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The critical temperatur&. of a superconductor/ferromagn@&F bilayer can exhibit nonmonotonic depen-
dence on the thicknes$; of the F layer. SF systems have been studied for a long time; according to the
experimental situation, a “dirty” limit is often considered which implies that the mean free path in the layers
is the second smallest spatial scale after the Fermi wavelength. However, all calculations reported for the dirty
limit were done with some additional assumptions, which can be violated in actual experiments. Therefore, we
develop a general methdtb be exact, two independent methpdsr investigatingT, as a function of the
bilayer parameters in the dirty case. Comparing our theory with experiment, we obtain good agreement. In the
general case, we observe three characteristic typd@s(df) behavior:(1) a nonmonotonic decay df. to a
finite value exhibiting a minimum at particuldy ; (2) a reentrant behavior, characterized by a vanishing.of
in a certain interval ofl; and finite values otherwise; ari8) a monotonic decay of . and a vanishing at finite
d; . Qualitatively, the nonmonotonic behaviorBf(d;) is explained by the interference of quasiparticles in the
F layer, which can be either constructive or destructive depending on the vatlje of
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[. INTRODUCTION ture of SF bilayers. Previous theoretical investigation3 of
in SF structures were concentrated on systems with thin or
Superconductivity and ferromagnetism are two competinghick layers (compared to the corresponding coherence
orders: while the former “prefers” an antiparallel spin orien- lengthg, with SF boundaries having very low or very high
tation of electrons in Cooper pairs, the latter forces the spingransparencies; the exchange energy was often assumed to be
to align in parallel. Therefore, their coexistence in one andnuch larger than the critical temperature. In addition, the
the same material is possible only in a narrow interval ofmethods for solving the problem were usually
parameters; hence the interplay between superconductivigpproximate:*®1013-16The parameters of the experiments
and ferromagnetism is most conveniently studied when thef Refs. 11 and 12 did not correspond to any of the above
two interactions are spatially separated. In this case the cdimiting cases. In the present paper we develop two ap-
existence of the two orders is due to the proximity effect.proaches, giving the opportunity to investigate not only the
Recently, much attention has been paid to properties of hylimiting cases of parameters but also the intermediate region.
brid proximity systems containing superconduct@%) and  Using our methods, we find different types of nonmonotonic
ferromagnetg$F’s); interesting physical phenomena were ob-behavior ofT, as a function ofi;, such as a minimum of .
served and predicted in these systénfsOne of the most and even reentrant superconductivity. Comparison of our the-
striking effects in superconductor/ferromagri€fF)-layered  oretical predictions with the experimental data shows good
structures is highly nonmonotonic dependence of their critiagreement.
cal temperaturd; on the thicknessl; of the ferromagnetic A number of methods can be used for calculatihg
layers. Experiments exploring this nonmonotonic behavioMWhen the critical temperature of the structure is close to the
were performed previously on SF multilayers such ascritical temperaturd . of a superconductor without a ferro-
Nb/Gd, Nb/Fe® V/v-Fe? and Pb/Fé? but the result§and,  magnetic layer, the Ginzburg—Land#BL) theory applies.
in particular, the comparison between the experiments andHlowever, T. of SF bilayers may significantly deviate from
theorieg were not conclusive. T.s; therefore, we choose a more general theory valid at
To perform reliable experimental measurements ofarbitrary temperature—the quasiclassical apprdach.
T.(d¢), it is essential to have a largdy compared to the Near T, the quasiclassical equations become linear. In the
interatomic distance; this situation can be achieved only iditerature the emerging problem is often treated with the help
the limit of weak ferromagnets. Active experimental investi- of the so-called “single-mode” approximatidt* =1 which
gations of SF bilayers and multilayers based on Cu-Ni dilutds argued to be qualitatively reasonable in a wide region of
ferromagnetic alloys were carried out by several grddpgé. parameters. However, this method is justified only in a spe-
In SF bilayers, they observed a nonmonotonic dependenasfic region of parameters which we find below. Moreover,
T.(ds). While the reason for this effect in multilayers can be below we show examples when this method fails even quali-
the 0-7 transition® in a bilayer system with a single super- tatively. Thus there is need for an exact solution of the lin-
conductor this mechanism is irrelevant, and the cause of thearized quasiclassical equations. The limiting case of perfect
effect is interference of quasiparticle, specific to SF strucboundaries and large exchange energy was treated by Ra-
tures. dovic et al3
In the present paper, motivated by the experiments of Based on the progress achieved for calculation$ oin
Refs. 11 and 12, we theoretically study the critical temperaSN systems(where N denotes a nonmagnetic normal
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the Fermi velocity and the mean free palb=vl/3; w,

=7T(2n+1) withn=0,+1,=2, ... are theVMatsubara fre-

guenciesE,, is the exchange energy; afid; is the critical

temperature of the S materi#dy ;) denotes the functiok in

F S the SF) region. We use the system of units in which Planck’s

and Boltzmann’s constants equal unitys=kg=1.
Equations(1)—(3) must be supplemented with the bound-

ary conditions at the outer surfaces of the bilayer,

" dF(dy  dFg(—dp)
’ X dx % @

FIG. 1. SF bilayer. The F and S layers occupy the regions
—d¢<x<0 and 0<x<ds, respectively. as well as at the SF bounday/:
materia),’® we develop a generalization of the single-mode dFs(0) _ . dF¢(0) _ psés ®)
approximation—the multimode method. Although this S dx YA YT gy
method seems to be exact, it is subtle to justify it rigorously.
Therefore we develop yet another approaghis time dF¢(0) RpA
mathematically rigoroys which we call “the method of £17p dx =Fs(0)=F(0), Vb:E' ©)
fundamental  solution.” = The  models considered

previously*°1%13-1%qrrespond to the limiting cases of our Hereps andp¢ are the normal-state resistivities of the S and

theory. A part of our results was briefly reported in Ref. 21.F metalsR; is the resistance of the SF boundary, ahd its
The paper is organized as follows. In Sec. Il we formulatearea. The Usadel equation in the F layer is readily solved,

the Usadel equations and the corresponding boundary condi-

tions. Section IIl is devoted to the exact multimode method Fi=C(wp)coshkix+d]), @)

for solving the general equations. An alternative exact i

method, the method of fundamental solution, is presented in K _1 [l @n| +iEeSgNe,

Sec. IV. In Sec. V we describe results of our methods. In Sec. g 7Tes '

VI, a qualitative explanation of our results is presented, the . . .

applicability of the results to multilayered structures is dis-and the boundary condition at=0 can be written in closed

cussed, and the use of a complex diffusion constant is conform With respect td-:

mented upon. Conclusions are presented in Sec. VII. Appen- dF(0)

dixes A and B contain analytical results for limiting cases. < ST Y

Finally, technical details of the calculations are given in Ap- dx  yp+Bi(ws)

pendix C. 1
Bi=[k¢éstanh(keds) ]

Fs(0), ®

”'.MOPE.L . , This boundary condition is complex. In order to rewrite it
We assume that the dirty-limit conditions are fulfilled, and;, 5 |eal form, we do the usual trick and go over to the

calculate the critical temperature of the bilayer within theg qns

framework of the linearized Usadel equations for the S and F

layers(the domain B<x<d; is occupied by the S metal, and “=F(w,)*F(—o,). 9)
—d;<x<0—Dby the F metal; see Fig).INearT the normal . . .

Green function isG=sgnw,,, and the Usadel equations for According to the Usadel equatioii$)—(3), there is a sym-

the anomalous functioR take the form metry F(—wp)=F*(w,) which implies thatF* is real
while F~ is a purely imaginary function.

2F The symmetric properties &8 © and F~ with respect to

ggWTCSW_ |wn|Fs+A=0, 0<x<d;, (1) o, are trivial, so we shall treat only positive,. The self-

consistency equation is expressed only via the symmetric

: +
5 functionFy ,

dF; )
S?WTCSW - (|‘Un| +iEesgnw,)F¢=0, —d;<x<0,

Tes 20
@ Aln7—wT2 (——FS), (10

w,>0 \ Wnp
Tes A and the problem of determining, can be formulated in a
A In? = WTE (m - FS> ©) closed form with respect t6. as follows. The Usadel equa-
“n " tion for the antisymmetric functiofr; does not contaim;
(the pairing potentiall is nonzero only in the S partHere  hence it can be solved analytically. After that we excl&de

£=\DJ27 T, and &=+D¢/27T,s are the coherence from boundary condition(8) and arrive at the effective
lengths, while the diffusion constants can be expressed vioundary conditions foF ,
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explicit formulation of the corresponding condition: the
single-mode method is correct only if the parameters are
such thatwW can be considered,, independentbecause the
left-hand side of Eq(18) must bew,-independent*®

Appendix B demonstrates examples of the SMA validity
and corresponding analytical results. In one of experimen-
tally relevant cases,,/nT.s>1 andd;~¢&;, the SMA is
applicable ifVE¢y/ 7T 117y, (see Appendix B for details

dF¢(0)

dFq(dy)
gs dX -

dx

=W(w,)F<(0), 0, (1

where

As(ypt+ReBf)+y

W(wn):7 )
Al yp+ B2+ y(yp+ ReBy)

12

Wn

As=ksétanh(kgds), K T B. Inclusion of other modes
CS

&

The self-consistency equatidh0) and boundary conditions
(11) and(12), together with the Usadel equation ﬂé@' ,

The single-mode approximation implies that one takes the
(only) real rootQ) of Eq. (17). An exact(multimode method
for solving problem(10)—(13) is obtained if we also take

d2E* imaginary roots into account—there is infinite number of
0
ErTe—— —w,Fi +2A0=0 (13  thes€ o
dx Thus we seek the solution in the form

will be used below for finding the critical temperature of the
bilayer.
The problem can be solved analytically only in limiting

X—dg
F;(ern):fO(wn)Co{QO g )

casegsee Appendix A In the general case, one should use a x—d
numerical method, and below we propose two methods for o cosl‘(ng—S)
solving the problem exactly. + 2 fowp) > L (19
mt cosh Q,,—
Ill. MULTIMODE METHOD m§s
A. Starting point: the single-mode approximation 4
and its applicability g B COSI‘( me - s)
In the single-mode approximatiq®MA) one seeks a so- A(x)= 60c05< Qo—— |+ > 5m—ds.
lution of problem(10)—(13) in the form & m=1 cos)’(Q _S)
més
x—d
F;(x,wn):f(wn)co{ﬂ S), (14) 20
& (The normalizing denominators in the cosh terms have been
x—d introduced in order to increase accuracy of numerical calcu-
A(X)= 5(;05(5) 5)_ (15)  lations) This anzatz automatically satisfies boundary condi-
&s tion (11) at x=ds.
This anzatz automatically satisfies boundary conditid at Substituting the anzafggs. (19) and (20)] into the Us-
x=ds. adel equatior(13), we obtain
The Usadel equatiofiL3) yields
(o) 25
olwp)=——7—5—,
flon)= —25 ) (16 wn+Q(2)7TTcs
a)n—l—QZﬂTTCS
then the self-consistency equati@i®) takes the form § and f (@)= 2m m=12,..., (21)

) do not depend ow,,)
Tes (1 02 Tcs) (1)
In=—=y| =+ ——=—|—¢| =, 1
T 4 2 2 T, 4 2 17

where ¢ is the digamma function.
Boundary condition(11) at x=0 yields

Q tar(ﬂ%) =W(w,). (19)

The critical temperaturd is determined by Eq917) and
(18).

1
wn—Qﬁqﬂ'TCS

then the parametef3 are determined by the self-consistency
equation(10) (6 and () do not depend om,,):

e -l

2 2 T,

2

Tes (1 Qﬁ]TCS) (1
In—= —

TNz T T E)' m=12,... (22

From Egs.(22) and properties of the digamma functfrit

Although this method is popular, it is often used without follows that the parametef@ belong to the following inter-
pointing out the limits of its applicability. We present the vals:
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0<cO2< 1 G _ B ks/w,
2y’ (XYi00) = Ginkkdo) + (Wikeo) costikedy)

23 vi(Xvaly), xsy

Ic 2 Ic
—(2m— —(2m+ m= X 29
Tcs(2 1)<Qm<TC5(2 1), 1,2, Y UZ(X)U]_(Y), y<=X, ( )

where ¥, ~1.78 is Euler’s constant. where

Boundary condition(11) at x=0 yields the following _ K) + (WIk inh(k 30
equation for the amplitudes: v1(X) =costike) +( s65)SInNCksx), (309
X)=coshkJ x—d.]). 30b
 W(y)08 2gds/£9) - Qosin(dods /£ v2(x)=coshtkdxds] (305
0 wn+Q§7TTcs Having foundG(x,y;w,), we can write the solution of
Egs.(11)—(13) as

> 5mW(wn)+thanf(deS/§S) 0. (24

dS
m=1 wn— Q27T FS(X;wn)=2fo G(X,y;@n)A(y)dy. (31

The critical temperaturd_ is determined by Eqd22) and g pstituting this into the self-consistency equatiaf), we
the condition that Eq(24) has a nontrivial o, independent  jpiain

solution with respect t@.
Numerically, we take a finite number of modem Tes A(X)
=0,1,... M. To take account ofv, independence of the A(X)lnT_c:ZWTc >

ds
P2 —fo G(x,y;wn)A(y)dy}-
solution, we write down Eq(24) at the Matsubara frequen- " (32)
cies up to theNth frequencyn=0,1, ... N. Thus we arrive _ ) _
at the matrix equatio 6, =0 with the following matrix ~ This equation can be expressed in an operator form:
K: A In(T.s/T)=LA. Then the condition that E¢32) has a non-
trivial solution with respect ta is expressed by the equation

K _W(wn)coiﬂodslgs)_QOSin(QOdslgs) T

0~ ) F_2 cs| _

n wnl TTest Q2 de*(L—l InT—C> =0. (33
W(wp)+ Qptani(Q de/ &) The critical temperatur@. is determined as the largest solu-

nm= Y. , (25  tion of this equation. Numerically, we put problei82) and
@nlles™ 3 m (33) on a spatial grid, so that the linear operatdpecomes a

N=01,...N, m=12 ...M. finite matrix.

We takeM =N, then the condition that Eq24) has a non- V. NUMERICAL RESULTS

trivial solution takes the form
In Secs. Il and IV we developed two methods for calcu-

detk =0. (26) lating the critical temperature of a SF bilayer. Specifying
- . . parameters of the bilayer we can find the critical temperature
Thus the critical temperaturg; is determined as the largest numerically. It can be checked that the multimode method

solution of Egs(22) and(26). and the method of fundamental solution yield equivalent re-
sults. However, at small temperatures<T,, the calcula-
IV. METHOD OF FUNDAMENTAL SOLUTION tion time for the multimode method increases. Indeed, the

size of the matrix< [Eq. (25)] is determined by the number
N of the maximum Matsubara frequeney;, which must be
much larger than the characteristic energy.s; henceN
>T./T.. Therefore, at low temperatures we use the method
of fundamental solution.

By definition, the fundamental solutiorG(X,Y;w,)
(which is also called the Green functjoaf problem(11)—
(13) satisfies the same equations, but with the delta
functional “source,®*

, - d’G(xy)
§s7TTcsT —0,G(Xy)=—48(x=y), (27 A. Comparison with experiment
Using our methods we fit the experimental data of Ref.
dG(0y) dG(ds,y) 11; the result is presented in Fig. 2. Estimating the param-
gs dx ZW(wn)G(ON)v —dX =0. (28) eters ds: 11 nm, Tcs:7 K, Ps:7-5 MQ cm, fs

=8.9 nm,p;=60 ucm, &=7.6 nm, andy=0.15 from
The fundamental solution can be expressed via soluigns the experiment? and fitting onlyE,, and y,, we find good
andv, of Eq. (27) without the delta function, satisfying the agreement between our theoretical predictions and the ex-
boundary conditions at=0 andd, respectively: perimental data.
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e Experiment
Theory
- &%
~
B‘O
3 T T T T
0 5 10 15 20 -——
d, (nm) 0.0 05 1.0 15 2.0 2.5
4 4d,/ 2,
FIG. 2. Theoretical fit to the experimental data of Ref. 11. In the
experiment, Nb was the superconducigvith dg=11 nm, T FIG. 3. Characteristic types @%,(d;) behavior. The thickness of
=7 K) and Cy 4Nij 57 Was the weak ferromagnet. From our fit we the F layer is measured in units of the wavelengthdefined in Eq.
estimateE,,~130 K andy,~0.3. (40). The curves correspond to different values wf. The ex-

change energy iE.,=150 K; the other parameters are the same as
in Fig. 2. One can distinguish three characteristic type3 &tl;)
behavior:(1) a nonmonotonic decay to a finife, with a minimum

at particulard; (y,=2; 0.5; 0.1; 0.07),(2) a reentrant behavior

The fitting procedure was the following: first, we deter-
mine E.~130 K from the position of the minimum of
e et £ 005002 St 2 monconic ey 00 a e

X X i . . d¢ (y,=0). The bold points indicate the choice of parameter cor-
perimental points is small; it is most pronounced in the re'responding to Fig. 6.
gion of smalld; corresponding to the initial decreaseTqf.

This is not unexpected because, witkris of the order of a

few nanometers, the thickness of the F film may vary signifi-S only due to the effective F layer with a thickness on the
cantly along the filmwhich is not taken into account in our order of\,, adjacent to the interfacghis is the layer ex-
theory), and the thinnest films can even be formed by arplored and “felt” by quasiparticles entering from the S side
array of islands rather than by continuous material. At thedue to the proximity effegt

same time, we emphasize that the minimunT pfakes place It was shown by Radoviet al? that the order of the
atd;~5 nm, when with good accuracy the F layer has uni-phase transition may change in short-periodic SF superlat-
form thickness. tices, becoming of first order. We also observe this feature in

the curves of type$2) and (3) mentioned above. This phe-
nomenon manifests itself as discontinuity ©f(d;): the
B. Various types of T(d;) behavior critical temperature jumps to zero abruptly without taking

The experimental results discussed above represent onigtermediate valuegsee Figs. 3 and)4 Formally, T, be-
one possible type of(d;) behavior. Now we address the comes a double-valued function, but the smaller solution is
general case; we obtain different kindsTaf(d;) curves de-  physically unstable¢dotted curve in Fig. A
pending on parameters of the bilayer. To illustrate, in Fig. 3 An interesting problem is determination of the tricritical
we p|0t several curves for various values m [We recall point where the order of the phase transition Changes. The
that y, =R, , whereR, is the resistance of the SF interface in corresponding result for homogeneous bulk superconductors
the normal state—see E(6)]. The exchange energy &,  With internal exchange field was obtained a long time ago in
=150 K; the other parameters are the same as in Fig. 2. the framework of the Ginzburg—Landa@L) theory?® How-

We observe three characteristic typesTefd;) behavior: ~ €Ver, Fhe generalization to thfe case when the GL theory is not
(1) At a large enough interface resistande, decays non- valid is a subtle pro_blem Whlch has not yet been solved. We
monotonically to a finite value exhibiting a minimum at a note that the equations used in Refs. 3 and 15 were applied
particulard; . (2) At a moderate interface resistande,dem- beyond their appllqablhty range because they are GL results
onstrates a reentrant behavior: it vanishes in a certain interv¥glid only whenT, is close toTs.
of d;, and is finite otherwisg3) At a low enough interface
resistancd . decays monotonically, vanishing at finie. A _ _ _
similar succession of.(d;) curves as in Fig. 3 can be ob- C. Comparison between single-mode and multimode methods
tained by tuning other parameters, e.g., the exchange energy A popular method widely used in the literature for calcu-
Eex Or the normal resistances of the layéise parameteyy).  lating the critical temperature of SF bilayers and multilayers

A common feature seen from Fig. 3 is saturatioriTgfat  is the single-mode approximation. The condition of its valid-
larged;=\.. This fact has a simple physical explanation: ity was formulated in Sec. Ill A. However, this approxima-
the suppression of superconductivity by a dirty ferromagnetion is often used for arbitrary system parameters. Using the
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1 L 1 L
1.0 L
— multi-mode multi-mode
0.6 - L 081 ke singlemode t } @ e single-mode
Y _
& %=0 %,=0.02
B:a 044
0.4 | 0.2
=~ 1.0 - I I I I I
&u — multi-mode —— multi-mode
024 | 684 % --ginglemode T % 0 e single-mode
. o _
& %,=0.07
[N" 0.4
H 8.2
0.0 L] - 1 L] 1
02 04 06 038 10 12 801"
4 df/ A 1 —— multi-mode —— multi-mode
o8 % 0 e single-mode + Y\ = o single-mode
FIG. 4. Change of the phase transition’s order. This phenom-5.4a 0.6 ¥ = 0.13
enon manifests itself as discontinuity ©f(d): the critical tem- ~ 0al b %= 0.5
perature jumps to zero abruptly without taking intermediate values.™ ¥
Formally, T, becomes a double-valued function, but the smaller 0.2+
solution is physically unstablédotted curve For illustration we o0l e) | 1)

have chosen the curve from Fig. 3 corresponding/e 0.05.

00 05 10 15 20 25 30 00 05 10 15 20 25 30
methods developed in Secs. Ill and IV, we can check the 4df/'1ex 4df/’1ex
actual accuracy of t.he §|ngle-mode approximation. The re- FIG. 5. Comparison between single- and multimode methods.
sults are presented in Fig. 5. he parameters are the same as in Fig. 3. Generally speaking, the

We conclude that although at some parameters the resul} ‘

. : gsults of the single-mode and multimo@ac} methods are quan-
of the single-mode and multi-modexac) methods are close titatively and even qualitatively differentb), (c), (d), and (e).

[Figs. §a) and §f)], in the general case they are quantita-y,,ever, sometimes the results are clog: and (f). Thus the
tively and even qualitatively differentFigs. 8b)-5(€)—  gingle-mode approximation can be used for quick estimates, but

these cases correspond to the most nontrii&tly) behav-  reliable results should be obtained by one of the exactitimode
ior]. Thus to obtain reliable results one should use one of thgy fundamental-solutiortechniques.

exact(multimode or fundamental-solutipmechniques.

curve, although negative values of the order parameter have
D. Spatial dependence of the order parameter very small amplitudes We discuss this oscillating behavior

- : . . . in Sec. VI A,
The proximity effect in the SF bilayer is characterized by

the spatial behavior or the order parameter, which can be

chosen as VI. DISCUSSION

A. Qualitative explanation of the nonmonotonicT .(dy)

behavior
F(x,m=0)=T> F(x,0p), (34) . . -
on The thickness of the F layer, at which the minimum of

T.(ds) occurs, can be estimated from qualitative arguments
where = denotes the imaginary timégn the S metalF(x,7  based on the interference of quasiparticles in the ferromag-
=0)xA(x)]. This function is real due to the symmetry rela- net. Let us consider a poirtinside the F layer. According to
tion F(—w,)=F* (). Feynman’s interpretation of quantum mecharfcte qua-

We illustrate this dependence in Fig. 6, which shows twosiparticle wave function may be represented as a sum of
cases differing by the thickness of the F lagenand by the  wave amplitudes over all classical trajectories; the wave am-
correspondingdr.). Although the critical temperatures differ plitude for a given trajectory is equal to exg), whereSis
by more than the order of magnitude, the normalized ordethe classical action along this trajectory. We are interested in
parameters are very close to each other, which means that th@ anomalouswave function of correlated quasiparticles,
value of T, has almost no effect on the shape Bfx,  which characterizes superconductivity; this function is
=0). Details of the calculation are presented in Appendix Cequivalent to the anomalous Green functffx). To obtain

Another feature seen from Fig. 6 is that the order paramthis wave function we must sum over trajectories thgstart
eter in the F layer changes its sign when the thickness of thand end at the point, and(ii) change the type of the quasi-

F layer increasesthis feature can be seen for the dotted particle(i.e., convert an electron into a hole, or vice versa
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1.0- L L L L L L ? L 1 L 1 L 1 | 81: _ QX— a, (35)

] — S=Qx—a, (36

5 oo 4df/ /'lex—O.9 /-

Lo T./T,=002 | S3=—Q(2d;+x) —a, (37)

T J | B

= ' S,=Q(2d;+X)— (39)

=) F l S | (note thatx<<0), whereQ is the difference between the wave

I . numbers of the electron and the hole, andarccosg/A) is

= ! the phase of the Andreev reflection. To make our argu-

&, i 4d/2,=17 |L ments more clear, we assume that the ferromagnet is strong,
! T/T, =027 the SF interface is ideal, and consider the clean limit first:
5 | then Q=Ke—ky=V2M(E+Egxt 1) — V2M(—E—Eg,t 1)
i ——— ~2Eq/v, where E is the quasiparticle energy, is the

A5 -0 DS 00 05 10 L5 Fermi energy, and is the Fermi velocity. Thus the anoma-
4x/ 2 lous wave function of the quasiparticles is
€X

4

FIG. 6. Spatial dependence of the order parameter normalized .
by its value at the outer surface of the S layer. Two cases are shown F(X)“n; eXp(iSy)cogQdy)cod Q[ds+x]). (39

differing by the thickness of the F layédr (and by the correspond-

ing T;) at y,=0.05. The other parameters are the same as in Fig. 3, The suppression of . by the ferromagnet is determined
where the chosen cases are indicated by the bold points. Althoughy the value of the wave function at the SF interfaé0)
the critical temperatures differ by more than the order of magnitudeMCOSZ(Qdf)_ The minimum of T, corresponds to the mini-
the normalized order parameters are very close to each other, Whi‘fﬂum value ofF(0) which is achieved atl;=7/2Q. In the

means that the value df. has almost no effect on the shape of di o ; ;
irty limit the above expression fa is replaced b
F(x,7=0). The jump at the SF interface is due to its finite resis- y P @ P y

tance. With an increase df; the order parameter starts to oscillate, E 2

L . . ex 2T
changing its sigrthis can be seen for the dotted curve, although =/ Z="" (40)
negative values of the order parameter have very small ampljtudes Df Aex

here we have defined the wavelength of the oscillations

There are four kinds of trajectories that should be taken int .
o) hence the minimum of .(d;) takes place at

account(see Fig. 7. Two of them(denoted 1 and)2start in
the direction toward the SF interfa¢as an electron and as a D,

hole), experience the Andreev reflection, and return to the dgmin):z —f_ Zex (42)
point x. The other two trajectorie€lenoted 3 and }start in 2 VE 4

the direction away from the interface, experience normal reg
flection at the outer surface of the F layer, move toward th
SF interface, experience the Andreev reflection there, an
finally return to the poink. The main contribution is given
by the trajectories normal to the interface. The correspondin%qi
actions are

or the bilayer of Ref. 11 we obtait™~7 nm, whereas
é1e experimental value is 5 nffig. 2); thus our qualitative
stimate is reasonable.
The arguments given above seem to yield not only the
nimum but rather a succession of minima and maxima.
However, numerically we obtain either a single minimum or
S a minimum followed by a weak maximuifig. 3. The rea-
son for this is that actually the anomalous wave function not
only oscillates in the ferromagnetic layer but also decays
exponentially, which makes the amplitude of the subsequent
oscillations almost invisible.

Finally, we note that our arguments concerning oscilla-
tions of F(x) also apply to a half-infinite ferromagnet, where
we should take into account only the trajectories 1 arfse2
Fig. 7). This yieldsF (x)«cos@Qx) (another qualitative expla-
nation of this result can be found, for example, in Ref). 14

T T X
-y 0 d B. Multilayered structures

FIG. 7. Four types of trajectories contributifip the sense of The methods developed and the results obtained in this
Feynman’s path integrato the anomalous wave function of corre- paper apply directly to more complicated symmetric multi-
lated quasiparticles in the ferromagnetic region. The solid lines corlayered structures in the O-state such as SFS and FSF trilay-
respond to electrons, and the dashed lines to holes; the arrows igrs, SFIFS and FSISF systeithslenotes an arbitrary poten-
dicate the direction of the velocity. tial barriep, and SF superlattices. In such systems an SF
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bilayer can be considered as a unit cell, and joining together Averaging Eq.42) over the spherical angles first directly
the solutions of the Usadel equations in each bilayer we oband second after being multiplied by ofyswe arrive at
tain the solution for the whole systeffor more details see

Sec. VIII of Ref. 28. v d . 3
Our methods can be generalized to take account of pos- 6 &Fﬁ(w”ﬂEe")Fo_A’ (44
sible superconductive and/or magnetic states(when A
and/or E., may change their signs from layer to layen v d 1
this case the system cannot be equivalently separated into a 2 d_xF°+ @n Z+'EeX) F1=0. (45)

set of bilayers. Mathematically, this means that the solutions . i
of the Usadel equations lose their purely cosine fgsme EQuation(45) yields
Egs. (7), (14), (15), (19), (20), and (30b)] acquiring a sine

| d
art as well. - Tl =g
P F1 1+ 2w,7+ 2iEeXr)dxF°’ (46
C. Complex diffusion constant? then Eq.(44) leads to

Finally, we comment on Refs. 4, 15, 16, and 29, where the D d2
authors considere(n the vicinity of T..) diffusion equations —Fo—(w,+iEg)Fo+A=0, 47)
with a complexdiffusion constantD; for the F part of the 2 dx?
structure. This implies small complex correctiondtp over
Eer<1 in the Usadel equations-(is the time of the mean D vl/3
free path. However, we disagree with this method for the - 1420,7+2iEgT

following reason: although the compldX; can indeed be
formally obtained in the course of the standard derivation of Now we must check that the assumptiff, /Fo|<1,
the Usadel equatiohsfrom the Eilenberger onésby ex-  |F,/F;|<1, etc. that we used is indeed satisfied. From Eq.
panding over the spherical harmonics, one can check that tH6) we obtain
higher harmonics neglected in the derivation have the same
order of magnitude as the retained complex correctiddto _ 7L
Hence the complexity oD; in the context of the Usadel max 1,2w,7,2E7)’
equations is the excess of accuracy. Below we present OWhereL is the characteristic space scale on wHighvaries.
arguments. , N . According to the Usadel equatigd?), it is given by

We give a brief derivation of the Usadel equations show- '
ing how the complex diffusion constant can be obtained and |
why this result cannot be trusted. In the “quasi-one- L~
dimensional” geometry(which means that the parameters Jymax 1,20, 7, 2E,r)max 2w, 7, 2E ¢y7)
vary only as a function of) the linearized Eilenberger equa-

Fy
Fo

(48)

. (49

and the condition of the Usadel equation’s validity is written

tion in the presence of disorder and the exchange field haasS
the form
F max 2w, 7,2E o, 7
v cost d F+| w,+ ! +iE F—A+<F> 42 F_lw\/mai)(l 2a? TZI;X )T) <1 (50
2 dx Wn 27 IEex|F= o7 (42) 0 1eWnT, LB ey

[similarly, we can also keep the term wik=2 in series
where, for simplicity, we assume a positive Matsubara fre{43), which yields|F,/F|~|F/F¢|, etcl.

qguencyw,>0, and@ is the angle between theaxis and the Finally, condition(50) takes the form
direction of the Fermi velocity, while (- - -} denotes angu-
lar averaging over the spherical angles. The disorder is char- 2mTest<1, 2Egr<1 (51)

acterized by the time of the mean free patand the mean  ye have taken into account that the characteristic energy is
free pathl (to be used beloy In the dirty limit the anoma- wn~mTed).

lous Green functiprPF is nearly isotrqpic. However, to obtain Now we can analyze our results. If conditi¢hd) is sat-

the Usadel equation for the isotropic partfofwe must also sfied and the Usadel equation is valid, the neglected angular
take_lnto account the next term from the full Legendre poly-parmonics have the relative order of magnitude /F |
nomial expansion: ~max(2rT e, 2E.,7); hence we cannot retain the terms of
the same order in the diffusion constdaee Eq.(47)], and

we should use the standard expresdibavl/3.

F(x,wn,9)=k20 F (X, p) Py(cosh)
VII. CONCLUSIONS
~Fo(X,w,) + F1(X,w,)COSH. (43
In the present paper we have developed two methods for
Here we have neglected the harmonics With2 assuming calculating the critical temperature of a SF bilayer as a func-
them small; we shall check this assumption later. tion of its parametersthe thicknesses and material param-
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eters of the layers, and the quality of the interfacthe APPENDIX A: ANALYTICAL RESULTS FOR ATHIN S
multimode method is a generalization of the corresponding LAYER

approach developed in Ref. 20 for SN systems. However, the (i) Whend,< &, andE,> 7T,,, problems(10)—(13) can

rigorous justification of this method is not clear. Therefore,be solved analytically. The first of the above conditions im-

we propose yet another approach—the method of fundamenyjies thatA can be considered constant, #Rd weakly de-

tal solution, which is mathematically rigorous. The resultspendS on the spatial coordinate: $6"(x,w,)=2A/w,

demonstrate that the two methods are equivalent; however, at o, )coshik/x—d.]). The boundary conditions determine

low temperaturegcompared toT.s) the accuracy require- the coefficientA: as a result,

ments are stricter for the multimode method, and the method

of fundamental solution is preferable. Comparing our_ . 2A Ay(wp)

method with experiment we obtain good agreement. F*(wn)=F"(x=00n)= ‘o | Ad )+ W(wy) |’
In the general case, we observe three characteristic types . . .

of T.(ds) behavior:(1) a nonmonotonic decay of. to a Whl;are Ky . As, andW are ?g_flneg n Eq(le). Finally, the

finite value exhibiting a minimum at particulat;; (2) a self-consistency equation fdr; takes the form

reentrant behavior, characterized by vanishing oin a cer- Tes yé& 1 Te

tain interval of d; and finite values otherwise, an@®) a |nT—=Re¢/(§+§d—TBT—)—¢(§), (A2)

monotonic decay off, and vanishing at finitel;. Qualita- ¢ s 7Bt Te

tively, the nonmonotonic behavior d@f,(d;) is explained by =~ whereB; does not depend ow, due to the conditiorEgy,

interference of quasiparticles in the F layer, which can be>7T.:

either constructive or destructive depending on the value of

ds . - -1 -
Using the developed methods we have checked the accu- Br=[kigrtanftkedo) ] ke= & VaTeg

racy of the widely used single-mode approximation. We con- ) ) )

clude that although at some parameters the results of the (i) If the F layer is also thind;< VD /2E,, Eq. (A2) is

single-mode and exact methods are close, in the general calither simplified,

(A1)

Eex

(A3)

they are quantitatively and even qualitatively different. Thus, T
: . cs T 1 Eex 1
to obtain reliable results one should use one of the exact |n—=Re¢(E —|— 5 )—lp(E),
(multimode or fundamental-solutiptechniques. The spatial c Ts| T H TiEey 27T (Ad)
dependence of the order parametgrthe transition pointis
shown to be almost insensitive to the valueTgf. where 75 and ¢ are defined similarly to Ref. 28,
The methods developed and the results obtained in this
paper apply directly to more complicated symmetric multi- . :ZdSRbA _2diRyA (A5)
S l

) Ti=
psDs f pDs

Hhd have the physical meaning of the escape time from the
Hbrresponding layer. They are related to the quantitiesd
vp Used in the body of the paper as

layered structures in the O-state such as SFS and FSF trilay-
ers, SFIFS and FSISF systems, and SF superlattices. O
methods can be generalized to take account of possible s
perconductive and/or magnetie states(whenA and/orEg,
may change their signs from layer to layer

We argue that the use of the complex diffusion constant in vy 1 d 1
the Usadel equation is the excess of accuracy. In several Ts
limiting cases,T, is considered analytically.

dy
=————, T =Y~ = (AB)
Yy mles &s 7 s &t
(iii) If the S layer is thinds<és, and the SF interface is
opaque,y,—, the critical temperature of the bilayer only
ACKNOWLEDGMENTS slightly deviates fronT . In this limit Eq. (A1) applies with

We thank V. V. Ryazanov and M. V. Feigel'man for stimu- V= Y/ vp=<1, and we finally obtain

lating discussions. We are especially indebted to V. V. Rya- -
zanov for communicating the experimental result of his Te=Tes— —.
group to us prior to the detailed publication. We are also 47s

grateful to J. Aarts, A. |. Buzdin, M. Yu. Kupriyanov, Yu. |nterestingly, characteristics of the F layek ( E.y, etc) do
Oreg, and L. R. Tagirov for useful comments. Ya.V.F. ac-not enter the formula. In particular, this formula is valid for
knOWledgeS financial Support from the Russian FOUndaUOf&n SN b“aye}lv?’z (Where N is a nonmagnetic normal mate-
for Basic ResearchRFBR) under Project No. 01-02-17759, rjg|, E_=0) because Eq(A7) was obtained without any

and from Forschungszentrumligh (Landau Scholarship  assumptions about the value of the exchange energy.
The research of N.M.C. was supported by the RFBR

(Projects Nos. 01-02-06230 and 00-02-1661By Fors-
chungszentrum Jich (Landau Scholarshjp by the Nether-
lands Organization for Scientific Resear@dWO), by the When both layers are very thiNds<yDg/2wp,

Einstein Center, and by the Swiss National Foundation.  d;<min(yD¢/2wp, VD{/2E,,), with wp the Debye energy

(A7)

1. Transparent interface
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of the Smetal and the interface is transparent, the bilayer isterpretation: the superconducting ,(\) and ferromagnetic
equivalent to a homogeneous superconducting layer with inE.,) parameters are renormalized according to the part of
ternal exchange field. This layer is described by effectiveime spent by quasiparticles in the corresponding layer. This
parameters: the pairing potential®®, the exchange field physical picture is based on interpretation ofas escape
EC™ | and the pairing constant®™. In this subsection we times, which we present in Appendix A 2.
develop the ideas of Ref. 33, demonstrate a simple derivation Now we discuss the applicability of the above description
of this description, and find the limits of its applicability. = for a nonideal interface #,#0). In this caseF is nearly
The Usadel equationd) and(2) for the two layers can be constant in each layer, but these constants are different:

written as a single equation, Fo(X)~F¢+Cyq(x—dg)?, Fi(x)~F¢+Cs(x+ds)%, where
|F¢|>|C,d? and |F¢|>|C;|d?. Using the Usadel equation
D6(—x)+Ds0(x) d°F (A8) and boundary condition&) and(6), we find the differ-
2 " encesF=F,—F;:
_|“)n|F_iEengr(wn)g(_X)F"'Ag(x):Oy SE= A . (A15)
(A8) i—i—|w | 1+ .1
Ts " 7'f(|wn| +iEeSgnwy)

where 6 is the Heaviside function §(x>0)=1, 6(x<0)
=0]. The self-consistency equati@8) can be rewritten as  Finally, the homogeneous description is valid wHéR/F|
<1 [with F determined by Eq(A11)], which yields
AX)=NOX)7T 2, F(X,w,), A9
() =160 ; (X,n) (A9) maX Eey, wp)Max 75, 77) <1 (A16)
where\ is the pairing constant. (here w,~wp has been taken as the largest characteristic
First, we consider the ideal SF interfacg;=0 [see Eq. energy scale in the quasihomogeneous bilayer
(6)], thenF(x) is continuous at the interface and nearly con-
stant across theholebilayer, i.e.,F(X)~F:(x) =F. Apply-

; ; 2. Interpretation of = as escape times
ing the integral operator to E¢A8),

The quantitiesrg and 7¢ introduced in Eq(A5) may be
v 0 Vg dg interpreted as escape times from the corresponding layers.
Mf—dfdx+mjo dx  (Al0)  The arguments go as follows. _
If the layers are thin, then the diffusion inside the layers is
(herev is the normal-metal density of stajeand cancelling “fast” and the escape time from a layer is determined by the
gradient terms due to boundary conditi@), we obtain the interface resistance. The time of penetration through a layer

equations describing a homogeneous layer, or the interface is determined by the corresponding resistance
oy F(wp) — iECNs JE () +AED = Rs() Or Ry, hence the_dlffusmn is “fast” ifRg(1) <Ry, _
WnF{wn ex SgMwn)F(wy ' Let us use the detailed balance approach, and consider an

(A1) interval of energydE. In the S layer, the charge in this in-
terval isQs=ev dE.Ad,. Let us define the escape time from

A(eﬁ):)\(eﬁ)WTE Flw,), (A12) the S layertg, so that the current from S to F is equal to
@ Qs/ts. On the other hand, this current can be written as
with the effective parametefsee also Ref. 33 dE/eR,; hence
dE
(efy ___Tf (efy—_Ts Q_dE A17
EX e Eex, A " TfA, (A13) t. eR’ (A17)
and we immediately obtain
Ts Ye 1
A (e = N, TEN=—24 exp -
TS+ T ’ cs T D )\(eff) ! dstA ( )
te= . A18
where y_ is Euler’s constant, and(y” is the critical tem- PsDs

perature of the layer in the absence of ferromagnetisen,  Similarly, we obtain the expression for the escape time from
at E&M=0). The critical temperature is determined by thethe F layert;. As a result, the relations between the quanti-
equation ties 7, defined in Eq(A5), and the escape timésre simply

ff
57(672_) ) - lp( %) | (ALD) T7s=2ts, T=2t;. (A19)
c

T(ef)

cs

Te

In Rey

—+i

2
Microscopic expressions for the escape times may be ob-

Actually, the description in terms of effective parameterstained using the Sharvin formula for the interface resistance.

(A13) is applicable at an arbitrary temperatuie., when the  Assuming, for definiteness, that the Fermi velocity is smaller
Usadel equations are nonlingand has a clear physical in- in the S metalp <v;, we obtain
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’7Trb Y dS .
= 2) ——>1:
s ezvsvsA’ (A20) %) b &s
and consequently In this case Eq(B4) yields Qds/és==/2, and Eq.(B3)
takes the form
010y Tee (1 m?[&)2T 1
ts=m—Tp, G=m—FTp, (A21) oSl S 5SSyl 2
MERLE v3 N =zt E o] T, Y3 (B6)

wherery, is _the inverse tranfsparency of one channel. Th_e Equations(B3)—(B6) can be used for calculating the criti-
asymmetry in these expressions stems from our assumptiqty| emperaturd’, and the critical thickness of the S layer

vs<vj. Inthe opposite case the indiceandfin Eqs.(A20)  y(en pejow which the superconductivity in the SF bilayer
and (A21) should be interchanged. v;nishes(i e. T,=0)
e., T.=0).

APPENDIX B:
APPLICABILITY OF THE SINGLE-MODE
APPROXIMATION

1. Results for the critical temperature

In the limit whenT, is close toT.s, Eqgs.(B5) and (B6)
ield
As pointed out in Sec. Il A, the single-mode approxima—y
tion (SMA) is applicable only if the parameters are such that
W [see Eq(12)] can be considered,, independent. An ex-
ample is the case whep,>|B;|, henceW=y/y, .
The conditiony,>|Bs| can be written in a simpler form; and
to this end we should estimat8;|. We introduce the real
and imaginary parts ok;, ki=k; +ik}, and note thak;
>k{ . Then using the properties of the trigonometric func-

(dS ES

aay@”

T.=T (1 il ) it L <mi
= —— =22 if —<min
¢ e 4 vy, dg b

m? &7 ds Yb
TC=TCS[1—(ZOTS } : g_fma’{lT)' ®9

tions and the estimate tarkrmin(1x) we obtain
|By|~[ki&stanh(kide)] ™, (B1)

and finally cast the conditioty,>|B;| into the form

i<min[ ma><(L Eex)'ﬁma To Eex)]
Yo Tes'mTes) &5 Tes'mTes) |’
B2)

where the ratioT./T.s originates fromw,/7T.s with w,
~aT. as the characteristic energy scale in the bilayer.

If condition (B2) is satisfied, then the SMA is valid afig
is determined by the equations

Tes (1 Q0?2 TCS) (1)
|n.|_—c—(ﬂ §+7T_C —lﬁz, (B3)
dg Y
Q tar( Q §_5> = 7o . (84)

These equations can be further simplified in two limiting

cases which we consider below.

y ds
1) ——<1:
(1) Yo &s

In this case Eq(B4) yields Q%= (y/vy,)(&s/ds), and Eq.

(B3) takes the form

CS
In—=

T 1
T, 2

1 Y gsTcs 1
z+z%@?ﬂ‘4ﬁ* (B5)

which reproduces the,>|B;| limit of Eq. (A2).

Using relationgA6) one can check that resB7) is equiva-
lent to Eq.(A7).

2. Results for the critical thickness

The critical thickness of the S layet®” is defined as the
thickness below which there is no superconductivity in the
SF bilayer:T,(d®))=0. WhenT,—0, Eq. (B3) yields Q
=1/\/2y_ (where y_~1.78 is Euler's constantand Eq.
(B4) takes the form

1 t 1 dle) (9
——tan ——|=—.
‘/275 ‘/275 &s Vb

Explicit results ford{™) can be obtained in limiting cases,

s Y Y Us
=2y — if - 2«1 B10)
&s yEVb Yo s (
and
d(scr) \/‘y\E Y Us
=7\/= if ——>1 B11
3 2 T E (61D
APPENDIX C:

SPATIAL DEPENDENCE OF THE ORDER PARAMETER

According to the self-consistency equation, in the S layer
the order parametd¥(x,7=0) is proportional taA(x),

A
Fs(x,7=0)= et (C1
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where\ is the pairing constant which can be expressed viarhe symmetric parE_ is given by Eq.(31). The antisym-

the Debye energy: metric part is
2y F.=C" coshikx—d C5
o] 2 ) - s =C (wn)costikdx—da]), (5
cs with C~ (w,,) found from the boundary conditions,
The pairing potential(x) can be found as the eigenvector . .
of the matrixL — 1 In(T.s/T,) [see Eq(33)], corresponding to C ()= iylmB;s Fs (0,0,)
the zero eigenvalue. " A yp+ Bi|?+ y(y,+ ReBy) |coshiksds) |
After that we can expresB(x,7=0) in the F layer via (C6)

A(X) in the superconductor. The Green functéy(x, w,) in
the F layer is given by Eq7), with C(w,) found from the
boundary conditions:

Finally, the order parameter in the F layer is the Fourier
transform[see Eq.(34)] of

wp) = 7b+ Bf COS|’(kfdf) . sl Vb f Y(Yb f
B coshik{ x+d
The Green function at the S side of the SF interface is f kil )
Yot B¢/  coshkids)
F+(O,(1) )+F7(O,(1) ) dS
Fo(00p) = ——— 5 s (Ca) X fo G(0y;wn)A(y)dy. (C7
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