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Phase transitions in isolated vortex chains
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In very anisotropic layered superconduct¢esy., BL,Sr,CaCyO,) a tilted magnetic field can penetrate as
two coexisting lattices of vortices parallel and perpendicular to the layers. At low out-of-plane fields the
perpendicular vortices form a set of isolated vortex chains, which have recently been observed in detail with
scanning Hall-probe measurements. We present calculations that show a very delicate stability of this isolated-
chain state. As the vortex density increases along the chain there is a first-order transition to a buckled chain,
and then the chain will expel vortices in a continuous transition to a composite-chain state. At low densities
there is an instability towards clustering, due to a long-range attraction between the vortices on the chain, and
at very low densities it becomes energetically favorable to form a tilted chain, which may explain the sudden
disappearance of vortices along the chains seen in recent experiments.
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I. INTRODUCTION titatively the attraction of perpendicular flux lines that leads
to the vortex-chain state in a certain field range. Apart from
The vortex system in layered superconductomdjich in-  more detailed work on the melting transitfoand on mag-
cludes the highF, cuprates, displays a rich set of physical netization curves,these concepts have also inspired recent
phenomena, such as a thermodynamic melting trandition, Scanning Hall-prob® and Lorentz-microscopy measure-
pinning-induced disordering transitidnand various struc- Ments on the vortex-chain state. The Hall-probe experiments
tural transitions at different anglés. The average density are similar to the Bitter decoration technique in that they
and orientation of the vortices are controlled by the magneti@nly probe the field distribution emanating from the surface
field, because each vortex carries one quantum of fiy, ©Of the superconductor. However, they have the advantage of
—hc/2e. In this paper we are concerned with the vortexSP€ed and resolution, and are not a “one-off” measurement,
chains that appear in a certain regime of tited magneti$© that the system can be_flnely tuned to observe different
fields. These chains, which consist of a high density of fluxeffects. These new experiments have shown unexpected
lines perpendicular to the layers, were first observed with th@roperties within the chain state. In particular, it is possible
Bitter decoration technique by Bolkt al® A qualitative ex- {0 tune to a field range where all of the out-of-plane flux
planation followed shortly in terms of the proposed lines are arranged in chaifiit s this “isolated-chain state”
crossing-lattice state in tilted field$. This state consists of a that we will study in this paper, where we find that the dif-
lattice of flux lines perpendicular to the layers crossed by derent attractive and repulsive forces between flux lines along
lattice of flux lines along the layers. The in-plane lattice isthe chain lead to some novel structural phase transitions.
strongly distorted due to the anisotrdpyand has a large e will use the following geometry. Theaxis is perpen-
spacing along the layers. Hdssurmised that a possible at- c_ilcular to the Igyers, and the_component of magnt_atlc_lnduc—
tractive interaction between the two species of flux linetion B, determines the density of “pancake” vorticésn
would lead to a higher density of out-of-plane flux lines €very superconducting layer. The in-plane field is along«the
along chains, with an interchain separation equal to the in@xis, andB, gives the density of the flux lines in this direc-
plane flux-line spacing. This picture seems to be consisterfon- These in-plane flux lines have their centers in the spac-
with the experimental observatiots.The energy of the Ing between layers and so are commonly called Josephson
crossing-lattice state was considered by Benkraouda an¢prtices.” A z-directed flux line is made from a stack of
Ledvij,*? who found a transition from a single lattice of tilted Pancake vortices and contains circulating currents in the lay-
flux lines to the crossing-lattice state as the tilt angle is€rs up to a distance of the penetration depthy=X\, from
increased for sufficiently large anisotropy. Their work, the vortex center. A Josephson vortex in theirection has

however, neglected interactions between the two crossingn €llipsoidal current pattern, with the flux and currents de-
lattices. caying over the much larger distankg= y\ in they direc-
Interest in the crossing-lattice state has been revitalized iion. Here, y is the anisotropy ratio, which is large for

the last couple of years. Kosheléihas shown that the re- Weakly coupled layers. The phase singularity of the Joseph-
gime for crossing lattices is larger than previously expectedson vortex is confined between two neighboring layers, with
This is because a correct treatment must include the interageparationd, where the phase difference across the layers
tions between the perpendicular flux lines, and a distortiorthanges by 2 over a distance of the Josephson length
away from ideal crossing lattices has a lower energy. Experi- The most simple structure of the crossing-lattice state is
mental evidence comes in the form of the unusual deperwhen an ideal triangular lattice(with spacing ap
dence of the melting temperature of the vortex lattice as a[(2/V3)®,/B,]Y? of pancake-vortex stacks crosses a
function of magnetic field ang¥:*®which is consistent with  stretched triangular lattice of Josephson vortices, with sepa-
the crossing-lattice state rather than a single tilted flux-lineration in thez direction ofay,=[(2/\/3)®y/B]"%/y. Ko-
lattice1® In addition, the work of Koshelev explained quan- shelev has shown how the interactions between pancake

0163-1829/2002/68)/0145099)/$20.00 66 014509-1 ©2002 The American Physical Society



MATTHEW J. W. DODGSON PHYSICAL REVIEW B66, 014509 (2002

1 1 1 50 T
= = = N
§ = = = i §§ |
£ : £ 53
= = = F L5
£ £ £ 9y, g2
= = = ~30F 2 2 b
% — — — \N E
= = = R
= = = 20 -
= . - clusters of chain
Aeh
. . . 10 7]
FIG. 1. Optimal displacements of the vortex chain of pancake - -
stacks due to the crossing of Josephson vortices, using the param- . . tlﬂted Cha“:
eters appropriate for BISCCO quoted in the text. The figure takes Oz 4 6 3 10 12
the results from calculations fer,,= 10\, andaj;=20d which for ach/k

the isolated-chain state correspondsBip=53 G andB,=0.8 G.
The displacements are magnified by 2 for clarity, andzbeale is
not the same as thescale.

FIG. 2. Phase diagram of the isolated vortex chain, showing
four phases: isolated chain of tilted stacks, isolated chain of straight
stacks crossing Josephson vortices, isolated buckled chain, and state
gith chains plus ejected vortices. Axes show the spacing of pancake

stacks and Josephson vortices lead to an effective . L .
attraction™® At the low pancake densities we are interested invortlcesaICh and the Josephson vortex spaceng within the chain.

here B,<®,/\?) this means that there will be large distor- sec. Il d therei . itical mini
tions from the ideal triangular pancake-vortex lattice, with a( ec. ), and ¢ erejectvortices Iat a crltlcal m|n|mumksedpa-
higher density of pancake stacks located over the centers Bﬁt'o?h(se% M' I\ilotre surpnslng Y, Iat Ve(bjryb ow pahnc_a ef te'l?- q
the Josephson vortices. This leads to the high-density chai %y K € chain sr?e may | € replaced by ad(? an ot ed
of pancake stacks that are observed by Bitter decorétibn stacks(Sec. V). These results are summarized in Figs. 2 an

: : . . " 3, where we plot the calculated phase boundaries for three
— 1/2
with an interchain spacing 0f,,= YL(V3/2)Po/B,]M first-order transitions: clustering, buckling, and tilting as well

< 2 i
E\\/’srniﬂ:"gbézr ﬁgﬁ”\%fﬂiosl )‘Thi:':gg;gg_?ﬁ;ﬁagg;'ﬁasas a continuous ejection transitida view of the different
pancake-stackp o aration . along  the  chains af p‘?ﬁas_es is shgwn in Fig.).4F?naIIy, in Sec. VI we revi_ew the
(D /B.)/a. - Fig 1 h physical basis of the predicted transitions, then discuss the
=(Po/By)/ay; see Fig. 1. extent to which these transitions have been observed experi-

The crossing Iatt|c'es must compete gnergenoglly W'th.th‘?nentally, and consider the effect of fluctuations due to finite
more conventional tilted lattice of vortices. This is quite temperature or quenched pinning disorder

similar to the vortex lattice in a continuous superconductor, ~\y.. .onclude this Introduction with a note on the param-
only there is a kinked structure along each vortex with 3ters. The experiments we have referred'td® were per-
periodicity L=d(By/B,). The anisotropy of the currents ¢, e o the extremely anisotropic cuprate®;CaCy0
means that there is a stretched aspect ratio of this lattice. I(BiSCCQ. Where we make explicit calculations we )iNi”
addition, this distortion may be different from that expectedtake the following appropriate parametess:500, \=2000
from simple rescaling due to the attraction of tilted vortices A, and d=15 A, consistent with many e'xperi,menIS' see

along the direction of tilt. This may lead to a “tilted-chain o :
state,®>?2 which is distinct from the crossing chains men- 9" Refs. 16 and 23. This gives a Josephson leftigénsize

tioned above. Koshelev showed that for intermediate pan- 100
cake densitie,>®d,/\? there should be a transition at a
small value ofB,=B}~0.01B, between the tilted lattice
(By<BJ) and the crossing latticeB{ <B,).

In this work we will concentrate on very small out-of-
plane fields andB,<B,<®,/\? when all of the pancake
stacks become attached to the centers of the Josephson vor- :
tices, giving the isolated-chain state observed in recent scan-
ning Hall probe measuremerifsWe find that the stability of
the isolated-chain state is quite delicate. We first note in Sec.

=]
T o T
tilted chain

buckled chain

_II that the existence of a sta_ble crossing conf|gurat|0_n in the 20 plus ejected stacks |
isolated chains is only possible for large enough anisotropy,
layer spacing, and pancake separation. We also find that the 0 L . L

energy of the isolated chain as a function of pancake-stack
separation has a minimum; i.e., there is an optimum density
of pancake stacks along a chain, and there will be an insta- F|G. 3. Same phase diagram as in Fig. 2 but with axes converted
bl|lty towardsclusteringwhen the total density is low. As the to the in-plane and out-of plane components of magnetic field,
density of pancake stacks along the chain incredaéss  assuming the Josephson vortices form a regular stretched triangular
fixed density of Josephson vortigeshe chain will buckle Iattice.

2
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rections due to the displacements in other layers is small

O O Q '
O O O Qo when the number of pancakes with large displacements is
O O OC:D OQ much less thamn/d).
O O Q O Within this scheme, the energy profilper stack for dis-
; O @) ('DO placing byu, a row of pancakes in theth layer when there
5 O Q @) is a Josephson vortex between layers 0 and 1 crossing the
O ' He) Q chain is
& 3 & &L
A Q O o od
0
; Q 0 9 AEq(Up) = = == Ity + Van(uy). )
6 3 3 L
O S S Q The first term here comes from the Lorentz force on the

_ pancakes due to the in-plane current density from the Joseph-
@ (i) (iii) @iv) ) son vortex,J¥, and tends to pull the pancakes away from
their stacks. The form of this current will be discussed more

FIG. 4. View from above of the different phases present in Figs;, goc 1)1 byt the numerical value is taken from Ref. 25;
2 and 3:(i) tilted chain,(ii) clusters of chain(iii) isolated straight

L . ) ) e.g., the current in the=1 layer (immediately above the
hain, d buckled chain, buckled chain. . .
chain, fv) mixed buckled chain, ant) buckled chain Josephson vortexs J)=2.28,c/dyyd. The second term is
of the nonlinear core of a Josephson voytesf yd  the attractive magnetic interaction of the pancake row with

=7500 A>\. the remainder of all the stacks in the chain. Clem showed
for a single pancalk® that this has the same interaction en-
Il. STRUCTURE OF THE ISOLATED VORTEX CHAIN ergy as the sum of a pancake with a full StamgﬁdtR)_
Koshelev has estimated the structure of a pancake stack2e0dKo(R/N) plus a pancake with its anti-imagégiP*"
that crosses the center of a single Josephson vbttexthe = 2¢,d In(R/L), so that for the entire row we find

crossing configuration there is a Lorentz force on the pan-
cakes in a direction parallel to the Josephson vortex, whiclWgm(U) = 2&od[ Ko(U/N) +In(Uu/2\) + yg] + 2¢,d
must balance the attraction of each pancake to its stack. This
distorts the pancake stack, with the largest displacements by xS K
the two pancakes immediately above and below the Joseph- %o 0
son core. The distortions give an energy gain XE. ) ]
~—8.4sod(N yd)?/In(3.5yd/\). Here gqd=(Py/4m\)%d [Euler’s const'antny is needed to fix the zero of energy to
is the typical energy scale for pancake interactions. Thighat of fully aligned stacks; cf. the smadlexpansion of the
causes the pancake stack to be attracted to a stack of Josephdified Bessel functioio(x)].
son vortices within the crossing-lattice state. Koshelev's re- Such energy profiles for the=1 pancake row are shown
sult uses a quadratic approximation for the pancake-to-stadk Fig. 5 for different values o, with the choice of the
attraction. Recent wofk using the correct potential has ratio yd/x=3.75(a reasonable choice for BiSC@.Gror di-
shown that, while Koshelev's estimate for the crossing enlute chains there is a stable minimuis expected from the
ergy is close to the full result, a stable crossing configuratioriésults of Ref. 24 which determines the optimal displace-
only exists for extreme enough anisotropy™> vy, Ment. However, this stability disappears once the separation
=2.86\/d. In this section we include the interaction betweenis below the critical value ofg,"=5.3\. There can be no
pancakes in different stacks separatedaby along an iso- Stable isolated-chain state for densities higher than this criti-
lated chain. For finitea,, we find a further reduction of the cal value?’ Figure 5 also suggests that the crossing configu-
stability limit of crossing found in Ref. 24. We also find a ration is only metastable, with a lower energy a{
minimum in the energy of the chain as a function of =0.53,, but this is not reliable as the simple Lorentz force
stack separation, which leads to a clustering instability wher@rgument does not hold for pancake displacements of such a
ag>\. large fraction of the stack separation. For such displacements
To calculate the crossing configuration of the chain, wethe original Josephson vortex becomes completely frag-
use the following assumptions: First, we neglect the effect omented, and a different approach is needed. In fact, the com-
induced Josephson currents due to displacing pancakes fropgting state here is a “tilted chain,” and in Sec. V we will
their stacks(reasonable for large values gfi/x and small ~ calculate the energy of the tilted chain, to compare to the
enough displacements< yd). Second, we utilize the long isolated-chain state(A third possibility is a solitonlike
range of the remaining electromagnetic pancake interstructuré® that we will not consider herg.
actions'® of order \ in the z direction. There are many The displacements of the entire stacks are shown in Fig. 1
(~\/d~10?) pancakes that contribute to the current distri-for ac;,=10\ and a Josephson-vortex separation af
bution in one layer, determining the potential felt by a given= 20d (this corresponds tB,=53 G for our parameteysAll
pancake. We can therefore reduce this many-body optimizeef the displacements contribute to the total crossing energy
tion problem to a one-dimensional problem, considering thegain. We find that the crossing energy per pancake stack only
displacement of a row of pancakes in one layer under théowers from AE, ()~ —0.21ed for an isolated stack to
potential due to the ideal chain of pancake staghe cor- AE.(ag")~—0.26,d as the stacks reach the critical sepa-
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FIG. 5. Energy profiles for displacing a pancake row within a B_[G]

chain of pancake stack¥m(U,) (dashed lines and the total en-
ergy changeAE;(u,) with a Josephson vortex below the pancake FIG. 6. (a) The energy per pancake within the isolated chain as
row (solid lineg, for different values of the pancake-stack spacinga function of separatioa, whenaj,=20d. Note the presence of a
aqn. Note how the metastable minimum disappears for spacingsninimum energy af,=8.2\. (b) The same result, but expressed
smaller thanagy"=5.3\. Each curve is only plotted up ta, as the energy densitfy,(B,) as a function of the out-of-plane flux
=a.y2. The fact that for all values d, the lowest energy is for densityB,=®,/aga, . The thick line shows where the function
large displacements is not a physical result, as the Lorentz forcbas positive curvature, required to ensure local stability. The entire
argument will break down whea, is a significant fraction ofi,. function must be convex, and so for densities less B&h the
These results are for a fixed value pd/\ =3.75. chain will phase separate into clusters with=a%' and regions
with no stacks.

ration agﬂn. Therefore within the region of stable crossing,

there is a pinning energy to the Josephson vortex centers pgancake stacks and a finite density of stacks vath
unit length of pancake stack, =a%l. All the points at lower density,<B** haveg>0

B and so are thermodynamically unstable. In fact, similar argu-
eavpin= A /85~0.2e0(d/ay,), ) ments determine thdt,(B,) must always be a convex func-

where the last result is with our parameters for BiSCCO. tion. The dotted line represents the region where the curva-
In Fig. 6(@ we plot the total energy per pancake of the turé of f(B;) is positive, meaning that the solution here is
isolated chain,Eqy=1%,,oVe%jayy) +(d/ay) AEL(ay).  @ways unstable. o
Note that there is a minimum at,= 8.2\, reflecting the fact The straight line that determineB; " is given by f
that at large separations the pancake stacks attract each otheB oH¢, /47 where SHE, is the change in the lower critical
This unusual feature has been explained by Buzdin anéield due to the attraction of pancake stacks to the Josephson
Baladi€® by considering the distorted pancake stacks of Figvortices. In Fig. @0) it is given by SHZ,= —2.5x 10 3HZ,
1 as the superposition of a straight stack plus a series ofhich is hardly measurable. In real experiments, however,
pancake-antipancake dipoles. The straight stacks give a réhe geometry of the samples often makes demagnetization
pulsive term, but this is exponentially small fer>\, effects important such that the averdggebecomes fixed to
while the dipoles give a weak attractive term that only fallsthe external fieldH.,;, rather than toH. This means that
off like 1/a2, (note that there is some similarity to the attrac- small values of8, are accessible and that fé,<B** we
tion between tilted flux linés?3. Therefore there is a net may expect a coexistence Bf=0 andB,=B%* phasegcf.
attraction at large distances, which will destabilize a homothe intermediate state in type-l superconducfbrsilterna-
geneous chain at very low densities. tively we could describe this mixed regime in terms of “clus-
To formally describe this instability we should consider ters” of pancake stacks with separatialﬁhl. The relative
the free energy density as a function of out-of-plane fieldproportion of space taken up by these clusters is determined
f(B2) = fen(Bo) + e5tacB2/ Po. Hereegpekis the line energy by the value ofB,, but the size of individual clusters de-
of a pancake stackf.(B,)=Ec(acw/acdyd and B,  pends on the energy of the “domain wall” between the clus-
=dy/aga,, . In Fig. 6b) we plot f(B,) using the same ter of stacks and the region of no stacks, compared to the
data in Fig. 6a). We also note that the thermodynamically magnetic energy cost of large clusters with the wrong flux
stable phase is determined by the minimum Gibbs free endensity. Also, in the experimental situation one can have dif-
ergy g(H,)=f[B,(H,)]-B,H/4m with H,=4mdf/dB,.  ferent pancake densities on the different chains, so the inho-
By a geometric construction we see that the p&iptB*'  mogenous state may have coexisting empty and filled chains.
on f.,(B,) where a straight line from the origin connects Our results for the critical field separating the clustered phase
with the same gradient must hage=0, and there is a first- from the homogeneous isolated straight chains are shown in
order phase transition between a Meissner phase with niigs. 2 and 3.
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[Il. BUCKLING INSTABILITY WITHIN T
THE VORTEX CHAIN [ E
stack "*.P
It is important to realize that, while the isolated-chain 0.005[ repulsion *
state gains energy due to the Lorentz force of the Josephson
vortex currents, there is an energy penalty for the pancake } AT
stacks to be close to each other. One consequence of thisisa 5 OV% """""""""
maximum density above which pancake stacks will be K total energy —=
ejected from the chain. This critical density will be derived | ,,’T'
in the next section. Below this density, however, the chain 20005 crossing -~ optimal i
can already react to the stack repulsion by buckling. Note eﬂeng/ZEX displiacemem
that we will assume that the Josephson vortices remain ro_e”
straight, as in experiments they are held in place by the in- = > " ¢ 3
teractions with Josephson vortices in neighboring chains, and gy
the chain separation is much smaller than the interaction .
range for Josephson vortices, < y\. In contrast, the inter- FIG. 7. The energy profile when we pull one pancake stack

actions between pancake stacks on different chains are in trz&fyzgddi?ﬁgcgg:ﬁg&h?sisscr’]'g\ti: ;h?;]’; Sitr;"‘st‘;fa%]::az‘s r?;((jj ine
il limi > n r ily displ . e :
dilute Lay>\ a d so are easily displaced shows the energy from the crossing events on the displaced stack.

.TO calculate th'.s buckling, we need to know the er_lerg_y_l_he dotted line is the interaction energy of displaced stack with the
gain from a crossing event when the pancake stack is dis-

other stacks on the chain. The solid line is the sum of these two
placed away from the center of .a Josephson vortex. W%ontributions. Note the presence of two minima, oneufor 0 and
therefore need the full current profile of a Josephson vortex, |swer minimum atY=4.9:
which is a solution of the nonlinear equations that arise from
the London-Lawrence-Doniach modéf® An accurate nu-

merical solution for a Josephson vortex is described in Ap-

pendix B of Ref. 31. For a vortex directed alorgentered
aty=0 and between the=0,1 layers, the current in thg )
direction can be writte#? (ignoring screening, i.en<x/d  Koshelev takes,,=u; (~0.20\?/ yd for y=0), and in Ref.
andy<\.), 24 we have shown this to be a good approximation to the
result when the full form of the pancake-stack interaction is
oce used.. . .
Jo(y)= —Opn(y/yd), (4) This result for the crossing energy as a function of stack
®yyd displacement? is shown as the dashed line in Fig. 7, where
3 5 there is one Josephson vortex for every 25 pancakes along a
with p,(y)=¢,(y) the reduced superfluid momentum, stack. As might be expected, the energy increases quadrati-
where the phase has the fofm cally at smalluY. More interesting is the fact that the cross-
ing energy vanishes only a8E,~—\?/u¥? for uYs> yd
1\_ (note that an exponential suppression will occur at extremely
0.3E< n— E)y long distanceslY>\.). In contrast, also shown in Fig.(the
dotted ling for a.,=5.5\ is the repulsive energy cost for
(n—% displacing one pancake stack away from a chdinp,,
1\-|~, 1
8.8 n—z Yy — n—z
2
+y2+2.02

AN\2o1 -
AE (y)=—2 %) mn;w [pn(y/yd)]2. (6)

ba(y)=tan Y| — 5

2
2
Ty +0'38} =3 0Vem J(jag)?+u¥?/\]. This contribution vanishes
exponentially wheru¥>/a,\, and so the total energy is
+2.77} always negative for large enough. This gives the possibil-
) ity of two minima in the total energysee the solid line in
Fig. 7 and a first-order transition where the displacement
jumps to a finite value as., decreases. While we have
started by considering displacing a single stack from the
When y=0, this gives the results used in Sec. II, with cha!n, it is this instability that drives a buckling of the whole
3,(0)=(2cs,/®yd)C,/|n— 1|, andC,=0.57,C,=0.86, chain. . . -
C5=0.99, andC,~1 for n>3. To estimate the buckling trgnsmqn we use a varlat!onal
We can now recalculate the crossing energy for anapproach for th_e bucl_<led_conf|gurat|{1$ee the inset of F_|g.
arbitrary distance between a pancake stack and the centgga)]' This configuration is only characterized by a single
of a Josephson vortex. Within the quadratic approxi- |sp_Iace_ment para_lmeta}‘, and so we can look at the energy
mation used in Refs. 13 and 25 one can easily solve thBrofiles inu” for differentac,/A. First, the energy per pan-
crossing configuration for a single stack. Writige,(u,) ~ CcaKe is calculated before crossing relaxations,
=—(®od/c)In(y)up+3au?, where we take «
f(sod/)\z)ln()\/'rw) with r,, a short-distance cutoff, we Eg-c(uy)zﬂz Ko[\/(i—j)2a2h+(yi—y-)2/>\], @)
find the relaxation energy N Z ¢ :

2

+

7

1
=3
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(2) ! L L 0 — T T T T T 1
3 o
-0.5F
by ~ ight chai
=~ 4 . RIS straight chain _
= d . oL buckled chain
z ecreasimg ach =
= s =-1.5F -
= @ r
3 2r il
-6 I
-2.5F .
0 8 i g% g
3 1 [T | 1 ] 1
T 0 0.5 1 1.5 2 25 3 3.5
8k - B_[G]
< 6.' ] FIG. 9. Energy density of the buckled-chain state wéh
s 4_' ] =20d as a function of out-of-plane fiel&,. Also shown is the
o) b . result for the straight chain from Fig(l§. The two points joined by
O- ( ) T T T T the straight line have the same Gibbs free energy, and those densi-
2 3 31 /A 5 6 7 ties between these points are thermodynamically unstable towards a

mixed phase of straight and buckled chains.

FIG. 8. (a) Energy of the buckled chaifsee insetas a function . . ) . )
of the buckle parametew’, for stack separation along the chain led regions, with the relative proportion linearly dependent

2— ; : 1
as/\=5.2, 5.4, 5.6, 5.8, and 6.0. For the separatig/A=6.0 0N B,. Note thatB; “ is only slightly higher tharB} ~ so
there is only one minimum atY=0. For a,,/A=5.8 there is a that there is only a small regime where pure isolated straight

second minimum ati,=3.3\. The remaining cases have their low- chains are the stable phase. The same procedure has been
est minimum at finiteuY. (b) The size of the optimum buckling followed for a range of;,/d, and the resulting boundaries
distortionu?,,; as a function of,. to the mixed buckled chains are shown in Figs. 2 and 3.

TR : (1Y DY for
with 3(11 E fé”f' e"he” a”%’_i_ ( fl) Cufori Ogd' NﬁXt 4 'V EJECTION OF PANCAKE STACKS FROM THE
we checke or the sta IIty ol crossing, as In sec. |l, an ISOLATED CHAIN

found that the crossing configuration becomes unstable if

a.n<2.65\.. Finally, to calculate the energy gain from cross- We now consider a simple model for the energy of the
ing the Josephson vortices, we use the re@)ltgiving the  composite state where a fraction of the pancake stacks are
total energy of the buckled chain, not located on the chains. This model will show that there is
a continuous phase transition between this composite state
and the isolated-chain state as a functiorBgf The order
parameter of this transition is the density of the dilute lattice
of pancake stacks not trapped on chains. The simple model
In Fig. 8(a) we plot this energy fomg,/\ from 5.2 to 6.0,  assumes that the chain spacimg and the spacing between
with a;,=25d, showing how the minimum energy of a buck- pancake stacks are much greater than the penetration depth
led chain crosses the energy of a straight chaim@sde-  \. In this case we can separate the total interaction energy
creases. Note that the minimum for a finité is quite shal- density of pancake stacks in the formy,="f(vep)

low, and so we might expect large fluctuations in the extentf (vy), where vy, and vy are the[two-dimensional

of buckling along the chain due to random vortex pinning,(2D)] densities of pancake stacks on and off the chains, re-
which is discussed in Sec. VI. Also shown in FigbBis the  spectively, and the total density &+ vgj= vio=B,/®,.
optimal displacementy,, as a function ofa,, which has a The separation of pancakes along the chain ag,

V() = E§(W) + 5a-[AE(0)+ AE ()], (®
ay

smallest value oﬂgpt=2.3>\ at the first appearance @ghetag = 1l/ayve,. The chain energy (v is to be calculated as
stable buckling ata,,=5.8\ and then increases at higher in Secs. Il and lll for straight and buckled chains, respec-
densities. tively. We will see that the phase transition to the composite

It has been shown in Sec. Il that one should plot thestate occurs when there is a minimum fig(v.,), and so
energy density of the chain as a function of the out-of-planenear this transition we will expand,
flux densityB,, in order to determine the stable thermody-
namic phases. Such a plot is shown in Fig. 9 comparing the fon( ver) = € N2 (ven— vS) 2. 9
straight and buckled chains. It shows that the isolated
straight chains aB,=B}* ~1.3 G have the same Gibbs  The density of pancake stacks not on a chain is small near
free energy as the buckled-chain state Bj=B3?" the transition, so that the interaction energy density is simply
~2.5 G. Therefore at fields witB* 2~ <B,<B*?" the ther-  [using the limitKo(x)~\/m/2xe”* and only including near-
modynamic phase will be a coexistence of straight and buckest neighbork
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FIG. 10. Configuration of the tilted chain, where pancakes in a C_ D W —. _
stack are displaced from layer to layer by-ag,/ay, . 0 10 20 30 2 40 50 60
ach /
=N — 1\
fai( vai) =3e0V2mA g e Vi, (10 FIG. 11. Energy per pancake of the tilted chéiotted liné and

Note that in the small; limit, all terms in a power series the chain of straight pahcake stacks crossing Josephson vortices, for
expansion of 4 (vy) are zero; i.e., the function is extremely aﬁlz 25dd prllotc:eld aga'tESt dtt;fe pancal;ethsetp\)l\zlaratla)@,/ A Alsﬂ h
flat. For this reason the critical total density at the transitio ir(?s\’;'(;é ;jroeai '?‘14';\ e difference of the wo energies, whic

is onIy determined by the minimum ify,(vy) at vg,. For ch

i< v, all of the pancake stacks are on chains. At densi-
ties just aboverg, the energy is minimized with a dilute
off-chain density,

Josephson lengthd and the pancake separatiag,. Note

that the conditiorL. < yd corresponds t8, /B,<y, which is
the case we are interested in The energy due to pancake

interactions in the linear approximation is
3V T €9 1 sl PP
Vil = 5vt0t 4 5/2 1/4e Vot (11) d2k d
NFovg a_ L[ % dg

. , pe
The second term is extremely small for the fields we are (2m)? 2m
interested inB,<®,/\?, so that we can say in the compos- 212 2
ite state atv,>vg, there is a fixed density on the chains % [1+(Z)‘) (k*+991S,| . (12
ver=15, and the remaining density igg = vio— v%,. The [1+N2(K2+92) ][ 1+ (y\)2k2+ %2

phase boundaryy, between the composite state and the
isolated-chain state is calculated from the minimunf gf

In Figs. 2 and 3 this boundary is plotted, but is not distin-
guishable by eye from the transition between the mixed’
buckled and pure buckled chain. Therefore the pure bucklef
chain has a very narrow range of existence. It is worth statm&
that an ejection transition has been observed experimen-

with Sz(k q) = DodS; ye " kuliaet ) and g2
=(2/d)?sirf(qd/2). The mtegral should be cut off due to the
ancake cores &t> 7/ £,,and due to the layered structure at
>q/d. Similarly, the Josephson segments interact with an
nergy contribution,

an observe L[ &% da ISP
tally= with results that seem to be consistent with the above, it — f - (13
although a quantitative analysis of the transition has not yet v (27)2 27 [1+ (yN)2k2+ N2’
been published.
P with S, = (20/ky)SinkL/2)T; s 9+ 12

xXe~ iky[jaght(n+ 1/2)L
V. CROSSING-TO-TILTED TRANSITION WITHIN

ISOLATED CHAINS The integrals can all be done exactly, leaving a sum over

the values ok,=2mm/a.,. We have evaluated these sums

In this section we calculate the energy of a chain of tiltednumerically to find the energy of the tilted chain. This is
vortices and compare to the chain of crossing vortices. Thehown fora; = 25d as the dotted line in Fig. 11. Also shown
tited chain is an alternative configuration to the crossedds the solid line is the energy per pancake of the crossing
chain with the same density of pancake and Josephson voghain with the same density of pancakes and Josephson vor-
tices (see Fig. 1D where the tilt angle is determined by tices,E s Ecnt ESC°°, whereEg, is defined in Sec. Il and
tand=L/d=ac,/a;,. These tilted stacks have an increased

d)+2 Kol —= 12z

energy of pancake interactions but there may be an energy Ecrosszsod
A

gain from replacing fully developed Josephson vortices with
many short Josephson segments of lergthyd. To calcu-
late the energy of the tilted chain, we use the linear approxi- The tilted chain has a lower energy from Josephson vortex
mation of the London-Lawrence-Doniach modét,where  contributions(dominant at low densitybut a higher energy
we ignore the nonlinear effects from regions with large phasérom pancake vortex contributionglominant at high den-
differences across neighboring layers. This approximation isity), and there is a first-order transition between the isolated
justified as long as the length is much smaller than the chain of straight stacks and the chain of tilted stacks. In Fig.

1.55+In (14)
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11 it is shown that fora,,<45\ (higher density the pre-  straighter than the crossing chains and less pinned. This is
ferred state is the crossing chain, while fg,>45\ (lower ~ consistent with the fact that the tilted chains are really part of
density the lowest energy is for the tilted chain. Note that @ 3D line lattice with stronger interactions that dominate over
Savelevet al® also find a “reentrant” transition back to a Pinning disorder, whereas in the crossing case the pancake
tilted lattice for fields close to thab plane, wher > yd. stacks are in the extreme dilute limit and therefore easily
A strict treatment should follow Secs. Il and Ill and con- pinned in random low-energy sites.
sider the points of the same Gibbs free energy density. This Finally, we briefly discuss the effect of fluctuations. The
is not possible within our level of treatment, however, as wecalculations in this paper have found the lowest-energy vor-
would need accurate results at very |@Y< Bx/'y where tex Configurations of the chains. In reality there will be dis-
nonlinear effects in the tilted chain are important. Here, wetortions of these states due to thermal fluctuations and ran-
can only show that there must be a low-density transition t¢lom pinning to inhomogeneities in the underlying crystal. It
the tilted chain, but we cannot plot the coexistence boundis well established that thermal fluctuations can lead to a
aries. Even so, we plot the line where the energies cross imelting of the vortex crystdl. A melting transition to com-
Figs. 2 and 3 separating the clustered chain from a tiltedpletely decoupled layers is studied f@,=0 in Ref. 34,
chain phase. In real experiments there is a finite 2D densitjnvolving short-wavelength fluctuations of pancake stacks
of Josephson vortices, which cannot be considered isolatediith k,>m/N. While there will be some modification in the
in the sense of the pancake vortex chaftiee interaction Presence of Josephson vortices in tilted fields, in the low
rangel. is greater than the chain spaciag,). Therefore a out-of-plane fields studied her@®,<®,/\?, this melting
full calculation of the 3D tilted lattice requires a minimiza- Will take place at a high temperature, close to the
tion over the aspect ratio, which we leave for a future work Berezinskii-Kosterlitz-Thouless transitidhat Tgr= 2od/2.
If we consider long-wavelength fluctuatioks— 0, then we
may expect some kind of melting of the chain at very low
VI. DISCUSSION fields due to the exponentially small interaction of pancake

Physically, we can understand the different predicted transtacks. However, the mechanism of such a transition must be
sitions as follows. The transition between tilted chains andlifferent from the “entanglement” proposed in the original
the crossing lattice occurs because the tilted flux lines do ndierivation of low-field vortex lattice melting by Nelsdh.
contain fully developed Josephson vortices, thus |owerind30nsidering the nature of the crystalline order of the isolated
the energy, whereas the pancake interactions generally faviprtex chain, we should recognize the two-dimensional na-
the crossing lattice. Figure 2 shows how increasing the numttire of this state. A simple consequence is that thermal fluc-
ber of Josephson vortices tips the balance in favor of théuations at long wavelength will lead to a quasi-long-range-
tited chain. The chain state at low pancake densities i9rdered state. It may then be possible to have a 2D
formed in clusters due to the long-range attraction of pancontinuous melting transition via the unbinding of disloca-
cake stacks on the chain. At higher densities the fully develtions. However, a dislocation for this system of stacks corre-
oped chain becomes stable, but the interaction of neighbofPonds to a stack that terminates in the middle of the chain,
ing pancake stacks becomes repulsive, leading to th@nd this should cost an energy linear in the system size,
buckling of the stacks away from the Josephson vortices thg@ther than the usual logarithmic energy of a dislocation.
define the chain. As the density increases further, the repulthis will suppress a dislocation unbinding transition.
sion between stacks causes the ejection of extra flux lines In the experiments of Grigorenlet al. the pinning disor-
from the chain itself. These effects lead to the phase diagrafier seems to be more important in disturbing the chain states
shown in Figs.2 and 3. than thermal fluctuations. The fact that the pancake stacks

We now discuss the extent to which these transitions hav@re observed in fixed positions is due to pinniiogherwise
been observed experimentally. In the recent scanning Halthermal fluctuations would smear out the average density in
probe experiments of Grigorenlﬂ] a_|.l6 there does seem to the chain Staw and this also tends to disorder the chains. On
be a sharp transition as a function®f between a composite 9eneral grounds we expect pinning-induced wandering of the
state of chains with a dilute lattice and the isolated chairP@ncake stacks within the chains so that there is only a short-
state, as derived in Sec. IV. At lower fields there is somgange order. There will also be significant transverse dis-
evidence for buckling and clusteringecs. 1l and 1l al-  Placements, and the buckling effect should be enhanced by
though the influence of pinning disorder may be contributingdisorder.
to this. Finally, Grigorenkeet al. report a strange transition
at very Iosz_ where the chains are _replaced by faint, hgmo- ACKNOWLEDGMENTS
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