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Nonmonotonic critical temperature in superconductorÕferromagnet bilayers
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The critical temperatureTc of a superconductor/ferromagnet~SF! bilayer can exhibit nonmonotonic depen-
dence on the thicknessdf of the F layer. SF systems have been studied for a long time; according to the
experimental situation, a ‘‘dirty’’ limit is often considered which implies that the mean free path in the layers
is the second smallest spatial scale after the Fermi wavelength. However, all calculations reported for the dirty
limit were done with some additional assumptions, which can be violated in actual experiments. Therefore, we
develop a general method~to be exact, two independent methods! for investigatingTc as a function of the
bilayer parameters in the dirty case. Comparing our theory with experiment, we obtain good agreement. In the
general case, we observe three characteristic types ofTc(df) behavior:~1! a nonmonotonic decay ofTc to a
finite value exhibiting a minimum at particulardf ; ~2! a reentrant behavior, characterized by a vanishing ofTc

in a certain interval ofdf and finite values otherwise; and~3! a monotonic decay ofTc and a vanishing at finite
df . Qualitatively, the nonmonotonic behavior ofTc(df) is explained by the interference of quasiparticles in the
F layer, which can be either constructive or destructive depending on the value ofdf .

DOI: 10.1103/PhysRevB.66.014507 PACS number~s!: 74.50.1r, 74.80.Dm, 75.30.Et
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I. INTRODUCTION

Superconductivity and ferromagnetism are two compet
orders: while the former ‘‘prefers’’ an antiparallel spin orie
tation of electrons in Cooper pairs, the latter forces the sp
to align in parallel. Therefore, their coexistence in one a
the same material is possible only in a narrow interval
parameters; hence the interplay between superconduct
and ferromagnetism is most conveniently studied when
two interactions are spatially separated. In this case the
existence of the two orders is due to the proximity effe
Recently, much attention has been paid to properties of
brid proximity systems containing superconductors~S’s! and
ferromagnets~F’s!; interesting physical phenomena were o
served and predicted in these systems.1–6 One of the most
striking effects in superconductor/ferromagnet~SF!-layered
structures is highly nonmonotonic dependence of their c
cal temperatureTc on the thicknessdf of the ferromagnetic
layers. Experiments exploring this nonmonotonic behav
were performed previously on SF multilayers such
Nb/Gd,7 Nb/Fe,8 V/V-Fe,9 and Pb/Fe,10 but the results~and,
in particular, the comparison between the experiments
theories! were not conclusive.

To perform reliable experimental measurements
Tc(df), it is essential to have a largedf compared to the
interatomic distance; this situation can be achieved only
the limit of weak ferromagnets. Active experimental inves
gations of SF bilayers and multilayers based on Cu-Ni dil
ferromagnetic alloys were carried out by several groups.11,12

In SF bilayers, they observed a nonmonotonic depende
Tc(df). While the reason for this effect in multilayers can
the 0-p transition,3 in a bilayer system with a single supe
conductor this mechanism is irrelevant, and the cause of
effect is interference of quasiparticle, specific to SF str
tures.

In the present paper, motivated by the experiments
Refs. 11 and 12, we theoretically study the critical tempe
0163-1829/2002/66~1!/014507~13!/$20.00 66 0145
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ture of SF bilayers. Previous theoretical investigations ofTc

in SF structures were concentrated on systems with thin
thick layers ~compared to the corresponding coheren
lengths!, with SF boundaries having very low or very hig
transparencies; the exchange energy was often assumed
much larger than the critical temperature. In addition,
methods for solving the problem were usua
approximate.3,4,9,10,13–16The parameters of the experimen
of Refs. 11 and 12 did not correspond to any of the abo
limiting cases. In the present paper we develop two
proaches, giving the opportunity to investigate not only t
limiting cases of parameters but also the intermediate reg
Using our methods, we find different types of nonmonoto
behavior ofTc as a function ofdf , such as a minimum ofTc
and even reentrant superconductivity. Comparison of our
oretical predictions with the experimental data shows go
agreement.

A number of methods can be used for calculatingTc .
When the critical temperature of the structure is close to
critical temperatureTcs of a superconductor without a ferro
magnetic layer, the Ginzburg–Landau~GL! theory applies.
However,Tc of SF bilayers may significantly deviate from
Tcs ; therefore, we choose a more general theory valid
arbitrary temperature—the quasiclassical approach.17–19

Near Tc the quasiclassical equations become linear. In
literature the emerging problem is often treated with the h
of the so-called ‘‘single-mode’’ approximation,4,14–16 which
is argued to be qualitatively reasonable in a wide region
parameters. However, this method is justified only in a s
cific region of parameters which we find below. Moreov
below we show examples when this method fails even qu
tatively. Thus there is need for an exact solution of the l
earized quasiclassical equations. The limiting case of per
boundaries and large exchange energy was treated by
dović et al.3

Based on the progress achieved for calculations ofTc in
SN systems ~where N denotes a nonmagnetic norm
©2002 The American Physical Society07-1



de
is
ly

d
r
1

at
n
o
ac
d
e
th
is
om
e
s
p

nd
he
d
d

r

v

k’s

d-

nd

d,

it
he

tric

-

ns

FOMINOV, CHTCHELKATCHEV, AND GOLUBOV PHYSICAL REVIEW B66, 014507 ~2002!
material!,20 we develop a generalization of the single-mo
approximation—the multimode method. Although th
method seems to be exact, it is subtle to justify it rigorous
Therefore we develop yet another approach~this time
mathematically rigorous!, which we call ‘‘the method of
fundamental solution.’’ The models considere
previously3,4,9,10,13–16correspond to the limiting cases of ou
theory. A part of our results was briefly reported in Ref. 2

The paper is organized as follows. In Sec. II we formul
the Usadel equations and the corresponding boundary co
tions. Section III is devoted to the exact multimode meth
for solving the general equations. An alternative ex
method, the method of fundamental solution, is presente
Sec. IV. In Sec. V we describe results of our methods. In S
VI, a qualitative explanation of our results is presented,
applicability of the results to multilayered structures is d
cussed, and the use of a complex diffusion constant is c
mented upon. Conclusions are presented in Sec. VII. App
dixes A and B contain analytical results for limiting case
Finally, technical details of the calculations are given in A
pendix C.

II. MODEL
We assume that the dirty-limit conditions are fulfilled, a

calculate the critical temperature of the bilayer within t
framework of the linearized Usadel equations for the S an
layers~the domain 0,x,ds is occupied by the S metal, an
2df,x,0—by the F metal; see Fig. 1!. NearTc the normal
Green function isG5sgnvn , and the Usadel equations fo
the anomalous functionF take the form

js
2pTcs

d2Fs

dx2
2uvnuFs1D50, 0,x,ds , ~1!

j f
2pTcs

d2F f

dx2
2~ uvnu1 iEexsgnvn!F f50, 2df,x,0,

~2!

D ln
Tcs

T
5pT(

vn
S D

uvnu
2FsD ~3!

~the pairing potentialD is nonzero only in the S part!. Here
js5ADs/2pTcs and j f5AD f /2pTcs are the coherence
lengths, while the diffusion constants can be expressed

FIG. 1. SF bilayer. The F and S layers occupy the regio
2df,x,0 and 0,x,ds , respectively.
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the Fermi velocity and the mean free path:D5v l /3; vn
5pT(2n11) with n50,61,62, . . . are theMatsubara fre-
quencies;Eex is the exchange energy; andTcs is the critical
temperature of the S material.Fs( f ) denotes the functionF in
the S~F! region. We use the system of units in which Planc
and Boltzmann’s constants equal unity,\5kB51.

Equations~1!–~3! must be supplemented with the boun
ary conditions at the outer surfaces of the bilayer,

dFs~ds!

dx
5

dFf~2df !

dx
50, ~4!

as well as at the SF boundary:22

js

dFs~0!

dx
5gj f

dFf~0!

dx
, g5

rsjs

r fj f
, ~5!

j fgb

dFf~0!

dx
5Fs~0!2F f~0!, gb5

RbA
r fj f

. ~6!

Herers andr f are the normal-state resistivities of the S a
F metals,Rb is the resistance of the SF boundary, andA is its
area. The Usadel equation in the F layer is readily solve

F f5C~vn!cosh~kf@x1df # !, ~7!

kf5
1

j f
Auvnu1 iEexsgnvn

pTcs
,

and the boundary condition atx50 can be written in closed
form with respect toFs :

js

dFs~0!

dx
5

g

gb1Bf~vn!
Fs~0!, ~8!

Bf5@kfj f tanh~kfdf !#
21.

This boundary condition is complex. In order to rewrite
in a real form, we do the usual trick and go over to t
functions

F65F~vn!6F~2vn!. ~9!

According to the Usadel equations~1!–~3!, there is a sym-
metry F(2vn)5F* (vn) which implies that F1 is real
while F2 is a purely imaginary function.

The symmetric properties ofF1 and F2 with respect to
vn are trivial, so we shall treat only positivevn . The self-
consistency equation is expressed only via the symme
function Fs

1 ,

D ln
Tcs

T
5pT (

vn.0
S 2D

vn
2Fs

1D , ~10!

and the problem of determiningTc can be formulated in a
closed form with respect toFs

1 as follows. The Usadel equa
tion for the antisymmetric functionFs

2 does not containD;
hence it can be solved analytically. After that we excludeFs

2

from boundary condition~8! and arrive at the effective
boundary conditions forFs

1 ,
7-2
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NONMONOTONIC CRITICAL TEMPERATURE IN . . . PHYSICAL REVIEW B66, 014507 ~2002!
js

dFs
1~0!

dx
5W~vn!Fs

1~0!,
dFs

1~ds!

dx
50, ~11!

where

W~vn!5g
As~gb1ReBf !1g

Asugb1Bf u21g~gb1ReBf !
, ~12!

As5ksjstanh~ksds!, ks5
1

js
A vn

pTcs
.

The self-consistency equation~10! and boundary conditions
~11! and ~12!, together with the Usadel equation forFs

1 ,

js
2pTcs

d2Fs
1

dx2
2vnFs

112D50 ~13!

will be used below for finding the critical temperature of t
bilayer.

The problem can be solved analytically only in limitin
cases~see Appendix A!. In the general case, one should us
numerical method, and below we propose two methods
solving the problem exactly.

III. MULTIMODE METHOD

A. Starting point: the single-mode approximation
and its applicability

In the single-mode approximation~SMA! one seeks a so
lution of problem~10!–~13! in the form

Fs
1~x,vn!5 f ~vn!cosS V

x2ds

js
D , ~14!

D~x!5d cosS V
x2ds

js
D . ~15!

This anzatz automatically satisfies boundary condition~11! at
x5ds .

The Usadel equation~13! yields

f ~vn!5
2d

vn1V2pTcs

, ~16!

then the self-consistency equation~10! takes the form (d and
V do not depend onvn)

ln
Tcs

Tc
5cS 1

2
1

V2

2

Tcs

Tc
D2cS 1

2D , ~17!

wherec is the digamma function.
Boundary condition~11! at x50 yields

V tanS V
ds

js
D5W~vn!. ~18!

The critical temperatureTc is determined by Eqs.~17! and
~18!.

Although this method is popular, it is often used witho
pointing out the limits of its applicability. We present th
01450
a
r

t

explicit formulation of the corresponding condition: th
single-mode method is correct only if the parameters
such thatW can be consideredvn independent@because the
left-hand side of Eq.~18! must bevn-independent#.13

Appendix B demonstrates examples of the SMA valid
and corresponding analytical results. In one of experim
tally relevant cases,Eex/pTcs.1 anddf;j f , the SMA is
applicable ifAEex/pTcs@1/gb ~see Appendix B for details!.

B. Inclusion of other modes

The single-mode approximation implies that one takes
~only! real rootV of Eq. ~17!. An exact~multimode! method
for solving problem~10!–~13! is obtained if we also take
imaginary roots into account—there is infinite number
these.20

Thus we seek the solution in the form

Fs
1~x,vn!5 f 0~vn!cosS V0

x2ds

js
D

1 (
m51

`

f m~vn!

coshS Vm

x2ds

js
D

coshS Vm

ds

js
D , ~19!

D~x!5d0cosS V0

x2ds

js
D1 (

m51

`

dm

coshS Vm

x2ds

js
D

coshS Vm

ds

js
D .

~20!

~The normalizing denominators in the cosh terms have b
introduced in order to increase accuracy of numerical ca
lations.! This anzatz automatically satisfies boundary con
tion ~11! at x5ds .

Substituting the anzatz@Eqs. ~19! and ~20!# into the Us-
adel equation~13!, we obtain

f 0~vn!5
2d0

vn1V0
2pTcs

,

f m~vn!5
2dm

vn2Vm
2 pTcs

, m51,2, . . . , ~21!

then the parametersV are determined by the self-consisten
equation~10! (d andV do not depend onvn):

ln
Tcs

Tc
5cS 1

2
1

V0
2

2

Tcs

Tc
D 2cS 1

2D ,

ln
Tcs

Tc
5cS 1

2
2

Vm
2

2

Tcs

Tc
D 2cS 1

2D , m51,2, . . . ~22!

From Eqs.~22! and properties of the digamma function23 it
follows that the parametersV belong to the following inter-
vals:
7-3
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0,V0
2,

1

2gE
,

~23!
Tc

Tcs
~2m21!,Vm

2 ,
Tc

Tcs
~2m11!, m51,2, . . . ,

whereg
E
'1.78 is Euler’s constant.

Boundary condition~11! at x50 yields the following
equation for the amplitudesd:

d0

W~vn!cos~V0ds /js!2V0sin~V0ds /js!

vn1V0
2pTcs

1 (
m51

`

dm

W~vn!1Vmtanh~Vmds /js!

vn2Vm
2 pTcs

50. ~24!

The critical temperatureTc is determined by Eqs.~22! and
the condition that Eq.~24! has a nontrivial (vn independent!
solution with respect tod.

Numerically, we take a finite number of modes:m
50,1, . . . ,M . To take account ofvn independence of the
solution, we write down Eq.~24! at the Matsubara frequen
cies up to theNth frequency:n50,1, . . . ,N. Thus we arrive
at the matrix equationKnmdm50 with the following matrix
K̂:

Kn05
W~vn!cos~V0ds /js!2V0sin~V0ds /js!

vn /pTcs1V0
2

,

Knm5
W~vn!1Vmtanh~Vmds /js!

vn /pTcs2Vm
2

, ~25!

n50,1, . . . ,N, m51,2, . . . ,M .

We takeM5N, then the condition that Eq.~24! has a non-
trivial solution takes the form

detK̂50. ~26!

Thus the critical temperatureTc is determined as the large
solution of Eqs.~22! and ~26!.

IV. METHOD OF FUNDAMENTAL SOLUTION

By definition, the fundamental solutionG(x,y;vn)
~which is also called the Green function! of problem~11!–
~13! satisfies the same equations, but with the de
functional ‘‘source,’’24

js
2pTcs

d2G~x,y!

dx2
2vnG~x,y!52d~x2y!, ~27!

js

dG~0,y!

dx
5W~vn!G~0,y!,

dG~ds ,y!

dx
50. ~28!

The fundamental solution can be expressed via solutionv1
andv2 of Eq. ~27! without the delta function, satisfying th
boundary conditions atx50 andds , respectively:
01450
-

G~x,y;vn!5
ks /vn

sinh~ksds!1~W/ksjs!cosh~ksds!

3H v1~x!v2~y!, x<y

v2~x!v1~y!, y<x,
~29!

where

v1~x!5cosh~ksx!1~W/ksjs!sinh~ksx!, ~30a!

v2~x!5cosh~ks@x2ds# !. ~30b!

Having foundG(x,y;vn), we can write the solution of
Eqs.~11!–~13! as

Fs
1~x;vn!52E

0

ds
G~x,y;vn!D~y!dy. ~31!

Substituting this into the self-consistency equation~10!, we
obtain

D~x!ln
Tcs

Tc
52pTc (

vn.0
FD~x!

vn
2E

0

ds
G~x,y;vn!D~y!dyG .

~32!

This equation can be expressed in an operator fo
D ln(Tcs/Tc)5L̂D. Then the condition that Eq.~32! has a non-
trivial solution with respect toD is expressed by the equatio

detS L̂21̂ ln
Tcs

Tc
D50. ~33!

The critical temperatureTc is determined as the largest sol
tion of this equation. Numerically, we put problem~32! and
~33! on a spatial grid, so that the linear operatorL̂ becomes a
finite matrix.

V. NUMERICAL RESULTS

In Secs. III and IV we developed two methods for calc
lating the critical temperature of a SF bilayer. Specifyi
parameters of the bilayer we can find the critical temperat
numerically. It can be checked that the multimode meth
and the method of fundamental solution yield equivalent
sults. However, at small temperaturesTc!Tcs , the calcula-
tion time for the multimode method increases. Indeed,
size of the matrixK̂ @Eq. ~25!# is determined by the numbe
N of the maximum Matsubara frequencyvN , which must be
much larger than the characteristic energypTcs ; henceN
@Tcs /Tc . Therefore, at low temperatures we use the meth
of fundamental solution.

A. Comparison with experiment

Using our methods we fit the experimental data of R
11; the result is presented in Fig. 2. Estimating the para
eters ds511 nm, Tcs57 K, rs57.5 mV cm, js
58.9 nm,r f560 mV cm, j f57.6 nm, andg50.15 from
the experiment,25 and fitting onlyEex andgb , we find good
agreement between our theoretical predictions and the
perimental data.
7-4
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NONMONOTONIC CRITICAL TEMPERATURE IN . . . PHYSICAL REVIEW B66, 014507 ~2002!
The fitting procedure was the following: first, we dete
mine Eex'130 K from the position of the minimum o
Tc(df); second, we findgb'0.3 from fitting the vertical po-
sition of the curve. The deviation of our curve from the e
perimental points is small; it is most pronounced in the
gion of smalldf corresponding to the initial decrease ofTc .
This is not unexpected because, whendf is of the order of a
few nanometers, the thickness of the F film may vary sign
cantly along the film~which is not taken into account in ou
theory!, and the thinnest films can even be formed by
array of islands rather than by continuous material. At
same time, we emphasize that the minimum ofTc takes place
at df'5 nm, when with good accuracy the F layer has u
form thickness.

B. Various types ofTc„df… behavior

The experimental results discussed above represent
one possible type ofTc(df) behavior. Now we address th
general case; we obtain different kinds ofTc(df) curves de-
pending on parameters of the bilayer. To illustrate, in Fig
we plot several curves for various values ofgb @we recall
thatgb}Rb , whereRb is the resistance of the SF interface
the normal state—see Eq.~6!#. The exchange energy isEex
5150 K; the other parameters are the same as in Fig. 2

We observe three characteristic types ofTc(df) behavior:
~1! At a large enough interface resistance,Tc decays non-
monotonically to a finite value exhibiting a minimum at
particulardf . ~2! At a moderate interface resistance,Tc dem-
onstrates a reentrant behavior: it vanishes in a certain inte
of df , and is finite otherwise.~3! At a low enough interface
resistanceTc decays monotonically, vanishing at finitedf . A
similar succession ofTc(df) curves as in Fig. 3 can be ob
tained by tuning other parameters, e.g., the exchange en
Eex or the normal resistances of the layers~the parameterg).

A common feature seen from Fig. 3 is saturation ofTc at
large df*lex. This fact has a simple physical explanatio
the suppression of superconductivity by a dirty ferromag

FIG. 2. Theoretical fit to the experimental data of Ref. 11. In
experiment, Nb was the superconductor~with ds511 nm, Tcs

57 K) and Cu0.43Ni0.57 was the weak ferromagnet. From our fit w
estimateEex'130 K andgb'0.3.
01450
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is only due to the effective F layer with a thickness on t
order of lex, adjacent to the interface~this is the layer ex-
plored and ‘‘felt’’ by quasiparticles entering from the S sid
due to the proximity effect!.

It was shown by Radovic´ et al.3 that the order of the
phase transition may change in short-periodic SF supe
tices, becoming of first order. We also observe this featur
the curves of types~2! and ~3! mentioned above. This phe
nomenon manifests itself as discontinuity ofTc(df): the
critical temperature jumps to zero abruptly without taki
intermediate values~see Figs. 3 and 4!. Formally, Tc be-
comes a double-valued function, but the smaller solution
physically unstable~dotted curve in Fig. 4!.

An interesting problem is determination of the tricritic
point where the order of the phase transition changes.
corresponding result for homogeneous bulk superconduc
with internal exchange field was obtained a long time ago
the framework of the Ginzburg–Landau~GL! theory.26 How-
ever, the generalization to the case when the GL theory is
valid is a subtle problem which has not yet been solved.
note that the equations used in Refs. 3 and 15 were app
beyond their applicability range because they are GL res
valid only whenTc is close toTcs .

C. Comparison between single-mode and multimode methods

A popular method widely used in the literature for calc
lating the critical temperature of SF bilayers and multilaye
is the single-mode approximation. The condition of its val
ity was formulated in Sec. III A. However, this approxima
tion is often used for arbitrary system parameters. Using

FIG. 3. Characteristic types ofTc(df) behavior. The thickness o
the F layer is measured in units of the wavelengthlex defined in Eq.
~40!. The curves correspond to different values ofgb . The ex-
change energy isEex5150 K; the other parameters are the same
in Fig. 2. One can distinguish three characteristic types ofTc(df)
behavior:~1! a nonmonotonic decay to a finiteTc with a minimum
at particulardf (gb52; 0.5; 0.1; 0.07),~2! a reentrant behavior
(gb50.05;0.02), and~3! a monotonic decay toTc50 at finite
df (gb50). The bold points indicate the choice of parameter c
responding to Fig. 6.
7-5
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methods developed in Secs. III and IV, we can check
actual accuracy of the single-mode approximation. The
sults are presented in Fig. 5.

We conclude that although at some parameters the re
of the single-mode and multi-mode~exact! methods are close
@Figs. 5~a! and 5~f!#, in the general case they are quanti
tively and even qualitatively different@Figs. 5~b!–5~e!—
these cases correspond to the most nontrivialTc(df) behav-
ior#. Thus to obtain reliable results one should use one of
exact~multimode or fundamental-solution! techniques.

D. Spatial dependence of the order parameter

The proximity effect in the SF bilayer is characterized
the spatial behavior or the order parameter, which can
chosen as

F~x,t50!5T(
vn

F~x,vn!, ~34!

wheret denotes the imaginary time@in the S metalF(x,t
50)}D(x)]. This function is real due to the symmetry rel
tion F(2vn)5F* (vn).

We illustrate this dependence in Fig. 6, which shows t
cases differing by the thickness of the F layerdf ~and by the
correspondingTc). Although the critical temperatures diffe
by more than the order of magnitude, the normalized or
parameters are very close to each other, which means tha
value of Tc has almost no effect on the shape ofF(x,t
50). Details of the calculation are presented in Appendix

Another feature seen from Fig. 6 is that the order para
eter in the F layer changes its sign when the thickness of
F layer increases~this feature can be seen for the dott

FIG. 4. Change of the phase transition’s order. This pheno
enon manifests itself as discontinuity ofTc(df): the critical tem-
perature jumps to zero abruptly without taking intermediate valu
Formally, Tc becomes a double-valued function, but the sma
solution is physically unstable~dotted curve!. For illustration we
have chosen the curve from Fig. 3 corresponding togb50.05.
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curve, although negative values of the order parameter h
very small amplitudes!. We discuss this oscillating behavio
in Sec. VI A.

VI. DISCUSSION

A. Qualitative explanation of the nonmonotonicTc„df…

behavior

The thickness of the F layer, at which the minimum
Tc(df) occurs, can be estimated from qualitative argume
based on the interference of quasiparticles in the ferrom
net. Let us consider a pointx inside the F layer. According to
Feynman’s interpretation of quantum mechanics,27 the qua-
siparticle wave function may be represented as a sum
wave amplitudes over all classical trajectories; the wave a
plitude for a given trajectory is equal to exp(iS), whereS is
the classical action along this trajectory. We are intereste
an anomalouswave function of correlated quasiparticle
which characterizes superconductivity; this function
equivalent to the anomalous Green functionF(x). To obtain
this wave function we must sum over trajectories that~i! start
and end at the pointx, and~ii ! change the type of the quas
particle ~i.e., convert an electron into a hole, or vice vers!.

-

s.
r

FIG. 5. Comparison between single- and multimode metho
The parameters are the same as in Fig. 3. Generally speaking
results of the single-mode and multimode~exact! methods are quan
titatively and even qualitatively different:~b!, ~c!, ~d!, and ~e!.
However, sometimes the results are close:~a! and ~f!. Thus the
single-mode approximation can be used for quick estimates,
reliable results should be obtained by one of the exact~multimode
or fundamental-solution! techniques.
7-6
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NONMONOTONIC CRITICAL TEMPERATURE IN . . . PHYSICAL REVIEW B66, 014507 ~2002!
There are four kinds of trajectories that should be taken
account~see Fig. 7!. Two of them~denoted 1 and 2! start in
the direction toward the SF interface~as an electron and as
hole!, experience the Andreev reflection, and return to
point x. The other two trajectories~denoted 3 and 4! start in
the direction away from the interface, experience normal
flection at the outer surface of the F layer, move toward
SF interface, experience the Andreev reflection there,
finally return to the pointx. The main contribution is given
by the trajectories normal to the interface. The correspond
actions are

FIG. 6. Spatial dependence of the order parameter normal
by its value at the outer surface of the S layer. Two cases are sh
differing by the thickness of the F layerdf ~and by the correspond
ing Tc) at gb50.05. The other parameters are the same as in Fig
where the chosen cases are indicated by the bold points. Altho
the critical temperatures differ by more than the order of magnitu
the normalized order parameters are very close to each other, w
means that the value ofTc has almost no effect on the shape
F(x,t50). The jump at the SF interface is due to its finite res
tance. With an increase ofdf the order parameter starts to oscillat
changing its sign~this can be seen for the dotted curve, althou
negative values of the order parameter have very small amplitud!.

FIG. 7. Four types of trajectories contributing~in the sense of
Feynman’s path integral! to the anomalous wave function of corre
lated quasiparticles in the ferromagnetic region. The solid lines
respond to electrons, and the dashed lines to holes; the arrow
dicate the direction of the velocity.
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S152Qx2a, ~35!

S25Qx2a, ~36!

S352Q~2df1x!2a, ~37!

S45Q~2df1x!2a ~38!

~note thatx,0), whereQ is the difference between the wav
numbers of the electron and the hole, anda5arccos(E/D) is
the phase of the Andreev reflection. To make our ar
ments more clear, we assume that the ferromagnet is str
the SF interface is ideal, and consider the clean limit fir
then Q5ke2kh5A2m(E1Eex1m)2A2m(2E2Eex1m)
'2Eex/v, where E is the quasiparticle energy,m is the
Fermi energy, andv is the Fermi velocity. Thus the anoma
lous wave function of the quasiparticles is

F~x!} (
n51

4

exp~ iSn!}cos~Qdf !cos~Q@df1x# !. ~39!

The suppression ofTc by the ferromagnet is determine
by the value of the wave function at the SF interface:F(0)
}cos2(Qdf). The minimum ofTc corresponds to the mini
mum value ofF(0) which is achieved atdf5p/2Q. In the
dirty limit the above expression forQ is replaced by

Q5AEex

D f
[

2p

lex
~40!

~here we have defined the wavelength of the oscillatio
lex); hence the minimum ofTc(df) takes place at

df
(min)5

p

2
AD f

Eex
5

lex

4
. ~41!

For the bilayer of Ref. 11 we obtaindf
(min)'7 nm, whereas

the experimental value is 5 nm~Fig. 2!; thus our qualitative
estimate is reasonable.

The arguments given above seem to yield not only
minimum but rather a succession of minima and maxim
However, numerically we obtain either a single minimum
a minimum followed by a weak maximum~Fig. 3!. The rea-
son for this is that actually the anomalous wave function
only oscillates in the ferromagnetic layer but also deca
exponentially, which makes the amplitude of the subsequ
oscillations almost invisible.

Finally, we note that our arguments concerning oscil
tions ofF(x) also apply to a half-infinite ferromagnet, whe
we should take into account only the trajectories 1 and 2~see
Fig. 7!. This yieldsF(x)}cos(Qx) ~another qualitative expla
nation of this result can be found, for example, in Ref. 14!.

B. Multilayered structures

The methods developed and the results obtained in
paper apply directly to more complicated symmetric mu
layered structures in the 0-state such as SFS and FSF tr
ers, SFIFS and FSISF systems~I denotes an arbitrary poten
tial barrier!, and SF superlattices. In such systems an
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bilayer can be considered as a unit cell, and joining toge
the solutions of the Usadel equations in each bilayer we
tain the solution for the whole system~for more details see
Sec. VIII of Ref. 28!.

Our methods can be generalized to take account of p
sible superconductive and/or magneticp states~when D
and/orEex may change their signs from layer to layer!. In
this case the system cannot be equivalently separated in
set of bilayers. Mathematically, this means that the soluti
of the Usadel equations lose their purely cosine form@see
Eqs. ~7!, ~14!, ~15!, ~19!, ~20!, and ~30b!# acquiring a sine
part as well.

C. Complex diffusion constant?

Finally, we comment on Refs. 4, 15, 16, and 29, where
authors considered~in the vicinity of Tc) diffusion equations
with a complexdiffusion constantD f for the F part of the
structure. This implies small complex corrections toD f over
Eext!1 in the Usadel equations (t is the time of the mean
free path!. However, we disagree with this method for th
following reason: although the complexD f can indeed be
formally obtained in the course of the standard derivation
the Usadel equations17 from the Eilenberger ones30 by ex-
panding over the spherical harmonics, one can check tha
higher harmonics neglected in the derivation have the s
order of magnitude as the retained complex correction toD f .
Hence the complexity ofD f in the context of the Usade
equations is the excess of accuracy. Below we present
arguments.

We give a brief derivation of the Usadel equations sho
ing how the complex diffusion constant can be obtained
why this result cannot be trusted. In the ‘‘quasi-on
dimensional’’ geometry~which means that the paramete
vary only as a function ofx) the linearized Eilenberger equa
tion in the presence of disorder and the exchange field
the form

v cosu

2

d

dx
F1S vn1

1

2t
1 iEexDF5D1

^F&
2t

, ~42!

where, for simplicity, we assume a positive Matsubara f
quencyvn.0, andu is the angle between thex axis and the
direction of the Fermi velocityv, while ^•••& denotes angu-
lar averaging over the spherical angles. The disorder is c
acterized by the time of the mean free patht and the mean
free pathl ~to be used below!. In the dirty limit the anoma-
lous Green functionF is nearly isotropic. However, to obtai
the Usadel equation for the isotropic part ofF, we must also
take into account the next term from the full Legendre po
nomial expansion:

F~x,vn ,u!5 (
k50

`

Fk~x,vn!Pk~cosu!

'F0~x,vn!1F1~x,vn!cosu. ~43!

Here we have neglected the harmonics withk>2 assuming
them small; we shall check this assumption later.
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Averaging Eq.~42! over the spherical angles first direct
and second after being multiplied by cosu, we arrive at

v
6

d

dx
F11~vn1 iEex!F05D, ~44!

v
2

d

dx
F01S vn1

1

2t
1 iEexDF150. ~45!

Equation~45! yields

F152S l

112vnt12iEext
D d

dx
F0 ; ~46!

then Eq.~44! leads to

D

2

d2

dx2
F02~vn1 iEex!F01D50, ~47!

D5
v l /3

112vnt12iEext
.

Now we must check that the assumptionuF1 /F0u!1,
uF2 /F1u!1, etc. that we used is indeed satisfied. From E
~46! we obtain

UF1

F0
U; l /L

max~1,2vnt,2Eext!
, ~48!

whereL is the characteristic space scale on whichF0 varies.
According to the Usadel equation~47!, it is given by

L;
l

Amax~1,2vnt,2Eext!max~2vnt,2Eext!
, ~49!

and the condition of the Usadel equation’s validity is writt
as

UF1

F0
U;A max~2vnt,2Eext!

max~1,2vnt,2Eext!
!1 ~50!

@similarly, we can also keep the term withk52 in series
~43!, which yieldsuF2 /F1u;uF1 /F0u, etc.#.

Finally, condition~50! takes the form

2pTcst!1, 2Eext!1 ~51!

~we have taken into account that the characteristic energ
vn;pTcs).

Now we can analyze our results. If condition~51! is sat-
isfied and the Usadel equation is valid, the neglected ang
harmonics have the relative order of magnitudeuF2 /F0u
;max(2pTcst,2Eext); hence we cannot retain the terms
the same order in the diffusion constant@see Eq.~47!#, and
we should use the standard expressionD5v l /3.

VII. CONCLUSIONS

In the present paper we have developed two methods
calculating the critical temperature of a SF bilayer as a fu
tion of its parameters~the thicknesses and material param
7-8
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eters of the layers, and the quality of the interface!. The
multimode method is a generalization of the correspond
approach developed in Ref. 20 for SN systems. However,
rigorous justification of this method is not clear. Therefo
we propose yet another approach—the method of fundam
tal solution, which is mathematically rigorous. The resu
demonstrate that the two methods are equivalent; howeve
low temperatures~compared toTcs) the accuracy require
ments are stricter for the multimode method, and the met
of fundamental solution is preferable. Comparing o
method with experiment we obtain good agreement.

In the general case, we observe three characteristic t
of Tc(df) behavior: ~1! a nonmonotonic decay ofTc to a
finite value exhibiting a minimum at particulardf ; ~2! a
reentrant behavior, characterized by vanishing ofTc in a cer-
tain interval of df and finite values otherwise, and~3! a
monotonic decay ofTc and vanishing at finitedf . Qualita-
tively, the nonmonotonic behavior ofTc(df) is explained by
interference of quasiparticles in the F layer, which can
either constructive or destructive depending on the value
df .

Using the developed methods we have checked the a
racy of the widely used single-mode approximation. We c
clude that although at some parameters the results of
single-mode and exact methods are close, in the general
they are quantitatively and even qualitatively different. Th
to obtain reliable results one should use one of the ex
~multimode or fundamental-solution! techniques. The spatia
dependence of the order parameter~at the transition point! is
shown to be almost insensitive to the value ofTc .

The methods developed and the results obtained in
paper apply directly to more complicated symmetric mu
layered structures in the 0-state such as SFS and FSF tr
ers, SFIFS and FSISF systems, and SF superlattices.
methods can be generalized to take account of possible
perconductive and/or magneticp states~whenD and/orEex
may change their signs from layer to layer!.

We argue that the use of the complex diffusion constan
the Usadel equation is the excess of accuracy. In sev
limiting cases,Tc is considered analytically.
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APPENDIX A: ANALYTICAL RESULTS FOR A THIN S
LAYER

~i! Whends!js andEex@pTcs , problems~10!–~13! can
be solved analytically. The first of the above conditions i
plies thatD can be considered constant, andF1 weakly de-
pends on the spatial coordinate; soF1(x,vn)52D/vn
1A(vn)cosh(ks@x2ds#). The boundary conditions determin
the coefficientA; as a result,

F1~vn![F1~x50,vn!5
2D

vn
F As~vn!

As~vn!1W~vn!G , ~A1!

whereks , As , and W are defined in Eq.~12!. Finally, the
self-consistency equation forTc takes the form

ln
Tcs

Tc
5RecS 1

2
1

g

2

js

ds

1

gb1Bf

Tcs

Tc
D2cS 1

2D , ~A2!

whereBf does not depend onvn due to the conditionEex
@pTcs :

Bf5@kfj f tanh~kfdf !#
21, kf5

1

j f
A iEex

pTcs
. ~A3!

~ii ! If the F layer is also thin,df!AD f /2Eex, Eq. ~A2! is
further simplified,

ln
Tcs

Tc
5RecS 1

2
1

t f

ts
F 1

2 i 1t fEex
G Eex

2pTc
D2cS 1

2D ,

~A4!

wherets andt f are defined similarly to Ref. 28,

ts5
2dsRbA

rsDs
, t f5

2dfRbA
r fD f

, ~A5!

and have the physical meaning of the escape time from
corresponding layer. They are related to the quantitiesg and
gb used in the body of the paper as

ts5
gb

g

1

pTcs

ds

js
, t f5gb

1

pTcs

df

j f
. ~A6!

~iii ! If the S layer is thin,ds!js , and the SF interface is
opaque,gb→`, the critical temperature of the bilayer onl
slightly deviates fromTcs . In this limit Eq.~A1! applies with
W5g/gb!1, and we finally obtain

Tc5Tcs2
p

4ts
. ~A7!

Interestingly, characteristics of the F layer (df , Eex, etc.! do
not enter the formula. In particular, this formula is valid f
an SN bilayer31,32 ~where N is a nonmagnetic normal mat
rial, Eex50) because Eq.~A7! was obtained without any
assumptions about the value of the exchange energy.

1. Transparent interface

When both layers are very thin@ds!ADs/2vD,
df!min (AD f /2vD, AD f /2Eex), with vD the Debye energy
7-9
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FOMINOV, CHTCHELKATCHEV, AND GOLUBOV PHYSICAL REVIEW B66, 014507 ~2002!
of theSmetal# and the interface is transparent, the bilayer
equivalent to a homogeneous superconducting layer with
ternal exchange field. This layer is described by effect
parameters: the pairing potentialD (eff), the exchange field
Eex

(eff) , and the pairing constantl (eff). In this subsection we
develop the ideas of Ref. 33, demonstrate a simple deriva
of this description, and find the limits of its applicability.

The Usadel equations~1! and~2! for the two layers can be
written as a single equation,

D fu~2x!1Dsu~x!

2

d2F

dx2

2uvnuF2 iEexsgn~vn!u~2x!F1Du~x!50,

~A8!

where u is the Heaviside function@u(x.0)51, u(x,0)
50]. The self-consistency equation~3! can be rewritten as

D~x!5lu~x!pT(
vn

F~x,vn!, ~A9!

wherel is the pairing constant.
First, we consider the ideal SF interface:gb50 @see Eq.

~6!#, thenF(x) is continuous at the interface and nearly co
stant across thewholebilayer, i.e.,Fs(x)'F f(x)5F. Apply-
ing the integral operator to Eq.~A8!,

n f

nsds1n fdf
E

2df

0

dx1
ns

nsds1n fdf
E

0

ds
dx ~A10!

~heren is the normal-metal density of states!, and cancelling
gradient terms due to boundary condition~5!, we obtain the
equations describing a homogeneous layer,

2uvnuF~vn!2 iEex
(eff)sgn~vn!F~vn!1D (eff)50,

~A11!

D (eff)5l (eff)pT(
vn

F~vn!, ~A12!

with the effective parameters~see also Ref. 33!

Eex
(eff)5

t f

ts1t f
Eex, D (eff)5

ts

ts1t f
D, ~A13!

l (eff)5
ts

ts1t f
l, Tcs

(eff)5
g

E

p
2v

D
expS 2

1

l (eff)D ,

whereg
E

is Euler’s constant, andTcs
(eff) is the critical tem-

perature of the layer in the absence of ferromagnetism~i.e.,
at Eex

(eff)50). The critical temperature is determined by t
equation

ln
Tcs

(eff)

Tc
5RecS 1

2
1 i

Eex
(eff)

2pTc
D 2cS 1

2D . ~A14!

Actually, the description in terms of effective paramete
~A13! is applicable at an arbitrary temperature~i.e., when the
Usadel equations are nonlinear! and has a clear physical in
01450
s
n-
e

n

-

s

terpretation: the superconducting (D, l) and ferromagnetic
(Eex) parameters are renormalized according to the par
time spent by quasiparticles in the corresponding layer. T
physical picture is based on interpretation oft as escape
times, which we present in Appendix A 2.

Now we discuss the applicability of the above descripti
for a nonideal interface (gbÞ0). In this caseF is nearly
constant in each layer, but these constants are differ
Fs(x)'Fs1Cs(x2ds)

2, F f(x)'F f1Cf(x1df)
2, where

uFsu@uCsuds
2 and uF f u@uCf udf

2 . Using the Usadel equation
~A8! and boundary conditions~5! and~6!, we find the differ-
encedF[Fs2F f :

dF5
D

1

ts
1uvnuF11

1

t f~ uvnu1 iEexsgnvn!G
. ~A15!

Finally, the homogeneous description is valid whenudF/Fu
!1 @with F determined by Eq.~A11!#, which yields

max~Eex,vD!max~ts ,t f !!1 ~A16!

~here vn;vD has been taken as the largest characteri
energy scale in the quasihomogeneous bilayer!.

2. Interpretation of t as escape times

The quantitiests and t f introduced in Eq.~A5! may be
interpreted as escape times from the corresponding lay
The arguments go as follows.

If the layers are thin, then the diffusion inside the layers
‘‘fast’’ and the escape time from a layer is determined by t
interface resistance. The time of penetration through a la
or the interface is determined by the corresponding resista
Rs( f ) or Rb , hence the diffusion is ‘‘fast’’ ifRs( f )!Rb .

Let us use the detailed balance approach, and conside
interval of energydE. In the S layer, the charge in this in
terval isQs5ensdEAds . Let us define the escape time fro
the S layerts , so that the current from S to F is equal
Qs /ts . On the other hand, this current can be written
dE/eRb ; hence

Qs

ts
5

dE

eRb
, ~A17!

and we immediately obtain

ts5
dsRbA
rsDs

. ~A18!

Similarly, we obtain the expression for the escape time fr
the F layert f . As a result, the relations between the quan
tiest, defined in Eq.~A5!, and the escape timest are simply

ts52ts , t f52t f . ~A19!

Microscopic expressions for the escape times may be
tained using the Sharvin formula for the interface resistan
Assuming, for definiteness, that the Fermi velocity is sma
in the S metal,vs,v f , we obtain
7-10



h
ti

a-
ha

;
l

c

ng

i-
r

er

he

yer

NONMONOTONIC CRITICAL TEMPERATURE IN . . . PHYSICAL REVIEW B66, 014507 ~2002!
Rb5
pr b

e2nsvsA
, ~A20!

and consequently

ts5p
ds

vs
r b , t f5p

v fdf

vs
2

r b , ~A21!

where r b is the inverse transparency of one channel. T
asymmetry in these expressions stems from our assump
vs,v f . In the opposite case the indicess andf in Eqs.~A20!
and ~A21! should be interchanged.

APPENDIX B:
APPLICABILITY OF THE SINGLE-MODE

APPROXIMATION

As pointed out in Sec. III A, the single-mode approxim
tion ~SMA! is applicable only if the parameters are such t
W @see Eq.~12!# can be consideredvn independent. An ex-
ample is the case whengb@uBf u, henceW5g/gb .

The conditiongb@uBf u can be written in a simpler form
to this end we should estimateuBf u. We introduce the rea
and imaginary parts ofkf , kf5kf81 ik f9 , and note thatkf8
.kf9 . Then using the properties of the trigonometric fun
tions and the estimate tanhx;min(1,x) we obtain

uBf u;@kf8j f tanh~kf8df !#
21, ~B1!

and finally cast the conditiongb@uBf u into the form

1

gb
!minHAmaxS Tc

Tcs
,

Eex

pTcs
D ;

df

j f
maxS Tc

Tcs
,

Eex

pTcs
D J ,

~B2!

where the ratioTc /Tcs originates fromvn /pTcs with vn
;pTc as the characteristic energy scale in the bilayer.

If condition ~B2! is satisfied, then the SMA is valid andTc
is determined by the equations

ln
Tcs

Tc
5cS 1

2
1

V2

2

Tcs

Tc
D2cS 1

2D , ~B3!

V tanS V
ds

js
D5

g

gb
. ~B4!

These equations can be further simplified in two limiti
cases which we consider below.

~1!
g

gb

ds

js
!1:

In this case Eq.~B4! yields V25(g/gb)(js /ds), and Eq.
~B3! takes the form

ln
Tcs

Tc
5cS 1

2
1

1

2

g

gb

js

ds

Tcs

Tc
D2cS 1

2D , ~B5!

which reproduces thegb@uBf u limit of Eq. ~A2!.
01450
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~2!
g

gb

ds

js
@1:

In this case Eq.~B4! yields Vds /js5p/2, and Eq.~B3!
takes the form

ln
Tcs

Tc
5cS 1

2
1

p2

8 F js

ds
G2Tcs

Tc
D2cS 1

2D . ~B6!

Equations~B3!–~B6! can be used for calculating the crit
cal temperatureTc and the critical thickness of the S laye
ds

(cr) below which the superconductivity in the SF bilay
vanishes~i.e., Tc50).

1. Results for the critical temperature

In the limit whenTc is close toTcs , Eqs.~B5! and ~B6!
yield

Tc5TcsS 12
p2

4

g

gb

js

ds
D if

g

gb
!minS ds

js
,
js

ds
D , ~B7!

and

Tc5TcsF12S p2

4

js

ds
D 2G if

ds

js
@maxS 1,

gb

g D . ~B8!

Using relations~A6! one can check that result~B7! is equiva-
lent to Eq.~A7!.

2. Results for the critical thickness

The critical thickness of the S layerds
(cr) is defined as the

thickness below which there is no superconductivity in t
SF bilayer:Tc(ds

(cr))50. WhenTc→0, Eq. ~B3! yields V
51/A2g

E
~where g

E
'1.78 is Euler’s constant!, and Eq.

~B4! takes the form

1

A2g
E

tanS 1

A2g
E

ds
(cr)

js
D 5

g

gb
. ~B9!

Explicit results fords
(cr) can be obtained in limiting cases,

ds
(cr)

js
52g

E

g

gb
if

g

gb

ds

js
!1 ~B10!

and

ds
(cr)

js
5pAg

E

2
if

g

gb

ds

js
@1. ~B11!

APPENDIX C:
SPATIAL DEPENDENCE OF THE ORDER PARAMETER

According to the self-consistency equation, in the S la
the order parameterF(x,t50) is proportional toD(x),

Fs~x,t50!5
D~x!

pl
, ~C1!
7-11
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wherel is the pairing constant which can be expressed
the Debye energy:

l215 lnS 2g
E
v

D

pTcs
D . ~C2!

The pairing potentialD(x) can be found as the eigenvect
of the matrixL̂21̂ ln(Tcs/Tc) @see Eq.~33!#, corresponding to
the zero eigenvalue.

After that we can expressF(x,t50) in the F layer via
D(x) in the superconductor. The Green functionF f(x,vn) in
the F layer is given by Eq.~7!, with C(vn) found from the
boundary conditions:

C~vn!5S Bf

gb1Bf
D Fs~0,vn!

cosh~kfdf !
. ~C3!

The Green function at the S side of the SF interface is

Fs~0,vn!5
Fs

1~0,vn!1Fs
2~0,vn!

2
. ~C4!
n-

d

tt

.

-
l,

-

.
B

n

01450
iaThe symmetric partFs
1 is given by Eq.~31!. The antisym-

metric part is

Fs
25C2~vn!cosh~ks@x2ds# !, ~C5!

with C2(vn) found from the boundary conditions,

C2~vn!5F ig Im Bf

Asugb1Bf u21g~gb1ReBf !
G Fs

1~0,vn!

cosh~ksds!
.

~C6!

Finally, the order parameter in the F layer is the Four
transform@see Eq.~34!# of

F f~x,vn!5F11
ig Im Bf

Asugb1Bf u21g~gb1ReBf !
G

3S Bf

gb1Bf
D cosh~kf@x1df # !

cosh~kfdf !

3E
0

ds
G~0,y;vn!D~y!dy. ~C7!
.
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