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Landau orbital description of the vortex state in a two-dimensional
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We extend the application of the recently developed Landau orbital approach to the fluctuating vortex lattice
in two-dimensional(2D) extremely type-Il superconductors at high magnetic fields to the region above the
melting point. We find that the abrupt incomplete melting of the quasicrystalline vortex ph@selgi<T, is
followed by a broad crossover into an intermediate state with a nematic liquid-crystalline-like order without 2D
positional order. A special type of amplitude fluctuations, which can be described as classical transverse
vibrations of vortex chaingwhile vortices are accumulated and depleted alternately in individual ghains
controls this crossover. Due to the 1D nature of these vibrations, the structure factor suffers thermal broadening
of the diffraction peaks, which remains effective at temperatures well below the meai fielthe complete
melting into an isotropic vortex fluid is shown to occur only far abdvyg, since the energy cost of the
fluctuations which break the chain structure is of the order of the superconducting condensation energy.
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[. INTRODUCTION In accordance with the resistivity and specific heat data men-
tioned above, the SC-induced damping of the de Haas—van
Melting of the lattice of the magnetic flux lines in ex- Alphen (dHVA) signal in the region around the mean field
tremely type-Il, layered superconductors has been investH., was found to be a very smooth function of the magnetic
gated extensively during the last decade. Clear evidence forfield.? This behavior is consistent with the broad crossover
first-order melting phase transition has been found in thdéetween the SC and normal states predicted theoretically for
high-T, compounds YBg w0, (Ref. 1 and 2D superconductofs.
Bi,SL,CaCyOg; (Ref. 2 in the high-temperature low- The nature of the vortex lattice melting transition in 2D
magnetic-field region of the phase diagram. Similar phenomsuperconductors has been debated in the literature for many
ena have been studied in loly- superconductors based on years’ Early proposald®!! based on the similarity to the
the organic molecule BEDT-TTEwhich share similar fea- Kosterlitz-Thouless-Halperin-Nelson-Young  (KTHNY)
tures with the highF. cuprates. These materials offer a theory of melting in 2D solid$? have led to the conclusion
unique possibility to investigate vortex lattice dynamics inthat the melting transition is continuous. A weak first-order
the low-temperature high-magnetic-field region of the phasénelting transition was predicted more recently, however, by
diagram due to their nearly two-dimensiortaD) electronic ~ several Monte Carlo simulations of the Ginzburg-Landau
structure. (GL) model**~®as well as of the frustratedY model!’8
In such a quasi-2D superconductor the transition to zerdn approaches based on the Ginzburg-Landau theory an arbi-
resistivity in the high-magnetic-field region is dramatically trary configuration ol vortices is constructed by a superpo-
broadened with respect to the zero-field transifiovhereas sition of N Landau gauge orbitals of Cooper pairs restricted
the characteristic jump of the specific heat at the transition ifo the lowest Landau levéLLL ) in a magnetic field whose
the absence of a magnetic field is completely smeared biptal flux through the sample amountsNdux quanta. Due
applying a moderate magnetic fiéldt is believed that ther-  to the short-range repulsive interaction between vortex cores,
mal fluctuations are responsible for these closely related phdhe totality of N Landau orbitals collapses in the zero-
nomena. Fluctuations of the superconducti8g) order pa-  temperature limit into/N orbitals, each of which is charac-
rameter are, indeed, expected to be enhanced significantly tgrized by a common projection afN guiding centers, to
high magnetic fields when the Landau quantization of thform the most uniform superfluid density allowed by the
Cooper-pair energy leads to an effective dimensionality recondition of flux quantization—the Abrikosov triangular lat-
duction of 2(Ref. 5. tice. It has been shown recerftihat shear motions of Bragg
Theoretically speaking it is well known that phase fluc- chains along the principal crystallographic axes of the vortex
tuations play a crucial role in controlling the stability of the lattice cost a very small fraction of the SC condensation en-
vortex lattice and its possible melting processes. In 2D sysergy and are responsible for the low-temperature vortex lat-
tems the energy scale of these fluctuations is much smalldice melting. These fluctuations preserve the area of any el-
than the SC condensation energy, implying a melting temementary cell in the fluctuating lattice, so that the
peratureT,, well below the mean field@ .° Indeed, the mag- corresponding vortex network is incompressible everywhere
netization irreversibility line, which follows the boundary in the sample.
between the vortex solid and the vortex liquid, appears in the The great simplicity associated with this Bragg chain pic-
quasi-2D organics at temperatures far below the mean fieltlire is lost, however, at temperatures significantly larger than
T¢,>” where magnetoquantum oscillations are detecthble. the melting temperaturg,,, where thermal excitations have
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enough energy to overcome the repulsion between vortex - _ 1 _
cores. Under these circumstances it is not allowed anymore FeL(A%{cq,c5})=mN| —aA?+ 5 BBalicq CahAY,
to describe the fluctuating vortex network in terms of collec- @)
tively moving rigid chains of vortices, since individual vor- o
tices tend to fluctuate independently as the temperature igith A%=A?=(1/7N)fdxdyA(x,y)|? and
raised.

In thg present paper we extend the application of the an— Ba(A) = Bal{cq 'CE}) = |A(x,y)|4/|A(x,y)|22' 4
dau orbital approach to the vortex state above the melting
point in a 2D superconductor under high perpendicular magthe partition function can be written in the form
netic field. We investigate in detail certain types of devia- .
tions from the Bragg chain model, which characterize differ- Z:j d(ZZ)f Hn’ degdciexd —Fg, /ksTl,  (5)
ent stages of the crossover from the Abrikosov lattice state at 0 ,
low temperatures to the isotropic vortex liquid state at high . -
temperatures. We find that the energy cost of the quctuation\éVhere t_he prlmehon fhg Frodulc_:t (sjymbol n:d:jca(;es that the
leading to the breakdown of the vortex-chain structure is Ofntegr.atlon over the global amp 't.u € IS excluced.
the same order of magnitude as the SC condensation energy, Evidently, in the therm~02dynam|c limN—c2, the integral
so that in a broad region between the melting point and th&Ver the global amplitud& can be evaluated by the steep-
SC transition point, predicted by mean-field theory, the vor-SSt descent method. The corresponding stationary point is
tex liquid state can be described as a collection of weaklA?=(a/B8,), and the partition function takes the form

interacting vortex chains. )
_ , x «
Z—f LL dchcleF{WN<2ﬁBa)/kBT

where the new SC free energy functiondtg =
The extremely smooth crossover between the normal and 7Na?/288, is similar to the well-known mean-field ex-

the SC phases characterizing 2D superconductors at high . . .~
magnetic fields implies that in a relatively broad region of ression. Thus the fluctuations of the global amplitude

the phase diagram around the mean-field SC transition th\éaniSh and the SC free energy is determined solely by the

. . . X configuration(Abrikosov) functional, Eq.(4).
thermodynamic potential may be obtained by using the well The order parameter which minimizes this GL free energy

known GL expansion of the free energy functional in the . . , ,

small SC order parameter, which in the LLL approximationfunc.tlonal corr.e.sponds o a discrete (;onf|gurat|on where the

reduces to the simple forff:3 totality of N gwd|_ng centers coIIap_ses_ intd\ groups, ofyN
centers each, with the same projectipyi2=(=/a,)n, n=
—N/2+1, ... yJN/2, on they axis. Thus the entire set of

Fo = dxdyl —al A y) 12+ = BIAGXY)I4], @ guiding centers constitutes a family of parallel Bragg chains
et LN X y( A0yl 23| ()| @) in a 2D periodic lattice. The corresponding order parameter,

written as a linear combination of Landau orbitalg(x,y)

)

IIl. BRAGG CHAIN APPROXIMATION

wherea(T), g are phenomenological parameters ard is = €XHidx—(y+0,/2)’], representing the different chains, is
the volume of the 2D systen\(—x). All lengths are mea- 9diven by
sured in units of the magnetic lengtl, = \/ci/eH. N2
The corresponding SC order parameter in the Landau _
gauge can be written in the most general form as a coherent AGGY) n=,%,2+1 Can(X,Y), 0

superposition of Landau orbitals, . .
perp where the phase, of the coefficientc,=|c,|e'*n deter-

mines the relative “horizontal” positiox,= — ¢,/q,, of the

Ay = coexdigx—(y+a/2)2], 2 nth chain along the axis. Shear fluctuations along thexis
(x.y) % a@Xiligx—(y+a/2)7] @ are therefore described by the fluctuating phasgs For a
regular lattice of an arbitrary geometry,=yn? and c,

wherec, are arbitrary complex numbers defined on the qua=c{?=c€’ " wherecy=(2m/a%)*A. The parametea,
sicontinuous latticeg= (27/a,)(n+m/\N), n,m=—/N/2 s the lattice constant in thedirection. The additional mini-
+1, ... J/N/2, which determines the projections of the or- mization with respect to the variational parametgranda,

bital guiding centers on thg axis. In the case when all the leads to the preferred geometry of the Abrikosov triangular
coefficientsc, are different from zero there is a one-to-one lattice with y= /2, a)2(=277/ V3. Other lattice states with
correspondence between hAllguiding centers and their pro- rhombic elementary cell, which can be obtained by varying
jections on they axis. As will be shown below, the energy a,, have a slightly higher free enerdwithin 2%) since all
cost of this quasicontinuous configuration is a large fractiorthe differences between them arise from small phase-
of the total SC condensation energy and is therefore unfavodependent terms in the quartic partfeg, [Eq. (1)].

able at temperatures well beloty, . The GL free energy, Eq1), is invariant under continuous
Expressing the GL functional, Eq1), in terms of the rotations in the X,y) plane and, therefore, the orientation of
order parameter, Eq2), as the x axis in Eq.(2) can be selected arbitrarily. In addition
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the ground lattice state is invariant under discrete rotation by 13 T ' ' '
angle /3, leading to the existence of completly equivalent LasE 53 1
chain directions described by the same values of the param- 1l i i _
etersa, and . In real samples this degeneracy is removed sk s i i
due to various mechanisms of vortex line pinning, e.g., by = V2 S

atomic lattice, the sample boundaries, the presence of de- =r R LS 7
fects, etc. However, in the present model we neglect vortex L Vo VoS ]
line pinning, assuming that results obtained for a given chain N VoS

direction should be subsequently averaged over all other
equivalent chains. Such averaging, which does not change
the thermodynamical properties of the system, eliminates the
linear chain structure of the thermal fluctuation, and restores FIG. 1. The dependence of the Abrikosov parameter on the col-
the original sixfold symmetry. Nevertheless, as will belective tilt angle y for different values of the parameter s,
shown below, some indirect 1D properties persist regardless w312, s,=m/2,/3, ands;=m/3/26 corresponding to increas-
of the chain orientation averaging. ing values of the Miller’s index in the triangular lattice, ands,

It should be stressed here that a Landau wave function fdto'respond to the principal axes.

%X) corresponds to a set of large Miller indices. The mini-
. . . ) um (or minima for each Bragg family corresponds to the
of this chain representation of the vortex state, as will beﬂ/alue(or values of y characterizing the Abrikosov triangu-

' xis and its quick increase with increasing Miller indices are

only weakly with each other, as long as their internal struc-apparent
ture is not destroyed. It is therefore clear that the Landau '
gauge employed here is the best choice for dealing with such
a chain structure. On the other hand, the opposite extreme
situation of randomly distributed vortices is more appropri- The order parameter in the LLL subspace, given by Eq.
ately described in terms of the symmetric gauge Laughlin{(2), reflects a fundamentally important property of the vortex
Jastrow wave functioff) where the positions of the vortex state in extremely type-Il superconductors at high magnetic
cores (i.e., the zeros of the order paramgtare directly fields; that is, the vortex matter under these conditions is
specified. Furthermore, the delocalized nature of the Landawcompressible. This feature is associated with the fact that
orbitals along thex direction makes this representation more ihe total number of zeros @ (r) within a fixed macroscopic

sensitive to the finite size of the superconductor than the o N is equal to the total number of guiding centeis
LgughIm-Jastrow rgpre;entatlon. .In a s_ystem with a flnlteused in constructing the wave function in @), which is
sizeL, along thex direction thes distribution of the coeffi- 4156 equal to the total number of flux lines threading this area
cients ¢, in q space around the ideal discrete array iS(gee e.g., Ref. 26In the general case this is only a global
smeared into finite peaks with a characteristic width of thecgnstraint which can be violated locally by sufficiently ener-
order of 1L, . Thus, the SC order parameter of a spatiallyyetic fluctuations (see the next sectiopsin the low-
sme_lll system |_nclu_des significant deviations from the Braggemperature region around the melting point, where the
chains approximation. _ _ , Bragg chain approximation, Eg7), is valid, this constraint

In the ground state the chains representation, (£g.is s satisfied everywhere in the superconductor since all fluc-
not unique since it can be selected along any direction detefyations are restricted to shear motions along parallel Bragg
mined by each of the infinitely many families of Bragg chains, for which the area of each unit cell is conserteet
chains. In Ref. 6 it was shown that the chains along BraggaquaI57r).
directions with small Miller indices interact weakly with In the present section we discuss the salient features of
each other, so that the shear stiffness of the vortex latticg,g absolutely incompressible vortex phase. We start with

along these axes is quite small. In contrast, the couplinghe GL free energy density per chain, measured in units of
between chains within a Bragg family having larger Miller keT:

indices become comparable to the intrachain energy quite

IIl. INCOMPRESSIBLE VORTEX LIQUID

quickly as the indices increase. Along the infinitely many FoL _ B
directions of this type the shear stiffness of the lattice is fogr=——"7—== —aF2+§F4,
therefore large and nearly isotropic. This phenomenon is ”kBT\/N
nicely illustrated in Fig. 1, where the dependence of the free
energy [through the Abrikosov  parameter SBa Fzzz Ical?,

n

=B,({c\? ,c(9*1) ] on the collective tilt angley is shown
for different discrete values of the parameter

1 1 2
S:(W/aX)z’ (8) F4:ni,ﬂ1+g:n3+n4 exp{_Z[E qﬁ'_Z(E Qni) H

which correspond to certain Bragg familiédetermined by

* *
the intrachain distance,). A small value ofs (i.e., a large X Cn, Cn,CnyCn,» ©)
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where a= aa,/\27kgT, B=pa,/\4mksT, and VNa, is
the size of the system in thedirection. The partition func-
tion in this representation is written &=s"N, where

s=f IT dedctexp — =fgy). (10)

A direct consequence of the representation, (By.is that
the quadratic terms, as well as the quartic ones with
=n,=n3=n,=n, which can be regarded as intrachain ener-
gies, do not depend on the positiowertical,q,,, as well as T (ay) T T (a) T
horizontal,— ¢,,/q,) of the chains. They constitute the domi- cm mocm
nant part of the SC condensation energy, but do not influence g, 2. Schematic temperature dependence of the SC free en-
the vortex structure of the condensate. The rest of the termggy for two different selections of the Bragg family of chains, i.e.,
which describe interactions between chains, depend on tl"&ong the two principal axes of the Abrikosov lattice.
distance between neighboring chainsa,. Since this de-

pendence onr/a, is determined by the overlap between the 4A\2 o
LLL Gaussian wave functions localized on neighboring KgTem= ,
chains, the selection of the Bragg family with the largest (1+4N) 2BBa(N)

interchain distancé.e., with chains along the short diagonal . ) ) )
of the rhombic unit cejl leads to interaction terms much With Ba(\)~1.159. The integration over the phase variables,

smaller than the intrachain energy. The characteristic smalhich is equivalent to averaging the free energy functional,
coupling paramete =exg —(w/a)?] for this selection is Egs.(9) and(11), over the phase fluctuations, tends to sup-

exd — \/§w/2]~0.066. press the weak three-chain attractive interactions due to their
Expanding the quartic term ik up to second order one oscillatory behavior, while keeping the repulsive two-chain
finds that interaction unchanged. This suppression takes place continu-

ously but rather sharply as a function of temperature within
each family of chaingsee Fig. 2 The family of fluctuating

Fa~>, [lca*+ 4N chl?cna ) chains along the large diagonaii(=2\/§7r) iS more stable
n at low temperature than that along the small dlagorﬁl (
+472[c,|2[Chs1l[Cno1lCOSXA], (12) =27//3) due to the relatively large value of the coupling

constant\ (a,s). However, the crossover temperaturg,,
where x,=@n. 1+ @n_1—2¢n, Which shows two types of around wh|qh t_he free energy rises sharply and_the magni-
interactions: repulsive phase-independent two-chain interadude of the rise itself are higher for the former family than for
tions of the ordei and phase-dependent three-chain inter1he latter, and the two curves intersect at some intermediate
actions of the ordek2, which are attractive for chain con- témperaturd . Atthe crossing pointsee Fig. 2the chains
figurations near the triangular Abrikosov lattice geometry©f the latter family move almost independently so that the
cosf,)=—1. Thus the fluctuations with the lowest energiesSh&ar modulus drops abruptly down to a small nonzero value
are shear motions of the chains along the “main crystallo@nd tends to zero gradually with further temperature in-
graphic axis” of the triangular Abrikosov lattice, which are ¢'€ase. _ . _
described by fluctuations in the phases. It should be The first-order nature of the melting transition can be il-
stressed here that in the case when the long diagonal of tHéminated by plotting the dependenceff on the parameter
unit cell is selected as the chain direction the phaseS defined by Eq(8), at different temperaturdsee Fig. 3. In

dependent terms are still small, sinck(ay)?=exp

[—\/37/3]~0.16. 1—— t= =100

In the low-temperature regime studied here the reduced 57 TN s
partition function, Eq.(10), can be obtained by exact inte- g \ SR
grations over the phases, and steepest descent integrations g \
over the amplitude$c,|. The resulting SC free energy has a 9 p—
form similar to the mean-field free energy,mNa?/288,, N
with an effective Abrikosov parameter given®y 5 /

S 211(7) S i T R e T A B
,Ba—\/; Lean-an o), (12) ;

FIG. 3. Dependence of the Abrikosov paramefgr on s
wherelq(7),11(7) are the modified Bessel functions of or- =(=/a.)? at different values of the effective “temperatur¢:=

ders 0,1 respectively;=T.,,/T and —\27a?lkgTB
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this plot both minimdreferred to ax’ (left) andx (right) in e
. . j--e e e
what follows], which coincide atT=0, correspond to the Pt
same triangular Abrikosov lattice in two different orienta- I YYrrr
tions: In the first orientation the long diagonal is parallel to o e e
the x axis while in the second one the short diagonal is par- N
allel to this axis. At finite temperatures this degeneracy is e e
= - ————

removed due to the different coupling between chains corre-
sponding to different Bragg families, as explained above. It
should be emphasized, however, that unlike the situation in FIG. 4. Contours of|A(x,y)|?) (a) and|(A(x,y))|? (b), calcu-
Hamiltonian quantum mechanics, where the linearity of thdated within the framework of the Bragg chain modelrat Ty, /T
Hamiltonian operator ensures that any linear combination of 2 (i-€., below the melting poit Note the perfect periodic lattice
the two degenerate states has the same energy, in the nonifi¢ated by the minima of these contours, which is, however, dis-
ear GL theory such a superposition always corresponds to tgrted with respect to the triangular Abrikosov lattice.

larger free energylhis feature ensures that the minimum free . .
energy always corresponds to a single Bragg family of slid—by Kato and Nagaosd,which has a strong positional corre-

ing chains lation and nonvanishing shear modulus without long-range
9 - superconducting order.

. T_he d.ouble.-mlmmum structure of the freg energy shown This unusual incompressible “Bragg liquid” exists as

in Fig. 3 is typical to a system undergoing a first-order phasqeong asT~T.,~\2T.(H). At higher temperatures, where

transition,?lvvith the absc_:issapliaying the role of an Qrder thermal excitations can overcome the repulsion between vor-
parametef.” At the melting point, where the two minima ey cores, the Bragg chain structure is distorted and the cor-
coincide agairicurve 3 in Fig. 3 the vortex system can exist regponding network of vortices becomes locally compress-
in two different phases: an “ordered” phase in which therejpje, |n the next sections we will discuss various types of
are weak shear fluctu.at_|ons along tkiechains gnd a .dIS' deviations from the Bragg chain approximation, which char-
ordered” phase consisting of strongly fluctuatingchains.  acterize different stages of the broad crossover from the low-
The transition from the ordered phase to the disordered ongemperature incompressible vortex liquid phase to the high-
is associated with a small jump of entropy. It is remarkabletemperature isotropic vortex fluid.
that in both phases the mean positions of the Bragg chains
constitute an exactly periodibut no longer rhombiclattice.
The jump of the order parametsrat the transition corre-
sponds to a small discontinuous change in the average lattice The energy cost of the phase fluctuations which control
constanta, . the Bragg liquid phase discussed in the previous sections is a

The discontinuous nature of the vortex lattice meltingvery small (~27\2) fraction of the total SC condensation en-
transition is found in contrast to the meltitas described by ~€rgy, so=ma* /288 (Ba=1.159). As will be shown later,
KTHNY theory™ in 2D solids. In KTHNY theory the melt- the energy cost of the amplitude fluctuations in the Bragg
ing mechanism is associated with the thermally activateghain free energy functional, E¢9), is of the order ofeo,
proliferation of dislocations, which reduce the elastic sheatVhich is much higher than that of the phase fluctuations. In
modulus to zero in a continuous fashion. In the 2D Abriko-Considering intermediate deviations from the sliding Bragg
sov lattice the discontinuous transition is due to the localize lham gpproxn;]_aﬂog, thlfr?] IS a SP?C'aI type of amIpI|Fude|
(Gaussiannature of the ground-state Landau orbitals, which u(;:tuagn)tns whic threall the quasrpngt;—iang(? trgns a}t:ona
considerably reduces the shear stiffness along the princip errigirn uth%r?sslied%e BrGa On%_rzz?ngse 9rrr|1?5n iz 'ggﬁie(\)/; derbc arr:_c-
Bragg families with respect to the nearly isotropic shear stiff- N9 : 9 99 L . ~a by p

o " D N serving the integrity of all chains but allowing their vertical

ness characterizing Bragg families with high Miller indices.

This pict . 2 t of the C v ch positions to fluctuate.
IS picture Is reminiscent of the ©-0oper-pair charge- ) o ;g study this type of fluctuations in some detail. Our
density-wave state described by Sasik, Stroud,

vave S / _ id,  ang, mal starting point is thus the partition function, E&),
Tesanovic; which shows, at a given configuration of ghained by integrating over all possible configurations of
A(x,y), considerable positional disorder, while the averag&ne SC order parameter in the LLL. As in Sec. II, we pile the
(|A(x,y)|?), taken over the full ensemble of such configura-ya1 N guiding centers into/N groups of N centers with
tions, exhibits a perfectly periodic triangular modulation. It 1o same projection,, on they axis, but now allowg,, to
should be stressed, however, that in the Bragg chain mod%I

. . _ eviate slightly from the periodic arrag®=(2=/a,\)n,
the.av_erage s_uperflwd. densv@/A(x,y)_|.2) IS not a perfgct namely, talganiq(o)nL &n, w?th |§n|<7r/axy.1nNoté that gnce
periodic function ofx,y; only the positions of the vortices L . .
form a perfectly periodic latticésee Fig. 4. Also note that, dn Must coincide with one O.f the lattice pO'T“F(ZW’aX)
in contrast to the average superfluid density which exhibit§<(n+m/ \/N)'_ the small d|splacen_1em§_n IS equal to
long-range positional order perpendicular to the chain axi 'wm/ax\/ﬁ with the integerm varying in a region|m|
the SC order parameter decays to zero over a distance ofﬁ\/ﬁ_/z- Each selection of, is actually a special case of
few chains only[see the plot of(A(x,y))|? in Fig. 4]. This amplitude fluctuations when the strength|ogg0)| is trans-
picture is similar to the 2D flux-line-lattice phase describedferred entirely to|cqn|. Thus, in addition to the phase fluc-

g E] =l 0
(a) (b)

IV. INTERMEDIATE “NEMATIC” VORTEX STATE
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N terizing the chain structure. In that sense the macroscopic
state of the vortex system described here is similar to the
nematic liquid crystal phase intervening between the crystal

le(q) and isotropic liquid ste}tes appearing in 2D s.oﬁ'as.

. Let us make an estimate of the characteristic temperature

. ! ’ at which the fluctuations responsible for this behavior be-

! come significant. To start with we may use the GL free en-

.49, 4,4,9, 4 ergy functional given in Eq(9) in the partition function in-

' ’ troduced in Eq(13), by allowingq,, to fluctuate around the
(@) () periodic lattice points, i.e., by letting,=q{®’+ £, . The qua-

FIG. 5. Superfluid density contous) of a square Abrikosov dratic termF determine; the Ieading energy of a chain a”‘?'
vortex lattice in which a single Landau orbital is displaced verti- does n_Ot depend on the Inte_rnal chain structure. The quartic,
cally from its ideal positiorg. The corresponding, distributionis ~ Phase-independent terms, with=ns=n, n;=n,=n+| (or
shown in(b). Note the destruction of the translational order by this with n;=n,4, n,=n3), represent interchain pairwise interac-
fluctuation and the preservation of the orientational order in theions with the Gaussian dependence,

direction of the chains. )
)\n,I:eXn:_(an_qn) /4]1

on the interchain distance. Note that the contribution of these

ChaLnZ’ theﬂ relteva:_nt atmplltude fIl:jc_tu?tldn§| catm b(tahret%e— transverse fluctuations to the SC free energy is a function of
sented as fluctuating transverse displacemgitso that the the relative displacements{,,—§&,) only, not of the dis-

corr.esponding partition function can be written in the Simpleplacementgn themselves. For the sake of simplicity we as-
chain form sume small displacements, i.e&,|<1 for all n, so that
)\M:)\'z, where\ =exp(-s)<1 (s=w?/a2). Forl=1 (i.e.,
9=f 1;[ depdénexd —mfeL({en.énl)]. (13 corresponding to coupling between nearest-neighboring
chains only, the energy cost of these fluctuations is signifi-
Obvious'y these ﬂuctuations do not destroy the periodi(ﬁantly h|gher than that of the shear fluctuations considered
structure of individual chains along tixexis. However, they ~ Previously, which was shown to scale liké.
break the global periodicity by changing the period within ~ Since we focus here on the high-temperature region, well
each fluctuating chain. Indeed, such a fluctuation, e.g., wit@bove the melting transition>T,,, the phase averaging
£,>0, is associated with a vertical displaceméptof the leads to zero mean value of all phase-dependent terms. Fur-
entire (hth) chain and a contraction of its lattice constant tothermore, as the stable family of chains correspondaZto
a,/(1+a.&,/27), which is followed by a rearrangement of =2/4/3, the corresponding small value of the interaction
the nearby superfluid density. The nature of this rearrangesonstantx justifies the use of the nearest-neighbor approxi-
ment can be fully appreciated by evaluating the spatial dismation, and so the quartic term of the free energy functional
tribution of vortices in the close vicinity of the displaced reduces to
chain. Considering, for the sake of simplicity, a square lattice
and approximatingA(x,y) near the upper row of the dis-
placed zerogsee Fig. % by the superposition of the Landau

tuationse,,, describing the longitudinal displacements of the

F4:; [|Cn|4+2|Cn|2()\n,1|cn+l|2+)\n,—1|cn—1|2)]v

orbitals localized on the displaced chain and on the chain just (14
below it, the positions of the zeros are &, =(k )

+12)a/(1+aé 2m), k=012, ..., y.=(m2a,) WNerékn., are functions ok,.

X(1—a,&,/2m). Similarly the hybrid of the orbitals local- e then expandr, in the small displacement,, up to

. 2 . .
ized on the displaced chain and the chain just above it yield§&cond order, and replazce t?e amplitudes® with their
for the lower row of zeros the coordinates, =(k  Mmean-field value, i.ejc,|*—c5(T)=a/B(1+4MN), so that

+1/2)a, /(1—a,é,/2m), y_=(—m2a,)(1+a,é,/2m). the GL free energy functional per vortex chain reduces to
Thus, it is seen that thaccumulation of vortices within the 1

contracted chain is exactly compensated by the depletion of £ =—JN o += —EV+... (1
vortices within the neighboring dilated chain, so that the =-WN wkgT ZTa'; (na &) + (19

total number of vortices is conservethis phenomenon is 5 ) )

expected in view of the locality of the Landau basis waveWhereso=ma?/2BBx [ Ba=(\/m/s(1+4\)] is the effective

functions and the global constraint imposed on the total numcondensation energy per vortex in the absence of the fluctua-

ber of vorticesN , as discussed above. tions, andr, =2s(1-1/2s)\ Bcg(T). The second term on
These longitudinal accumulation and depletion of vorticeghe right-hand sidéRHS) of Eq. (15) determines the correc-

within neighboring chains result in superfluid density fluc-tion to the chain energy due to fluctuations. The characteris-

tuations in the direction transverse to the chain axis. UndeliC temperature of this type of fluctuations is thus

these circumstances the quasi-long-range positional order,

described in Sec. Ill, is broken. This takes place, however, To=Tri=sl1- — 4\ T (16)

without destroying the long-range orientational order charac- al™ " al 2s) 1+4x O
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whereTg=¢q/kg~T.. A simple estimate shows that, fer As mentioned above, the presence of the transverse fluc-
=\/37/2, T, =0.46T,; that is, T, is of the order ofT.. In  tuations breaks the translational lattice symmetry so that one
the absence of the transverse fluctuations, discussed abowxpects no genuinely long-range positional order at any finite
the vortex state at finite temperature is characterized byemperature. The effect is expected to be particularly impor-
short-range SC order, quasi-long-range translational 8rtler, tant due to the 1D nature of these fluctuations. Neglecting the
and long-range orientational order along the principal Braggoupling between the longitudindi.e., phasg fluctuations
chain direction. The transverse fluctuations preserve the orand the transverse ones, which is of third orderninthe
entational order, but destroy the translational order. The largeorresponding structure factor for an arbitrary 2D wave vec-
elastic constant found in Eq16) for the transverse vibra- tor é:(QX yQy) can be written in the separable form
tions of vortex chains means, however, that appreciable de- A
viations from the translational order occur only well above < e , , *
the me]“ng point_ S(Q)_ N . % ¥ C4(I 1n1||n )<In,n’||'|’>r (18)
The range of translational order existing in the vortex ) " " (ormonr— a1+ o1r)
state at finite temperature can be evaluated by considerighere Cy(l’,n,I,n")=(e"¥n=n = 7%), and 1,
the size(i.e., N) dependence of the structure factor =(¢q, €9 pq )=Jd?r ¢}, ()&% dy(r). The phase(or
longitudina) correlation function has nonzero values only
-1 < for I'+n=I+n’. It depends only on the relative variables
— 2
S(Q)_N<|I(Q)| ) 17 v=n'"—n=l"—l andu=1—n=1"—n’, and can be written
o in the form C4(1’,n,I,n")=eX*"C,(u,v). The transverse
at the reciprocal Abrikosov-lattice poin@=G, with G, correlation function(I, ,/17,,) is given by the expression
=2mvla,, Gy=27m/b,—2vb,, by=m/a,, b,=xa,/2m,
i 3 (ol )=46 81 14 ,( €A~ an)/2

where v and m are integers. Here 1(Q) nnly n’,n+ 01" | +v

= [d?r|A(N)[2€1@" and X={Xn)ph, Where the subscript Ny () Cg— 0. 55 o
ph indicates average over phase fluctuations. At zero tem- (Gn s~ n = Q) (G == Q)
perature the long-range order is manifested by the Bragg (19

peaks withS(G)«N. At a finite temperature, far beloW,, Whereg(Lx)(q)EfL_xf/deeixq andL,=\Na, is the length of
where the transverse fluctuations may be neglected, o X

find$ a perfect long-range order along the reciprocal lattic
chain G,=0, i.e., S(G,=0,G,)~N, and quasi-long-range

Fe 2D superconductor along thxeaxis. Thus the structure
Sactor can be reduced to the more compact form

order along all other parallel chains, i.e5(G,#0,Gy) . mlcgl? X .

~N¥2, The power-law dependence dhfor G,#0 reflects S(Q)= We’o m> e XrC (1, v)

the 1D long-range order within the individual vortex chains. v

The stronger power law foG,=0 is due to the spatial av- NTLCILREY (O, (20)

eraging along the chains, which evades the destructive inter-
ference effect of the phase fluctuations on positional ordewhere
perpendicular to the chains. L
It should be stressed here that since there are three equiv W’V(@: f_ dxdx

lent ways to select the principal axes in the ideal triangular L,/2
Abrikosov lattice, the actual direction of the sliding chains )
depends on extrinsic factors, such as pinning interactions to ey N .

) P . xXexpi — X+x") T X, X":
defects, or the particular selection of the boundary condi- ay Qu ( )Tl Qy)
tions. Thus, there are several different orientations, deter- 21)

mined by the local pinning interaction in the macroscopic

sample, along which clusters of Bragg chains would prefer t&nd

grow. Since the reciprocal lattice points wih,=0 depend

on the_specific choice of these axes, it is _expected t_hat by fn ; V(x,x’;Qy)=<expi

averaging over all three equivalent orientations, the size de- .

pendence of the structure factor will be isotropic, satisfying

S~N? with 1/2<g<1. This result is similar to the quasi- — % _
. . §n+,u,)+ (§n+,u gn)}>

long-range positional order predicted by the KTHNY theory 2

of 2D melting*? according to whichS~N? with o<5/6. . .

Furthermore, in any numerical simulation of the vortex lat-— The average over th? transverse- fluctuations -|n

tice melting, such as that performed by Kato and Nagabsa, I'n..»(X:X";Qy) can be readily calculated in the harmonic

the random selections of the coefficiemts imply that the approximation(15). It is seen to be independent infso that

corresponding Landau orbitals are distributed randomly ovefh€ sum ovem in Eg. (20) produces a factog/N. At tem-

the different Bragg families of chains in the Abrikosov lat- PeraturesT,<T<T,, the reduced phase correlation func-

tice, which again correspond to averaging over all possibléion appearing in Eq20) has the limiting liquid-like behav-

equivalent orientations. ior [obtained at 7<1 (Ref. 6] Cu(u,v)—6,0t 3,0

X(§n+ V_§H)+X,(§H+M+V
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—6,.00,0- Evidently, the contribution to the structure factor  10f
from the third term can be neglected in the thermodynamic
limit N—ow. For the first term ¢=0) we find

T, —o(X,X';Qy)= e~ |#1QJ/87a1, which is independent of both

x and x’, so thatF#,V=o(6)=L§5QX'0e*|”‘Q§’8TaI. The re- 5
maining sum ovel in Eq. (20) leads to
S(Qx=0.Qy)
2 4 ot
mag|col 2
=—5—Ne 9's,5(Q,), (22)
where
_5,
- Q
S|nh8—
Sip(Qy)= i
B Q§ _ mQy
cos coOS— L6
Tal ay

=5 0 5 10 15
is the well-known static structure factor for a fluctuating 1D
lattice?® which has a series of thermally broadened
Lorentzian-like Bragg peaks centered a®,=G,
=2mm/b,, m=*1*2,.... Thewidth of themth diffrac-
tion peak in the low-temperature regioh<T, iS ym
~m2(af/2w)(T/Ta,). Averaging over all equivalent direc-

tions, the structure factor will restore the original hexagonakne x direction is reflected in the/N prefactor appearing in
symmetry, preserving, however, the different dependence ofhe structure factor foQ,=0 [Eq. (22)], regardless of the
the radial,6Q=6Qy , and azimuthal§6= 5Q,/Qy, COMpPo-  temperature.
nents of the wave vector. Thus, the radial width is predicted

to increase linearly withl, reflecting the underlying chain

structure.

It should be noted here that at low temperatures quantum |n the high-temperature region, whekgT is of the order
fluctuations of the 1D lattice under StUdy could drasticallyof the SC condensation energy, the nematic ||qu|d crys-
smear this diffraction structufé.A simple analysis of the talline order is gradually destroyed by a complicated mixture
vortex dynamics in transversely fluctuating chains showsef amplitude and phase fluctuations. The characteristic en-
however, that the inertial mass of a fluctuating chain is maCergy scale of the amp"tude fluctuations can be estimated by
roscopically largdi.e., ~N), implying that the effect of such considering the effective free energy functional, B, after
transverse quantum fluctuations can be neglected in the thefieglecting the weak interchain couplings. The corresponding

FIG. 6. Superfluid density contour of a square Abrikosov vortex
"lattice in which two Landau orbitals are injectedaat)= (27/a,)
X(—3+0.51) andg$= (27/a,)(3+0.17). Note that the length of

the created domains increases with the decreasing distance of the
nearest regular chain to the injected orbital.

V. ISOTROPIC VORTEX FLUID

modynamic limit. . _ variance akgT<gg is
The structure factor foR,# 0 is determined by the terms
with u=0. In this case the Gaussian correlation function (ea®=lcol2 [ keT)|M2
T ’ *2172‘V|(X+X')2/82T ; n—Oz B ef“"O/kBT (24)
I—0.(X.X";Qy) =€ x7al leads to the size- E mey ’
independent structure factor 0
&% showing that these fluctuations become significant only for
S(Qx#0,Qy) = ma,/col‘e™? ks T~eo=ma?/2B~kgT.. Furthermore, amplitude fluctua-
12 1/G 2 tions of the quasicontinuous set of coefficiecgsvhich van-
T xv— Qx ish at | . . e
X 2 exg — = | ————=| |, ish at low temperatures can become important in this high
v#0 Vxv 2 Yxv temperature regime. As will be shown below this type of

(23) fluctuations leads to destruction of the chain structure. Be-
_ _ o sides, phase fluctuations associated with shear motions
whereG, ,=2wv/a, are points of reciprocal lattice in the  within Bragg families of large Miller indices are also opera-

direction with y, , = [v[/ 7= TY2 tive at these high temperatures.
Thus we conclude that @~ T, which is well above the Let us consider in some detail the second type of ampli-

melting pointT,,, the quasi-long-range positional order is tude fluctuations. As a first step we consider the relatively
totally destroyed by transverse fluctuations of chains. Fursimple case when a single Landau orbital is injected into an
thermore, even at much lower temperatures the recovery dinterstitial site,” e.g., between the@=3 andn=4 regular

translational order is significantly slowed down by the 1D chains shown in Fig. 6. In the superfluid density contour this
nature of the fluctuations. The preserved nematic order alonigjection appears as additional vortices injected between the
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corresponding regular chains of vortices. However, since thevheree <1, and calculating the correction 1, up to sec-
total number of vortices should be conserved, the local acend order ins, we obtain

cumulation of vortices is compensated by the depletion of

vortices in nearby regions, thus leading to a breakdown of Ba(A)=Ba(Ag) +2(2— Ba(Ag))e?

the chain structure around the injected Landau orbital and to B4+ 22 >
the formation of a quasiperiodic domain structure along the ~Bat 28" @7

chain direction. The size of a domain increases as the in- Note that in Eq(25) the only term which depends on the

jected orbital approaqhes the regular deee Fig. & EV.i' gocation of the injected orbital with respect to the regular
dently the effect is quite local so that a global destruction o . . eyl

the chain struct : t least, sugN injected ones is the overlap integrid o|%|A;|°~1, so that the energy
cheair(:s ain structure requires, at least, s injecte cost of an injected orbital is nearly independent of its loca-

. : . tion with respect to the regular ones. Thus the distribution of
To estimate the energy cost of this type of fluctuations le P g

. . N . , X l'injected orbitals should be completely random.
us imagine thatyN orbitals, all with equal amplitude, are " inyestigating the influence of these randomly injected

injected into the regular system in such a way that a singleypitals on the structure factor of the vortex lattice, the weak
additional guiding center appears between any two reguldige t associated with the small amplitudes expected to
ones along they axis. _The corres_pondmg or_der_ p""r""meterdramaticalIy weaken further due the random nature of the
A(x,y) can be thus written as a linear combinatidr(x,y) jnjections. Similar to diffraction patterns obtained from crys-
=A0(x,y) T A1(x,y), of two condensate wave functions: (55 with randomly distributed point defe@the structure
factor in our case is dominated by the sharp peaks associated
(i i with the coherent scattering by the regular vortex chains. The
A,-(x,y)zn:_\zmﬂ exp[|q§1”x—(y+q§11)/2)2], incoherent scattering by the randomly injected chains intro-
‘ duces a weak, nearly uniform background into the structure
with j=0,1, whereq\¥'=2=n/a, andq(M=q"+ &,. Note  factor.
that for the sake of simplicity we selected the vortex lattice This can be seen by considering the Fourier component
described byAo(x,y) to be a square lattice. Also note that | ()= [d?r|A,(r) +eA(r)[2@ " in Eq.(17), which leads

VN/2

these wave functions are orthogonal for agyl </a,. to the structure factor
As reflected by Eq(6), in the thermodynamic limiiN
—o, when the fluctuations of the global superfluid density S(Q)=Sy(Q)+AS(Q) +0(e%), (28)

A? vanish, the SC free energy is determined solely by the .
generalized Abrikosov parametgg(A). Thus, in the present  where Sy(Q) is the structure factor derived for the regular
estimate, we may evaluate the contributions to the free erghains. The leading correction is determined by the cross
ergy from the selected configuratioAg(x,y) by considering ~ term

the corresponding valu_eg B(4). Using normalized wave 5

functions, i.e., settingA;|“=1, and taking advantage of the 2.8 42 42 AL

orthogonality cond?t?(;ll and the grelated groperties ASQ) N J dradroex1(Q-p)]

|Aj|?AgA% =AFAT?=0, the calculation of the Abrikosov
parameter yields

XAg(F)A(r)(A(rp)AT(r))+c.c., (29

1 Where;;:Fl— Fz and the average is over the distribution of
Ba=7[Bat Ba(A1)]+[Al?[Ay]%, (25  the injected orbitals. Note that the linear termseirvanish
4 after this averaging. Substituting in E@®9) the correlation
where Ba=Ba(Ag). Now, it is easy to show that function for a random distribution of injected orbitafs,
|Ao|2|A,[2~1, so that since8,(A;)=Ba~1, one finds that (A(r2) AT (r1)~[col?e!? e ™72 whereR, = (y;+y2)/2,
a=1.5. This is a remarkable result, since it implies that the?Nd using for s!mpllcny t_he form od(x,y) corresponding
energy cost of the fluctuations under study, to a square lattice, one finds

az) 1 l) 1 AS(Q Q)"’ 2 _1 2

FoL—Fur=mN| =— || = — = |==|Fuel, x:Qy)~etexy = 7Q7 .

GL MF (23 IBA Ba 3| MFl

so that their influence becomes significant only in the high-  Thus, in contrast to the macroscopically intefise., with
temperature region nedr,. intensity~N?, 0<o=1), sharp peaks d&,(Q), the correc-

This type of fluctuations may become important, howeverfion AS(Q,,Q,) due to the injected orbitals is a very smooth
at temperatures well below, if the relative amplitudes of function of(j, with a very small magnitud@.e., of the order
the injected chains is selected to be much smaller than that @ff ¢2).
the regular ones. Indeed, writing down the total order param- We therefore conclude that the destructive effect of the
eter as injected orbitals on the long-range nematic order becomes
significant only atT~T.>T,,. In this temperature range
AN =Ag(r)+eAy (1), (26)  other types of fluctuations are also important. For example,
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phase fluctuations corresponding to shear motions alongange 2D positional order, but without breaking the long-
Bragg chains with large Miller indices have also a characterrange orientational order of the chains. Due to the 1D nature
istic energy of the order af, and so play a significant role in of these vibrations, the structure factor suffers thermal broad-
transforming the Bragg liquid into an isotropic fluid. ening of the diffraction peaks, which remains effective at
Finally, one should note that the rotational symmetry oftemperatures far below the mean fidlg.
the GL free energy functional for infinite uniform supercon-  All other types of fluctuations, which destroy this “nem-
ductors implies that the vortex lattice is actually disorderedatic” orientational order, have characteristic energies of the
even at low temperatures due to the presence of the supesrder of the SC condensation energy, so that their influ-
conductor boundaries and of random pinning interactions irence become significant only negg.
the bulk. The remarkable rigidity of the chain structure found Experimental confirmation of this picture may relay on
in this paper thus suggests that local pinning potentials anthe small-angle neutron scatterif§ANS) techniqué;’ in
boundary conditions should be noticeable not only locallywhich the magnetic structure factor of the superconductor

but also in the whole sample. can be measured directly. Taking into account the crucial role
played by defects and the sample boundaries in pinning clus-
VI. CONCLUSION ters of vortex chains along random directions in the super-

) ) _ ) ) conductor, one may use the approximation expression, Eq.
In this article we provide a detailed analysis of the Landay2g), for the structure factor only after averaging over this
orbital description of the vortex state in extremely type-Il, random distribution of directions. This average modifies the

2D superconductors at high perpendicular magnetic ﬁeldscoherent scattering terrrSD(Q) significantly, yielding

The apparent advantage of this representation in the lo ‘emperature-independent broadening of the diffraction peaks

temperature region near the vortexllat.tlce meltlng point,y g eliminating the intrinsic anisotropy which characterizes
where shear fluctuations along the principal axis of the vor-_ - . e
(Q) in an infinite, ideal superconductor. The transverse

tex lattice are dominant, is due to the small energy scal& . . ) )
e, \~0.066, of these fluctuations, as compared with thewbratlons, discussed in Sec. |V, further broaden the diffrac-

SC condensation energy,. Similar shear fluctuations along tion peaks. Since this broadening is temperature dependent,

any other direction, determined by a Bragg family of chainsit can, .in principal, be exiracted from the experimgntal line-
in the Abrikosov vortex lattice, cost significantly more en- width; in the temperatures randg,<T<T,, we predict that

ergy, and therefore the first stage of the vortex lattice meltin he W_'dth Of the peaks increases linearly W'.th t_he tempera-
process is discontinuous. The corresponding melting tem-gr%. n zi)sur_nllar ;“algg‘er to that observed in single-crystal
peratureT,, is a small (~\?) fraction of T.. The vortex niobium Dy Lynnet al.

state around this melting point is characterized by short- I(:jmlatlLy’ on tthe|_bas:js ?ftthl_s ﬁ:cttére 'tdseems Eliusmlettho
range superconducting order, quasi-long-range position odel the vortex liquid state In the broad region between the

order®® and long-range orientational order along a principalmelting point and the meaﬂ'ﬁe'd supercqnducting transitio_n
Bragg chain direction. At the melting point the orientational & & 98 of weakly interacting vortex chains. Such a descrip-

; 30
symmetry is not completely broken; it just changes disconion has been recently show;”to account very well for

tinuously to a different symmetry group. This vortex phase isthe SC-induced damping of the dHVA oscillations observed

everywhere locally incompressible. in the vortex liquid state of the quasi-2D organic charge
In extending the discussion to the vortex liquid state We”transfer saltk-(BEDT-TTF),Cu(NCS)."**

above the melting temperatufg, the Bragg chain structure
still plays a significant role. As the temperature increases
aboveT,, a special type of amplitude fluctuations, which can ~ We would like to thank I. Vagner, P. Wyder, and Z. Te-
be described as classical transverse vibrations of vorteganovic for helpful discussions. This research was supported
chains around their equilibrium periodic positiofwhile  in parts by a grant from the Israel Science Foundation
vortices are accumulated and depleted alternately in indifounded by the Academy of Sciences and Humanities and by
vidual chaing, leads to the destruction of the quasi-long-the fund from the promotion of research at the Technion.
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