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We study the superconducting properties of a two-dimensional superconductor in the proximity to an elec-
tronic topological transitiofETT). In contrast to the three-dimension@D) case, we find that the supercon-
ducting gap atT=0, the critical temperaturd., and the impurity scattering rate are characterized by a
nonmonotonic behavior, with maxima occurring close to the ETT. We derive analytical expressions for the
value of such maxima both in trewave and in thal-wave cases. Such expressions are in good qualitative
agreement with the phenomenological trend recently observetfras a function of the hopping ratié/t
across several cuprate compounds. We further analyze the effect of an ETT on the Ginzburg-Landau stiffness
7. Instead of vanishing at the ETT, as could be expected, thus giving rise to an increase of the fluctuation
effects, in the case of momentum-independent electron-electron interaction, we#idas a result of an
integration over the whole Fermi surface.
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[. INTRODUCTION ences can be parametrized by their effect on the chemical
potential x passing through the critical value., corre-

The unconventional properties of the normal and supersponding to the transition point. Indeed, such a critical point
conducting states of several low-dimensional novel elecean be well defined only in a pure metallat 0 where a true

tronic materials is a source of continuous interest and rephase transition of order%Zoccursl,o according to Ehrenfest
search. Such materials include the high- cuprate classification. Typical manifestations of an ETT consist in

1Q 1 .
iggg;iotgfsugfsrggzic d‘Z’ e%SBVIVEeEI)IT?_IS_'TSFO Tgee?gg?;:g fhuep?lz:[ cusplike anomalies of physical quantities such as the specific
P YErs, eat!! the density of state€D0OS), and the conductivity, as

enates. In these materials, the interplay between their re- . o L
well as in the appearance of asymmetric singularities of the

duced dimensionality and the strength of the e1‘fectiveh | ) ficient and th lectri .
electron-electron interaction is believed to be the key for thghermal expansion coetficient an ermogiectric power in

elusive nature of their normal state, as well as for the anisol'® dependence of all these quantitieszenu —e¢. A non-

tropic gap characterizing their superconducting state. zero tempergture or the presence of electron_ scattering_resglts
A feature common to almost all the material classes listedn the smearing of these anomalies and, strictly speaking, in
above is a quasi-2D dispersion relation, arising from theiwashing out the notion of azorder phase transition itself.
layered structure and stabilized by the tendency to confineMoreover, the occurrence of an ETT can be masked by an
coherence within layers, due to strong correlatiohsdeed,  intervening structural transition, as could be induced by ex-
flat bands have been observed in nearly all hole- andernal pressure. The effects of an ETT on the properties of
electron-doped superconductdrs) the « phase of BEDT- metals and alloys have been thoroughly investigated as
TTF organic superconductotsas well as in the noncuprate well %1213
layered superconductor Ru0O, (Ref. 5. Clear evidence for In lower dimensional metallic systems, an ETT is charac-
a 2D Fermi surface changing topology as a function of dopterized by yet stronger anomalies. In particular, the DOS of a
ing has been recently provided by ARPES measurements i2D metal increases logarithmically near an ETT, instead of
LSCO? In particular, the role of the proximity to an elec- displaying a square-root cusp, as in the 3D c¢&eherefore,
tronic topological transition in establishing the unconven-it has been suggested that an ETT may be a clue for the
tional properties especially of the cuprates has been verynderstanding of the anomalous superconducting state of the
early emphasizetsee Ref. 7 for a review Therefore, in the  high-T. cuprates. In particular, it is well known that the
following we will be mainly concerned with the case of the presence of an ETT in the spectrum of a 2D superconductor
high-T, cuprate$. induces a nonmonotonic dependence of the critical tempera-
The term electronic topological transition has been proture on doping or applied pressur& in qualitative agree-
posed in order to describe the phenomena related to a changeent with the available experimental resdfts! This has to
of the connectivity number of the components of the Fermibe contrasted with the 3D case, where an ETT only gives rise
surface (FS).? Such a transition can be driven by severalto a steplike behavior in thedependence of .8
causes such as isotropic pressure, anisotropic deformation, Moreover, it has been proposed that the proximity to an
and the introduction of isovalent impurities. All these influ- ETT may be the origin of the unconventional normal state of
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the HTSC. In particular, a marginal Fermi liqtfd®? or a  electron-electron interaction, all electronic states on the FS
non-Fermi-liquid® behavior can be naturally derived for a participate in establishing the superconducting correlations.
2D electron system near a van Hove singularity. More genSuch correlations give rise to a superconducting stiffness,
erally, it has been argued that the anomalous finitewhose value is of the same order of magnitude of the result
temperature phenomeno|ogy of the cuprates stems from m@)tained for an isotropic electronic spectrﬂljmo the lowest
competition of several broken-symmetry states intervenin@rder inz/Eg .
near one and the same quantum critical pd'@CFa_24125 The paper is Organized as follows. In Sec. I, we introduce
Recently, Onufrievat al?%?” showed that an ETT occurring @ dispersion relation beyond nearest neighbors for an elec-
in a 2D square lattice with hopping beyond nearest neighbor0n system in a 2D square lattice, as is typical for the cu-
is a QCP, with two aspects of criticality: the first is related toPrates, and discuss its corresponding singular DOS. In Sec.
the singular behavior of the thermodynamic propertiemn  1ll, we study the superconducting gap at T=0 as a func-
Hove singularity, while the second is related to the exis- tion of the critical parametez, in the case o andd-wave
tence of the critical lineT=0, z>0 of static Kohn pairing. In Sec. IV, we discuss the effect of impurities on the
singularities’®?” The proximity to an ETT may be character- Normal state DOS and show that the proximity to an ETT
ized by spin density wavéSDW), charge density wave gives rise to a nonmonotonicdependence of the renormal-
(CDV\[), andd-wave Superconductin@jso instabilities, de- ized qUﬁSipartiCle inverse ||fet|rﬂe_1 In Sec. V, we calcu-
pending on the appropriate interaction channels included ifate the Cooper pair propagator near an ETT, and discuss the
the analysis. Onufrievat al. argued that SDW fluctuations effects of an ETT on the superconducting fluctuations. We
dominate in the case of the high-cuprates® On the other eventually summarize in Sec. VI.
hand, recent studies focussed on the competition between
AFM and AFM-mediatedi-wave pairing via a diagrammatic Il. THE MODEL
approactt’ among dSC, AFM, andr-triplet pairing at a
mean field level in the presence of backward scatteting,
among dSC, AFM, and CDW within the renormalization
group (RG) approact'=33 among dSC, AFM, and FM
within the RG and the parquet approacfiter between dSC
and an excitonic ordered stateMore recently, it has been
showrt® that elastic umklapp scattering near a van Hove sin
gularsi'%y may give rise to an RVB-like, insulating spin liquid
state?’ which exhibits bothd-wave superconducting and o / _
AFM correlations, without being characﬁerized by trt?e sym- €= 81— u= — 21(COSkyH COsky) + 4t cosky cosky — .,
: S 1)

metry breaking, as is typical of a quantum ordered state. The
competition between superconductivity and various kinds ofvhereu denotes the chemical potential, and the components
density waves in several low-dimensional electron systemsf the wave vectok are measured in units of the inverse
in the presence of a van Hove singularity has been reviewekittice spacing. A nonzero value of the hopping ratio
both from the experimental and the theoretical point of view=t'/t, measuring the ratio of next-to-nearest- vs nearest-
in Ref. 38. neighbors hopping, slightly modulates the actual shape of the

In this paper, we will concentrate on a single superconfermilineé,=0, and in particular destroys perfect nesting at
ducting instability (towards either arswave or ad-wave =0 as well as electron-hole symmetffyig. 1). In order to
superconducting statein the weak coupling limit, thus ne- have a flat minimum i, around thd” point, as is observed
glecting altogether any other competing ordered phase, for experimentally for the majority of the cuprat&s;*®the con-
2D electron system near an ETT. This is of course justifieddition 0<r<3 must be fulfilled. The role of an extended
only if all other instabilities are characterized by weaker cou-saddle point in stabilizing superconductivity against other
plings, which may not be the case for the cuprates. Howevepossible low-energy instabilities has been established within
such an approximation will enable us to derive an analyticathe renormalization grougdRG) approach in the weak-
expression for the maximum gay, near the ETT as a func- coupling limit3® Moreover, it has been shown that an in-
tion of the band details. Such results are in good qualitativerease of in the mentioned range correlates with an increase
agreement with recent studiesTf in the cuprates correlated of the maximumT. across different classes of cuprate
with material dependent properties, such as the ratio of nexsuperconductor® However, changes of thghapeof the FS
nearest- to nearest-neighbor hoppffig. resulting from screening effects can also correlate with

We will also study the effect of an ETT on the Ginzburg- changes in the superconducting properties in an indirect way.
Landau stiffnessp<Gi~!, where Gi is the Ginzburg- Indeed, a deformation of the FS also induces a change of the
Levanyuk parameter, which characterizes the manifestatiophase space effectively probed by the electron-electron
range of fluctuations neaf, (Ref. 40. In the case of an interaction?’ This is particularly relevant for several models
isotropic FS,#n is proportional to the square of the Fermi proposed for the HTSC, characterized by effective interac-
velocity. In the vicinity of an ETT, due to the presence of tions peaked aK=(0,7), namely, exactly where the Fermi
“slow” electrons near the saddle point in the electronic specdine is most sensible to a change in the hopping range
trum, one may expect an increase of fluctuations. HoweveRossible realizations of such a strongly anisotropic
we will show that, in the case of a momentum-independenk-dependent potential include the interaction mediated by

Detailed band structure calculations within the local-
density approximation (LDA),*?> as well as ARPES
experiments? show that a realistic tight-binding approxima-
tion for the band dispersion of most quasi-2D cuprates has to
be expanded at least up to next-nearest-neighbors hopping.
We then assume the following rigid band dispersion relation
for a tetragonal lattice:
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FIG. 1. Fermi line&=0, Eq. (1), for a value of the hopping g g er
ratio r =0.45. As the chemical potential varies from the bottom to c
the top of the band, the Fermi line changes topology, evolving from .
a closed contour around tiigpoint, to a contour, whose continua-  FIG. 2. Total density of states’}, Eq.(3), and regular ¢,) and
tion in the higher order Brillouin zones closes arod=(7,7).  Singular (§v) contributions to the DOS, Ed4), as a function of

The change of topolog¢ETT) occurs when the Fermi line touches energye, ranging from the bottome(, ) to the top € ) of the band.
the zone border, i.e., &= (7,0), and symmetry related points. The The inset shows the effect of a non-zero energy broaddnitigere,
thicker solid lines evidence the hyperbolalike shape of the Ferml’~0.5% of the total bandwidihon the same quantitigsee Eq.
line, Eq.(2), aroundX. (13)].

antiferromagnetic spin fluctuatihor by quasicritical stripe  Where K(k) denotes the complete elliptic integral of first

fluctuations, due to the proximity to a QCP near optimalkind of modulusk (Ref. 59. At e =&, v(¢) diverges loga-

doping atT=0 (Refs. 49-51, as well as electron-electron rl'thm|cally. Making use qf t'he appropriate asymp'gotlc expan-

interactions enhanced by interlayer pair-tunneliig).5253  sion for K(k) (Ref. 60, it |s_the_n customary to identify a
As the chemical potentigk in Eq. (1) varies from the régular and a singular contribution i¢e) as

bottom, e, = —4t(1—r), to the top of the bands + =4t(1 _

+r), the Fermi line&, =0 evolves from an electronlike con- v(e)=vo(e)+ ov(s), @

tour, closed around thE point, to a holelike contour, whose with vy(e) being a continuous function af over the whole

continuation into higher order Brillouin zones closes aroundbandwidth such thaty(s.)=0, and

the M = (7r,7) point. In doing so, an ETT is passed exactly

at u=¢.=—4t’, where the Fermi line touches the zone 4\/5/7729

boundaries, and assumes the asteroidlike shape depicted in e—&,

Fig. 1. It has been shown that such a critical value for the . ) . .

Fermi energy is stable against the RG flow for any repulsivevhere p~“=47°ty1—4r* (Fig. 2. In the following, we

electron-electron interactio:>® Such a result has been re- shall often make use of the critical parametsr u— e,

cently confirmed also when self-energy effects to the quasiieasuring the distance of the chemical potential from the

particle dispersion relation are included, thus demonstrating T T-

that the pinning of the Fermi surface to a van Hove singu-

larity can actually take place for a rather wide range of hole Ill. THE EFFECT OF AN ETT

concentratior® The conditionu =&, corresponds to having ON THE SUPERCONDUCTING GAP

a saddle point aK=(,0) in the single-particle dispersion

relation e, which, for small wave vector displacements

from X and symmetry related points, can be expanded as

ov(e)=2pIn , ©)

We will now discuss the effects of the proximity to an
ETT on the superconducting properties of a 2D, single-layer
system, both for ars- and d-wave order parameter, in the
weak coupling limit. Our starting point will be the BCS

ey b1 ﬁzé ' ) equation for the gap functioA,, which atT=0 reads
2m; 2m, P
l Akl
where p;=k,, p,=k,—m, and ml‘2=[2t(1i2r)]‘l are A=~ N ; Vikr 2E,. ' (6)

the eigenvalues of the effective mass tenédiere and be-
low, we choose units such thatand the lattice spacings are Here, E, = \/§k2+ |A|? is the upper branch of the supercon-

set equal to unity. _ ducting excitation spectrun,,, denotes the interparticle
For e <e<e;, the density of statesv(s) potential, and the sum runs over all thek points in the
=$.,—.d0| Ve, " can be computed analytically s 1BZ. In the case okwave symmetry, we assumé =

—N\, i.e., a constant over the whole 1BZ, whereas in the

1 1 16— (e+e? d-wave case we take the potential in the separable form
_1 1 | e (eted)” Vi = — N0k, k= 5 (cosk,—cosk,) being the lowest-
v(e) K . : . Y

m \4tP—ge |2 42— ¢ e order lattice harmonic corresponding tiewave symmetry.
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Accordingly, one has\,=A, in the swave case, and
=A,gy in the d-wave case, respectively. It is worth empha-
sizing that, in both cases, the coupling constaptO has
been assumed independent of doping. This amounts to ne-
glecting higher-order correlation effects among interacting
particles** Moreover, the weak coupling hypothesis allows
us to neglect renormalizations of the shape of the Fermi sur-
face, which are certainly expected in the strong coupling
Iimit,6<131nd are known to give rise to another kind of ETT as
well.

Equation (6) implicitly neglects the possibility of any
pairing instability other than singlet superconductivity in the
Cooper channelcharacterized by a pair relative momentum
P=0). Possible alternative intervening pairing instabilities
include, e.g., antiferromagnetism and thetriplet paired FIG. 3. Normalized gap amplitud&,(z=0y)/Ay(z=0,=0)
state®® Such instabilities would be characterized by largeat T=0, as a function of the hopping ratio=t'/t, for different
momentum transfer near the “hot spots” ¢, and (r7,0). couplingsA/t=0.9-1.1(bottom to top. Continuous lines refer to
They have been shown to coexist and win out singlet supethe swave case, Eq(8), while dashed lines refer to thetwave
conductivity at a mean field level near half-filling, when case, Eq.(9). One can recognize the direct correlation between
backward scattering is a relevant proc¥sslowever, within ~ Tc *A0(z=0) andr, as observed in Ref. 39.
our weak-coupling approximation, it is consistent to retain

Ao (Ox) /Aq (0.0)

0 0.05 0.1 0.15 0.2 0.25 0.3
r

only one kind of instability(namely, Cooper pairing in the 812 1 1 _1+or
singlet, P=0 channel, with eithes- or d-wave symmetry; Ay(z= O)ZTex - \/)\—'f' Zlnzl_2 ,  (swave
under the assumption that other instabilities are characterized mp p r
by weaker couplings. ®

We will first analyze the gap equation, E), close to an
ETT (|z|<4t). In the swave case, the summation over the Which can be then taken as a first approximation to the gap
1BZ in Eq. (6) can be transformed into an integral over en-maximum atT=0, in thes-wave case. Following the same
ergy weighted by the DOS, which we approximate by itsprocedure, qualitatively similar results can be derived for the
singular partsv(e) in Eq. (4). The Fermi line corresponding cCfitical temperatureT; as a function ofz (see also Refs.
to the ETT divides the 1BZ in two regions,<0 ande, /.19
>0, which are electron-hole conjugated of each other. Sepa- In the d-wave case, due to the anisotropicdependence

rating the contributions coming from these regions, the gaf the integrand in Eq(6), it is not possible to explicitly
equation can be compactly written as separate the integration over energy, and a different approach

must be followedsee Appendix A for detai)s However, the
proximity to an ETT does endow the pairing susceptibility
with an analogous asymptotic lot, behavior, as in the
E =S,+S_, (7 s-wave case, which eventually results in the following weak-
coupling expression for the gap amplitude a0, z=0
(A\p<<l, Ag<<4t):
whereS.. represent the pairing susceptibility integrated be-

tween the ETT and either band edgsee Appendix A for 1
details. Ao(z=0):4tf1(r)ex;1( - \/—+f2(r)>, (d wave),
While in 3D BCS theons.. are logarithmically divergent Ap

in the limit A;— 0 (Ref. 62, tr21e proximity to an ETT in 2D ©
makes them divergent asIn“A,. Direct inspection of Eq.

(7) as well as numerical calculations show theg(z) is  Where fi(r)=2b " (1-4r?)(J1+2r+y1-2r)~1, fy(r)
maximum near the ETT. Such a nonmonotonic dependence IN?(bmy1—4r?)+2 Iny1—4r?In[2z 11— 4r?(JV1+2r

of the superconducting gap on the critical parametirin ~ ++/1—2r) '], andb=e%8.

agreement with the phenomenology of the HTSC, whege Figure 3 showsAy(0) both in thes- and in thed-wave
and T, are characterized by a parabolalike dependence opase, Eqs(8) and(9), respectively, as a function of the hop-
doping!® This has to be contrasted with the steplike behaviomping ratior, for several values of/t. In view of the fact that
observed in the 3D caswhere it has to be emphasized that T.* A, as in any mean-field theory, Fig. 3 is in good quali-
no divergence occurs in the DOS at the ETT. However, dudative agreement with Fig. 5 of Ref. 39, showing a direct
to the electron-hole symmetry breaking induced by a noneorrelation between the experiment®]® and the hopping
zero hopping ratio, Ayg(z) is not an even function af, and  ranger for several cuprate compounds. Moreover, our results

its maximum will actually occur not exactly a&=0, as will  suggest that such an effect is a general consequence of the
be discussed below. Solving E¢/) for Ay in the weak- proximity to an ETT, and is roughly independent of the su-
coupling limit \p<<1, Ag<<4t), atz=0 one finds perconducting pairing symmetry.
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ExpandingAy(z), as implicitly defined by Eq(7) around
z=0, one finds that the maximum af, actually occurs at a Vr(S):f d¢
larger value of the critical parameter, which, in th&ave
case, is given by

1r
7 (o)1

Such a procedut? effectively smears out the logarithmic
singularity in the DOS at the ETT into a pronounced maxi-

(10) mum of finite width~TI" (see inset in Fig. 2 Nonetheless, it
is still possible to separate a “regular” and a “singular”
contribution tovp(e) as

(). (11)

1 A2(0)| 1+2r
Zmax_a 0( ) n1_2r .
A qualitatively analogous result applies to thavave case.

Therefore, as an effect of the electron-hole asymmetry in- vr(e)=1%(e)+ dvp(e), (12
duced by a nonzero hopping ratipthe maximum inAg is
actually located in the holelike regiorz{,>0), in agree-
ment with the phenomenology of some hole-doped cuprate

with dvp(e) now given by?

2
compounds. For instance, a representative Rigltuprate Svp(e)=2pIn av2/m P _ (13)
such as LSCO is characterized by an optimal doping level of V(e—gg)?+T?

Xop=0.15, lying in the hole-doped region, while a doping- ) i i , i
dependent crossover from a holelike to an electronlike F&TOM & physical point of view, the energy linewidth broad-

has been clearly observed at a somewhat larger daging ening_ associated to _impurity scattering has the effect of
~0.20 (Ref. 6. On the contrary, no direct evidence of a blurring” the Fermi line. As a consequence, one expects

change in the FS topology has been so far reported for Bithat the ETT occurs slightly farther from=e. (i.e., for

2212(Ref. 63, whose FS displays a holelike character at alllZ/>0). as soon as such a blurred Fermi line touches the
dopings, including optimal doping. This implies that the ETT Porder of the 1BZ. _

is located at a much larger distance from optimal doping, ' nus far, we have assumed a constant energy linewidth
which is consistent with Eq(10) above, given the larger OVer the whole band. This is clearly an approximation, since

value of the gap amplitude of Bi-2212 than that of LSCO. the quasiparticle lifetime is generally an anisotropic quan-
tity over the 1BZ%® The last statement holds true even in the

simplest case of isotropic impurity scattering, due to the an-
IV. EFFECT OF IMPURITIES isotropy of the single-particle band structure. In particular,
We now turn to consider the more realistic case, in whichth€ Proximity to an ETT in 2D endows the quasiparticle life-
electron scattering from nonmagnetic impurities is includedfime with a nonmonotonic behavior, in contrast to the 3D
Here, we will be mainly concerned with the normal state€@S€, where a steplikedependence was fouﬁd.:ol_lowmg
properties. A finite quasiparticle lifetime induces a broadenR€f- 9, one can write the self-consistent equation for the
ing of the energy linewidth of a quasiparticle state. Therefétarded quasiparticle self-ener§§f due to impurity scatter-
fore, the use of a quasiparticle description and the definitiod9 @S
of a Fermi surface for impure metals can, at first sight, be 5
objected. Indeed, quasimomentum is a “good” quantum SR(w,2)= n;| Uo|
number only for electrons moving in a periodic potentfal. ' (21)2
Scattering of electrons on impurities results in momentum (14)

relaxation and in the corresponding smearing of the Fermi

surface in momentum space. The characteristic scale of sudH1€re€; is the asymptotic single-particle dispersion relation
a smearing is- 71, wherer is the elastic relaxation time at N€ar the saddle point defining the ETT, Eg), n; denotes

low temperatures. The value afcan easily exceed the qua- th€ concentration of impurities, ang is the impurity scat-

siparticle energy~T even for moderate impurity concentra- (€19 strength, here assumed independer. dferforming

tions. the integrations as in Refs. 9,66, but now for the 2D case,
Nevertheless, elastic scattering does not result in energg€ arrives at the self-consistent expression

relaxation. This means that, in principle, one can solve ex-

dzp[ep-l— z+o—3R(w,2)]7?,

i R
actly the eigenvalue problem for the Hamiltonian of the elec- SR _ I—In Vitz+1+w+3 (15)
tron in a lattice with some specific realization of the impurity 27y J—w—z+3R '

potential. The eigenstates of such Hamiltonian can then be I 5 1o . _
chosen as a basis in the Hilbert space and the “Fermi suwhere 7, ~= " nj|ug|“(mymz)*? and all energies are in
face” in this space can be defined as the surface separatiits of a cut-off energy-p~*. Figure 4 shows the renor-
the low-energy occupied eigenstates from the high-energinalized quasiparticle inverse lifetime™!'= —2Im2R(w
empty eigenstates at zero temperature. It is evident that the 0,2) as a function of the critical parameter for several
Fermi surface defined in this way does exist, and that th&alues ofrgl. As anticipated, one observes a maximum in
elastic scattering has no effect on the quasiparticle lifetime in-—! at z=0, as an effect of crossing an ETT.
the vicinity of the Fermi surfacésee also Refs. 9,12 The study of a 2D superconductor in the dirty limit goes
The effect of a nonvanishing impurity scattering rate canbeyond the reach of the present analysis. The dependence of
then be accounted for in the DOS by means of a convolutiod;, as well as of the DOS on the impurity concentration has
betweenv(e) and a Lorentzian of finite width': been derived in the-wave case in Ref. 67, for an isotropic
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3 - ; - comes the theoretical predictions, thus making it difficult to
attribute such an effect to the mere shrinking of the FS.
25 ] Indeed, ARPES studies indicate a marked increase of the
FS anisotropy in theb plane with underdoping, which is
accompanied by the development of an extended saddle
point in the electronic spectrufii.One can identify two char-
acteristic energy scales related with such a FS, namely the
size of its “bulk” part Er~0.3 eV and the “width” of the
E saddle pointz|=|u—e~0.01 eV. The large difference in
0.5 |37 1 the magnitude of such energy scales is therefore suggestive
/ of a crossover, related to the special role played by the elec-
0 : i : tronic states lying close to the saddle poiitie so-called
-l 05 0 0.5 I “slow” electrons). Intuitively, one may expect a replacement
z of Eg with a smallz in the denominator of Gjp), which
FIG. 4. Renormalized quasiparticle inverse lifetimel=  Wwould result in the breakdown of the perturbative approach
—2ImSR, Eq. (15), resulting from isotropic impurity scattering. developed in Ref. 40. Nevertheless, as is demonstrated be-
Different curves correspond to increasing valuespt (bottom to 0w, the sole existence of an ETT in the electronic spectrum
top). The proximity to an ETT induces a nonmonotonic dependencdS Not able to change the character of the isotropic electron-
of 7~1 on the critical parameter, with 7~* assuming its maximum €lectron interaction in the Cooper channel. This implies that
value atz=0. the breakdown of fluctuation theory in the underdoped com-
pounds has to be related to some other properties of the
dispersion relation. Ind-wave superconductors, Dirac-like HTSC. In order to substantiate the above statements, in the
single-particle excitations can be created at virtually no enpresent section we shall derive the momentum dependence
ergy cost near the gap nod®s/°Within the QCP scenario, Of the two-particle Green function in the Cooper channel
long-range interaction between such gapless modes is mediearT; and close to an ETT.
ated via the fluctuations of an intervening order parameter at In the case of a 2D electron system characterized by the
T=0. Current proposals for the HTSC include the possibilityapproximate spectrum given by E@), close to an ETT, the
of the proximity to a quantum ordered phase characterize@ingle-particle Green function can be written as
by either charge ofAFM) spin fluctuations, as well as fluc-
tuations related to the opening of another subdominant con- G(p,wn;2)=(iwg—eyt2) L. (16)
tribution to the supercorzlgluctlng OP, usually accompanied by
O e e, he elecron quasimomentaris measured fom the
fhe density of statesp coming both from );he diffusio ( Saddle p_oin_t location, as in E(P), a_ndwn=27rT(n+%) are
—0) and the Cooperon modéas well as from the diffusive the fermionic Matsubara frequencies. As already emphasized
. 72 in Sec. Il, the conditiorz>0 describes the case of an open
mode withQ= (. ). Fermi surface without any disrupted neck, whereas the op-
posite one,z<O0, is appropriate to a closed Fermi surface
V. GINZBURG-LANDAU STIFFNESS NEAR AN ETT with respect to thd™ point (Fig. 1). The two-particle Green
function in the Cooper channél(q,{),) can be expressed
within the ladder approximation by means of the polarization
Bperatorl1(q,Q,) a®

23R
o

As is well known, the normal state of HTSC is character-
ized by several anomalous properties at the transition edg
Such properties include a peak in thexis resistivity, an
anomalously large sign-changirgaxis magnetoresistance,
as well as the opening of a pseudogap, which is observed L™%q.Q,;zT)=\""-11(q,Q,;2T). 17)
both in thec-axis optical conductivity, in tunneling experi-
ments, and in the NMR relaxation rateee Ref. 40 for a Here, \>0 denotes the momentum independent effective
review). On the basis of the Fermi liquid theory, it has beenelectron-electron interactiom is the Cooper pair momen-
recently demonstrated that the renormalization of the onetum, and
electron DOS in the vicinity of the Fermi level due to the
electron-electron interaction in the Cooper channel is able to

explain satisfactorily many of these pseudogaplike manifes- M(a,,;2,T)

tations both in the overdoped and in the optimally doped d?p

compound$® Moving across the phase diagram of the =T, G(p+Q,0n+,;2)G(—p,— wn;2)
HTSC from the overdoped, bad metallic region, towards un- wn ) (2m)?

derdoping, the enhancement of the mentioned effects corre-

lates with an increase of the Ginzburg-Levanyuk parameter ETE (G, @n4y,— ®n32Z), (18
Gipy~T./Eg, thus making perturbation theory less @n

reliable®® Nevertheless, such a rapid growth of the normal
state anomalies with the decrease of doping strongly ovemith ),=27Tv the bosonic Matsubara frequencies.
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The superconducting critical temperature can be charaawhere the components of the superfluid stiffness tensor are
terized as the temperature at whichpresents a pole aj  given by
=0 andQ,=0. The procedure to deal with the integral in

Eq. (18) is outlined in Appendix B. One eventually arrives at 7¢(3)Eg
the result (D)= (25
87T m;
op/(27T) 2 to the lowest order ire/Eg. The latter expression is analo-
11(0,0z,T)=—T > —In > & 2) , (190  gous to the result obtained in the standard 2D isotropic case,
T @p=0 @n |tz with &,= p2/(2m)— u, where the superfluid stiffness reads

_ , , n=7{(3)Er/(167°T?m), and the DOS per spin ip p
wherem= ym;m, is the geometric average mass around the’ m/(27) (Ref. 9. It is worth noting that in Eq(24) the

saddle point, and the Debye frequengy has been intro- effective mass of the fluctuating Cooper pair gets increased
duced as a cutoff in the summation over the Matsubara fre;: 9 per pair g

guencies. The equation for the critical temperature then reafﬁy a fagtor In@D/ZﬂT.C)‘ with respect_tolthe.case in which a
parabolic spectrum is assumed. This implies a reduced role

of fluctuations near an ETT. Indeed, our results demonstrate

m_ “o’rT w2 that the temperature range of the fluctuation regime is gov-
ANl=T, S —in| 2 20 :  Whi
g o wn n w%+22 (20) erned by essentially the same Gi, while the propagator’s ef-

fective mass is enhanced.

For smallz (|zZ|<wp), one recovers the well-known restit Summarizing, the results obtained above shows that a to-
pological singularity in the electronic spectrum practically
does not affect the Ginzburg-Landau stiffness, in contrast to

' (22) what was intuitively speculateéfy.The reason thereof is that

the value ofy is formed by gathering the contributions of the

electronic states belonging to the whole Fermi surface, not
only by the “slow” ones. Finally, we note that in the ap-
roach we followed, only the polarization loop Ed.8) is
ritical, since Cooper pairing of nonzero center-of-mass mo-
mentum is not taken into accouftit.

T wp % 1
cs—exp — —
2 JAp
where p=m/(27?) denotes the DOS at the saddle point.
Equation(21) is in agreement with the-wave result forA,
Eq. (8), when the assumption of a phonon-mediated pairin
mechanism is made and the limit~0 is taken. Vertex and
cross corrections to Eq21) in terms of the Migdal adiaba-
ticity parameterwp/Er have been shown to decrease the
enhancement off, due to the proximity to an ETT" VI. CONCLUSIONS

Analogously, for the two-particle Green function close to the e have reviewed the effects of an electronic topological
superconducting transition and in the proximity of an ETT{ransition on the superconducting properties of a 2D electron

(Iz|l<T~T), one finds system, with an energy spectrum characterized by a mini-
T_T mum at thel' point and an extended, doping dependent

L~%0,0z,T)=—p In( @D ) c. (22)  saddle point at 4,0), as is typical for most single-layered,
27T T hole-doped HTSC. We analytically derived the expressions

One observes that the presence of the ETT results in th{" the superconducting gafy, at T=0 close to an ETT,
appearance of the additional large factein(wp/T.) in both in thesswave and in thel-wave case. In contrast to the

front of the reduced temperature. 3D result!® A, turns out to be characterized by a nonmono-

In order to determine the superconducting stiffness tensd®nic behavior as a function of the critical paramegewith

7(2), one is led to consider thg dependence of the polar- & Maximum atz=0, i.e., close to the ETT. Due to the
ization operator, Eq(18). Expanding (q, w,, , — wy,:2) in Eq. electron-hole symmetry-breaking induced by a nonzero

(18) for smallq andz up to quadratic order ig, one has value of the hopping ratio, we find that the maximum aof
actually occurs az=0, i.e., it is slightly shifted towards the

holelike region, as observed in LSCQWe point out that in
previous calculation®1°-21%&he maximum ofT; as a func-
(02, 0, — 0 2), (23  fion of the critical parametez occurs at the ETTz=0. This
result has been often used as an objection against the rel-
evance of the van Hove scenario for the cuprates, since
ARPES data show that the optimal doping does not corre-
spond to the critical point=0, and that the FS preserves a
holelike character over the entire doping range for almost all
hole-doped compoundsee, however, also the recent results
of Ino et al. for the LSCO compourfil. On the contrary, we
have shown that the observed difference between optimal
In wp |T-Te T 2y 2 doping and the doping actually corresponding to the ETT can
27T, T, 71817 7242 | be justified by taking into account an electronic spectrum
(24) beyond the hyperbolic approximation. Moreover, we find

I(qvwn1_wn;Z):IO(O-wn1_wn;z)+|1(q2-wn1_wn;0)

wherel; are defined in Appendix B, ankd, has been used
above for the definition of the critical temperature, EtP).
One eventually finds for the®>-dependence of the two-
particle Green function in the lim|z] < T~ T, the relatively
classical form

L=Yq,0,0T)=—p
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that the dependence adf, on the hopping ratio is in good 1 In(a.&)dé

gualitative agreement with the phenomenological results col- S.=- 0 w (A1)
lected by Pavarinet al. for several HTSC materiaf§, thus (6% =

demonstrating the role of the band structure peculiarities andyhere we have introduced the dimensionless auxiliary quan-
in particular, of next-nearest-neighbor hopping, in stabilizingtities (. =z/(4t=8t'), 8.=Ay/(4t=8t'), and a.=(1
high-temperature superconductivity in the cuprates. +2r)/(42\1—-4r?).

In the presence of impurities, the Fermi line is effectively  In thed-wave case, the double integration over wave vec-
smeared, and one expects the anomalies due to the proximitygr k cannot be reduced to a simple integration over energy,
to an ETT to occur at a larger value of the critical parameterand one has to change variables %= * (e —&.)/
as soon as such a “blurred” Fermi line touches the zond 4t(1*=2r)], g=g,. In such a case, E@6) can be written
border. We also derived the energy dependence of the ras
tarded quasiparticle self-ener@f due to impurity scatter-
ing in the 2D case, for a simplified, hyperbolic dispersion et
relation. In contrast to the 3D case? is again characterized N D.+D_, (A2)
by a nonmonotoniz dependence, thus confirming that the ) o o
quasiparticle lifetimer, is generally an anisotropic quantity Where the integrated pairing susceptibility now reads
over the 1BZ.

Finally, we addressed the issue of the range of fluctuations —lfld flfd 9 1
nearTC. By explicitly computing the Fwo—particle propggator =4, 3 0 9 JEF L)%+ 52¢92 \/313233’
in the Cooper channel ne@g, we derived the expression for (A3)
the superfluid stiffness; close to an ETT. Although the
Fermi velocity vanishes at the saddle point, we find a nonand
zero value of#n, in complete analogy with the Ginzburg- )
Landau result for an isotropic electronic spectrum, thus Ji=(1-2rg)*+ar[g-r+(1x2r)¢],  (Ada)
showing that all electronic states participate in establishing
the superconducting correlations. Moreover, our results show Jo=(1+9)%2—(1— 312 (4r?), (Adb)
that the role of fluctuations even diminishes near the ETT.
Indeed, while their temperature range is determined by about J3=(1—0)%—(1— 32/ (4r?). (Adc)

the same value of Gi, the effective mass of the quctuatingE ) o
Cooper pair increases by a factordg(/27T,) with respect ~E£duation(A3) leads to hyperelliptic integrals, that cannot be

to the case of a parabolic spectrum. Therefore, in the dedenerally expressed in terms of known special funcF?@ns.
nominator of any fluctuation contribution there appears a/Ve nextsef)= —(1-\3/(2r), with 1 — £ asr—0, with
large logarithm, which implies a relative suppression of fluc-which D, in Eq. (A3) transforms into
tuation effects near the ETT. ,

1 g
D =—J' dQJ' d
Ta S rr— )2+ Adg?
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Onufrieva, P. Pfeuty, P. Podio-Guidugli, R. Pucci, and G. VI(1+0)*~g*[(1-0)*~g?]
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tality during the period in which the present work was [N the limitr—0, one branch of the ?ypezrbola defined by
brought to completion. g=v reduces to th€)=0 axis, andr (v-—g“)—Q. A fur-

ther change to polar coordinates s=p cosé, g=p sing
then allows one to exactly decouple the two integrations in
Eq. (A5), the integration ovep leading to elliptic integrals.
Extracting the logarithmic divergence of these latter ngar
= 71/2 (corresponding to the ETT, together wjil= 1) yields

We briefly outline the derivation of the asymptotic depen-the answefsee Eq.(A6) below, withr=0].
dence of the integrated pairing susceptibility close to an ETT In the caser #0, we could not find any such simple
in 2D. In theswave case, changing integration variables inchange of variables, allowing to exactly decouple the inte-
the gap equation, Ed6), from wave vectok to energy, we grations in Eq(A5). However, since only the behavior of the
can write the pairing susceptibility integrated between thedispersion relation close to the ETT is believed to determine
ETT and either band edges as the asymptotic properties of the integrated pairing suscepti-
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bility, we may linearly expand(v2—g?) nearQ)=0, g=1

and set() +2r(g—1)=p cos#h. Within such approximation,
Eq. (A5) then reads

1 (=2
D+=Zj0 d

a_ p2
X d L
fo pJ(a++p)(a-—p)(ﬂ++p)(ﬁ——p)

; sirf9 X|a_ﬂ+|
Jeogh+A3sirtd  1—4r?

(AB)
where
_ 1+2r A7
%=~ Cosh+(1—2r)sing’ (A73)
1+2r
Bx (A7Db)

:cose—(1+ 2r)sing’

Following standard methodsee, e.g., Ref. 36 the inner

PHYSICAL REVIEW B 66, 014501 (2002

IN(X*+ivVz—iw,—x* i d
( : ©n ):t——lnz(xii\/z—iwn—xz),
Vz—iw,—x? 2

X
(B5)

and choosing the branches of the logarithms in order to make
them complex conjugated of each other. Finally, we obtain

2

=— —|n———
27 |y 22+wﬁ

1(0,wn,—wy;2) (B6)

In order to calculate the GL stiffness, let us now expand
the polarization operator up to quadratic ordegirOne has

H(q,o;z,T>=H<o,o;z,T>+p__212mq?, (B7)

where the components; of the stiffness tensor are defined

integral can be now expressed as a combination of elliptiby

integrals, which diverge logarithmically a— /2, whence
Eq. (9) follows.

APPENDIX B:
EVALUATION OF THE POLARIZATION OPERATOR

The momentum integration in E@18) for the polariza-

pigzmq?ﬂE [11(9% @y, — ®,;0)

+15(0% 0p, —wn;2)+---1. (BY)

tion operator can be performed by reducing the integrationy,o explicitly finds

domain to the first quarter of the 1BZ, and dividing the latter

into the two triangles defined byp:p,<(m/m,)p,;p,=0}
and{p:p,=(m/m,)p4;p,=0}, respectively. One finds

11(0,0ZT)=T> 1(0.w,,~ wy;2) (B1)
2m
:?TwE [flop,—wn;2)+ (0, —0,;—2)],
(B2)
where
f(on,—wn;2)= dxlf do5—5——
X5—X]—iw,+2
1
(B3)

X2—X2+iwg+z
Performing the inner integration, one obtains
1 (= |In(x—iVz—ie,—x?)
- dx - 5
2iwnJo Vz—iw,—x
In(x+i \/z—iwn—xz)
VZ—iw,—x?

The last integration can be carried out observing that

f(wn,—wn;z)=

H.c.

. (B4)

1 d?x x2
m(2)=5 T : :
' 2mi ol ) x—xi—iw, (G—Xitiwy)®

1 k
3
Z T | d>

2m; k=0 (x5— X5 +iw,) 3Tk

X

(X5= X5 —iwn)? K

to the first order ire/Eg. The first integral, giving the prin-
cipal contribution to the stiffness, can be evaluated using
polar coordinates as

7i(z=0)

- w1304 _
T > ifZ dqﬁf ar! (r*cog2¢—1)cos ¢
0 0

m S W2 (r*cog2¢4+1)3

B WTE 1fwdt a+¢92

4mi wp wﬁ 0 Ja (9&2
T 1 TUB3)Ee
m 50 w3 © 8w?T2m;’

1
Taltra

(B9)
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