjn of the
entire (nth! chain and a contraction of its lattice constant
ax /(11axjn/2p), which is followed by a rearrangement o
the nearby superfluid density. The nature of this rearran
ment can be fully appreciated by evaluating the spatial
tribution of vortices in the close vicinity of the displace
chain. Considering, for the sake of simplicity, a square latt
and approximatingD(x,y) near the upper row of the dis
placed zeros~see Fig. 5! by the superposition of the Landa
orbitals localized on the displaced chain and on the chain
below it, the positions of the zeros are atxk15(k
11/2)ax /(11axjn/2p), k50,61,62, . . . , y15(p/2ax)
3(12axjn/2p). Similarly the hybrid of the orbitals local-
ized on the displaced chain and the chain just above it yie
for the lower row of zeros the coordinatesxk25(k
11/2)ax /(12axjn/2p), y25(2p/2ax)(11axjn/2p).
Thus, it is seen that theaccumulation of vortices within the
contracted chain is exactly compensated by the depletio
vortices within the neighboring dilated chain, so that t
total number of vortices is conserved.This phenomenon is
expected in view of the locality of the Landau basis wa
functions and the global constraint imposed on the total nu
ber of vorticesN , as discussed above.

These longitudinal accumulation and depletion of vortic
within neighboring chains result in superfluid density flu
tuations in the direction transverse to the chain axis. Un
these circumstances the quasi-long-range positional o
described in Sec. III, is broken. This takes place, howe
without destroying the long-range orientational order char

FIG. 5. Superfluid density contour~a! of a square Abrikosov
vortex lattice in which a single Landau orbital is displaced ve
cally from its ideal positionq0. The correspondingcq distribution is
shown in~b!. Note the destruction of the translational order by th
fluctuation and the preservation of the orientational order in
direction of the chains.
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terizing the chain structure. In that sense the macrosco
state of the vortex system described here is similar to
nematic liquid crystal phase intervening between the cry
and isotropic liquid states appearing in 2D solids.12

Let us make an estimate of the characteristic tempera
at which the fluctuations responsible for this behavior b
come significant. To start with we may use the GL free e
ergy functional given in Eq.~9! in the partition function in-
troduced in Eq.~13!, by allowingqn to fluctuate around the
periodic lattice points, i.e., by lettingqn5qn

(0)1jn . The qua-
dratic termF2 determines the leading energy of a chain a
does not depend on the internal chain structure. The qua
phase-independent terms, withn15n35n, n25n45n1 l ~or
with n15n4 , n25n3), represent interchain pairwise intera
tions with the Gaussian dependence,

ln,l5exp@2~qn1 l2qn!2/4#,

on the interchain distance. Note that the contribution of th
transverse fluctuations to the SC free energy is a function
the relative displacements (jn1 l2jn) only, not of the dis-
placementjn themselves. For the sake of simplicity we a
sume small displacements, i.e.,ujnu!1 for all n, so that
ln,l.l l 2, wherel5exp(2s)!1 (s5p2/ax

2). For l 51 ~i.e.,
corresponding to coupling between nearest-neighbo
chains only!, the energy cost of these fluctuations is sign
cantly higher than that of the shear fluctuations conside
previously, which was shown to scale likel2.

Since we focus here on the high-temperature region, w
above the melting transition,T@Tm , the phase averaging
leads to zero mean value of all phase-dependent terms.
thermore, as the stable family of chains corresponds toax

2

52p/A3, the corresponding small value of the interacti
constantl justifies the use of the nearest-neighbor appro
mation, and so the quartic term of the free energy functio
reduces to

F4.(
n

@ ucnu412ucnu2~ln,1ucn11u21ln,21ucn21u2!#,

~14!

whereln,61 are functions ofjn .
We then expandF4 in the small displacementsjn , up to

second order, and replace the amplitudesucnu2 with their
mean-field value, i.e.,ucnu2→c0

2(T)5a/b(114l), so that
the GL free energy functional per vortex chain reduces to

f GL52AN
«0

pkBT
1

1

2
tal(

n
~jn112jn!21•••, ~15!

where«05pa2/2bbA @bA'(Ap/s(114l)# is the effective
condensation energy per vortex in the absence of the fluc
tions, andtal52s(121/2s)lbc0

4(T). The second term on
the right-hand side~RHS! of Eq. ~15! determines the correc
tion to the chain energy due to fluctuations. The characte
tic temperature of this type of fluctuations is thus

Tal5Ttal5sS 12
1

2sD 4l

114l
T0 , ~16!

-

e
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LANDAU ORBITAL DESCRIPTION OF THE VORTEX . . . PHYSICAL REVIEW B66, 014529 ~2002!
whereT05«0 /kB;Tc . A simple estimate shows that, fors
5A3p/2, Tal[0.46T0; that is,Tal is of the order ofTc . In
the absence of the transverse fluctuations, discussed a
the vortex state at finite temperature is characterized
short-range SC order, quasi-long-range translational orde6,9

and long-range orientational order along the principal Bra
chain direction. The transverse fluctuations preserve the
entational order, but destroy the translational order. The la
elastic constant found in Eq.~16! for the transverse vibra
tions of vortex chains means, however, that appreciable
viations from the translational order occur only well abo
the melting point.

The range of translational order existing in the vort
state at finite temperature can be evaluated by conside
the size~i.e., N! dependence of the structure factor

S~QW !5
1

N
^uI ~QW !u2& ~17!

at the reciprocal Abrikosov-lattice pointsQW 5GW , with Gx
52pn/ax , Gy52pm/by22nbx , by5p/ax , bx5x̄ax/2p,
where n and m are integers. Here I (QW )
5*d2r uD(rW)u2ei (QW •rW) and x̄5^xn&ph , where the subscrip
ph indicates average over phase fluctuations. At zero t
perature the long-range order is manifested by the Br
peaks withS(GW )}N. At a finite temperature, far belowTal ,
where the transverse fluctuations may be neglected,
finds6 a perfect long-range order along the reciprocal latt
chain Gx50, i.e., S(Gx50,Gy);N, and quasi-long-range
order along all other parallel chains, i.e.,S(GxÞ0,Gy)
;N1/2. The power-law dependence onN for GxÞ0 reflects
the 1D long-range order within the individual vortex chain
The stronger power law forGx50 is due to the spatial av
eraging along the chains, which evades the destructive in
ference effect of the phase fluctuations on positional or
perpendicular to the chains.

It should be stressed here that since there are three eq
lent ways to select the principal axes in the ideal triangu
Abrikosov lattice, the actual direction of the sliding chai
depends on extrinsic factors, such as pinning interaction
defects, or the particular selection of the boundary con
tions. Thus, there are several different orientations, de
mined by the local pinning interaction in the macrosco
sample, along which clusters of Bragg chains would prefe
grow. Since the reciprocal lattice points withGx50 depend
on the specific choice of these axes, it is expected tha
averaging over all three equivalent orientations, the size
pendence of the structure factor will be isotropic, satisfy
S;Ns with 1/2,s,1. This result is similar to the quas
long-range positional order predicted by the KTHNY theo
of 2D melting,12 according to whichS;Ns with s&5/6.
Furthermore, in any numerical simulation of the vortex l
tice melting, such as that performed by Kato and Nagaos14

the random selections of the coefficientscq imply that the
corresponding Landau orbitals are distributed randomly o
the different Bragg families of chains in the Abrikosov la
tice, which again correspond to averaging over all poss
equivalent orientations.
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As mentioned above, the presence of the transverse
tuations breaks the translational lattice symmetry so that
expects no genuinely long-range positional order at any fi
temperature. The effect is expected to be particularly imp
tant due to the 1D nature of these fluctuations. Neglecting
coupling between the longitudinal~i.e., phase! fluctuations
and the transverse ones, which is of third order inl, the
corresponding structure factor for an arbitrary 2D wave v
tor QW 5(Qx ,Qy) can be written in the separable form

S~QW !5
uc0u4

N (
n,n8,l ,l 8

C4~ l 8,n,l ,n8!^I n,n8I l ,l 8
* &, ~18!

where C4( l 8,n,l ,n8)5^ei (wn2wn82w l1w l 8)&ph and I n,n8
[^fqn8

ueiQW •rWufqn
&5*d2rfn8

* (rW)eiQW •rWfn(rW). The phase~or
longitudinal! correlation function has nonzero values on
for l 81n5 l 1n8. It depends only on the relative variable
n5n82n5 l 82 l and m5 l 2n5 l 82n8, and can be written
in the form C4( l 8,n,l ,n8)5eixmnC̃4(m,n). The transverse
correlation function̂ I n,n8I l ,l 8

* & is given by the expression

^I n,n8I l ,l 8
* &5dn8,n1nd l 8,l 1n^e

iQy(ql2qn)/2

3d (Lx)~qn1n2qn2Qx!d
(Lx)~ql 1n2ql2Qx!&,

~19!

whered (Lx)(q)[*
2Lx/2
Lx/2 dxeixq andLx5ANax is the length of

the 2D superconductor along thex axis. Thus the structure
factor can be reduced to the more compact form

S~QW !5
puc0u4

2N
e2Q2/4 (

n,m,n
eixmnC̃4~m,n!

3ei (pm/ax)QyGn,m,n~QW !, ~20!

where

Gn,m,n~QW !5E
2Lx/2

Lx/2

dxdx8

3expF i S 2pn

ax
2QxD ~x1x8!GGn,m,n~x,x8;Qy!

~21!

and

Gn,m,n~x,x8;Qy!5 K expi Fx~jn1n2jn!1x8~jn1m1n

2jn1m!1
Qy

2
~jn1m2jn!G L .

The average over the transverse fluctuations
Gn,m,n(x,x8;Qy) can be readily calculated in the harmon
approximation~15!. It is seen to be independent ofn, so that
the sum overn in Eq. ~20! produces a factorAN. At tem-
peratures,Tm!T!Tal , the reduced phase correlation fun
tion appearing in Eq.~20! has the limiting liquid-like behav-
ior @obtained at t!1 ~Ref. 6!# C̃4(m,n)→dn,01dm,0
9-7



or
m

D
d

-
na

te

tu
lly

w
ac

th

s
on

is
u
y
D

lo

re
en-
by

ing

for
-

gh-
of
Be-
ions
a-

pli-
ely
an

his
the

tex

f the

V. ZHURAVLEV AND T. MANIV PHYSICAL REVIEW B 66, 014529 ~2002!
2dm,0dn,0 . Evidently, the contribution to the structure fact
from the third term can be neglected in the thermodyna
limit N→`. For the first term (n50) we find

Gm,n50(x,x8;Qy)5e2umuQy
2/8tal, which is independent of both

x and x8, so thatGm,n50(QW )5Lx
2dQx,0e

2umuQy
2/8tal. The re-

maining sum overm in Eq. ~20! leads to

S~Qx50,Qy!

5
pax

2uc0u4

2
ANe2Qy

2/4S1D~Qy!, ~22!

where

S1D~Qy!5

sinh
Qy

2

8tal

cosh
Qy

2

8tal
2cos

pQy

ax

is the well-known static structure factor for a fluctuating 1
lattice,23 which has a series of thermally broadene
Lorentzian-like Bragg peaks centered atQy5Gy,m
[2pm/by , m561,62, . . . . Thewidth of themth diffrac-
tion peak in the low-temperature regionT!Tal is gm

'm2(ax
3/2p)(T/Tal). Averaging over all equivalent direc

tions, the structure factor will restore the original hexago
symmetry, preserving, however, the different dependence
the radial,dQ.dQy , and azimuthal,du.dQx /Qy , compo-
nents of the wave vector. Thus, the radial width is predic
to increase linearly withT, reflecting the underlying chain
structure.

It should be noted here that at low temperatures quan
fluctuations of the 1D lattice under study could drastica
smear this diffraction structure.24 A simple analysis of the
vortex dynamics in transversely fluctuating chains sho
however, that the inertial mass of a fluctuating chain is m
roscopically large~i.e.,;N!, implying that the effect of such
transverse quantum fluctuations can be neglected in the
modynamic limit.

The structure factor forQxÞ0 is determined by the term
with m50. In this case the Gaussian correlation functi

Gm50,n(x,x8;Qy)5e22p2unu(x1x8)2/ax
2tal leads to the size-

independent structure factor

S~QxÞ0,Qy!5paxuc0u4e2QW 2/4

3 (
nÞ0

p1/2

gx,n
expF2

1

2 S Gx,n2Qx

gx,n
D 2G ,

~23!

whereGx,n52pn/ax are points of reciprocal lattice in thex
direction withgx,n5Aunu/tal}T1/2.

Thus we conclude that atT;Tal , which is well above the
melting point Tm , the quasi-long-range positional order
totally destroyed by transverse fluctuations of chains. F
thermore, even at much lower temperatures the recover
translational order is significantly slowed down by the 1
nature of the fluctuations. The preserved nematic order a
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the x direction is reflected in theAN prefactor appearing in
the structure factor forQx50 @Eq. ~22!#, regardless of the
temperature.

V. ISOTROPIC VORTEX FLUID

In the high-temperature region, wherekBT is of the order
of the SC condensation energy«0, the nematic liquid crys-
talline order is gradually destroyed by a complicated mixtu
of amplitude and phase fluctuations. The characteristic
ergy scale of the amplitude fluctuations can be estimated
considering the effective free energy functional, Eq.~9!, after
neglecting the weak interchain couplings. The correspond
variance atkBT!«0 is

^ucnu2&2uc0u2

uc0u2
.S kBT

p«0
D 1/2

e2«0 /kBT, ~24!

showing that these fluctuations become significant only
kBT;«0.pa2/2b;kBTc . Furthermore, amplitude fluctua
tions of the quasicontinuous set of coefficientscq which van-
ish at low temperatures can become important in this hi
temperature regime. As will be shown below this type
fluctuations leads to destruction of the chain structure.
sides, phase fluctuations associated with shear mot
within Bragg families of large Miller indices are also oper
tive at these high temperatures.

Let us consider in some detail the second type of am
tude fluctuations. As a first step we consider the relativ
simple case when a single Landau orbital is injected into
‘‘interstitial site,’’ e.g., between then53 andn54 regular
chains shown in Fig. 6. In the superfluid density contour t
injection appears as additional vortices injected between

FIG. 6. Superfluid density contour of a square Abrikosov vor
lattice in which two Landau orbitals are injected atq23

(1)5(2p/ax)
3(2310.51) andq3

(1)5(2p/ax)(310.17). Note that the length of
the created domains increases with the decreasing distance o
nearest regular chain to the injected orbital.
9-8
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LANDAU ORBITAL DESCRIPTION OF THE VORTEX . . . PHYSICAL REVIEW B66, 014529 ~2002!
corresponding regular chains of vortices. However, since
total number of vortices should be conserved, the local
cumulation of vortices is compensated by the depletion
vortices in nearby regions, thus leading to a breakdown
the chain structure around the injected Landau orbital an
the formation of a quasiperiodic domain structure along
chain direction. The size of a domain increases as the
jected orbital approaches the regular one~see Fig. 6!. Evi-
dently the effect is quite local so that a global destruction
the chain structure requires, at least, suchAN injected
chains.

To estimate the energy cost of this type of fluctuations
us imagine thatAN orbitals, all with equal amplitude, ar
injected into the regular system in such a way that a sin
additional guiding center appears between any two reg
ones along they axis. The corresponding order parame
D(x,y) can be thus written as a linear combination,D(x,y)
5D0(x,y)1D1(x,y), of two condensate wave functions:

D j~x,y!5 (
n52AN/211

AN/2

exp@ iqn
( j )x2~y1qn

( j )/2!2#,

with j 50,1, whereqn
(0)52pn/ax andqn

(1)5qn
(0)1jn . Note

that for the sake of simplicity we selected the vortex latt
described byD0(x,y) to be a square lattice. Also note th
these wave functions are orthogonal for anyujnu,p/ax .

As reflected by Eq.~6!, in the thermodynamic limitN
→`, when the fluctuations of the global superfluid dens
D̃2 vanish, the SC free energy is determined solely by
generalized Abrikosov parameterba(D). Thus, in the presen
estimate, we may evaluate the contributions to the free
ergy from the selected configurationsD j (x,y) by considering
the corresponding values ofba(D j ). Using normalized wave
functions, i.e., settinguD j u251, and taking advantage of th
orthogonality condition and the related properti
uD j u2D0 D1* 5D0

2D1*
250, the calculation of the Abrikosov

parameter yields

ba5
1

4
@bA1ba~D1!#1uD0u2uD1u2, ~25!

where bA5ba(D0). Now, it is easy to show tha
uD0u2uD1u2'1, so that sinceba(D1)>bA'1, one finds that
ba*1.5. This is a remarkable result, since it implies that
energy cost of the fluctuations under study,

FGL2FMF5pNS a2

2b D S 1

bA
2

1

ba
D*

1

3
uFMFu,

so that their influence becomes significant only in the hi
temperature region nearTc .

This type of fluctuations may become important, howev
at temperatures well belowTc if the relative amplitude« of
the injected chains is selected to be much smaller than th
the regular ones. Indeed, writing down the total order para
eter as

D~rW !5D0~rW !1«D1~rW !, ~26!
01452
e
c-
f
f

to
e
n-

f

t

le
ar
r

e

n-

e

-

r,

of
-

where«!1, and calculating the correction toba up to sec-
ond order in«, we obtain

ba~D!5ba~D0!12~22ba~D0!!«2

'bA12«2. ~27!

Note that in Eq.~25! the only term which depends on th
location of the injected orbital with respect to the regu
ones is the overlap integraluD0u2uD1u2'1, so that the energy
cost of an injected orbital is nearly independent of its loc
tion with respect to the regular ones. Thus the distribution
injected orbitals should be completely random.

In investigating the influence of these randomly inject
orbitals on the structure factor of the vortex lattice, the we
effect associated with the small amplitude« is expected to
dramatically weaken further due the random nature of
injections. Similar to diffraction patterns obtained from cry
tals with randomly distributed point defects,25 the structure
factor in our case is dominated by the sharp peaks assoc
with the coherent scattering by the regular vortex chains. T
incoherent scattering by the randomly injected chains in
duces a weak, nearly uniform background into the struct
factor.

This can be seen by considering the Fourier compon
I (QW )5*d2r uD0(rW)1«D1(rW)u2e(QW •rW) in Eq. ~17!, which leads
to the structure factor

S~QW !5S0~QW !1DS~QW !1o~«4!, ~28!

whereS0(QW ) is the structure factor derived for the regul
chains. The leading correction is determined by the cr
term

DS~QW !}
«2

N E d2r 1d2r 2exp@ i ~QW •rW !#

3D0~rW1!D0* ~rW2!^D1~rW2!D1* ~rW1!&1c.c., ~29!

whererW 5rW12rW2 and the average is over the distribution
the injected orbitals. Note that the linear terms in« vanish
after this averaging. Substituting in Eq.~29! the correlation
function for a random distribution of injected orbitals,26

^D1(rW2)D1* (rW1)&;uc0u2ei2rxRye2rW 2/2, whereRy5(y11y2)/2,
and using for simplicity the form ofD0(x,y) corresponding
to a square lattice, one finds

DS~Qx ,Qy!;«2expS 2
1

4
Q2D .

Thus, in contrast to the macroscopically intense~i.e., with
intensity;Ns, 0,s<1), sharp peaks ofS0(QW ), the correc-
tion DS(Qx ,Qy) due to the injected orbitals is a very smoo
function ofQW , with a very small magnitude~i.e., of the order
of «2).

We therefore conclude that the destructive effect of
injected orbitals on the long-range nematic order becom
significant only atT;Tc@Tm . In this temperature range
other types of fluctuations are also important. For exam
9-9
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V. ZHURAVLEV AND T. MANIV PHYSICAL REVIEW B 66, 014529 ~2002!
phase fluctuations corresponding to shear motions a
Bragg chains with large Miller indices have also a charac
istic energy of the order of«0 and so play a significant role in
transforming the Bragg liquid into an isotropic fluid.

Finally, one should note that the rotational symmetry
the GL free energy functional for infinite uniform superco
ductors implies that the vortex lattice is actually disorde
even at low temperatures due to the presence of the su
conductor boundaries and of random pinning interaction
the bulk. The remarkable rigidity of the chain structure fou
in this paper thus suggests that local pinning potentials
boundary conditions should be noticeable not only loca
but also in the whole sample.

VI. CONCLUSION

In this article we provide a detailed analysis of the Land
orbital description of the vortex state in extremely type-
2D superconductors at high perpendicular magnetic fie
The apparent advantage of this representation in the l
temperature region near the vortex lattice melting po
where shear fluctuations along the principal axis of the v
tex lattice are dominant, is due to the small energy sc
l2«0 , l'0.066, of these fluctuations, as compared with
SC condensation energy«0. Similar shear fluctuations alon
any other direction, determined by a Bragg family of cha
in the Abrikosov vortex lattice, cost significantly more e
ergy, and therefore the first stage of the vortex lattice melt
process is discontinuous. The corresponding melting t
peratureTm is a small (;l2) fraction of Tc . The vortex
state around this melting point is characterized by sh
range superconducting order, quasi-long-range positio
order,6,9 and long-range orientational order along a princip
Bragg chain direction. At the melting point the orientation
symmetry is not completely broken; it just changes disc
tinuously to a different symmetry group. This vortex phase
everywhere locally incompressible.

In extending the discussion to the vortex liquid state w
above the melting temperatureTm the Bragg chain structure
still plays a significant role. As the temperature increa
aboveTm a special type of amplitude fluctuations, which c
be described as classical transverse vibrations of vo
chains around their equilibrium periodic positions~while
vortices are accumulated and depleted alternately in i
vidual chains!, leads to the destruction of the quasi-lon
a,

.
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range 2D positional order, but without breaking the lon
range orientational order of the chains. Due to the 1D nat
of these vibrations, the structure factor suffers thermal bro
ening of the diffraction peaks, which remains effective
temperatures far below the mean fieldTc .

All other types of fluctuations, which destroy this ‘‘nem
atic’’ orientational order, have characteristic energies of
order of the SC condensation energy«0, so that their influ-
ence become significant only nearTc .

Experimental confirmation of this picture may relay o
the small-angle neutron scattering~SANS! technique,27 in
which the magnetic structure factor of the superconduc
can be measured directly. Taking into account the crucial r
played by defects and the sample boundaries in pinning c
ters of vortex chains along random directions in the sup
conductor, one may use the approximation expression,
~28!, for the structure factor only after averaging over th
random distribution of directions. This average modifies
coherent scattering termS0(QW ) significantly, yielding
temperature-independent broadening of the diffraction pe
and eliminating the intrinsic anisotropy which characteriz
S0(QW ) in an infinite, ideal superconductor. The transve
vibrations, discussed in Sec. IV, further broaden the diffr
tion peaks. Since this broadening is temperature depend
it can, in principal, be extracted from the experimental lin
width; in the temperatures rangeTm!T!Tc , we predict that
the width of the peaks increases linearly with the tempe
ture, in a similar manner to that observed in single-crys
niobium by Lynnet al.28

Finally, on the basis of this picture it seems plausible
model the vortex liquid state in the broad region between
melting point and the mean-field superconducting transit
as a gas of weakly interacting vortex chains. Such a desc
tion has been recently shown,29,30 to account very well for
the SC-induced damping of the dHvA oscillations observ
in the vortex liquid state of the quasi-2D organic char
transfer saltk-(BEDT-TTF)2Cu(NCS)2.7,8,31
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