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Quasiparticle thermal conductivities in a type-II superconductor at high magnetic fields
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We present a calculation of the quasiparticle contribution to the longitudinal thermal conductivities
kxx(H,T) ~perpendicular to the external field! and kzz(H,T) ~parallel to the external field! as well as the
transverse~Hall! thermal conductivitykxy(H,T) of an extreme type-II superconductor in a high magnetic field
(Hc1!H,Hc2) and at low temperatures. In the limit of frequency and temperature approaching zero
(V→0,T→0), both longitudinal and transverse conductivities upon entering the superconducting state un-
dergo a reduction from their respective normal state values by the factor (G/D)2, which measures the size of
the region at the Fermi surface containing gapless quasiparticle excitations. We use our theory to numerically
compute the longitudinal transport coefficient in borocarbide and A-15 superconductors. The agreement with
recent experimental data on LuNi2B2C is very good.
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I. INTRODUCTION

The low-temperature, high-fieldregion in theH-T phase
diagram of an extreme type-II superconductor is the reg
where the Landau-level quantization of the electronic en
gieswithin the superconducting state is well defined, i.e.,
cyclotron energy\vc.D,T,G where D[D(T,H) is the
BCS gap,T is the temperature, andG[G(v) is the scatter-
ing rate due to disorder. This regime should be contras
with the more familiar opposite limit of low magnetic field
and high temperatures where electrons occupy a huge n
ber of Landau levels and where the temperature and/or
purity scattering broaden these levels and reduce the sig
cance of Landau quantization. With the Landau le
structure fully accounted for, one discovers a qualitativ
new nature of quasiparticle excitations at high fields:
fields H below but nearHc2 the quasiparticle spectrum i
gaplessat a discrete set of points on the Fermi surface. Th
gapless excitations reflect a coherent quasiparticle prop
tion over many unit cells of a closely packed vortex latti
with fully overlapping vortex cores.1–3 The presence of suc
low-lying excitations makes ans-wave, conventional, super
conductor in a high magnetic field somewhat similar to
anisotropic, unconventional, superconductor with nodes
the gap. In the low-temperature, high-field regime, howev
the nodes in the gap reflect thecenter-off-massmotion of the
Cooper pairs in the magnetic field, in contrast tod-wave
superconducting cuprates where such nodes are due to
relative orbital motion. This gapless behavior in bulk sy
tems is found to persist to surprisingly low magnetic fie
H* ;(0.2–0.5)Hc2. Below H* gaps start to open up in th
quasiparticle spectrum, and the system eventually rea
the low-field regime of localized states in the cores of is
lated, well-separated vortices.3 At the present time the stron
gest evidence of the quantization of quasiparticle orb
within the superconducting state comes from observation
the de Haas–van Alphen~dHvA! oscillations in various su-
perconducting materials.4 The persistence of the dHvA signa
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deep within the mixed state, with the frequency of oscil
tions still maintaining the normal-state value, can be attr
uted to the presence of a small portion of the Fermi surf
containing gapless quasiparticle excitations, surrounded
regions where the gap is large.5,6

Another useful probe of low-energy excitations in sup
conductors is a measurement of their thermal transport.
simultaneous measurements of the field-dependent longit
nal kxx(H,T) and transversekxy(H,T) thermal conductivi-
ties are now experimentally feasible, and can yield inform
tion on both quasiparticle dynamics and the pairi
mechanism. The dependence of transport coefficients
magnetic field is currently a hotly debated issue in the sci
tific community in light of the experimental observation
field-independent plateaus in the longitudinal thermal c
ductivity of high temperature superconductors at low fie
(Hc1,H!Hc2).7 The field-independentkxx is attributed to
the dx2-y2 pairing mechanism at low fields and to the nod
structure of the resulting quasiparticle excitations.8,9 The
presence of propagating gapless quasiparticles in the su
conducting state at low temperatures and high magn
fields should also lead to transport properties qualitativ
different from those found ins-wave superconductors at low
fields, where the number of thermally activated quasipa
cles is exponentially small and the only contribution to t
thermal conduction is found along the field direction a
originates from the bound states within vortex cores. R
cently, the thermal conductivity of the borocarbide superc
ductor LuNi2B2C was measured down toT570 mK by
Boakninet al.10 in a magnetic field perpendicular to the he
current from H50 to aboveHc257 T. In the limit of
T→0, a considerable thermal transport was observed in
mixed state of the superconductor (Hc1,H<Hc2), indicat-
ing the presence of delocalized low-energy excitations at
Fermi surface. On the other hand, no thermal transport
observed at zero field, a result consistent with thes-wave
superconducting gap without nodes at the Fermi surface

The purpose of this work is to examine the contribution
©2002 The American Physical Society17-1
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low-energy quasiparticles to the thermal transport of conv
tional, i.e., extreme type-II superconductors in the regime
high magnetic fields and low temperatures. The paper is
ganized as follows: In Sec. II we develop the Kubo form
ism for the transport coefficients within the Landau lev
pairing mechanism, while in Sec. III we incorporate disord
into a Green’s function description of a three-dimensio
superconductor in a high magnetic field. We use the form
ism of Secs. II and III in Sec. IV to examine both longitud
nal kxx(H,T) andkzz(H,T) as well as transversekxy(H,T)
conductivities in the regime of the freqencyV→0 and the
temperatureT→0. Finally, in Sec. V we report on numerica
calculations of the thermal transport in the borocarb
LuNi2B2C and the A-15 superconductor V3Si, and compare
our theoretical plots with the available experimental data

II. KUBO FORMALISM IN THE LANDAU LEVEL
PAIRING SCHEME

Thermal conductivities can be calculated within t
framework of the Kubo formalism as a linear response o
system to an external perturbation,11

k i j ~V,T!

T
52

1

T2

ImP i j
ret~V!

V
~1!

whereP i j
ret(V)5P i j ( iV→V1 id), and

P i j ~ iV!5E d3x1d3x2P i j ~1,2;iV!,

P i j ~1,2;iV!52E
0

b

dteiVt^Tt j i~x1 ,t! j j~x2,0!& ~2!

is the spatially averaged, finite temperature thermal curr
current correlation function tensor, andb[1/kBT. In order to
derive the heat current operatorsj (1) andj (2) at the space-
time point 15(x1 ,t) and 25(x2,0) we follow the standard
s-wave derivation in zero field,12 and generalize it to our cas
of a nonuniform gap at high fields. A similar approach w
recently utilized in Ref. 9 for ad-wave superconductor in
zero field. The heat current carried by the quasiparticles
be computed within the standard variational procedure a

j5
]L

]~¹c!
ċ1ċ†

]L
]~¹c†!

~3!

from the Lagrangian density

L52
1

2m
¹ca

†
•¹ca1

e

2mci
~ca

†¹ca2¹ca
†ca!•A

1
e2

2mc2
uAu2ca

†ca2
1

2i
~ca

† ċa2ċa
†ca!

2
1

2
gca

†c2a
† c2aca , ~4!
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where all the energies are measured with respect to
chemical potential andċ[]c/]t. Nambu’s two-componen
field operatorsca[ca(r ) are written in a compact notatio
for the sake of brevity. In extreme type-II superconducto
as soon as the magnetic field satisfiesH@Hc1(T) the vector
potentialA[A(r ) can be safely assumed to be entirely d
to the external fieldH5“3A. This holds over most of the
H2T phase diagram. We have used a simple BCS-mo
point interactionV(r12r2)52gd(r 12r 2) in expression~4!.
To lowest order in the concentration of impurities, th
electron-impurity interaction can be omitted in computi
the heat current. The effect of disorder will be included la
in the Green’s functions for a superconductor. Variation
procedure~3! yields

j ~1!52
1

2mF ]

]t1
S ¹82

eA8

ci D
1

]

]t18
S ¹1

eA

ci D Gca
†~18!ca~1!u1851 ~5!

for the heat current operator. With this definition it
straightforward to calculate the correlation tens
P i j (1,2;iV) within the usual Hartree-Fock approximatio
~i.e., the bare bubble approximation! defined by

^Ttc i~1!ck~2!c l
†~28!c j

†~18!&→Gil ~1,28!Gk j~2,18!,
~6!

whereGkl is the Nambu’s matrix Green’s function. Insertin
Eq. ~5! into Eq.~2!, and with the help of Eq.~6!, the current-
current correlator becomes

P i j ~1,2;V!

5
1

4m2b
(
m

F2 i ~V1m!S ¹182
eA~18!

ci D
1 imS ¹11

eA~1!

ci D G
3F i ~V1m!S ¹21

eA~2!

ci D2 imS ¹282
eA~28!

ci D G
3Tr @t3G~1,28,V1m!t3G~2,18,m!#1→18,2→28 , ~7!

wheret3 is a Pauli matrix,m52pm/b are bosonic Matsub-
ara frequencies, and 1[x1.

It was shown in Ref. 1 that the mean-field Hamiltonia
corresponding to the Lagrangian density@Eq. ~4!# can be
diagonalized in terms of the basis functions of the magn
sublattice representation~MSR!, characterized by the quas
momentumq perpendicular to the direction of the magne
field. The eigenfunctions of this representation in the Land
gauge A5H(2y,0,0) and belonging to themth Landau
level, are
7-2
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fkz ,q,m~r !5
1

A2nn!Ap l
A by

LxLyLz

exp~ ikzz!

3(
k

expS i
pbx

2a
k22 ikqybyD

3expF i S qx1
pk

a
D x2

1

2
S y

l
1qxl 1

pk

a
l D 2G

3HmF y

l
1S qx1

pk

a
D l G , ~8!

where z is the spatial coordinate andkz is the momentum
along the field direction,A5(a,0) andb5(bx ,by) are the
unit vectors of the triangular vortex lattice,l 5A\c/eH is the
magnetic length, andLxLyLz is the volume of the system
Hm(x) is the Hermite polynomial of orderm. Quasimomenta
q are restricted to the first magnetic Brillouin zone MB
spanned by vectors Q15(by / l 2,2bx / l 2) and Q2
5(0,2a/ l 2).

Normal and anomalous Green’s functions for a clean
perconductor in this representation can be constructed a

G11~1,2;v![G~1,2;v!

5 (
n,kz ,q

fn,kz ,q~1!fn,kz ,q* ~2!Gn~kz ,q;v!,

G21~1,2;v![F †~1,2;v!

5 (
n,kz ,q

fn,2kz ,2q* ~1!fn,kz ,q* ~2!Fn* ~kz ,q;v!,

~9!

wherev5(2m11)p/b are the electron Matsubara freque
cies. Similar expressions can be written for the remain
two Nambu matrix elements. In writing Eq.~9! we have
taken into account only diagonal~in Landau level indexn)
contributions to the Green’s functions. This is a good a
proximation in high magnetic fields whereD/\vc!1 and
the number of occupied Landau levelsnc is not too large,
which is the case for the extreme type-II systems under c
sideration. In this situation we are justified in using the
agonal approximation,1,3 in which the BCS pairs are forme
by electrons belonging to mutually degenerate Landau le
located at the Fermi surface while the contribution from La
dau levels separated by\vc or more is included in the renor
malization of the effective coupling consta

@g→g̃(H,T)#.13 As long as the magnetic field is larger tha
some critical fieldH* (T), the off-diagonal pairing does no
change the qualitative behavior of the superconductor i
magnetic field. The critical fieldH* at T;0 can be esti-
mated from the dHvA experiments to be;0.5Hc2 for A-15
and;0.2Hc2 for borocarbide superconductors.4

When the Nambu matrix@Eq. ~9!# is inserted into Eq.~7!
and the space average in Eq.~2! is performed, the longitudi-
01451
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52Pyx( iV) current-current correlation functions become

P i j ~ iV!5
1

4m2l 2b
(
v

(
n,kz ,q

~V12v!2

3
n11

2
Tr @t3Gn~kz ,q,iV1 iv!t3

3Gn11~kz ,q,iv!6t3Gn11~kz ,q,iV1 iv!

3t3Gn~kz ,q,iv!# ~10!

where the1 sign corresponds toPxx( iV), the 2 sign cor-
responds toiPxy( iV), andv5(2m11)p/b are electronic
Matsubara frequencies. On the other hand, the longitud
~parallel to the external magnetic field! current-current cor-
relation functionPzz( iV) becomes

Pzz~ iV!5
1

4m2b
(
v

(
n,kz ,q

kz
2~V12v!2

3Tr@t3Gn~kz ,q,iV1 iv!t3Gn~kz ,q,iv!#.

~11!

In order to perform the summation over the Matsubara f
quenciesv, we introduce a spectral representation for t
Nambu matrixGn(kz ,q,v) as

Gn~kz ,q,v!5E
2`

`

dv1

An~kz ,q,v1!

iv2v1
, ~12!

where the spectral function matrixAn(kz ,q,v) is defined as

An~kz ,q,v!52
1

p
ImGn

ret~kz ,q,v!. ~13!

When the spectral representation of the Green’s functi
@Eq. ~12!# is used back in Eqs.~10! and~11!, respectively, we
obtain

P i j ~ iV!5
1

4m2l 2b
(

n,kz ,q
E dv1E dv2

n11

2

3Tr@t3An~kz ,q,v1!t3An11~kz ,q,v2!

6t3An11~kz ,q,v1!t3An~kz ,q,v2!#3S

~14!

and

Pzz~ iV!5
1

4m2b
(

n,kz ,q
kz

2E dv1E dv2

3Tr@t3An~kz ,q,v1!t3An~kz ,q,v2!#3S,

~15!

whereS contains Matsubara sums, i.e.,
7-3
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S5
1

b (
v

~V12v!2
1

~ iV1 iv2v1!~ iv2v2!
. ~16!

The sum can be evaluated in the standard way by picking
the contributions from each of the poles of the summan11

After the analytic continuationiV→V1 id, we obtain the
retarded functionSret ,

Sret5
~2v21V!2nF~v2!2~2v12V!2nF~v1!

v22v11V1 id
, ~17!

wherenF(v) is the Fermi function.
In order to obtain the imaginary part ofP i j (V) we need

to find an imaginary part ofSret when calculating the longi-
tudinal conductivitykxx(V,T) and kzz(V,T). On the other
hand, sinceSret enters the expression foriPxy(V) in Eq.
~14!, we need to find the real part of2Sret . Using the iden-
tity

1

x1 id
5P

1

x
2 ipd~x!, ~18!

and taking the imaginary part of Eq.~16!, we find that the
diagonal conductivities become

kxx

T
5

kyy

T
5

p

4m2l 2 (
n

(
kz ,q

3E
2`

1`

dv
~2v1V!2

T2

nF~v!2nF~v1V!

V

3
n11

2
Tr @t3An~kz ,q,v1V!t3An11~kz ,q,v!

1t3An11~kz ,q,v1V!t3An~kz ,q,v!# ~19!

and

kzz

T
5

p

4m2 (
n,kz ,q

kz
2E

2`

1`

dv
~2v1V!2

T2

nF~v!2nF~v1V!

V

3Tr @t3An~kz ,q,v1V!t3An~kz ,q,v!#. ~20!

Similarly, taking the real part of Eq.~16! with the help of Eq.
~18! yields, for the off-diagonal conductivity,

kxy

T
52

kyx

T
5

1

4m2l 2 (
n

(
kz ,q

E
2`

1`

dv

3
~2v1V!2

T2

nF~v!2nF~v1V!

V

3
n11

2
Tr @t3Bn11~kz ,q,v1V!t3An~kz ,q,v!

2t3Bn~kz ,q,v1V!t3An11~kz ,q,v!#, ~21!

where the functionBn(kz ,q,v1V) is defined as

Bn~kz ,q,v1V!5E
2`

1`

dv1

An~kz ,q,v1!

v2v11V
. ~22!
01451
p

III. GREEN’S FUNCTIONS IN THE PRESENCE
OF DISORDER

Before further discussing expressions~19!, ~20!, and~21!,
we should go back to the question of spectral functions
alternatively, Green’s functions for the superconductor in
magnetic field. The Green’s functions for the clean superc
ductor can be easily found following Ref. 14, with the
‘‘Fourier transforms’’ in the quasimomentum space e
pressed in the Nambu formalism as

Gn~kz ,q,iv!5
1

~ iv!22En~kz ,q!

3S iv1en~kz! 2Dnn~q!

2Dnn* ~q! iv2en~kz!
D ~23!

where

En,p~kz ,q!5p\vc6Aen
2~kz!1uDn1p,n2p~q!u2,

en~kz!5
\2kz

2

2m
1\vc~n11/2!2m ~24!

is the quasiparticle excitation spectrum of the supercondu
in a high magnetic field near pointskz56kFn

5A2m@m2\vc(n11/2)#/\2 calculated within the diagona
approximation,1,3 where D/\vc!1. For the quasiparticles
near the Fermi surface (kz;kFn) it suffices to consider only
the En,p50 bands. The gapDnn(q), which in the MSR rep-
resentation can be written as

Dnm~q!5
D

A2

~21!m

2n1mAn!m!
(

k
expS ip

bx

a
k212ikqyby

2~qx1pk/a!2l 2DHn1m@A2~qx1pk/a!l #,

~25!

turns to zero on the Fermi surface at the set of points in
MBZ with a strong linear dispersion inq. The excitations
from other bands,pÞ0 in Eq. ~24!, are gapped by at least
cyclotron energy, and their contribution to the quasiparti
transport can be neglected at low temperatu
@T!D(T,H)!\vc#. Once the off-diagonal pairing in Eq
~9! is included, the excitation spectrum cannot be written
the simple form of Eq.~24!, and a closed analytic expressio
for the superconducting Green’s function cannot be fou
Nevertheless, when these off-diagonal terms are treated
tubatively as in Ref. 3, the qualitative behavior of the qua
particle excitations, characterized by the nodes in the MB
remains the same. This statement is correct in all order
perturbation theory, and therefore is exact as long as
pertubative expansion itself is well defined, i.e., as long
H.H* (T). Once the magnetic field is lowered belowH* ,
gaps start to open up at the Fermi surface, signaling
crossover to the low-field regime of quasiparticle states
calized in the cores of widely separated vortices.15
7-4



e

im
a

a

e

o

th
-

in

-

nt
r

bu
cl

e
in
a

t
u
ic

in

-
ity

f

is
the
tial

con-

the
ans-
e

ry

r-

gap
ed

be-
ea-

sur-
the

ors

er-
of

a-

o-
o

QUASIPARTICLE THERMAL CONDUCTIVITIES IN A . . . PHYSICAL REVIEW B66, 014517 ~2002!
In a dirty but homogenous superconductor, with a coh
ence lengthj much longer than the effective distancej imp
over which the impurity potential changes (j/j imp@1), the
superconducting order parameter is not affected by the
purities and still forms a perfect vortex lattice. For such
system, the bare Green’s function in Eq.~9! is dressed via
scattering through the diagonal~normal! self-energySN( iv)
and off-diagonal~anomalous! self-energySnn

A (q,iv).14 A

dressed Green’s function is obtained by replacingv with ṽ

andDnn(q) with D̃nn(q) in Eq. ~9!, where

i ṽ[ iv2SN~ iv!,

D̃nn~q![Dnn~q!1Snn
A ~q,iv!. ~26!

In order to calculate the spectral functions in Eq.~19! the
analytical continuation should be performed so th
Gret(kz ,q,v)5G(kz ,q,iv→v1 id), where S ret

N,A(v)
5SN,A( iv→v1 id), with the impurity scattering rate in th
superconducting state defined asG(v)52ImS ret

N (v). It was
shown by us in Ref. 14 that the anomalous self-energy d
not qualitatively change the form of the gap functionDnn(q)
at low energies, and thereforeSnn

A (q,v) will be neglected in
further calculations. At the same time, the real part of
normal self-energySN(v) can be either neglected or ab
sorbed intoen(kz).

IV. THERMAL CONDUCTIVITIES IN THE T\0 LIMIT

We are interested in calculating thermal conductivities
Eqs.~19! and~21! in the limit of V→0 and smallT such that
T!G(v). In the limit of V→0 the difference of Fermi func
tions in Eq.~19! becomes

nF~v1V!2nF~v!

V
→]nF

]v
. ~27!

This function is sharply peaked aroundv50 at very low
temperatures, so that we are justified in expanding the i
grand in Eq.~19! and ~21! aroundv50 up to second orde
in v, and setting the scattering rate to a constantG5G(v
50). In the high-field superconductors the largest contri
tion to the thermal conductivity comes from the quasiparti
excitations at the Fermi surface with momentaq such that
D(q)<max(T,G), while the excitations gapped by larg
D(q) give exponentially small contributions. Therefore,
order to simplify the integration over the MBZ and summ
tion over the Landau level index in Eqs.~19! and ~21!, we
linearize the excitation spectrum@Eq. ~24!# around nodes a
the Fermi surface.5 This enables us to obtain approximate b
analytic expresions for thermal transport coefficients wh
capture the qualitative behavior nearHc2. Keeping this in
mind and with the help of the Sommerfeld expansion,16 the
longitudinal conductivity kxx(H,T)5kyy(H,T) and
kzz(H,T) at low temperatures become

kxx~H,T!

kxx
N ~H,T!

5S 4

p
21D S G

D D 2

1
7p2

5 S 12
3

p D S kBT

D D 2

~28!
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kzz~H,T!

kxx
N ~H50,T!

5S G

D D 2

1
7p2

15 S kBT

D D 2

. ~29!

kxx
N (H,T) is the thermal conductivity of the normal metal

a magnetic field,17

kxx
N ~H,T!5

p2

3

ne

2m* G

4G2

~\vc!
214G2

T, ~30!

where ne5(1/2p l 2)(nkFn is electronic density in the sys
tem. On the other hand, the transverse conductiv
kxy(H,T)52kyx(H,T) becomes

kxy~H,T!

kxy
N ~H,T!

5S 4

p
21D S G

D D 2

1
7p2

5 S 12
3

p D S kBT

D D 2

,

~31!

wherekxy
N (H,T) is the off-diagonal thermal conductivity o

the normal metal in a magnetic field:17

kxy
N ~H,T!5

p2

3

ne

m* vc

~\vc!
2

~\vc!
214G2

T. ~32!

Relations~28!, ~29!, and~31!, obtained whenG/D!1 within
the ‘‘linearized spectrum aproximation,’’ tell us that there
still a considerable thermal transport in the mixed state of
superconductor. This is in stark contrast to the exponen
suppresion of transport characteristic of an s-wave super
ductor in zero field. Furthermore, relations~28!, ~29!, and
~31! indicate that when passing from the normal state to
superconducting state, both longitudinal and transverse tr
port coefficients k/T are reduced from their respectiv
normal-state values by the factor;(G/D)2 @the term linear
in (T/D)2 is negligible at low temparatures even for ve
clean superconductors#. The factor;(G/D)2 measures the
fraction of the Fermi surfaceG containing gapless quasipa
ticle excitations atT50. The size ofG is determined by both
the total number of nodes in the excitation spectrum@Eq.
~24!# and the areas in different branches where the BCS
D is very small but not necessarily zero. This result, obtain
here for the thermal coefficients, is consistent with the
havior of some other superconducting observables that m
sure the presence of low-energy excitations at the Fermi
face. One such experimentally confirmed behavior is
reduction of the de Haas–van Alphen~dHvA! oscillation’s
amplitude in both A-15 and borocarbide superconduct
when the sample becomes superconducting.4 The drop in the
overall amplitude in passing from the normal to the sup
conducting state reflects the presence of a small portion
the Fermi surface;G containing coherent gapless excit
tions while the rest is gapped by largeD.5

V. COMPARISON WITH EXPERIMENT

Recently, the longitudinal thermal conductivity of the b
rocarbide superconductor LuNi2B2C was measured down t
T570 mK by Boakninet al.10 in a magnetic field from
7-5
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H50 to aboveHc257 T. In the limit of T→0, a consider-
able thermal transport is observed in the mixed state of
superconductor (Hc1,H<Hc2), indicating the presence o
delocalized low-energy excitations at the Fermi surface. T
authors argue that this observation is strong evidence
highly anisotropic gap function in LuNi2B2C, possibly with
nodes. On the other hand, no sizable thermal conducti
was observed in zero field, the result expected for a su
conducting gap without nodes.

The result of Boakninet al. is consistent with the obser
vation of dHvA oscillations down to fieldsH* ;Hc2/5 in
YNi2B2C, a close cousin of LuNi2B2C, as well as in V3Si
where the oscillations persist down to fieldsH* ;Hc2/2.4 It
was shown by us that the drop in the dHvA amplitude o
served in these experiments can be atributed to the quan
tion of quasiparticle orbits within the superconducting sta
which results in the formation of nodes in the gap.5 This
quantum regime behavior in fieldsH* ,H,Hc2 is due to
the center-off-mass motion of the Cooper pairs, in contras
thed-wave or the anisotropics-wave, where nodes in the ga
are due to the relative orbital motion. Therefore, it mak
sense to compare the theory developed in this paper with
experimental data in Ref. 10. A quick check tells us th
expression ~28!, where G(H)/D(H),1, does not hold
through the entire range of fields used in the experime
Therefore, wenumericallycompute the longitudinal therma
conductivity directly from Eq.~19!, without using any addi-
tional aproximations, for both the borocarbide superc
ductor LuNi2B2C as well as for the A-15 superconduct
V3Si.

In the limit of V→0 andT→0 expression~19! yields

k

T
5

p

12m

G2

\vc
(

n

nc

~n11!

3 (
kz ,q

1

En,p50
2 ~kz ,q!1G2

1

En11,p50
2 ~kz ,q!1G2

,

~33!

where the number of Landau levels involved in superc
ducting pairingnc5EF /\vc varies as a function of mag
netic field. In the borocarbide superconductor LuNi2B2C nc
can be estimated asnc;33 atHc2 andnc;1147 at a field of
H50.2 T ~these numbers were obtained using an effec
mass of 0.35me and a Fermi velocity of vF52.76
3107cm/s, as reported in Ref. 18!. On the other hand, the
number of occupied Landau levels in the A-15 superc
ductor V3Si is much larger:nc;241 at Hc2518.5 T and
nc;4470 atH51 T ~we used an effective mass of 1.7me
and a Fermi velocity ofvF52.83107cm/s from Ref. 19 in
this estimate!. The scattering rateG5G(v50) in Eq. ~33!
is, in general, modified relative to the normal state scatte
rateG0 when the system becomes superconducting. Ind
the self-consistent calculation ofG in Ref. 14 givesG(H)
5AG0D(H)/2. We assumeD(H)5DA12H/Hc2 which is a
good approximation for the range of fields used in the
periment.
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The dashed line in Fig. 1 shows the magnetic field dep
dence of the quasiparticle thermal conductivityk/T for the
borocarbide superconductor LuNi2B2C in the limit of T→0
obtained by a numerical evaluation of Eq.~33!, where values
for the BCS gapD and normal state inverse scattering ra
G0 are taken from Ref. 10. The full circles in Fig. 1 are th
experimental data of Boakninet al.10 for the same supercon
ductor. The full line in Fig. 1 shows the theoretical plot o
tained by numerical evaluation of Eq.~33! for the A-15 su-
perconductor V3Si, where values forD and G0 are taken
from Ref. 19. There is a significant difference in the behav
of k/T in these two superconducting systems, characteri
by much smaller thermal transport in V3Si, when compared
to the transport in LuNi2B2C in the same range of magnet
fields. This observation indicates that the number of gap
or near-gapless excitations at the Fermi surface in the V3Si is
very small atH!Hc2. In order to understand this differenc
one has to note that in magnetic fieldsH,H* 50.5Hc2 the
number of occupied Landau levels in the V3Si system is
huge (<4500), and that V3Si is away from the regime o
coherent gapless excitations of high fields. On the ot
hand, the number of occupied Landau levels in LuNi2B2C is
much smaller (<1000), and it seems that there are still ma
gapless excitations left at low fields. It is suprising thou
that significant thermal transport exists down
H;0.015Hc2, a field much smaller than the critical fiel
H* 50.2Hc2 for this system, where most of the quasipartic
spectrum should be gapped. Note, however, that a poss
source for such a significant transport at low fields might
the highly anisotropics-wave gap function in LuNi2B2C, as
suggested in Ref. 10. If there is such anisotropy along on
more directions on the Fermi surface, the range of validity
our theory may be extended to fields lower than the sim
estimate forH* .20 In this regard, we alert the reader that
the lowest fields in Fig. 1 (H;0.04Hc2) our theory is
stretched to its very limits and its quantitative accuracy
minishes.

FIG. 1. Magnetic field dependence of the quasiparticle long
dinal thermal conductivity computed from Eq.~33! for LuNi2B2C
~dashed line! and V3Si ~full line!. Full circles represent experimen
tal data of Boakninet al. ~Ref. 10! The vertical dotted line indicates
the normal-superconducting transition atHc257 T for LuNi2B2C.
The upper critical field for V3Si at Hc2518.5 T is not shown. For
LuNi2B2C we have used experimentally determined values forD
54.4 meV andG050.5D from Ref. 10 as well as the effective
mass m* 50.35me from Ref. 18. For V3Si, D52.6 meV, G0

50.61 meV, andm* 51.7me were taken from Ref. 19.
7-6
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VI. CONCLUSIONS

In this paper we develop expressions for the longitudi
and transverse quasiparticle thermal conductivities for an
treme type-II superconductor in a magnetic field. We utili
the Landau level formalism of superconducting pairing in
magnetic field to obtain, within the Kubo mechanism of li
ear response to an external perturbation, thermal curr
perpendicular and parallel to the external magnetic fie
From there, current-current correlation functions are int
duced within the Matsubara finite temperature mechanism
order to derive closed expressions for thermal conductivi
k i j (V,T). We examine the transport coefficientsk i j /T in the
limits of V→0 andT→0, and find that there is considerab
thermal transport in the mixed state of a superconductor w
ans-wave symmetry due to the creation of gapless exitati
in the magnetic field. This is in contrast to the zero-fie
thermal transport, which is exponentially small for ans-wave
superconductor with no nodes in the gap. Furthermore, w
passing from the normal state to the superconducting s
the thermal coefficientsk i j /T become reduced with respe
to their normal state values by a factor;(G/D)2 which mea-
sures the fraction of the Fermi surface that contains cohe
,

c

w
n

r

ic

-

c
i,
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gapless or near gapless excitations in a magnetic field. In
respect, thermal conductivities behave similarly to the dH
oscillations, in which the amplitude is also reduced at
superconducting transition. Finally, we numerically comp
the longitudinal thermal conductivity for two realistic supe
conducting systems; the borocarbide LuNi2B2C and the A-15
superconductor V3Si. The thermal transport in LuNi2B2C is
much larger in magnitude than the thermal transport of V3Si
at the same field. This result indicates that the borocarb
LuNi2B2C might still be in the regime of delocalized quas
particle states even at fields much lower than the critical fi
H* ;0.2Hc2 ~estimated from the dHvA experiments4,20!. The
agreement of our theoretical plot with the experimental d
for LuNi2B2C taken by Boakninet al.10 over a wide range of
fields used in the experiment is suprisingly good.

ACKNOWLEDGMENTS

The authors would like to thank E. Boaknin and
Taillefer for sharing their knowledge of the subject with u
This work was supported by a grant from the Research C
poration ~S.D. and T.P.P.! and by the NSF Grant No
DMROO-94981~Z.T.!.
s

e

P.

,

M.

s

*Electronic address: dukan@monk.goucher.edu
1S. Dukan, A.V. Andreev, and Z. Tesˇanović, Physica C183, 355
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~1994!.

2H. Akera, A.H. MacDonald, S.M. Girvin, and M.R. Norman
Phys. Rev. Lett.67, 2375 ~1991!; A.H. MacDonald, H. Akera,
and M.R. Norman, Phys. Rev. B45, 10 147~1992!; M.R. Nor-
man, H. Akera, and A.H. MacDonald, Physica C196, 43 ~1992!;
J.C. Ryan and A. Rajagopal, Phys. Rev. B47, 8843~1993!.
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5S. Dukan and Z. Tesˇanović, Phys. Rev. Lett.74, 2311~1995!.
6For discussion of the dHvA signal asH crossesHc2 see T. Maniv,

A.Y. Rom, I.D. Vagner, and P. Wyder, Solid State Commun.101,
621 ~1997!; V.N. Zhuravlev, T. Maniv, I.D. Vagner, and P. Wy
der, Phys. Rev. B56, 14 693~1997!; T. Maniv, V. Zhuravlev, I.
Vagner, and P. Wyder, Rev. Mod. Phys.73, 867 ~2001!.

7K. Krishana, N. P. Ong, Q. Li, G. Gu, and N. Koshizuka, Scien
277, 83 ~1997!; H. Aubin, K. Behnia, S. Ooi, and T. Tamega
ibid. 280, 9a ~1998!.

8S.H. Simon and P.A. Lee, Phys. Rev. Lett.78, 1548 ~1997!; M.
t-

-

s

Franz,ibid. 82, 1760~1999!; C. Kübert and P.J. Hirschfeld,ibid.
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