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The pseudogap phenomena in the cuprate superconductors requires a theory beyond the mean-field BCS
level. A natural candidate is to include strong pairing fluctuations, and treat the two-particle and single-particle
Green’s functions self-consistently.At the same time, impurities are present in even the cleanest samples of the
cuprates. Some impurity effects can help reveal whether the pseudogap has a superconducting origin and thus
test various theories. Here we extend the pairing fluctuation theory for a clean §ztemet al., Phys. Rev.

Lett. 81, 4708(1998] to the case with nonmagnetic impurities. Both the pairing and the impUnihatrices

are included and treated self-consistently. We obtain a set of three equations for the chemical pot&ptial

the excitation gapA(T¢) at T¢, or u, the order parametek., and the pseudogaf,, at temperaturel

<T., and study the effects of impurity scattering on the density of stateand the order parameter, and the
pseudogap. Botf, and the order parameter as well as the total excitation gap are suppressed, whereas the
pseudogap is not for giveM<T,. Born scatterers are about twice as effective as unitary scatterers in sup-
pressingT, and the gap. In the strong pseudogap regime, pair excitations contribute &@Résvm to the low-

T superfluid density. The initial rapid drop of the zefcsuperfluid density in the unitary limit as a function of
impurity concentratiom; also agrees with experiment.

DOI: 10.1103/PhysRevB.66.014512 PACS nuniber74.20-z, 74.25.Fy

[. INTRODUCTION crystals. In addition, this is necessary in order to understand
the finite frequency conductivity issue. Furthermore, study of
The pseudogap phenomena in high-superconductors how various physical quantities respond to impurity scatter-
have been a great challenge to condensed-matter physicistgy may help to reveal the underlying mechanism of the
since over a decade ago. These phenomena manifestly cosdperconductivity. For example, it can be used to determine
tradict BCS theory by, e.g, presenting a pseudoexcitation gaphether the pseudogap has a superconducting drighar-
in single-particle excitation specta. Yet the origin of theticularly, it is important to address hoW. and the pseudogap
pseudogap and, in general, the mechanism of the supercoitself vary with impurity scattering, especially in the under-
ductivity are still not clear. Many theories have been pro-doped regime. To this end, one needs to go beyond BCS
posed, which fall into two classes, based on whether théheory and include the pseudogap as an intrinsic part of the
pseudogap has a superconducting origin. Some authors prtiteory. Due to the complexity and technical difficulties of
pose that the pseudogap may not be related to the supercdius problem, there has been virtually no work in the field on
ductivity; instead, it is associated with another ordered statethis important problem.
such as the antiferromagnetism related resonating valence Among all physical quantities, the density of statb®9S)
bond (RVB) state! d-density wave, and spin-density wave N(w) close to the Fermi levelwo=0) is probably most sen-
order’> On the other hand, many others believe that thesitive to the impurities. Yet different authors have yielded
pseudogap has the same origin as the superconductivity, suchntradictory results in this regard. BCS-based impurity
as the phase fluctuation scenario of Emery and Kivélaod ~ T-matrix calculations predict a finite DOS @t=0,"**which
the various precursor superconductivity scenatid8Previ-  has been used to explain the crossover fibiiw T2 power
ously, Chen and co-workers have worked out, within the prelaw for the low-temperature superfluid densityNonpertur-
cursor conductivity school, a pairing fluctuation thebfy*?>  bative approaches have also been studied and have yielded
which enables one to calculate quantitatively physical quandifferent results. Senthil and Fishéfind that DOS vanishes
tities such as the phase diagram, the superfluid density, etaccording to universal power laws, fte and Leé® predict
for a clean system. In this theory, two-particle and one-that N(w) diverges asv—0, assuming a strict particle-hole
particle Green's functions are treated on an equal footingsymmetry, and Zieglé? and co-workers’ calculation shows a
and equations are solved self-consistently. Finite center-ofigorous lower bound omN(w). Recently, Atkinsoret al°
mass momentum pair excitations become important as thiey to resolve these contradictions by fine tuning the details
pairing interaction becomes strong, and lead to a pseudogay the disorders. Nevertheless, all these calculations are
in the excitation spectrum. In this context, these authors haveased on BCS theory and cannot include the pseudogap in a
been able to obtain a phase diagram and calculate the supeelf-consistent fashion, and thus can only be applied to the
fluid density, in (semjquantitative agreement with experi- low-T limit in the underdoped cuprates. Therefore it is nec-
ment. essary to extend the BCS-based calculations on impurity is-
However, to fully apply this theory to the cuprates, we sues to include the pseudogap self-consistently.
need to extend it to impurity cases, since impurities are In this paper, we extend the pairing fluctuation theory
present even in the cleanest samples of the fiighraterials, from clean to impurity cases. Both the impurity scattering
such as the optimally doped YBau;O,_s (YBCO) single  and particle-particle scatterin§ matrices are incorporated
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and treated self-consistently. This goes far beyond the usual A. Review of the theory in a clean system
self-consisten{impurity) T-matrix calculations at the BCS
level by, e.g., Hirschfeld and othet$!® In this context, we
study the evolution off; and various gap parameters as a

function of the coupling strength, the impurity concentratlon,range pairing interactiol, = geyey: . Whereg<0. Here

the hole doping concentration, and the impurity scatterinqH andt, are the in-plane and out-of-plane hopping integrals,

ﬁtr:ﬁ;?;hl.irr:ri]tsadti:ttloaajsgvztsit#t?r/mn:;ie?tr(l,lysct:g?te?iﬁrgn S"’:Pedngt‘ﬁrespectively, angk is the Fermionic chemical potential. For
) ’ .~ 2" 'the cupratest, <t;. The Hamiltonian is given b
We find that the real part of the frequency renormalization pratest, < 9 y

can never be set to zero, the chemical potential adjusts itself

with the impurity level. As a consequence, the positive and H°=E 6kcl¢rcko'

negative strong scattering limits do not meet. The residue ko

density of states at the Fermi level is generally finite at finite

impurity concentrations, in agreement with what has been + 2 Vk,k’cl-%—q/ZTCtk-f—q/ZLC—k’+q/2ick’+q/2T- (1)

observed experimentally. Bot, and the total excitation gap kk'q

decrease with increasing impurity level, as one may naivelyrhe pairing symmetry is given byp,=1 and (co,

expect. Born scatterers are about twice as effective as unitarycosky) for s andd wave, respectively. Here and in what

scatters in suppressing, and the gap. In the unitary limit, follows, we use the superscript “0” for quantities in the

the zero-temperature superfluid density decreases faster wiglean system, to be consistent with the notations for the im-

n; whenn,; is still small, whereas in the Born limit, it is the pyrity dressed counterpart below. For brevity, we use a four-

opposite. At giveriT<T., both the order parameter and the momentum notationk = (k,iw), Sx=TZ, ,,, etc.

total gap are suppressed, but the pseudogap is not. Finally, To focus on the superconductivity, we consider only the

incoherent pair excitations contribute an addition3f term pairing channel, fo||owing ear|y work by Kadanoff and

to the lowT temperature dependence of the superfluid denmartin:?! the self-energy is given by multiple particle-

sity, robust against impurity scattering. particle scattering. The infinite series of the equations of mo-
In the next section, we first review the theory in a cleantion are truncated at the three-particle le@), and G; is

system, and then present a theory at the Abrikosov-Gor’koyhen factorized into single{G) and two-particle G.,)

level. Finally, we generalize it to include the full impuriy  Green’s functions. The final result is given by the Dyson’s

matrix, in addition to the particle—particle Scatterfﬁgnatrix, equations for the Sing|e-partic|e propaga@mfer to Refs. 9
in the treatment, and obtain a set of three equations to solvgnd 12 for details

for w, T, and various gaps. In Sec. lll, we present numeri-

The cuprates can be modeled as a system of fermions
which have an anisotropic lattice dispersiag=2t(2
— cosk,—cosk,)+2t, (1—cosk,) — u, with an effective, short-

cal solutions to these equations. We first study the effects of 3O0(K)=GS HK)— G Y(K)

impurity scattering on the density of states, then study the

effects onT. and the pseudogap &t , followed by calcula- _ 0 0(0—K) o2 2
tions of the effects on the gaps and the superfluid density EQ: HQG(Q=K) ¢icqn: 23

belowT.. Finally, we discuss some related issues, and con- i i
clude our paper. and theT matrix (or pair propagator

t%Q)=t2(Q) +1tp4(Q), (2b)
ll. THEORETICAL FORMALISM .
with
The excitation gap forms as a consequence of Cooper

pairing in BCS theory, while the superconductivity requires 0 sc
the formation of the zero-momentum Cooper pair conden- ts(Q)=——9(Q), (20)
sate. As these two occur at the same temperature in BCS
theory, one natural way to extend BCS theory is to allow paiwhereA;=0 atT=T,, and
formation at a higher temperaturd®¥) and the Bose con-
densation of the pairs at a lower temperaturg) ( Therefore 0 g
these pairs are phase incoherentTatT., leading to a t|og(Q):1+—o(Q)' (2d)
pseudogap without superconductivity. This can nicely ex- 9x
plain the existence of the pseudogap in the cuprate supercowhere A, is the superconducting order parame@B(K)
ductors. Precursor superconductivity scenarios, e.g., the 1/(iw—¢,) is the bare propagator, and
present theory, provides a natural extension of this kind. At
weak coupling, the contribution of incoherent pairs is negli- 0 0 o )
gible and one thus recovers BCS theory, with=T,. As X (Q)=; G (K)Go(Q—K) @i g (2¢)
the coupling strength increases, incoherent pair excitations
become progressively more important, aftl can be much is the pair susceptibility. This result can be represented dia-
higher thanT,, as found in the underdoped cuprates. In gengrammatically by Fig. 1. The single and double lines denote
eral, both fermionic Bogoliubov quasiparticles and bosonicdhe bare and full Green’s functions, respectively, and the
pair excitations coexist at finit€<T,. wiggly double lines denote the pair propagator.
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FIG. 1. Diagrams for the Dyson's equations in a clean sys-higher-order terms neglected in the calculation.
tem.

The superconducting instability is given by the Thouless H,=Z J' dx u(x—x;) T (x) p(x), (10
criterion i
0 with u(x)=ud(x) for isotropics-wave scattering.
1+9x°(0)=0, (T<Ty), ©) To address the impurity scattering, we begin at the
Abrikosov-Gor’kov (AG) level?>=2* which is a good ap-
proximation in the Born limit. Following AG, we include all
o o o ) ) o ) possible configurations of impurity dressing, but excluding
304K =2 5,(QGHQ—K) @7 oo~ —A3GY—K)eZ,  bridging diagrams like Fig. (@), crossing diagrams like Fig.
Q @) 2(b), and higher-order terms like Fig(@. The dashed lines
denote impurity scattering, and the crosses denote the impu-
where the pseudogap is defined by rity vertices. We clarity, in most diagrams, we do not draw
the fermion propagation arrows. It is understood, however,
AZ - E © (Q) ©) that they change direction at and only at a pairing vertex. As
PO Sy PO in Sec. Il A, we use plain double lines to denote the Green’s
function (G°) fully dressed by the pairing interaction but
As a consequence, the self-energy takes the standard BQthout impurity scattering, i.e.,

which leads to the approximation

form,
1
 A2G0( kY2 — A2G0( GoK)= ————, (11)
3(K)=—A%Gy(—K)pp=—AFGg(—K), (6) (K) o e —3°(K)

WhereA2=A§P+A§g, andA,=Ag. In this way, the full | here
Green'’s functionG*(K) also takes the standard BCS form,
with the quasiparticle dispersion given By = \/ek2+ A2<p2k. O/ 0 2
So does the excitation gap equation 2 (K)_% HQ)Go(Q=K)¢ic-gr2- (12

1-2f(Ey) , However, since we will address the impurity dressing of the
1+9; —g, %0 (7)  pairing vertex or, equivalently, the pair susceptibilityQ),
K we assume the pair propagat¢®) in the above equation is
We emphasize that although this equation is formally identi-already dressed with impurity scattering, with
cal to its BCS counterpart, th& here can no longer be in-
terpretted as the order parameterAgg#0 in general. For t(Q)=15(Q) +1p4(Q), (13

self-consistency, we have the fermion number constraint 5

_ Asc
€ tsd(Q)=— = 9(Q), (14)
n=2> GY%K)=2D, |vi+=—"F(Ey|. (8)
K K Ex and
The gap equation Ed7), the number equation Ed8), ) g
and the pseudogap parametrization Ex).form a complete Afy= _st&o tpe(Q)= —;O T1gy(Q)’ (15

set, and can be used to solve self-consistentlyrforu(T,),
andA(T,) by settingAg.=0, oru(T), A(T), andAp((T) at  as in the clean case. The shaded double lines denote

givenT<T,. Herevﬁz%(l—ek/Ek), as in BCS. impurity-dressed full Green’s functioi®, and “shaded”
single lines denote impurity-dressed bare Green’s function
B. Impurity scattering at the Abrikosov-Gor'kov level (which we Calléo), ie,

For simplicity, we restrict ourselves to nonmagnetic, elas-
tic, isotropic swave scattering. At the same time, we will Go(K)= 1 , (16)
keep the derivation as general as possible. In the presence of w— 5k_é‘_0
impurities of concentratiom; , the Hamiltonian is given by “
=1+, ) Whe’re2 Ehe l3ar denotes |mpur|.ty averagg , n|2k1|u(k”
—k")|*Go(K"). We use open circles to denote bare pairing
where in the real space the impurity term is given by vertex y(K|Q) = ®k+q2, and shaded circles full pairing ver-

014512-3



QIJIN CHEN AND J. R. SCHRIEFFER PHYSICAL REVIEW B6, 014512 (2002

(a) T = + \m + m/,
X/ \XI
>( \\\ ,/’
X

N I

X/

£

-
-
-

0 Bt b
S
(c) — = ch m + =

@ To(K|Q) = =& + == = &
(e) = + = = + m = m
® SK) = + £ %

FIG. 3. Feynman diagrams for the impurity dressed full Green’s function.

tex I'(K|Q), whereQ is the pair four-momentum. To obtain Fig. 3@ contains all diagrams without impurity dressing
the Feynman diagrams for the impurity dressed Gjlwe  (€Xcept via the pair propagatgrsThe second term corre-
first expand the pairing self-energy diagram as an infinitesPonds to the third term of the first equation in Fig. 18. The
series which contains only bare single-particle Green's functhird term corresponds to the last term, the last term to the
tion and pair propagators, and then insert all possible irnlou§econd. The fourth and the fifth together correspond to the

rity scattering on the single-particle propagators at the AGfourth term[see Fig. 4a)]. The fifth term in Fig. &) arises

level. We assume that the pair propagators are always sel ince the two impurity legs can cross two separate pairing

: X X . elf-energy dressing parts; it can be eliminated using the
consistently dressed by the impurity scattering. After re- . I - .
grouping all nonimpurity dressed lines on the left, the finalequallty shown in Fig. &). Here the shaded elliptical region

result for the diagrams is shown in Figa Here following denotes self-consistent impurity dressing of the double pair-

AG, the subdiagrams inside the two impurity legs are aSlng vertex structure inside the two impurity scattering legs,

as shown in Fig. @). It is worth pointing out that these

sumed to b_e self-conS|s§entIy d.ressed by impurity Sca.tte”n%iagrams reduce to their BCS counterpart if one removes the
To make direct comparison with the BCS case easier, we

H"H 9, H = _1
present the corresponding diagrams for the BCS case in tH&!"N9 propA_agators. The Dyson's equatioB, "(K)
Appendix. The first term on the right-hand si@@HS of  =GJ }(K)—Gy, can then be used to eliminate the fourth

(a) ‘M = <—<—6=.=&—<—>imp

<=‘=>imp - <+>imp = o= —

Q

&Q
P
—+

) —Gpm
© {1— = < H,_%,,,,,)=____z,,,,,,,

x’ X

FIG. 4. Feynman diagrams for pairing vertex.
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term in Fig. 3a). We now obtain the greatly simplified dia-
grams forG as shown in Fig. &), which can be further
reduced into Fig. @), upon defining a reduced pairing ver-
tex I'o(K|Q) (shaded trianglesas shown in Fig. @),

o(K|Q)=ey—gt i |u(k—k)*Go(Q—K’)
k!

XT(K'[Q)G(K"). (17)

One can then read off the impurity-induceghasiparticle

self-energy 3'(K)=G° }(K)— G }(K) immediately, as
shown in Fig. 3e),

3/(K)=G,+3(K)—3(K), (18)

where the impurity average

G,=n> |u(k—k")[2.G(K"), (19
k!

and the “full” self-energy

2<K>=§ I'o(KIQHQ)T(K|Q)Go(Q—K). (20
Therefore we have finally

G HK)=G* " {K)-3'(K)=iw—€e,—G,—3(K)

=io—e—3(K)=Gy {(K)—3(K), (22)

where we have defined the renormalized frequeney: i
-G, and the “bare” Green'’s function

Go(K)= (22

lw— €y

Note hereGy(K) # Go(K).
Now we deal further with the pairing verteR(K|Q).

PHYSICAL REVIEW B 66, 014512 (2002

I'o(K|Q)G(Q—K)

Gy UK)— G, + G,
=Go(K)To(K|Q)G(Q—K).
(24)

This result demonstrates the following important relation-
ship:

Go(K)T(K|Q)G(Q—K)=

Go(K)T(K[Q)=Go(K)To(K|Q), (smallQ). (25

Using this relationship, now the self-energy can be simplified
as follows:

E(K)=§ THKIQHQ)Go(Q—K) =~ — A’TH(K) Go(—K)

=—A2Go(—K), (26)

wherel'o(K)=T(K|Q=0) andA,=ATo(K).

Finally, the impurity dressing of each rufige., x(Q)] of
the particle-particle scattering ladder diagrams is topologi-
cally identical to the impurity dressing of the pairing vertex
and the two associated single-particle lines. And summing up
all the ladders gives the pairingmatrix. Therefore the pair
susceptibility becomes

x(Q>=; T'(K|Q)Go(Q—K)G(K) @ g2

~; To(K|Q)Go(Q-K)G(K)py—qa-  (27)

And the gap equation is given by

1+gx(0)=0=1+g23 I'(K)G(K)Go(~K) @y
(28)
This result can be easily verified to be consistent with the
self-consistency condition. Define formally the generalized
Gor’kov F function:

FT(K)=AG(—K)T(K)G(K). (29

First, we notice that the impurity-dressed double—vertexUSmg Eq.(25), we have

structure in Fig. 8) can be simplified as shown in Fig(a}
using the approximation

f(K,0), (23

> t(Q)f(K,Q)~[2 t(Q)
Q Q

where f(K,Q) is an arbitrary slow-varying function of.
This is due to the fact that(Q) diverges asQ—0 atT

<T.. The Dyson’s equation for the Green’s function
G%(—K) in a clean system is also used in getting the second

line of Fig. 4a). Therefore we have approximately the
impurity-dressed pairing vertex as shown in Fi¢h)4which
implies the equality shown in Fig.(d). Figure 4c) can be
written as

FT(K)=ATo(K)Go(—K)G(K)=24,Gy(—K)G(K).
(30)
The formal difference between thi§' and that in BCS is

that ¢, is now replaced by the renormalized vertex(K).
One immediately sees that the condition

Av=—0> erorFTI(K") (31)
K/

is consistent with the gap equation E@8). However, it
should be emphasized that thdunction so defined does not

vanish abovd; in the pseudogap regime, different from the

BCS case.
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X X X h
I\ N /N N _ ' _ "_ A
A\ VA §\ TA(K=Q.K'|Q) kE u(k”—a,k—a)Go(Q
//,X\\ _ TA+ _ < E%;‘\ _ K”)G(K”)F(K”|Q)Tw(kﬂ,k,)
4 n
+ 2 u(k"=g,k—q)G(Q—K")
FIG. 5. Replacement scheme from the AG level to self- K"
consistent impurityT-matrix treatment. X T4 1(K"—Q,K'|Q). (33)
C. Impurity scattering beyond the AG level Note here thall,+ does not contain the factdy, unlike its

] } ] ) ) ~ BCS counterpart. It has the same dimensiob.aBothI" and
In this subsection, we include both the impurity scatteringr; now contain the full impurityT matrix beyond the AG

T matrix with the particle-particle scattering matrix, and  |evel, and the vertex relation E(25) remains valid. The new
thus go beyond the AG level. We notice that if one replacesxpression fol ', is given by

the second-order impurity scattering subdiagrams at the AG
level with the corresponding impurity matrices, as shown
in Fig. 5, the derivation forG(K) goes through formally
without modification. Now we only need to determine the
impurity T matricesT,, and T+ (as well as their complex ~ So far, we have kept the derivation for a generic elastic
conjugatg in terms of their AG-level counterparG, and ~ SCattering u(k,k’). For isotropic swave scattering,
FT=n.S o [u(k—K')[2FT(K’), respectively. In other words u(k,k")=u. In FhIS case,T, andT,+ are independent df _

o HEkTER /2 ' P y ' andk’. Neglecting the momentum dependence, we obtain
except that o and A, now have different expressions, ev-

erything else remains the same in termsiefand A, (as

well as their complex conjugatgust as in the BCS cageee U; Go(Q—K)T'o(K|Q)G(K)

the Appendix. Tatlwo—Q,0)= To,
The Feynman diagrams fdr, and Tt are shown in Fig. 1—u2 G(Q—K)

6. To obtain the second line for,+, we make use of the k

approximation in Fig. @) to convert the left part of the (353

second and the third term on the first line to the @BlIThis  gnq

result is direct analogy with its BCS counterpart as shown in

Fig. 20. One can now write down the equations Tor and
T,+ without difficulty, T,=utu GKT,+ U% t(Q)

To(K|Q)=¢y—_qot M Tat(K—Q,K'|Q). (34
k!

X| 2, G(K)To(K|Q)Go(Q—K) [Tat(w—Q, ).
Tw(k,k’)zu(k,k’)+2 u(k,k"G(K"T,(k",k") k

K (350
" " A " Use has been made of the vertex relation E2p). Here

+ k,k")G(K")Go(Q—K _ o
% % u JGKNG(Q ) again, We_need to make use of the approximation (2g§).

XF(K,,|Q)I(Q)TAT(KII_Q,K,|Q), (32) Defining EwZEkG(K) and

FT=> Fl(K)=>, ATo(K)Go(~K)G(K), (36)
and K K

—----X

. . N
Q\\%\ ) %, g\&; " Qg\\\;;; "
//’>I§\\ //XI\ ~
& e N \§\\§\,}

FIG. 6. Relationship between
the regular impurityT matrix T,
and the anomalous impurify ma-
trix Tat.
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we obtain
u(l—ug_w)
T,= — — == (373
(1-uG,)(1-uG_,)+Uu?F F|
and
u?2 Go(Q—KITo(K|Q)G(K)
Tatlw—Q,0)= — — —
(1-uG,)(1-uG_,)+Uu?F F!
1-uG._,
1-uGq-,
Letting (0—0, the last equation becomes
3
AT tH(w)= — — —. (379
(1-uG,)(1—uG_,)+u%F F!

The frequency and gap renormalizations are given by

iw=io-3,, io

(383

=—io—2_,,

A=A +3,, AF=AF+3,t (38h)

where3 ,=n;T, and3,=n,AT, . Herew=(— ). The ex-

pression forX(Q) remains the same as in the previous sub—=

section.

Fordwave,T,+=T,=0, andA,=A,. Then Eq.(373 is
greatly simplified,

T,= —. (39
1-uG,

The full Green’s function is given by

iw— €y

G(K)=—= = .
(Iw—ek)(lg— Gk)‘l‘A:Ak

(40

Due to the approximation Eq23), we are able to bring
the final result Eqs(39) and (40) into the BCS form. It is

easy to show that they are equivalent to the more familiar

form in Nambu formalism, as used in Ref. 15. Define

1 1
TAwZE(Ta)_wa)! TSwZE(Tw_l—wa)i (41)

and similarly for> , and E Here the subscript A” and

“$S” denote the antisymmetric and symmetric part, respeci,st be done carefully. Fan>0,

tively. Further define

iZ)A=iw—2Aw, ;K:€k+25w’ (42)

then we obtainwith A* =A)

PHYSICAL REVIEW B 66, 014512 (2002

()= fwat €x “3
(iwp)®—eg—AF
and
u2Gy,
TAw: — — (44@
(1-uGs,)*~ UG},
u 1—3 »
To— ot Sl (44b)
(1_UGSw)2_u26§\a)
where
= PN
Grn=2 —= % =3 3 (453
=3 (iwp)?—ee— A2
G. , 45D)
So Ek: (iwp)2—€2—A2 (
are the antisymmetric and symmetric partsa‘,, respec-

tively. It is evident thatT, and Tg correspond tor, and
— T3, respectively, in the Nambu formalism in Ref. (&nd
similarly for G, andGg).

It should be emphasized, however, that unles0 oru
==+, the symmetric part of the impuritfy matrix, Tsg, ,
can never be set to zero, even if one could in principle have

Gg,=0. This means thatK will always acquire a nontrivial,
frequency-dependent renormalizati®g, . While this renor-
malization is small for weak-coupling BCS superconductors,
it is expected to be significant for the cuprate superconduct-
ors.

lIl. NUMERICAL SOLUTIONS FOR d-WAVE
SUPERCONDUCTORS

A. Analytical continuation and equations to solve

Since there is no explicit pairing vertex renormalization
for d-wave superconductors, i.do(K)= ¢y or A,=A,, a
major part of the numerics is to calculate the frequency
renormalization. Everything else will follow straightfor-
wardly.

Numerical calculations can be done in the real frequen-
cies, after proper analytical continuation. Sinkcg,#0, =,
and X _ are independent of each other. To obtain the fre-
quency renormahzatloﬁiw, one has to solve a set of four

equations forGw, G,w, >, and> _ , self-consistently for

given w. Becausd w+# —iw, and one needs to analytically
continue both simultaneously, the analytical continuation

n

IZ)n—>wFi=w++i "
and io,—0”=w_—i3" . For n'=-—n<0, iw,—o®
=w_+iX" and i‘Z)nr—>wﬁ=w+—i21, Here w.=*w

-3, and we choos&>0 and3”.>0. Then we obtain
four equations as follows:

014512-7
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w,—iE'L—ek

GR_ =
w>0"" N/l . " 27
k (Q)++|2+_Ek)(a)__|2__6k)+Ak
= o, —i3" — g
a‘zw<022 e N/ 27
K (w0 +ixl —g)(w, —i2] — )+ AL
(46)
niyu
SR ==X i3,
1-uG,
n;u
SR oe=————=3'-i3".
1-uGR

These equations are solved self-consistently of (2”),
as well as the real and imaginary partsa)jw, as a function

of w. No Kramers-Kronig relations are invoked in these nu- )
merical calculations. Note that in real numerics, we subtractAngE

3/ _o from SR so that =) _,=0. This subtraction is
compensated by a constant shift in the chemical potential
Having solved the frequency renormalizati@n,, one

PHYSICAL REVIEW B6, 014512 (2002

* d
X(Q+i07 0=~ ~2Im GR(w,k)Ag(Q — w,q—K)

_ 2T

X[F( Q=) —f(0)]ef g2,

where Ay(w,k)=—2ImG{(w,k) is the “bare” spectral
function.

The pseudogap is evaluated via Efj5). To this end, we
expand the invers& matrix to the order of) andq? via a
(lengthy but straightforwandTaylor expansion,

(49b)

toHQ+i07,q)=x(Q+i0",q)— x(0,0)
—(aj+ial)Q+b'q>+ial02 (50

Here the imaginary patt” vanishes. The terrh’g? should
be understood ab|iqﬁ+ biqf for a quasi-two-dimensional
square lattice. We keep the imaginary part up to ftfeor-
der. Substituting Eq(50) into Eq. (15), we obtain

© dQ (ag+ajQ)Q
q J-= 7 (ajQ+b'g?)?+(aj+a;0)20?

b(€2),

(51
whereb(x) is the Bose distribution function.

can evaluate the pair susceptibility in the gap equation Eq. Numerical solutions confirm that the coefficierat§ and

(28),

2

B Pk _ “do
X(0=2 <ia‘»—ek>(@—ek>+Aﬁ_'m; Jo g

y [1-2f(w)]e}
(0, +i3 —e)(w_—i3" —e)+AZ

(47

where f(x) is the Fermi distribution function. It is easy to
check that the gap equatio28) does reduce to its clean

counterpart Eq(7) asn;—0.
The particle-number equation becomes

= dw
”:2; f_wﬂA(k,w)f(w)

=-2 |m£° d%’éf‘;f(w). (48)

The real and imaginary parts gf( Q) are given respec-
tively by
_ * dw R R
¥ (Q+i0*,q)=Im>, f E{G (0,K)Gy(Q—w,q—k)
k —
X[f(w—Q)—f(w)]+GR(w,k)GH(Q

—0,0=K)[1-f(0)— f(0—Q)1tef_q4p.
(499

and

b’ have very weakl dependence at low. Therefore, in a
three-dimensional3D) system, we hava) ~T¥? at low T.
As the system dimensionality approaches 2, the exponent
decreases from 3/2 to 1. However, in most physical systems,
e.g., the cuprates, this exponent is close to 3/2. The product
npza(’,Aﬁg roughly measures the density of incoherent pairs.
The gap equatiori28) [together with Eq.47)], the fer-
mion number equatio¥8), and the pseudogap equati@i)
form a closed set, which will be solved self-consistently for
T., 4, and gaps at and beloW.. For given parameterg,,
u, and gaps, we can calculate the frequency renormalization
> . and then solve the three equations. A equation solver is
then used to search for the solution for these parameters. The
momentum sum is carried out using integrals. Very densely
populated data points @ are used automatically whek,

and/orG, change sharply. A smooth, parabolic interpolation
scheme is used in the integration with respectatoThe
relative error of the solutions is less than .00 °, and the
equations are satisfied with a relative error on both sides less
than 1.0< 10" ’. In this way, our numerical results are much
more precise than those calculated on a finite-size lattice.
The solutions of these equations can be used to calculate
the superfluid densityg/m. Without giving much detail, we
state here that the impurity dressing of the current vertex for
the (short-coherence-lengthcuprate superconductors does
not lead to considerable contributions fewave isotropic
scattering and the long-wavelengih-0 limit. The expres-
sion for the in-planeng/m is given formally by the formula
for a clean systenfbefore the Matsubara summation is car-
ried oud, as in Ref. 25,

Nng N

EZE—'—P(O)' (52
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FIG. 7. Example ofa) the frequency renormalizationEﬁ and 04 03 02 01 0 01 02 03 04

(b) impurity average of the Green's functiona'f, for a d-wave . o
superconductor. The dashed and solid lines denote the real and F|GF; 8. Evolution of (a) the frequency renormalization
imaginary parts, respectively. The full impurity band ferEE is —ImE_w and (b) the impurity average of the Green's function
shown in the inset. The parameters used @re0.92, t, /)

=0.01, nj=0.02u=1, A=0.08. The energy unit ist¢, the half
bandwidth.

—|m€5 with u for a d-wave superconductor at fixeg=n;u?
=0.02. A resonance develops inlm2? asu deviates from the
Born limit. The weak scatteringBorn limit) is more effective in

filling in the DOS within the gap. The parameters used @#€0.9,
where the in-plane current-current correlation functiont, /t;=0.01,A=0.0945.

Pi;(Q)=P(Q) d;; can be simply derived from Eq€31) and

(32) of Ref. 25. The result is given by For d-wave superconductors,n{/m)gcs~A—BT or A
—BT? at very low T, depending on whether the system is
clean or dirty. Bearing in mind thaAZ/A%=1—A2 /A?
~1-C'T%2 we have

P(Q>=; G(K)G(K—Q){ [1+(AZ—~ A% oxek—q

X Go(—K)Go(Q—-K)]

2
56k—q/2)

nS
—~A-BT-CT* (clean,
(9|(H m ( r)

—A2.Go(K) (53) ~A-BT?-CT%? (dirty), (57)

2
(9kH (9kH ’ . o
at very lowT. In other words, pair excitations lead to a new
Using spectral representation and after lengthy but straightr®? term in the lowT superfluid density.

forward derivation, we obtain

n d B. Renormalization of the frequency by impurity scattering
s » dw - - .
E :4A§c; Im (FA(a),k))Z(VEk)ZQDﬁ and the density of states

_2TT

Except in the Born limit, fou=4t, impurity scattering

usually introduces a sharp resonance close to the Fermi level
f(w), (54) in the frequency renormalization for dwave supercon-

ductor. In addition, it induces an impurity band outside the

main particle band. Both the low-energy resonance and the

high-energy impurity band arise from the vanishing of the
~ 1 real part of the denominator of the impurily matrix, Eq.
F(K)=G(K)Go(—K)=—= = > (39), while the imaginary part is small. In Fig. 7 we show an
(lo—e)(io—e)+A; 55 example of(a) the retarded, impurity induced renormaliza-
(55 tion of the frequency- 3= wR— w and(b) the correspond-

which differs fromF(K) by a factorA,. ing impurity average of the single-particle Green'’s function,
As in the clean system, Ed54) differs from its BCS _GR

1 - I
+§GA(w,k)FA(w,k)vek.v¢§

where

counterpart fi./m) onlv by the overall prefacto 2 ~» Which is related to the density of states By w)
u Vi , = . .
partfs/Mscs ONY BY P s¢ =—2ImGR. The curves for-3 R corresponding to the im-
n. A2/n purity band are replotted in the inset, to show the strong
S_ S¢S (56) renormalization of the frequency inside the impurity band.
m AZ m BCS

(The curves for—%/ have been offset so thatX,_,=0.
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FIG. 9. Evolution of the DOIN(w) for a d-wave supercon-
ductor (a) with u at n;=0.02 and(b) with n; in the unitary limitu
=1000. There is a dip ab=0 for smalln; or smallu. The param-
eters used arg=0.9,t, /t;=0.01,A=0.0945.

This offset is compensated by a shift in the chemical poten-
tial x.) The van Hove singularity and its mirror image via
particle-hole mixing are clearly seen in the density of states

and are also reflected H‘\ELRU as the small kinks in Fig.(@).
The real part—3/ is usually neglected in most non-self-
consistent calculatlori‘é It is evident, however, that it has a

very rich structure, and, in general, cannot be set to zero i
any self-consistent calculations. This conclusion holds even

PHYSICAL REVIEW B6, 014512 (2002
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FIG. 10. Residue DOSI(0) at the Fermi level as a function of
(@ n; for u=1000, 10, 5, 3, 2, and 1, and @) u for n;=0.005,
0.01, 0.02, 0.03, and 0.05. Also plotted(® is N(0) as a function
of y(=n;) in the Born limit. The parameters used gue=0.9,
t, /tj=0.01,A=0.0945.

shown in the literature, largely because most authors concen-
trate on the low-energy part of the spectra only, and do not
Solve for the full spectrum of the renormalization @fself-
consistently.

In the Born limit, only the producy=n;u? is a meaning-
ful parameter, not; or u separately. In Fig. 8, we pl@a) the
lﬂequency renormalizatior Im ER and(b) the impurity av-

in the presence of exact particle-hole symmetry, as can bgrage of Green’s function-Im G~ as a function ofw for

easily told from Eq.(39).

For u<O0, the low-energy resonance ilm 25 will ap-
pear on the positive energy side in FigajZ Regardless of
the sign ofu, the resonance peak will become sharpen;as
decreases and 48| increases. For largdu|, the resonant
frequency will be closer tav=0, where — m@f) is small
because of thel-wave symmetry; A smallen; further re-

duces—lmaﬁ. Both factors help minimize the imaginary
part of the denominator of E¢39) and thus lead to a stron-

various values ofi but with a flxedy 0.02.(Note: whenu
is small, this requires an unphysically large) In the Born
limit, these two quantities are identical up to a constant co-
efficient. Asu increases, a resonance develops-im 3R at

smallo. —Im3 R and—Im G become very different, and a
impurity band develops gradually& 0.2 andu=0.5), until

it splits from the main bandu=1). At fixed vy, the Born
limit is more effective in filling in the DOS in the mid-range
of w within the gap and smearing out the coherence quasi-
particle peaks, whereas the langdéimit is more effective in

ger resonance. It should be emphaS|zed that a resonance pgffhg in the DOS in the vicinity ofw=0 but keeping the

does not show up in— ImG since the resonance in
—Im3R requires that—Im G~

point.

quasiparticle peaks largely unchanged. In addition, the main

be small at the resonance band becomes narrower at lang¢han that in the clean sys-

tem or the Born limit, so that part of the spectral weight has

The location of the impurity band is sensitive to the signnow been transferred to the impurity band. Also note that the

and strength of impurity scattering. Far<0, the impurity
band on the negative ener¢gft) side of the plot. Agu| gets
smaller, the impurity band merges with the main bandués

gets larger, it moves farther away, with a much stronger

renormalization ofw. For large|u|, the spectral weight un-
der the impurity band in Fig. (D) is given by X, and the
weight in the main band is reduced to 2{h;). This leads

DOS atw=0 is essentially zero in Fig.(B) becausen; is
very small whenu becomes large for the current choice of
v=0.02.

The effects of the scattering strengthand the impurity
densityn; on the DOS are shown in Figs(e#) and (b), re-
spectively. For the effect ofi in Fig. 9a), we choose an
intermediaten; =0.02. And for the effect of;, we focus on

to a dramatic chemical potential shift as a function of thethe unitary limit, and choose=1000. There is a dip in the

impurity concentratiom; (as well asu). Foru<0, the im-
purity band will always be filled, so that increasingpushes

DOS atw=0 in both the smalu and smalin; cases, mim-
icking a fractional power-law dependence @nAt highern;

the system farther away from the particle-hole symmetry. Foand higher, the DOS is filled in mainly at smatb.
u>0, on the contrary, the impurity band is empty, and the Shown in Fig. 10 are the residue DOS at the Fermi level,

system becomes more particle-hole symmetricalnasn-
creases from 0, and reaches the particle-hole symntitry
the main bangatn,=1—n. This fact implies that REn and

N(0), as afunction of (a) the impurity concentratiom; for
different values ofu from the unitary limitu= 1000 through
u=10, 5, 3, 2, down to 1, antb) as a function of the scat-

Lee’s assumption of an exact particle-hole symmetry is notering strengthu for n;=0.005, 0.01, 0.02, 0.03, and 0.05.

justified so that their prediction of a divergi?Nf w) asw—0

Figure 1Qa) indicates that below certain “critical” value of

is unlikely to be observed experimentally. It should be menn;, N(0) remains essentially zero. This behavior is also im-
tioned that the appearance of the impurity band has not beggslied by the presence of the dip at sm@llin Fig. 9b). The

014512-10
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FIG. 11. Behavior ofT.,u(T.) (left insed, and A(T.) (right 00 0.05 0.1 0.15 0.2
inse) as a function of the impurity scattering strengthat n n;

=0.85, t, /t;=0.01, —g/4t=0.5, andn;=0.05.
FIG. 12. Evolution of(a) Ap¢(T¢), (b) T¢, andu(T) (insed, as

“critical” value for n; in Fig. 10@) is clearly scattering @ function of the impurity concentration; for both positive (
strength dependent. The smallgrthe larger this value. A =100) and negativeu= —100) scattering strength in the unitary
replot (not shown of these curves in terms of IggN(0) as a limit, the Born limit (u=1,y=n;), and intermediatei=—1. Here
function of 1h; reveals that for smalh;, N(0) vanishes "=0-85, 1. /t=0.01, and-g/4t=0.5.
exponentially a® /", whereA is a constant. For compari-
son, we also show in Fig. 18 the Born limit as a function the superfluid density. However, such a power law is not
of y(=n;). As one may expect, the Born limit is rather dif- robust as it is sensitive to the impurity density for a given
ferent from the rest, since it is equivalent to a very sroall type of impurity. The situation with a negativeis similar to
<1 and unphysically large; . A similar activation behavior Fig. 9.
of N(0) as a function ofi is seen in Fig. 1(), where the For given chemical potentigh and the total excitation
“critical” value for u is stronglyn; dependent. The asymme- gap4, the calculation of the frequency renormalization with
try between positive and negativereflects the particle-hole impurities does not necessarily involve the concept of the
asymmetry a=0.9. It should be noted that it is not realistic pseudogap. It is essentially the “self-consistent” impurity
to vary u continuously in experiment. T-matrix treatment by Hirschfeldt al'® except that we now

An’ earlier experiment by Ishidat al?® suggests that have to solve for both the real and imaginary partsSgf
N(0O) varies amil’z, In our calculations, howeveN(0) does  simultaneously in a self-consistent fashion. Our numerical
not follow a simple power law as a function of. The curve results agree with existing calculations in the literature.
for u=1000 in Fig. 1Qa) fits perfectly withan®—b, with Finally, we emphasize the difference between the self-
a~0.175, for 0.002n;<0.05. The damping of the zero consistent impurityT-matrix treatment of the one-impurity

3,29 ; ; H
frequency(not shown, —Im3R_, . also fits this functional problemt®** and the current many-impurity averaging. For

w=0" . . . . .
form very well, witha~0.61. The exponents are different for the former case, the impuritj-matrix will be given by Eq.

different values ofu. Our calculation for then; dependence (373 but with G, replaced bﬁg, i.e., the impurity average
of N(0) is consistent with the result of Fehrenbaéhen of the clean G’(K). As a consequence, the position of the
thatN(0O,n;) it is stronglyu dependent. However, it does not poles of T, is independent of the renormalized DOS, and
seem likely that the simple power IaD\V(O)~ni1’2 may be therefore a resonance peak may exist at ioim the DOS™
obtained in an accurate experimental measurement. Furthethereas it cannot in the current many-impurity case.
experiments are needed to double check this relationship be-
tweenN(0) andn; .

From Figs. 7—10, we conclude that for very smalland
u, the zero-frequency DOSI(0) is exponentially small. At In this section, we study the influence of impurity scatter-
highn;, N(0) is finite in both the Born and the unitary limit. ing on the behavior of; and the pseudogap,4 as a func-
However, for certain intermediate values mfandu [e.g., tion of the coupling strength as well as the hole doping con-
u~1 in Fig. 9a), andn;=0.002 in Fig. 9b)], N(w) van-  centration. First, we study the effect of the scattering strength
ishes with(very smal) w according to some fractional power u and whether it is repulsiveu¢0) or attractive ¢<<0). In
o® wherea<1. We see neither the universal power laws forFig. 11, we plotT. as a function ofu, for a pseudogapped
N(w) predicted by Senthil and Fish&r,nor the divergent d-wave superconductor witim;=0.05. The corresponding
DOS predicted by Ren and Leé® and otherg® curves foru and A=A ,(T.) are shown in the upper left

When the values ai andn; are such thall(w) ~w® with  and upper right insets, respectively. All three quantities,
a<1, one may expect to see a fractional [dwpower law in  x, andA, vary with u. For either sign olu, both T, and A

C. Effects of the impurity scattering on T, and the pseudogap
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FIG. 13. Behavior off., u(T.) (lower inse}, andA(T,) (up- FIG. 1_4. Behavior ofl'c gndA(TC)_ (insgl) as a function of the
per inset as a function of—g/4t; in the unitary limit for u= hole doping concentrationr in the unitary limit foru=—100 and

—100 andn; =0 (solid curve, 0.02(dotted, 0.05(dashed, and 0.1  Mi=0 (solid curve, 0.02 (dotted, and 0.05(dashedl The param-
(dot-dashell For comparison, curves far=0.05 in the Born limit ~ €ters are-g/4t,=0.047, t, /t|=0.003.

are also plottedlong-dasheld Impurity scattering in the Born limit
is more effective in suppressirig, at relatively weak coupling. The

There is enough evidence that zinc impurities are attrac-
other parameters are=0.85, t, /t;=0.01.

tive scatterer for electrons in the cupratésherefore we

are suppressed by increasihg. It should be emphasized concentrate c_>urs_elves on negati_x/ec_:attering in the _unitary
that the chemical potentigl in the two (large =u) unitary ~ imit. Plotted in Fig. 13 ard; (main figure, u (lower inse,
limits does not meet, nor do€k, or A. This is because a and A as a function ofg for increasingn;=0,0.02,0.05,0.1
(large) negativeu creates dilled impurity band below the With u=—100. Also plotted for comparison are the results
main band, and is effective in bringing down the chemicalassuming the Born limit withy=0.05. Clearly, the Born
potential, whereas a positive creates aremptyimpurity  limit is more effective in suppressing, at relatively weak
band above the main band, and tends to raigeward the  coupling, —g/4t=<0.75, consistent with Fig. 12. Botfh.
particle-hole symmetrical poingy=1. This result cannot and and A are suppressed continuously with. However, it
has not been observed in previous, non-self-consistent calcghould be noted that a larger helpsT, to survive a larger
lations where the real part of frequency renormalization is set-g/4t; . This is mainly because the filled impurity band at
to zero. largen; pushes the system far away from particle-hole sym-
In Fig. 12, we compare the effect of the impurity concen-metry (seeu in the lower inset and reduces the effective
tration for different scattering strengths: the Born limit, both fermion density, so that the pair mobility is enhanced and the
unitary limits (u==100), and intermediate=—1. Both  pair mass does not diverge until a largeg/4t; is reached.
(b) T and(a) Ap4(T.) are suppressed by increasing impurity  To make contact with the cuprates, we use the non-
density. This is natural in a model where the pseudogaplouble-occupancy condition associated with the Mott insula-
originates from incoherent pair excitations. As will be seentor physics, as in Ref. 9, so that the effective hopping integ-
below, A ,4(T) is suppressed mainly becauBgis lowered.  ral is reduced td(x) ~tox, wherex=1—n is the hole con-
Except in the Born limit, the chemical potential is fairly ~ centration, andy=0.6 eV is the hopping integral in the ab-
sensitive ton;, as shown in the inset. It is clear that the sence of the on-site Coulomb repulsion. We assume
scattering in the Born limit is the most effective in suppress-— g/4t,=0.047, which isx independent. Then we can com-
ing T,. In comparison with experimer?,calculations at the puteT,, u, andA=A,4(T.) as a function ok. The result
AG level (i.e., the Born limii tend to overestimate th€.  for T, (main figure andA (inseb is shown in Fig. 14 for the
suppression by as much as a factor of 2. This is in gooalean system and;=0.02 and 0.05. In the overdoped re-
agreement with the current result in the unitary limit. At gime,T., as well as the smal\, are strongly suppressed by
large n; for large positiveu, the system is driven to the impurities. This provides a natural explanation for the ex-
particle-hole symmetrical point, where the effective pairperimental observation that, vanishes abruptly at large it
mass changes sign. It is usually hard to suppiedsy pair-  is well known that high crystallinity, clean samples are not
ing at the particle-hole symmetrical point, as indicated by theavailable in the extreme overdoped regime. On the other
solid curve in the lower panel. In fact, exactly at this point, hand, neithef. nor A is strongly suppressed in the highly
the linear Q) term a; in the inverseT-matrix expansion underdoped regime, where the gap is too large. At this point,
vanishes, so that one needs to go beyond the current approxéxperimental data in this extreme underdoped regime are still
mation and expand up to th@? term. Large negative not available. Our result about the suppressiofgandA in
u=—100 is more effective in suppressifig and A than the less strongly underdoped regime>0.1) are in agree-
intermediate negative= — 1, in agreement with Fig. 11 and ment with experimental observatioh$? and other
the DOS shown in Figs.(8) and 10. calculations®®
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FIG. 17. Zero-temperature superfluid density{m), and the
gapA, (insey in ad-wave superconductor as a function of impurity
concentratiom; in the unitary limit u=— 100, solid ling and in
the Born limit (y=n;, dashed ling The parameters ame=0.85,

—g/4t”=0.5, andtl /t”=0.01.

FIG. 15. Behavior of the superfluid density/m and the exci-
tation gapA (insed in a d-wave BCS superconductor as a function
of temperatureT/Tg for impurity concentrationn;=0 (clean,
solid curve, 0.02 (dotted, and 0.05(dashed in the unitary limit
u=—100. T2:0.0416 is theT, in the clean system. The param-

eters aren=0.85;-g/4=0.3, andt, /t)=0.01. parameter ., and the pseudogal,, as well as the chemi-

) ) cal potentialx as a function of temperature in the supercon-
It should be noted, however, that in our simple model,qycting phase. The numerical solutions for these quantities
we dO not Consider the fact that disorder or impurities mayare then used to Study the temperature dependence Of the
reduce the dimensionality of the electron motion and thusyperfluid densityrs/m at various impurity levels. We con-

suppressT.. Furthermore, since induced local spin andcentrate on the unitary limit, which is regarded as relevant to
Kondo effects have been observed near zinc sites in botfhe cuprates. To be specific, we use 0.85, t, /t}=0.01,

zinc-doped YBCO (Refs. 33 and 34 and zinc-doped andu=—100 in the calculations presented below.
Bi,SK,,L&CuQs. 5,%° this raises an important question e first study the impurity effect in the BCS case, without
whether zinc can be treated as a nonmagnetic impurity.  the complication of the pseudogap. Plotted in Fig. 15 are the
superfluid densityng/m (main figurg and the corresponding
D. Gaps and superfluid density belowT . gapA in ad-wave BCS superconductor as a function of the
in the presence of nonmagnetic impurities reduced temperaturél’/TS for the clean system(solid

In this subsection, we study the effect of nonmagneticcurveg’ impurity density n; =0.02 (dotted, and n;=0.05

, o . o dashedl at —g/4t;=0.3. HereT%=0.0416 is theT in the
impurities on the behavior of the excitation the order ( [ c c
P gap clean case. As expected, bathandA(T), as well amng/m,

are suppressed by impurity scattering. In agreement with
experiment®*the low-T normal fluid density is linear i
Y W ] in the clean case, and becomes quadratic in the two dirty
. ] cases. The curves are very similar to the in-plane penetration
: Apg/" Ao\ depth measurement on Zn doped, fully oxygenated
-------- - 7 e YBa,Cu;0; by Panagopoulost al®’
0002 o0z 05 o0z Now we add pseudogap for the underdoped cuprates. We
show in Fig. 16 the temperature dependencedm (main
| figure) and various gapsinsey in a d-wave pseudogapped
superconductor for impurity concentratiom=0 (clean,
L solid curve, 0.02 (dotted, and 0.05(dashedl in the unitary
------- 7;=0.02 limit at —g/4t;=0.5. As the order parameter develops below
- #;=0.05 ] T., the pseudogap decreases with decreasinighis reflects
0 . . . . . L L the fact that the pseudogap in the present model is a measure
0 02 0.4 , 08 038 1 of the density of thermally excited pair excitations. The total
e gapA, the order parametek,., and the superfluid density

FIG. 16. Behavior of the superfluid density/m and the vari- Ns/M are suppressed by increasing, similar to the BCS
ous gaps(insed in a d-wave pseudogapped superconductor as &ase above. However, at givan<T., the pseudogap ,,
function of temperatureT/T2 for impurity concentrationn;=0  remains roughly unchanged. Furthermore, the Towewer
(clean, solid curve 0.02(dotted, and 0.05(dashedlin the unitary  law for the superfluid density is different from the BCS case,
limit u=—100. HereT9=0.0414. The parameters are=0.85,  as predicted in Eq(57). It is now given byT+ T2 and T2
—g/4=0.5, andt, /t;=0.01. +T32 for the clean and dirty cases, respectively. Due to the

0.2 T T T T T I N N |

ng/m
o
=
T
3
3
1
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presence of th@32 term, the lowT portion of the curves for incoherent pair excitations is usually small, and does not
ni=0.02 and 0.05 are clearly not as flat as in Fig. 15. Nevhave a strong effect ofi;, so thatT is roughly determined
ertheless, it may be difficult to distinguish experimentally by its BCS mean-field solution. Whem is large, the Fermi-
T2+ T¥2 from a pureT?2 power law. ThisT32 contribution of ~ Onic frequency renormalization is strong, and the pair disper-
the pair excitations has been used to explain succesbfhdly ~Sion also becomes highly damped. In this case, approxima-
quasiuniversal behavior of the normalized superfluid densit§ion Ed.(23) may not be quantitatively accurate.

ng(T)/ng(0) as a function off/T.. We have also fourid=>° Even without the complication of impurities, incoherent
preliminary experimental support for tHi$'2 term in low-T pairs are not expected to deplete completely the spectral

penetration depth measurement in the cuprates as well §¢ight within the two quasiparticle peaks of the spectral
*® This, however, cannot be captured by the ap-

organic superconductors. Systematic experiments are needitpction’ .
to further verify this power-law prediction. proximation Eq(23). Unfortunately, we still do not know yet

A careful look at the values of the zero-temperature sull0W to solve the Dyson’s equations without this approxima-
perfluid density 6/m), for different values ofn; in both ~ ton due to technical difficulties.
Figs. 15 and 16 suggests that in the unitary limity /M), Another simplification comes from thdwave symmetry
drops faster witm, whenn; is still small. This is manifested ©f the cuprate superconductors under study. Although we
in a systematic study ofn./m), as a function ofn,, as have kept the theoretha}l formalism general for betmdd
shown in Fig. 17, withu= — 100(solid curve. This behavior ~Wave in Sec. Il, the pairing vertex renormalization drops out
has been observed experimentdMylso plotted in the inset when we finally carry out numerical calculations fbwave
is the corresponding zero-temperature gap versusn;. superconductors. Fos-wave superconductors, one WOUI(.j
Clearly, the sloped(n./m)/dn; is much steeper as; ap- have to include self-consistently one more complex equation

’ S I |

proaches zero, very different from the behaviorAgf This for Fhe _renormalization o, when solving for the renor-

demonstrates that;/m is influenced more by the DOS than malization O.f“" And Eqgs.(379 and (379 also I.OOk much.

by the gap size. A very small amount of impurities maymore comphcated than. E39). Nevertheless, since therg IS
strongly suppressni/m),. This conclusion is significant in N© N0de in the excitation gap far wave, the numerics is

data analysis of the penetration depth measurement, esp@_(pected to run faster.

cially when theT=0 value of penetration depth is not mea- A g IS wsallﬂl](nowr%%tgat Lor((jj-war\f(f Fsup:r((:jonduc,tortsr,], the
sured directly! For comparison, we also plot the corre- naersons theorefm breaks dowrl. For Anderson's theo-

sponding curves in the Born limit. While the gap is rem to h.OId’ i.t requires that the gap gnd th? frequgncy are
suppressed faster, in contrast to unitary case, the slo norma!lzed In exgctly the same fashion. Th'|s C‘.’”d'“"r! can
d(ng/m)/dn; is smaller for smallen; . e satisfiedapproximately only in weak-coupling, isotropic
BCS s-wave superconductors, for which the real part of the
frequency renormalization is negligible. Since the frequency
w is a scalar, this condition is violated when the gaphas
In Sec. I, we have used the approximation E2@8) to ~ any anisotropic dependence kbnFurthermore, when the gap
bring the Sing|e_partic|e se|f-energy and thus the gap equd-s ConSiderably Iarge in Comparison with the band width so
tion into a BCS-like form. This approximation derives from that the upper limit of the energy integral cannot be extended
the divergence of th& matrixt,(Q) asQ—0, which is the to infinity, this condition will not be satisfied, either. In both
pairing instability condition. The spirit of this approximation casesT. will be suppressed.
is to “put” the incoherent, excited pairs into the condensate,
by_settingQ=Q. The cc_)ntributic_m _of these_pseudo-Coope_r V. CONCLUSIONS
pairs to the single-particle excitation gap is calculated via
Egs.(15) and(51), weighted by the Bose function. Therefore  In this paper, we extend the pairing fluction theory to
the incoherent pairs and the zero-momentum condensate aggperconductors in the presence of nonmagnetic impurities.
not distinguished from each other in terms of the single-Both the pairing and impurityr matrices are included and
particle self-energy, as they add up to a total excitation gapreated self-consistently. We obtain a set of three equations
However, they are distinct when phase-sensitive quantitiefor [T, u, A(T¢)] or (i, Age, Apg) at T<T,, with the
are involved, e.g., in the calculation ®f and of the super- complex equations for the frequency renormalization. In
fluid density. consequence, we are able to study the impurity effects on
With this approximation, there is a close analogy betweerT, the order parameter, and the pseudogap. In particular, we
the Feynman diagrams in the current pairing fluctuationcarry out calculations fod-wave superconductors and apply
theory in Sec. Il and its BCS counterpart in the Appendix.to the cuprate superconductors. Instead of studying the
When the finite momentum pair propagators are remdwed physical quantities with all possible combinations of the pa-
“pushed into the condensatg’from Figs. 3—6, these dia- rameter:y;, u, g, andn, we mainly concentrate on the nega-
grams will become their BCS counterpart in Figs. 18—20.tive u unitary limit, which is regarded as relevant to the zinc
(The diagram for BCS pairing vertex is not shown in theimpurities in the cuprates.
Appendix) Calculations show that in addition to the low-energy reso-
This approximation is in general good when the gap isnance in the imaginary part of the renormalized frequency, a
large in comparison witfT, and when the impurity concen- considerably largéu| leads to a separate impurity band, with
tration is low. When the gap is small, the contribution of thea spectral weight &, . The real part of the frequency renor-

IV. DISCUSSION
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malization, in general, cannot be set to zero in a self- = G SO + SERY
consistent calculation. The chemical potential varies with the x %’
impurity concentration, so that the assumption of exact Ll ~ - + ~ .-
particle-hole symmetry is not justified when one studies the X =

impurity effects. One consequence of this chemical potential = + S + SERP
shift is that the repulsive and attractive unitary scattering %’ %’
limits do not meet as has been widely assumed in the non = ~ + <,
self-consistent treatment in the literature. Unitary scatterers x X

fill in the DOS_ mostly in the smalb region, Whereas Born FIG. 18. Impurity dressing at the Abrikosov-Gor’kov level in
scatterers do in essentially the whole range within the gap. Acs theory.
smalln; and/or smally, there is a dip atv=0 in the DOS, so

thatN(w) vanishes as a fractional power @f which may in s a strong similarity between the impurity dressing diagrams
turn contribute a fractional power law for the lofvtempera-  for both BCS theory and the pairing fluctuation theory.

ture dependence of the penetration depth. For a pure BCS superconductor, we have the Gor’kov
Both T, and the pseudogap,y(T.) are suppressed by equations,

impurities. In this respect, Born scatterers are about twice as

effective as unitary scatterer. Treating zinc impurities as uni- G8‘1(K)G°(K) =1-AFT(K), (Ala)
tary scatterers explains why the actiaglsuppression is only
half that predicted by calculations at the AG levied., in the G Y~ K)FOT(K)=A% GO(K). (Alb)

Born limit). In the overdoped regime, the gap is small, and

therefore the superconductivity can be easily destroyed by 4t the AG Ieszl, the relationship between the impurity
small amount of impurities. In contrast, it takes a largerdressed Green's function§ and F is represented by the

amount of impurities to destroy the large excitation gap inFe€ynman diagrams shown in Fig. 18. Define the impurity

the underdoped regime. averageG,, as in Eq.(19), and

The reasom\ ,¢(T.) is suppressed is mainly becaukeis
suppressed. In fact, for a giveh<T., the pseudogap re- E=n k—KkDI2ET (K’ A2
mains roughly unchangddctually it increases slightlyThe @ '% Ju€ KD, (A2)

suppression of the total excitation gap arises from the sup-

pression of the order parameter. The density of incohererftS Well @s their complex conjugate. Note that Fig. 18 is ac-
pairs, as measured by, slightly increases for not-so-large tually Fig. 105 in Ref. 24. Without giving details, we give the

n;. This supports the notion that nonmagnetic impurities dd€Sult following AG:

not mainly break incoherent pairs. Instead, they scatter the , — = .t

Cooper pairs out of the condenséte. (io— €= G,)G(K) +(A+F)F(K)=1, (A33)
Our self-consistent calculations show that in the unitary _

limit, the low-T superfluid density is quadratic in a BCS (iw+ e+ G_,)F(K)+(AF +F1)G(K)=0. (A3b)

d-wave superconductor, in agreement with existing calcula- =~ ~ . -~ ) — ~ —

tions and experiment. Strong pair excitations add an addPefineio=i0=G,, io=-io=G_,, A,=Ac+F,, and

tional T32 term, with preliminary experimental support. As a Af =Aj{ +F{,. Then we obtain

function of increasing;, the zeroT superfluid density de- .

creases faster at first for unitary scatterers, whereas the op- i w— €y

posite holds for scattering in the Born limit. The former be- G(K)=— ~ e’ (Ada)

havior is in agreement with experiment. (lo—e)(io—ed+ AL Ak

A *
ACKNOWLEDGMENTS FI(K)= — _~Ak . (A4b)
We would like to thank A. V. Balatsky, P. J. Hirschfeld, (io—€)(io—€)+ AL A
and K. Levin for useful discussions. The numerics was in
part carried out on the computing facilities of the Departmen
of Engineering, Florida State University. This work was sup
ported by the State of Florida.

Ford wave, the first equation becomes E4Q0). Note that
tG(K) is no longer symmetrical im in general as a conse-
“guence of impurity scattering, b&(K) still is, sinceF(K)
involves * w pairs.

The above result can be easily extended to self-consistent
APPENDIX: IMPURITY DRESSING FOR BCS THEORY AT impurity T-matrix calculations, by replacing the AG-level

THE ABRIKOSOV-GOR’KOV LEVEL

In this Appendix, we present the impurity dressing for a //K\\ § SN §
BCS superconductor, following Abrikosov-Gorké¥?*but  /  — T, = % SN T I = g\
. — A g i i
in a more general form, namely, we do not assu@e,

p= \
=—G,,. This will make it easier to understand the current FIG. 19. Replacement scheme from the AG level impurity scat-
theory in the presence of strong pairing correlations, as thenering to self-consistentimpurity treatment in BCS theory.
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Tor=UF T, +UG_,Tat. (ASb)
Finally, one has
u(l—ug,w)
T,= — — —, (A6a)
(1-uG,)(1—uG_,)+Uu?F FI
UZEw
Tat(w)= . (A6b)

(1-uG,)(1-uG._,)+u?F F

where G=3,G(K), FT=3.F'(K), and similarly for their

ces, as shown in Fig. 19. The relationship between the regiwwomplex conjugate. Note these two equations are formally

lar and anomalous impurityf matrices T, and T,+ are

identical to Eqs(37a and(370), except that the curreft,

shown in Fig. 20. One can easily write down the correspondeontains the factoA already.

ing equations, as follows:

T,=u+uG,T,—UF,T, (A5a)

Now with the new definitioniw=iw-3,, (0= —iw
=3 _ ., A=A+3,, andAF=AF+3%, as well as3,,
=n;T, and>} =n;T,t, Egs.(A4) for G andF remain valid.
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