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Phase transitions in isolated vortex chains

Matthew J. W. Dodgson
Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge, CB3 0HE, United Kingdom

~Received 22 January 2002; published 26 June 2002!

In very anisotropic layered superconductors~e.g., Bi2Sr2CaCu2Ox) a tilted magnetic field can penetrate as
two coexisting lattices of vortices parallel and perpendicular to the layers. At low out-of-plane fields the
perpendicular vortices form a set of isolated vortex chains, which have recently been observed in detail with
scanning Hall-probe measurements. We present calculations that show a very delicate stability of this isolated-
chain state. As the vortex density increases along the chain there is a first-order transition to a buckled chain,
and then the chain will expel vortices in a continuous transition to a composite-chain state. At low densities
there is an instability towards clustering, due to a long-range attraction between the vortices on the chain, and
at very low densities it becomes energetically favorable to form a tilted chain, which may explain the sudden
disappearance of vortices along the chains seen in recent experiments.

DOI: 10.1103/PhysRevB.66.014509 PACS number~s!: 74.60.Ec, 74.60.Ge
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I. INTRODUCTION

The vortex system in layered superconductors,1 which in-
cludes the high-Tc cuprates, displays a rich set of physic
phenomena, such as a thermodynamic melting transition2 a
pinning-induced disordering transition,3 and various struc-
tural transitions at different angles.4,5 The average density
and orientation of the vortices are controlled by the magn
field, because each vortex carries one quantum of flux,F0
5hc/2e. In this paper we are concerned with the vort
chains that appear in a certain regime of tilted magn
fields. These chains, which consist of a high density of fl
lines perpendicular to the layers, were first observed with
Bitter decoration technique by Bolleet al.6 A qualitative ex-
planation followed shortly7 in terms of the proposed
crossing-lattice state in tilted fields.8,9 This state consists of a
lattice of flux lines perpendicular to the layers crossed b
lattice of flux lines along the layers. The in-plane lattice
strongly distorted due to the anisotropy10 and has a large
spacing along the layers. Huse7 surmised that a possible a
tractive interaction between the two species of flux li
would lead to a higher density of out-of-plane flux lin
along chains, with an interchain separation equal to the
plane flux-line spacing. This picture seems to be consis
with the experimental observations.11 The energy of the
crossing-lattice state was considered by Benkraouda
Ledvij,12 who found a transition from a single lattice of tilte
flux lines to the crossing-lattice state as the tilt angle
increased for sufficiently large anisotropy. Their wor
however, neglected interactions between the two cros
lattices.

Interest in the crossing-lattice state has been revitalize
the last couple of years. Koshelev13 has shown that the re
gime for crossing lattices is larger than previously expect
This is because a correct treatment must include the inte
tions between the perpendicular flux lines, and a distort
away from ideal crossing lattices has a lower energy. Exp
mental evidence comes in the form of the unusual dep
dence of the melting temperature of the vortex lattice a
function of magnetic field angle,14,15which is consistent with
the crossing-lattice state rather than a single tilted flux-l
lattice.13 In addition, the work of Koshelev explained qua
0163-1829/2002/66~1!/014509~9!/$20.00 66 0145
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titatively the attraction of perpendicular flux lines that lea
to the vortex-chain state in a certain field range. Apart fro
more detailed work on the melting transition4 and on mag-
netization curves,5 these concepts have also inspired rec
scanning Hall-probe16 and Lorentz-microscopy17 measure-
ments on the vortex-chain state. The Hall-probe experime
are similar to the Bitter decoration technique in that th
only probe the field distribution emanating from the surfa
of the superconductor. However, they have the advantag
speed and resolution, and are not a ‘‘one-off’’ measurem
so that the system can be finely tuned to observe diffe
effects. These new experiments have shown unexpe
properties within the chain state. In particular, it is possi
to tune to a field range where all of the out-of-plane fl
lines are arranged in chains.16 It is this ‘‘isolated-chain state’’
that we will study in this paper, where we find that the d
ferent attractive and repulsive forces between flux lines al
the chain lead to some novel structural phase transitions

We will use the following geometry. Thez axis is perpen-
dicular to the layers, and the component of magnetic ind
tion Bz determines the density of ‘‘pancake’’ vortices18 in
every superconducting layer. The in-plane field is along thx
axis, andBx gives the density of the flux lines in this direc
tion. These in-plane flux lines have their centers in the sp
ing between layers and so are commonly called Joseph
vortices.19 A z-directed flux line is made from a stack o
pancake vortices and contains circulating currents in the
ers up to a distance of the penetration depth,lab[l, from
the vortex center. A Josephson vortex in thex direction has
an ellipsoidal current pattern, with the flux and currents d
caying over the much larger distancelc5gl in the y direc-
tion. Here, g is the anisotropy ratio, which is large fo
weakly coupled layers. The phase singularity of the Jose
son vortex is confined between two neighboring layers, w
separationd, where the phase difference across the lay
changes by 2p over a distance of the Josephson lengthgd.

The most simple structure of the crossing-lattice state
when an ideal triangular lattice„with spacing aP

5@(2/A3)F0 /Bz#
1/2
… of pancake-vortex stacks crosses

stretched triangular lattice of Josephson vortices, with se
ration in thez direction ofaJz5@(2/A3)F0 /Bx#

1/2/Ag. Ko-
shelev has shown how the interactions between panc
©2002 The American Physical Society09-1
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MATTHEW J. W. DODGSON PHYSICAL REVIEW B66, 014509 ~2002!
stacks and Josephson vortices lead to an effec
attraction.13 At the low pancake densities we are interested
here (Bz,F0 /l2) this means that there will be large disto
tions from the ideal triangular pancake-vortex lattice, with
higher density of pancake stacks located over the cente
the Josephson vortices. This leads to the high-density ch
of pancake stacks that are observed by Bitter decoration6,11

with an interchain spacing ofaJy5Ag@(A3/2)F0 /Bx#
1/2.

Eventually, for smallBz!F0 /l2, all of the pancakes lie
over the Josephson vortices. This isolated-chain state h
pancake-stack separation along the chains ofach
5(F0 /Bz)/aJy ; see Fig. 1.

The crossing lattices must compete energetically with
more conventional tilted lattice of vortices. This is qui
similar to the vortex lattice in a continuous superconduc
only there is a kinked structure along each vortex with
periodicity L5d(Bx /Bz). The anisotropy of the current
means that there is a stretched aspect ratio of this lattice
addition, this distortion may be different from that expect
from simple rescaling20 due to the attraction of tilted vortice
along the direction of tilt. This may lead to a ‘‘tilted-chai
state,’’21,22 which is distinct from the crossing chains me
tioned above. Koshelev showed that for intermediate p
cake densitiesBz.F0 /l2 there should be a transition at
small value ofBx5Bx* '0.01Bz between the tilted lattice
(Bx,Bx* ) and the crossing lattices (Bx* ,Bx).

In this work we will concentrate on very small out-o
plane fields andBz!Bx,F0 /l2 when all of the pancake
stacks become attached to the centers of the Josephson
tices, giving the isolated-chain state observed in recent s
ning Hall probe measurements.16 We find that the stability of
the isolated-chain state is quite delicate. We first note in S
II that the existence of a stable crossing configuration in
isolated chains is only possible for large enough anisotro
layer spacing, and pancake separation. We also find tha
energy of the isolated chain as a function of pancake-s
separation has a minimum; i.e., there is an optimum den
of pancake stacks along a chain, and there will be an in
bility towardsclusteringwhen the total density is low. As th
density of pancake stacks along the chain increases~at a
fixed density of Josephson vortices!, the chain will buckle

FIG. 1. Optimal displacements of the vortex chain of panca
stacks due to the crossing of Josephson vortices, using the pa
eters appropriate for BiSCCO quoted in the text. The figure ta
the results from calculations forach510l, andaJz520d which for
the isolated-chain state corresponds toBx553 G andBz50.8 G.
The displacements are magnified by 2 for clarity, and thez scale is
not the same as thex scale.
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~Sec. III!, and thenejectvortices at a critical minimum sepa
ration ~Sec. IV!. More surprisingly, at very low pancake den
sity the chain state may be replaced by a chain of til
stacks~Sec. V!. These results are summarized in Figs. 2 a
3, where we plot the calculated phase boundaries for th
first-order transitions: clustering, buckling, and tilting as w
as a continuous ejection transition~a view of the different
phases is shown in Fig. 4!. Finally, in Sec. VI we review the
physical basis of the predicted transitions, then discuss
extent to which these transitions have been observed ex
mentally, and consider the effect of fluctuations due to fin
temperature or quenched pinning disorder.

We conclude this Introduction with a note on the para
eters. The experiments we have referred to6,11,16 were per-
formed on the extremely anisotropic cuprate Bi2Sr2CaCu2Ox
~BiSCCO!. Where we make explicit calculations we wi
take the following appropriate parameters:g5500, l52000
Å, and d515 Å, consistent with many experiments; se
e.g., Refs. 16 and 23. This gives a Josephson length~the size

e
m-
s

FIG. 2. Phase diagram of the isolated vortex chain, show
four phases: isolated chain of tilted stacks, isolated chain of stra
stacks crossing Josephson vortices, isolated buckled chain, and
with chains plus ejected vortices. Axes show the spacing of panc
vorticesach and the Josephson vortex spacingaJz within the chain.

FIG. 3. Same phase diagram as in Fig. 2 but with axes conve
to the in-plane and out-of plane components of magnetic fie
assuming the Josephson vortices form a regular stretched trian
lattice.
9-2
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PHASE TRANSITIONS IN ISOLATED VORTEX CHAINS PHYSICAL REVIEW B66, 014509 ~2002!
of the nonlinear core of a Josephson vortex! of gd
57500 Å@l.

II. STRUCTURE OF THE ISOLATED VORTEX CHAIN

Koshelev has estimated the structure of a pancake s
that crosses the center of a single Josephson vortex.13 In the
crossing configuration there is a Lorentz force on the p
cakes in a direction parallel to the Josephson vortex, wh
must balance the attraction of each pancake to its stack.
distorts the pancake stack, with the largest displacement
the two pancakes immediately above and below the Jos
son core. The distortions give an energy gain ofDE3

'28.4«0d(l/gd)2/ln(3.5gd/l). Here «0d5(F0/4pl)2d
is the typical energy scale for pancake interactions. T
causes the pancake stack to be attracted to a stack of Jo
son vortices within the crossing-lattice state. Koshelev’s
sult uses a quadratic approximation for the pancake-to-s
attraction. Recent work24 using the correct potential ha
shown that, while Koshelev’s estimate for the crossing
ergy is close to the full result, a stable crossing configurat
only exists for extreme enough anisotropy,g.gmin
52.86l/d. In this section we include the interaction betwe
pancakes in different stacks separated byach along an iso-
lated chain. For finiteach we find a further reduction of the
stability limit of crossing found in Ref. 24. We also find
minimum in the energy of the chain as a function
stack separation, which leads to a clustering instability wh
ach@l.

To calculate the crossing configuration of the chain,
use the following assumptions: First, we neglect the effec
induced Josephson currents due to displacing pancakes
their stacks~reasonable for large values ofgd/l and small
enough displacementsu,gd). Second, we utilize the long
range of the remaining electromagnetic pancake in
actions,18 of order l in the z direction. There are many
(;l/d;102) pancakes that contribute to the current dis
bution in one layer, determining the potential felt by a giv
pancake. We can therefore reduce this many-body optim
tion problem to a one-dimensional problem, considering
displacement of a row of pancakes in one layer under
potential due to the ideal chain of pancake stacks~the cor-

FIG. 4. View from above of the different phases present in Fi
2 and 3:~i! tilted chain,~ii ! clusters of chain,~iii ! isolated straight
chain,~iv! mixed buckled chain, and~v! buckled chain.
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rections due to the displacements in other layers is sm
when the number of pancakes with large displacement
much less thanl/d).

Within this scheme, the energy profile~per stack! for dis-
placing byun a row of pancakes in thenth layer when there
is a Josephson vortex between layers 0 and 1 crossing
chain is

DEn~un!52
F0d

c
Jn

yun1Vem
row~un!. ~1!

The first term here comes from the Lorentz force on
pancakes due to the in-plane current density from the Jos
son vortex,Jn

y , and tends to pull the pancakes away fro
their stacks. The form of this current will be discussed mo
in Sec. III, but the numerical value is taken from Ref. 2
e.g., the current in then51 layer ~immediately above the
Josephson vortex! is J1

y52.28«0c/F0gd. The second term is
the attractive magnetic interaction of the pancake row w
the remainder of all the stacks in the chain. Clem show
for a single pancake26 that this has the same interaction e
ergy as the sum of a pancake with a full stack,Vem

stack(R)
52«0dK0(R/l) plus a pancake with its anti-imageVem

pc-pair

52«0d ln(R/L), so that for the entire row we find

Vem
row~u!52«0d@K0~u/l!1 ln~u/2l!1gE#12«0d

3(
j Þ0

K0F jach1u

l G2K0S jach

l D1 lnF jach1u

jach
G . ~2!

@Euler’s constantgE is needed to fix the zero of energy t
that of fully aligned stacks; cf. the small-x expansion of the
modified Bessel functionK0(x)#.

Such energy profiles for then51 pancake row are show
in Fig. 5 for different values ofach with the choice of the
ratio gd/l53.75 ~a reasonable choice for BiSCCO!. For di-
lute chains there is a stable minimum~as expected from the
results of Ref. 24!, which determines the optimal displace
ment. However, this stability disappears once the separa
is below the critical value ofach

min55.3l. There can be no
stable isolated-chain state for densities higher than this c
cal value.27 Figure 5 also suggests that the crossing confi
ration is only metastable, with a lower energy atu1
50.5ach, but this is not reliable as the simple Lorentz for
argument does not hold for pancake displacements of su
large fraction of the stack separation. For such displacem
the original Josephson vortex becomes completely fr
mented, and a different approach is needed. In fact, the c
peting state here is a ‘‘tilted chain,’’ and in Sec. V we w
calculate the energy of the tilted chain, to compare to
isolated-chain state.~A third possibility is a solitonlike
structure28 that we will not consider here.!

The displacements of the entire stacks are shown in Fi
for ach510l and a Josephson-vortex separation ofaJz
520d ~this corresponds toBx553 G for our parameters!. All
of the displacements contribute to the total crossing ene
gain. We find that the crossing energy per pancake stack
lowers from DE3(`)'20.21«0d for an isolated stack to
DE3(ach

min)'20.26«0d as the stacks reach the critical sep

.
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MATTHEW J. W. DODGSON PHYSICAL REVIEW B66, 014509 ~2002!
ration ach
min . Therefore within the region of stable crossin

there is a pinning energy to the Josephson vortex centers
unit length of pancake stack,

«Jv-pin5DE3 /aJz'0.2«0~d/aJz!, ~3!

where the last result is with our parameters for BiSCCO.
In Fig. 6~a! we plot the total energy per pancake of t

isolated chain,Ech5
1
2 ( j Þ0Vem

stack( jach)1(d/aJz)DE3(ach).
Note that there is a minimum atach58.2l, reflecting the fact
that at large separations the pancake stacks attract each
This unusual feature has been explained by Buzdin
Baladie29 by considering the distorted pancake stacks of F
1 as the superposition of a straight stack plus a serie
pancake-antipancake dipoles. The straight stacks give a
pulsive term, but this is exponentially small forach@l,
while the dipoles give a weak attractive term that only fa
off like 1/ach

2 ~note that there is some similarity to the attra
tion between tilted flux lines21,22!. Therefore there is a ne
attraction at large distances, which will destabilize a hom
geneous chain at very low densities.

To formally describe this instability we should consid
the free energy density as a function of out-of-plane fie
f (Bz)5 f ch(Bz)1«stackBz /F0. Here«stack is the line energy
of a pancake stack,f ch(Bz)5Ech(ach)/achaJyd and Bz
5F0 /achaJy . In Fig. 6~b! we plot f ch(Bz) using the same
data in Fig. 6~a!. We also note that the thermodynamica
stable phase is determined by the minimum Gibbs free
ergy g(Hz)5 f @Bz(Hz)#2BzHz/4p with Hz54p] f /]Bz .
By a geometric construction we see that the pointBz5Bz*

1

on f ch(Bz) where a straight line from the origin connec
with the same gradient must haveg50, and there is a first-
order phase transition between a Meissner phase with

FIG. 5. Energy profiles for displacing a pancake row within
chain of pancake stacks,Vem

row(u1) ~dashed lines!, and the total en-
ergy changeDE1(u1) with a Josephson vortex below the panca
row ~solid lines!, for different values of the pancake-stack spaci
ach. Note how the metastable minimum disappears for spac
smaller thanach

min55.3l. Each curve is only plotted up tou1

5ach/2. The fact that for all values ofach the lowest energy is for
large displacements is not a physical result, as the Lorentz f
argument will break down whenu1 is a significant fraction ofach.
These results are for a fixed value ofgd/l53.75.
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pancake stacks and a finite density of stacks withach

5ach*
1 . All the points at lower densityBz,Bz*

1 haveg.0
and so are thermodynamically unstable. In fact, similar ar
ments determine thatf ch(Bz) must always be a convex func
tion. The dotted line represents the region where the cu
ture of f ch(Bz) is positive, meaning that the solution here
always unstable.

The straight line that determinesBz*
1 is given by f

5BdHc1
z /4p wheredHc1

z is the change in the lower critica
field due to the attraction of pancake stacks to the Joseph
vortices. In Fig. 6~b! it is given by dHc1

z 522.531023Hc1
z

which is hardly measurable. In real experiments, howev
the geometry of the samples often makes demagnetiza
effects important such that the averageBz becomes fixed to
the external fieldHext, rather than toH. This means that
small values ofBz are accessible and that forBz,Bz*

1 we
may expect a coexistence ofBz50 andBz5Bz*

1 phases~cf.
the intermediate state in type-I superconductors30!. Alterna-
tively we could describe this mixed regime in terms of ‘‘clu
ters’’ of pancake stacks with separationach*

1 . The relative
proportion of space taken up by these clusters is determ
by the value ofBz , but the size of individual clusters de
pends on the energy of the ‘‘domain wall’’ between the clu
ter of stacks and the region of no stacks, compared to
magnetic energy cost of large clusters with the wrong fl
density. Also, in the experimental situation one can have
ferent pancake densities on the different chains, so the in
mogenous state may have coexisting empty and filled cha
Our results for the critical field separating the clustered ph
from the homogeneous isolated straight chains are show
Figs. 2 and 3.

s

ce

FIG. 6. ~a! The energy per pancake within the isolated chain
a function of separationach whenaJz520d. Note the presence of a
minimum energy atach58.2l. ~b! The same result, but expresse
as the energy densityf ch(Bz) as a function of the out-of-plane flux
densityBz5F0 /achaJy . The thick line shows where the functio
has positive curvature, required to ensure local stability. The en
function must be convex, and so for densities less thanBz*

1 the
chain will phase separate into clusters withach5ach*

1 and regions
with no stacks.
9-4
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III. BUCKLING INSTABILITY WITHIN
THE VORTEX CHAIN

It is important to realize that, while the isolated-cha
state gains energy due to the Lorentz force of the Josep
vortex currents, there is an energy penalty for the panc
stacks to be close to each other. One consequence of thi
maximum density above which pancake stacks will
ejected from the chain. This critical density will be derive
in the next section. Below this density, however, the ch
can already react to the stack repulsion by buckling. N
that we will assume that the Josephson vortices rem
straight, as in experiments they are held in place by the
teractions with Josephson vortices in neighboring chains,
the chain separation is much smaller than the interac
range for Josephson vortices,aJy!gl. In contrast, the inter-
actions between pancake stacks on different chains are in
dilute limit, aJy@l, and so are easily displaced.

To calculate this buckling, we need to know the ene
gain from a crossing event when the pancake stack is
placed away from the center of a Josephson vortex.
therefore need the full current profile of a Josephson vor
which is a solution of the nonlinear equations that arise fr
the London-Lawrence-Doniach model.19,9 An accurate nu-
merical solution for a Josephson vortex is described in A
pendix B of Ref. 31. For a vortex directed alongx̂ centered
at y50 and between then50,1 layers, the current in they
direction can be written25 ~ignoring screening, i.e.,n,l/d
andy,lc),

Jn~y!5
2c«0

F0gd
pn~y/gd!, ~4!

with pn( ỹ)5fn8( ỹ) the reduced superfluid momentum
where the phase has the form32

fn~ ỹ!5tan21F S n2
1

2D
ỹ

G1

0.35S n2
1

2D ỹ

F S n2
1

2D 2

1 ỹ210.38G2

1

8.81S n2
1

2D ỹF ỹ22S n2
1

2D 2

12.77G
F S n2

1

2D 2

1 ỹ212.02G4 . ~5!

When y50, this gives the results used in Sec. II, wi
Jn(0)5(2c«0 /F0gd)Cn /un2 1

2 u, andC150.57, C250.86,
C350.99, andCn'1 for n.3.

We can now recalculate the crossing energy for
arbitrary distance between a pancake stack and the ce
of a Josephson vortex. Within the quadratic appro
mation used in Refs. 13 and 25 one can easily solve
crossing configuration for a single stack. WritingDEn(un)
52(F0d/c)Jn(y)un1 1

2 aun
2 , where we take a

5(«0d/l2)ln(l/rw) with r w a short-distance cutoff, we
find the relaxation energy
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DE3~y!522S l

gdD 2 1

ln~l/r w! (
n52`

`

@pn~y/gd!#2. ~6!

Koshelev takesr w5u1 ('0.29l2/gd for y50), and in Ref.
24 we have shown this to be a good approximation to
result when the full form of the pancake-stack interaction
used.

This result for the crossing energy as a function of sta
displacementuy is shown as the dashed line in Fig. 7, whe
there is one Josephson vortex for every 25 pancakes alo
stack. As might be expected, the energy increases quad
cally at smalluy. More interesting is the fact that the cros
ing energy vanishes only asDE3'2l2/uy2 for uy@gd
~note that an exponential suppression will occur at extrem
long distancesuy.lc). In contrast, also shown in Fig. 7~the
dotted line! for ach55.5l is the repulsive energy cost fo
displacing one pancake stack away from a chain,Erep

5( j Þ0Vem
stack@A( jach)

21uy2/l#. This contribution vanishes
exponentially whenuy.Aachl, and so the total energy i
always negative for large enoughuy. This gives the possibil-
ity of two minima in the total energy~see the solid line in
Fig. 7! and a first-order transition where the displacem
jumps to a finite value asach decreases. While we hav
started by considering displacing a single stack from
chain, it is this instability that drives a buckling of the who
chain.

To estimate the buckling transition we use a variatio
approach for the buckled configuration@see the inset of Fig.
8~a!#. This configuration is only characterized by a sing
displacement parameteruy, and so we can look at the energ
profiles inuy for different ach/l. First, the energy per pan
cake is calculated before crossing relaxations,

E0
b-c~uy!5

«0d

N (
iÞ j

K0@A~ i 2 j !2ach
2 1~yi2yj !

2/l#, ~7!

FIG. 7. The energy profile when we pull one pancake sta
away a distanceuy from the isolated chain state forach55.5l and
aJz525d. The geometry is shown in the inset. The dashed l
shows the energy from the crossing events on the displaced s
The dotted line is the interaction energy of displaced stack with
other stacks on the chain. The solid line is the sum of these
contributions. Note the presence of two minima, one foruy50 and
a lower minimum atuy54.9l.
9-5
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MATTHEW J. W. DODGSON PHYSICAL REVIEW B66, 014509 ~2002!
with yi50 for i even andyi5(21)( i 11)/2uy for i odd. Next
we checked for the stability of crossing, as in Sec. II, a
found that the crossing configuration becomes unstabl
ach,2.65l. Finally, to calculate the energy gain from cros
ing the Josephson vortices, we use the result~6!, giving the
total energy of the buckled chain,

Eb-c~uy!5E0
b-c~uy!1

d

2aJz
@DE3~0!1DE3~uy!#. ~8!

In Fig. 8~a! we plot this energy forach/l from 5.2 to 6.0,
with aJz525d, showing how the minimum energy of a buc
led chain crosses the energy of a straight chain asach de-
creases. Note that the minimum for a finiteuy is quite shal-
low, and so we might expect large fluctuations in the ext
of buckling along the chain due to random vortex pinnin
which is discussed in Sec. VI. Also shown in Fig. 8~b! is the
optimal displacementuopt

y as a function ofach, which has a
smallest value ofuopt

y 52.3l at the first appearance of~meta!
stable buckling atach55.8l and then increases at high
densities.

It has been shown in Sec. II that one should plot
energy density of the chain as a function of the out-of-pla
flux densityBz , in order to determine the stable thermod
namic phases. Such a plot is shown in Fig. 9 comparing
straight and buckled chains. It shows that the isola
straight chains atBz5Bz*

22'1.3 G have the same Gibb
free energy as the buckled-chain state atBz5Bz*

21

'2.5 G. Therefore at fields withBz*
22,Bz,Bz*

21 the ther-
modynamic phase will be a coexistence of straight and bu

FIG. 8. ~a! Energy of the buckled chain~see inset! as a function
of the buckle parameteruy, for stack separation along the cha
ach/l55.2, 5.4, 5.6, 5.8, and 6.0. For the separationach/l56.0
there is only one minimum atuy50. For ach/l55.8 there is a
second minimum atuy53.3l. The remaining cases have their low
est minimum at finiteuy. ~b! The size of the optimum buckling
distortionuopt

y as a function ofach.
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led regions, with the relative proportion linearly depende
on Bz . Note thatBz*

22 is only slightly higher thanBz*
1 so

that there is only a small regime where pure isolated stra
chains are the stable phase. The same procedure has
followed for a range ofaJz /d, and the resulting boundarie
to the mixed buckled chains are shown in Figs. 2 and 3.

IV. EJECTION OF PANCAKE STACKS FROM THE
ISOLATED CHAIN

We now consider a simple model for the energy of t
composite state where a fraction of the pancake stacks
not located on the chains. This model will show that there
a continuous phase transition between this composite s
and the isolated-chain state as a function ofBz . The order
parameter of this transition is the density of the dilute latt
of pancake stacks not trapped on chains. The simple m
assumes that the chain spacingaJy and the spacing betwee
pancake stacks are much greater than the penetration d
l. In this case we can separate the total interaction ene
density of pancake stacks in the formf tot5 f ch(nch)
1 f dil(ndil), where nch and ndil are the @two-dimensional
~2D!# densities of pancake stacks on and off the chains,
spectively, and the total density isnch1ndil5n tot5Bz /F0.
The separation of pancakes along the chain isach
51/aJynch. The chain energyf ch(nch) is to be calculated as
in Secs. II and III for straight and buckled chains, resp
tively. We will see that the phase transition to the compos
state occurs when there is a minimum inf ch(nch), and so
near this transition we will expand,

f ch~nch!5e8l2~nch2nch
c !2. ~9!

The density of pancake stacks not on a chain is small n
the transition, so that the interaction energy density is sim
@using the limitK0(x)'Ap/2xe2x and only including near-
est neighbors#

FIG. 9. Energy density of the buckled-chain state withaJz

520d as a function of out-of-plane fieldBz . Also shown is the
result for the straight chain from Fig. 6~b!. The two points joined by
the straight line have the same Gibbs free energy, and those d
ties between these points are thermodynamically unstable towa
mixed phase of straight and buckled chains.
9-6
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f dil~ndil!53«0A2plndil
25/4e21/lndil

1/2
. ~10!

Note that in the small-ndil limit, all terms in a power series
expansion off dil(ndil) are zero; i.e., the function is extreme
flat. For this reason the critical total density at the transit
is only determined by the minimum inf ch(nch) at nch

c . For
n tot,nch

c , all of the pancake stacks are on chains. At den
ties just abovench

c the energy is minimized with a dilute
off-chain density,

ndil5dn tot2
3A2p

4

«0

«8

1

l5/2dn tot
1/4

e21/ldn tot
1/2

. ~11!

The second term is extremely small for the fields we
interested inBz!F0 /l2, so that we can say in the compo
ite state atn tot.nch

c there is a fixed density on the chain
nch5nch

c and the remaining density isndil5n tot2nch
c . The

phase boundarynch
c between the composite state and t

isolated-chain state is calculated from the minimum off ch.
In Figs. 2 and 3 this boundary is plotted, but is not dist
guishable by eye from the transition between the mix
buckled and pure buckled chain. Therefore the pure buck
chain has a very narrow range of existence. It is worth sta
that an ejection transition has been observed experim
tally16 with results that seem to be consistent with the abo
although a quantitative analysis of the transition has not
been published.

V. CROSSING-TO-TILTED TRANSITION WITHIN
ISOLATED CHAINS

In this section we calculate the energy of a chain of tilt
vortices and compare to the chain of crossing vortices.
tilted chain is an alternative configuration to the cross
chain with the same density of pancake and Josephson
tices ~see Fig. 10! where the tilt angle is determined b
tanu5L/d5ach/aJz . These tilted stacks have an increas
energy of pancake interactions but there may be an en
gain from replacing fully developed Josephson vortices w
many short Josephson segments of lengthL,gd. To calcu-
late the energy of the tilted chain, we use the linear appro
mation of the London-Lawrence-Doniach model,9,31 where
we ignore the nonlinear effects from regions with large ph
differences across neighboring layers. This approximatio
justified as long as the lengthL is much smaller than the

FIG. 10. Configuration of the tilted chain, where pancakes i
stack are displaced from layer to layer byL5ach/aJz .
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Josephson lengthgd and the pancake separationach. Note
that the conditionL,gd corresponds toBx /Bz,g, which is
the case we are interested in The energy due to pan
interactions in the linear approximation is

Epc
tilt5

1

8pE d2k

~2p!2

dq

2p

3
@11~gl!2~k21q̃2!#uSzu2

@11l2~k21q̃2!#@11~gl!2k21l2q̃2#
, ~12!

with Sz(k,q)5F0d( j ,ne2 iqnde2 ikx( jach1nL) and q̃2

5(2/d)2sin2(qd/2). The integral should be cut off due to th
pancake cores atk.p/jab and due to the layered structure
q.p/d. Similarly, the Josephson segments interact with
energy contribution,

EJv
tilt5

1

8pE d2k

~2p!2

dq

2p

uSxu2

@11~gl!2k21l2q̃2#
, ~13!

with Sx5(2F0 /kx)sin(kxL/2)( j ,ne2 iq(n11/2)d

3e2 ikx[ jach1(n11/2)L] .
The integrals can all be done exactly, leaving a sum o

the values ofkx52pm/ach. We have evaluated these sum
numerically to find the energy of the tilted chain. This
shown foraJz525d as the dotted line in Fig. 11. Also show
as the solid line is the energy per pancake of the cross
chain with the same density of pancakes and Josephson
tices,Ecross5Ech1EJv

cross, whereEch is defined in Sec. II and

EJv
cross5

«0d

g

ach

aJz
F1.551 lnS l

dD1(
j Þ0

K0S jaJz

l D G . ~14!

The tilted chain has a lower energy from Josephson vo
contributions~dominant at low density! but a higher energy
from pancake vortex contributions~dominant at high den-
sity!, and there is a first-order transition between the isola
chain of straight stacks and the chain of tilted stacks. In F

a

FIG. 11. Energy per pancake of the tilted chain~dotted line! and
the chain of straight pancake stacks crossing Josephson vortice
aJz525d, plotted against the pancake separationach/l. Also
shown ~dashed line! is the difference of the two energies, whic
crosses zero atach545l.
9-7
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11 it is shown that forach,45l ~higher density! the pre-
ferred state is the crossing chain, while forach.45l ~lower
density! the lowest energy is for the tilted chain. Note th
Savelevet al.33 also find a ‘‘reentrant’’ transition back to
tilted lattice for fields close to theab plane, whenl.gd.

A strict treatment should follow Secs. II and III and co
sider the points of the same Gibbs free energy density. T
is not possible within our level of treatment, however, as
would need accurate results at very lowBz,Bx /g where
nonlinear effects in the tilted chain are important. Here,
can only show that there must be a low-density transition
the tilted chain, but we cannot plot the coexistence bou
aries. Even so, we plot the line where the energies cros
Figs. 2 and 3 separating the clustered chain from a ti
chain phase. In real experiments there is a finite 2D den
of Josephson vortices, which cannot be considered isol
in the sense of the pancake vortex chains~the interaction
rangelc is greater than the chain spacingaJy). Therefore a
full calculation of the 3D tilted lattice requires a minimiza
tion over the aspect ratio, which we leave for a future wo

VI. DISCUSSION

Physically, we can understand the different predicted tr
sitions as follows. The transition between tilted chains a
the crossing lattice occurs because the tilted flux lines do
contain fully developed Josephson vortices, thus lower
the energy, whereas the pancake interactions generally f
the crossing lattice. Figure 2 shows how increasing the n
ber of Josephson vortices tips the balance in favor of
tilted chain. The chain state at low pancake densities
formed in clusters due to the long-range attraction of p
cake stacks on the chain. At higher densities the fully dev
oped chain becomes stable, but the interaction of neigh
ing pancake stacks becomes repulsive, leading to
buckling of the stacks away from the Josephson vortices
define the chain. As the density increases further, the re
sion between stacks causes the ejection of extra flux l
from the chain itself. These effects lead to the phase diag
shown in Figs.2 and 3.

We now discuss the extent to which these transitions h
been observed experimentally. In the recent scanning H
probe experiments of Grigorenkoet al.16 there does seem t
be a sharp transition as a function ofBz between a composite
state of chains with a dilute lattice and the isolated ch
state, as derived in Sec. IV. At lower fields there is so
evidence for buckling and clustering~Secs. II and III! al-
though the influence of pinning disorder may be contribut
to this. Finally, Grigorenkoet al. report a strange transitio
at very lowBz where the chains are replaced by faint, hom
geneous ‘‘stripes’’ of flux. These stripes would be consist
with the flux distribution from a tilted chain, and it is likel
that a transition from the isolated-chain state to a tilted-ch
state~as found in Sec. V! takes place. Experimentally, a larg
jump in Bz ~i.e., in the pancake density! is seen at the tran
sition to tilted chains; unfortunately we were not able
calculate the jump in this paper, as it requires an accu
treatment of nonlinear effects in the small-Bz limit. Other
experimental features are that the tilted chains are m
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straighter than the crossing chains and less pinned. Th
consistent with the fact that the tilted chains are really par
a 3D line lattice with stronger interactions that dominate o
pinning disorder, whereas in the crossing case the panc
stacks are in the extreme dilute limit and therefore ea
pinned in random low-energy sites.

Finally, we briefly discuss the effect of fluctuations. Th
calculations in this paper have found the lowest-energy v
tex configurations of the chains. In reality there will be d
tortions of these states due to thermal fluctuations and
dom pinning to inhomogeneities in the underlying crystal
is well established that thermal fluctuations can lead to
melting of the vortex crystal.1 A melting transition to com-
pletely decoupled layers is studied forBx50 in Ref. 34,
involving short-wavelength fluctuations of pancake stac
with kz.p/l. While there will be some modification in th
presence of Josephson vortices in tilted fields, in the l
out-of-plane fields studied here,Bz!F0 /l2, this melting
will take place at a high temperature, close to t
Berezinskii-Kosterlitz-Thouless transition35 at TBKT5«0d/2.
If we consider long-wavelength fluctuationskz→0, then we
may expect some kind of melting of the chain at very lo
fields due to the exponentially small interaction of panca
stacks. However, the mechanism of such a transition mus
different from the ‘‘entanglement’’ proposed in the origin
derivation of low-field vortex lattice melting by Nelson.36

Considering the nature of the crystalline order of the isola
vortex chain, we should recognize the two-dimensional
ture of this state. A simple consequence is that thermal fl
tuations at long wavelength will lead to a quasi-long-rang
ordered state. It may then be possible to have a
continuous melting transition via the unbinding of disloc
tions. However, a dislocation for this system of stacks cor
sponds to a stack that terminates in the middle of the ch
and this should cost an energy linear in the system s
rather than the usual logarithmic energy of a dislocati
This will suppress a dislocation unbinding transition.

In the experiments of Grigorenkoet al. the pinning disor-
der seems to be more important in disturbing the chain st
than thermal fluctuations. The fact that the pancake sta
are observed in fixed positions is due to pinning~otherwise
thermal fluctuations would smear out the average densit
the chain state!, and this also tends to disorder the chains.
general grounds we expect pinning-induced wandering of
pancake stacks within the chains so that there is only a sh
range order. There will also be significant transverse d
placements, and the buckling effect should be enhanced
disorder.
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