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Effects of an electronic topological transition for anisotropic low-dimensional superconductors
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We study the superconducting properties of a two-dimensional superconductor in the proximity to an elec-
tronic topological transition~ETT!. In contrast to the three-dimensional~3D! case, we find that the supercon-
ducting gap atT50, the critical temperatureTc , and the impurity scattering rate are characterized by a
nonmonotonic behavior, with maxima occurring close to the ETT. We derive analytical expressions for the
value of such maxima both in thes-wave and in thed-wave cases. Such expressions are in good qualitative
agreement with the phenomenological trend recently observed forTc

max as a function of the hopping ratiot8/t
across several cuprate compounds. We further analyze the effect of an ETT on the Ginzburg-Landau stiffness
h. Instead of vanishing at the ETT, as could be expected, thus giving rise to an increase of the fluctuation
effects, in the case of momentum-independent electron-electron interaction, we findhÞ0, as a result of an
integration over the whole Fermi surface.

DOI: 10.1103/PhysRevB.66.014501 PACS number~s!: 74.20.2z, 74.62.2c, 74.40.1k
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I. INTRODUCTION

The unconventional properties of the normal and sup
conducting states of several low-dimensional novel el
tronic materials is a source of continuous interest and
search. Such materials include the high-Tc cuprate
superconductors~HTSC’s!,1 as well as some organic supe
conductors based on doped BEDT-TTF layers, and the r
enates. In these materials, the interplay between their
duced dimensionality and the strength of the effect
electron-electron interaction is believed to be the key for
elusive nature of their normal state, as well as for the an
tropic gap characterizing their superconducting state.

A feature common to almost all the material classes lis
above is a quasi-2D dispersion relation, arising from th
layered structure and stabilized by the tendency to confi
coherence within layers, due to strong correlations.2 Indeed,
flat bands have been observed in nearly all hole-
electron-doped superconductors,3 in the k phase of BEDT-
TTF organic superconductors,4 as well as in the noncuprat
layered superconductor Sr2RuO4 ~Ref. 5!. Clear evidence for
a 2D Fermi surface changing topology as a function of d
ing has been recently provided by ARPES measuremen
LSCO.6 In particular, the role of the proximity to an elec
tronic topological transition in establishing the unconve
tional properties especially of the cuprates has been v
early emphasized~see Ref. 7 for a review!. Therefore, in the
following we will be mainly concerned with the case of th
high-Tc cuprates.8

The term electronic topological transition has been p
posed in order to describe the phenomena related to a ch
of the connectivity number of the components of the Fe
surface~FS!.9 Such a transition can be driven by seve
causes such as isotropic pressure, anisotropic deforma
and the introduction of isovalent impurities. All these infl
0163-1829/2002/66~1!/014501~11!/$20.00 66 0145
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ences can be parametrized by their effect on the chem
potential m passing through the critical value«c , corre-
sponding to the transition point. Indeed, such a critical po
can be well defined only in a pure metal atT50 where a true

phase transition of order 212 occurs,10 according to Ehrenfes
classification. Typical manifestations of an ETT consist
cusplike anomalies of physical quantities such as the spe
heat,11 the density of states~DOS!, and the conductivity, as
well as in the appearance of asymmetric singularities of
thermal expansion coefficient and thermoelectric power
the dependence of all these quantities onz5m2«c . A non-
zero temperature or the presence of electron scattering re
in the smearing of these anomalies and, strictly speaking

washing out the notion of a 212 -order phase transition itself
Moreover, the occurrence of an ETT can be masked by
intervening structural transition, as could be induced by
ternal pressure. The effects of an ETT on the properties
metals and alloys have been thoroughly investigated
well.9,12,13

In lower dimensional metallic systems, an ETT is chara
terized by yet stronger anomalies. In particular, the DOS o
2D metal increases logarithmically near an ETT, instead
displaying a square-root cusp, as in the 3D case.14 Therefore,
it has been suggested that an ETT may be a clue for
understanding of the anomalous superconducting state o
high-Tc cuprates.7 In particular, it is well known that the
presence of an ETT in the spectrum of a 2D supercondu
induces a nonmonotonic dependence of the critical temp
ture on doping or applied pressure,7,15 in qualitative agree-
ment with the available experimental results.16,17This has to
be contrasted with the 3D case, where an ETT only gives
to a steplike behavior in thez dependence ofTc .18

Moreover, it has been proposed that the proximity to
ETT may be the origin of the unconventional normal state
©2002 The American Physical Society01-1
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the HTSC. In particular, a marginal Fermi liquid19–22 or a
non-Fermi-liquid23 behavior can be naturally derived for
2D electron system near a van Hove singularity. More g
erally, it has been argued that the anomalous fin
temperature phenomenology of the cuprates stems from
competition of several broken-symmetry states interven
near one and the same quantum critical point~QCP!.24,25

Recently, Onufrievaet al.26,27showed that an ETT occurrin
in a 2D square lattice with hopping beyond nearest neighb
is a QCP, with two aspects of criticality: the first is related
the singular behavior of the thermodynamic properties~van
Hove singularity!, while the second is related to the exi
tence of the critical lineT50, z.0 of static Kohn
singularities.26,27The proximity to an ETT may be characte
ized by spin density wave~SDW!, charge density wave
~CDW!, andd-wave superconducting~dSC! instabilities, de-
pending on the appropriate interaction channels include
the analysis. Onufrievaet al. argued that SDW fluctuation
dominate in the case of the high-Tc cuprates.28 On the other
hand, recent studies focussed on the competition betw
AFM and AFM-mediatedd-wave pairing via a diagrammati
approach,29 among dSC, AFM, andp-triplet pairing at a
mean field level in the presence of backward scatterin30

among dSC, AFM, and CDW within the renormalizatio
group ~RG! approach,31–33 among dSC, AFM, and FM
within the RG and the parquet approaches,34 or between dSC
and an excitonic ordered state.35 More recently, it has been
shown36 that elastic umklapp scattering near a van Hove s
gularity may give rise to an RVB-like, insulating spin liqui
state,37 which exhibits bothd-wave superconducting an
AFM correlations, without being characterized by true sy
metry breaking, as is typical of a quantum ordered state.
competition between superconductivity and various kinds
density waves in several low-dimensional electron syste
in the presence of a van Hove singularity has been revie
both from the experimental and the theoretical point of vi
in Ref. 38.

In this paper, we will concentrate on a single superc
ducting instability ~towards either ans-wave or ad-wave
superconducting state!, in the weak coupling limit, thus ne
glecting altogether any other competing ordered phase, f
2D electron system near an ETT. This is of course justifi
only if all other instabilities are characterized by weaker co
plings, which may not be the case for the cuprates. Howe
such an approximation will enable us to derive an analyt
expression for the maximum gapD0 near the ETT as a func
tion of the band details. Such results are in good qualita
agreement with recent studies ofTc in the cuprates correlate
with material dependent properties, such as the ratio of n
nearest- to nearest-neighbor hopping.39

We will also study the effect of an ETT on the Ginzbur
Landau stiffnessh}Gi21, where Gi is the Ginzburg-
Levanyuk parameter, which characterizes the manifesta
range of fluctuations nearTc ~Ref. 40!. In the case of an
isotropic FS,h is proportional to the square of the Ferm
velocity. In the vicinity of an ETT, due to the presence
‘‘slow’’ electrons near the saddle point in the electronic sp
trum, one may expect an increase of fluctuations. Howe
we will show that, in the case of a momentum-independ
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electron-electron interaction, all electronic states on the
participate in establishing the superconducting correlatio
Such correlations give rise to a superconducting stiffne
whose value is of the same order of magnitude of the re
obtained for an isotropic electronic spectrum,41 to the lowest
order inz/EF .

The paper is organized as follows. In Sec. II, we introdu
a dispersion relation beyond nearest neighbors for an e
tron system in a 2D square lattice, as is typical for the
prates, and discuss its corresponding singular DOS. In S
III, we study the superconducting gapD0 at T50 as a func-
tion of the critical parameterz, in the case ofs- andd-wave
pairing. In Sec. IV, we discuss the effect of impurities on t
normal state DOS and show that the proximity to an E
gives rise to a nonmonotonicz dependence of the renorma
ized quasiparticle inverse lifetimet21. In Sec. V, we calcu-
late the Cooper pair propagator near an ETT, and discuss
effects of an ETT on the superconducting fluctuations.
eventually summarize in Sec. VI.

II. THE MODEL

Detailed band structure calculations within the loc
density approximation ~LDA !,42 as well as ARPES
experiments,43 show that a realistic tight-binding approxima
tion for the band dispersion of most quasi-2D cuprates ha
be expanded at least up to next-nearest-neighbors hopp
We then assume the following rigid band dispersion relat
for a tetragonal lattice:

jk5«k2m522t~coskx1cosky!14t8 coskx cosky2m,
~1!

wherem denotes the chemical potential, and the compone
of the wave vectork are measured in units of the invers
lattice spacing. A nonzero value of the hopping ratior
5t8/t, measuring the ratio of next-to-nearest- vs neare
neighbors hopping, slightly modulates the actual shape of
Fermi linejk50, and in particular destroys perfect nesting
m50 as well as electron-hole symmetry~Fig. 1!. In order to
have a flat minimum injk around theG point, as is observed
experimentally for the majority of the cuprates,44–46the con-
dition 0,r , 1

2 must be fulfilled. The role of an extende
saddle point in stabilizing superconductivity against oth
possible low-energy instabilities has been established wi
the renormalization group~RG! approach in the weak
coupling limit.33 Moreover, it has been shown that an i
crease ofr in the mentioned range correlates with an increa
of the maximum Tc across different classes of cupra
superconductors.39 However, changes of theshapeof the FS
resulting from screening effects can also correlate w
changes in the superconducting properties in an indirect w
Indeed, a deformation of the FS also induces a change o
phase space effectively probed by the electron-elec
interaction.47 This is particularly relevant for several mode
proposed for the HTSC, characterized by effective inter
tions peaked atX5(0,p), namely, exactly where the Ferm
line is most sensible to a change in the hopping ranger.
Possible realizations of such a strongly anisotro
k-dependent potential include the interaction mediated
1-2
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antiferromagnetic spin fluctuation48 or by quasicritical stripe
fluctuations, due to the proximity to a QCP near optim
doping atT50 ~Refs. 49–51!, as well as electron-electro
interactions enhanced by interlayer pair-tunneling~ILT !.52,53

As the chemical potentialm in Eq. ~1! varies from the
bottom,«'524t(12r ), to the top of the band,«Á54t(1
1r ), the Fermi linejk50 evolves from an electronlike con
tour, closed around theG point, to a holelike contour, whos
continuation into higher order Brillouin zones closes arou
the M5(p,p) point. In doing so, an ETT is passed exac
at m5«c524t8, where the Fermi line touches the zon
boundaries, and assumes the asteroidlike shape depict
Fig. 1. It has been shown that such a critical value for
Fermi energy is stable against the RG flow for any repuls
electron-electron interaction.54,55 Such a result has been re
cently confirmed also when self-energy effects to the qu
particle dispersion relation are included, thus demonstra
that the pinning of the Fermi surface to a van Hove sin
larity can actually take place for a rather wide range of h
concentration.56 The conditionm5«c corresponds to having
a saddle point atX5(p,0) in the single-particle dispersio
relation «k , which, for small wave vector displacemen
from X and symmetry related points, can be expanded a

«k2«c;
p1

2

2m1
2

p2
2

2m2
[ep , ~2!

where p15kx , p25ky2p, and m1,25@2t(162r )#21 are
the eigenvalues of the effective mass tensor.57 Here and be-
low, we choose units such that\ and the lattice spacings ar
set equal to unity.

For «'<«<«Á , the density of states n(«)
5r«k5«dVku¹k«ku21 can be computed analytically as58

n~«!5
1

p2

1

A4t22«c«
KF1

2
A16t22~«1«c!

2

4t22«c«
G , ~3!

FIG. 1. Fermi linejk50, Eq. ~1!, for a value of the hopping
ratio r 50.45. As the chemical potential varies from the bottom
the top of the band, the Fermi line changes topology, evolving fr
a closed contour around theG point, to a contour, whose continua
tion in the higher order Brillouin zones closes aroundM5(p,p).
The change of topology~ETT! occurs when the Fermi line touche
the zone border, i.e., atX5(p,0), and symmetry related points. Th
thicker solid lines evidence the hyperbolalike shape of the Fe
line, Eq. ~2!, aroundX.
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where K(k) denotes the complete elliptic integral of fir
kind of modulusk ~Ref. 59!. At «5«c , n(«) diverges loga-
rithmically. Making use of the appropriate asymptotic expa
sion for K(k) ~Ref. 60!, it is then customary to identify a
regular and a singular contribution ton(«) as

n~«!5n0~«!1dn~«!, ~4!

with n0(«) being a continuous function of« over the whole
bandwidth such thatn0(«c)50, and

dn~«!52r lnU4A2/p2r

«2«c
U, ~5!

where r2154p2tA124r 2 ~Fig. 2!. In the following, we
shall often make use of the critical parameterz5m2«c ,
measuring the distance of the chemical potential from
ETT.

III. THE EFFECT OF AN ETT
ON THE SUPERCONDUCTING GAP

We will now discuss the effects of the proximity to a
ETT on the superconducting properties of a 2D, single-la
system, both for ans- and d-wave order parameter, in th
weak coupling limit. Our starting point will be the BCS
equation for the gap functionDk , which atT50 reads

Dk52
1

N (
k8

Vkk8

Dk8

2Ek8

. ~6!

Here,Ek5Ajk
21uDku2 is the upper branch of the superco

ducting excitation spectrum,Vkk8 denotes the interparticle
potential, and the sum runs over all theN k points in the
1BZ. In the case ofs-wave symmetry, we assumeVkk85
2l, i.e., a constant over the whole 1BZ, whereas in
d-wave case we take the potential in the separable fo
Vkk852lgkgk8 , gk5 1

2 (coskx2cosky) being the lowest-
order lattice harmonic corresponding tod-wave symmetry.

i

FIG. 2. Total density of states (n), Eq. ~3!, and regular (n0) and
singular (dn) contributions to the DOS, Eq.~4!, as a function of
energy«, ranging from the bottom («') to the top («Á) of the band.
The inset shows the effect of a non-zero energy broadeningG ~here,
G;0.5% of the total bandwidth! on the same quantities@see Eq.
~13!#.
1-3
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Accordingly, one hasDk5D0 in the s-wave case, andDk
5D0gk in the d-wave case, respectively. It is worth emph
sizing that, in both cases, the coupling constantl.0 has
been assumed independent of doping. This amounts to
glecting higher-order correlation effects among interact
particles.41 Moreover, the weak coupling hypothesis allow
us to neglect renormalizations of the shape of the Fermi
face, which are certainly expected in the strong coupl
limit, and are known to give rise to another kind of ETT
well.61

Equation ~6! implicitly neglects the possibility of any
pairing instability other than singlet superconductivity in t
Cooper channel~characterized by a pair relative momentu
P50). Possible alternative intervening pairing instabiliti
include, e.g., antiferromagnetism and thep-triplet paired
state.30 Such instabilities would be characterized by lar
momentum transfer near the ‘‘hot spots’’ (0,p) and (p,0).
They have been shown to coexist and win out singlet su
conductivity at a mean field level near half-filling, whe
backward scattering is a relevant process.30 However, within
our weak-coupling approximation, it is consistent to reta
only one kind of instability~namely, Cooper pairing in the
singlet,P50 channel, with eithers- or d-wave symmetry!,
under the assumption that other instabilities are character
by weaker couplings.

We will first analyze the gap equation, Eq.~6!, close to an
ETT (uzu!4t). In the s-wave case, the summation over th
1BZ in Eq. ~6! can be transformed into an integral over e
ergy weighted by the DOS, which we approximate by
singular partdn(«) in Eq. ~4!. The Fermi line corresponding
to the ETT divides the 1BZ in two regions,«k,0 and«k
.0, which are electron-hole conjugated of each other. Se
rating the contributions coming from these regions, the g
equation can be compactly written as

1

lr
5S11S2 , ~7!

whereS6 represent the pairing susceptibility integrated b
tween the ETT and either band edges~see Appendix A for
details!.

While in 3D BCS theoryS6 are logarithmically divergen
in the limit D0→0 ~Ref. 62!, the proximity to an ETT in 2D
makes them divergent as; ln2D0. Direct inspection of Eq.
~7! as well as numerical calculations show thatD0(z) is
maximum near the ETT. Such a nonmonotonic depende
of the superconducting gap on the critical parameterz is in
agreement with the phenomenology of the HTSC, whereD0
and Tc are characterized by a parabolalike dependence
doping.16 This has to be contrasted with the steplike behav
observed in the 3D case,18 where it has to be emphasized th
no divergence occurs in the DOS at the ETT. However,
to the electron-hole symmetry breaking induced by a n
zero hopping ratior, D0(z) is not an even function ofz, and
its maximum will actually occur not exactly atz50, as will
be discussed below. Solving Eq.~7! for D0 in the weak-
coupling limit (lr!1, D0!4t), at z50 one finds
01450
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D0~z50!.
8A2

p2r
expS 2A 1

lr
1

1

4
ln2

112r

122r D , ~s wave!

~8!

which can be then taken as a first approximation to the
maximum atT50, in thes-wave case. Following the sam
procedure, qualitatively similar results can be derived for
critical temperatureTc as a function ofz ~see also Refs.
7,15!.

In the d-wave case, due to the anisotropick dependence
of the integrand in Eq.~6!, it is not possible to explicitly
separate the integration over energy, and a different appro
must be followed~see Appendix A for details!. However, the
proximity to an ETT does endow the pairing susceptibil
with an analogous asymptotic low-D0 behavior, as in the
s-wave case, which eventually results in the following wea
coupling expression for the gap amplitude atT50, z50
(lr!1, D0!4t):

D0~z50!.4t f 1~r !expS 2A 1

lr
1 f 2~r ! D , ~d wave!,

~9!

where f 1(r )52b21(124r 2)(A112r 1A122r )21, f 2(r )
5 ln2(bpA124r 2)12 lnA124r 2 ln@2p21A124r 2(A112r
1A122r )21#, andb5e2/8.

Figure 3 showsD0(0) both in thes- and in thed-wave
case, Eqs.~8! and~9!, respectively, as a function of the hop
ping ratior, for several values ofl/t. In view of the fact that
Tc}D0, as in any mean-field theory, Fig. 3 is in good qua
tative agreement with Fig. 5 of Ref. 39, showing a dire
correlation between the experimentalTc

max and the hopping
ranger for several cuprate compounds. Moreover, our res
suggest that such an effect is a general consequence o
proximity to an ETT, and is roughly independent of the s
perconducting pairing symmetry.

FIG. 3. Normalized gap amplitudeD0(z50,r )/D0(z50,r 50)
at T50, as a function of the hopping ratior 5t8/t, for different
couplingsl/t50.9–1.1~bottom to top!. Continuous lines refer to
the s-wave case, Eq.~8!, while dashed lines refer to thed-wave
case, Eq.~9!. One can recognize the direct correlation betwe
Tc

max}D0(z50) andr, as observed in Ref. 39.
1-4
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ExpandingD0(z), as implicitly defined by Eq.~7! around
z50, one finds that the maximum ofD0 actually occurs at a
larger value of the critical parameter, which, in thes-wave
case, is given by

zmax.
1

8t
D0

2~0!ln
112r

122r
. ~10!

A qualitatively analogous result applies to thed-wave case.
Therefore, as an effect of the electron-hole asymmetry
duced by a nonzero hopping ratior, the maximum inD0 is
actually located in the holelike region (zmax.0), in agree-
ment with the phenomenology of some hole-doped cup
compounds. For instance, a representative high-Tc cuprate
such as LSCO is characterized by an optimal doping leve
xopt.0.15, lying in the hole-doped region, while a dopin
dependent crossover from a holelike to an electronlike
has been clearly observed at a somewhat larger dopinxc
.0.20 ~Ref. 6!. On the contrary, no direct evidence of
change in the FS topology has been so far reported for
2212~Ref. 63!, whose FS displays a holelike character at
dopings, including optimal doping. This implies that the ET
is located at a much larger distance from optimal dopi
which is consistent with Eq.~10! above, given the large
value of the gap amplitude of Bi-2212 than that of LSCO

IV. EFFECT OF IMPURITIES

We now turn to consider the more realistic case, in wh
electron scattering from nonmagnetic impurities is includ
Here, we will be mainly concerned with the normal sta
properties. A finite quasiparticle lifetime induces a broad
ing of the energy linewidth of a quasiparticle state. The
fore, the use of a quasiparticle description and the defini
of a Fermi surface for impure metals can, at first sight,
objected. Indeed, quasimomentum is a ‘‘good’’ quantu
number only for electrons moving in a periodic potential64

Scattering of electrons on impurities results in moment
relaxation and in the corresponding smearing of the Fe
surface in momentum space. The characteristic scale of
a smearing is;t21, wheret is the elastic relaxation time a
low temperatures. The value oft can easily exceed the qua
siparticle energy;T even for moderate impurity concentra
tions.

Nevertheless, elastic scattering does not result in en
relaxation. This means that, in principle, one can solve
actly the eigenvalue problem for the Hamiltonian of the el
tron in a lattice with some specific realization of the impur
potential. The eigenstates of such Hamiltonian can then
chosen as a basis in the Hilbert space and the ‘‘Fermi
face’’ in this space can be defined as the surface separa
the low-energy occupied eigenstates from the high-ene
empty eigenstates at zero temperature. It is evident tha
Fermi surface defined in this way does exist, and that
elastic scattering has no effect on the quasiparticle lifetim
the vicinity of the Fermi surface~see also Refs. 9,12!.

The effect of a nonvanishing impurity scattering rate c
then be accounted for in the DOS by means of a convolu
betweenn(«) and a Lorentzian of finite widthG:
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nG~«!5E dj
1

p

G

~j2«!21G2
n~j!. ~11!

Such a procedure12 effectively smears out the logarithmi
singularity in the DOS at the ETT into a pronounced ma
mum of finite width;G ~see inset in Fig. 2!. Nonetheless, it
is still possible to separate a ‘‘regular’’ and a ‘‘singular
contribution tonG(«) as

nG~«!5nG
0~«!1dnG~«!, ~12!

with dnG(«) now given by12

dnG~«!52r ln
4A2/p2r

A~«2«c!
21G2

. ~13!

From a physical point of view, the energy linewidth broa
ening associated to impurity scattering has the effect
‘‘blurring’’ the Fermi line. As a consequence, one expec
that the ETT occurs slightly farther fromm5«c ~i.e., for
uzu.0), as soon as such a blurred Fermi line touches
border of the 1BZ.9

Thus far, we have assumed a constant energy linewidtG
over the whole band. This is clearly an approximation, sin
the quasiparticle lifetimetk is generally an anisotropic quan
tity over the 1BZ.65 The last statement holds true even in t
simplest case of isotropic impurity scattering, due to the
isotropy of the single-particle band structure. In particul
the proximity to an ETT in 2D endows the quasiparticle lif
time with a nonmonotonic behavior, in contrast to the 3
case, where a steplikez dependence was found.9 Following
Ref. 9, one can write the self-consistent equation for
retarded quasiparticle self-energySR due to impurity scatter-
ing as

SR~v,z!5
ni uu0u2

~2p!2 E d2p@ep1z1v2SR~v,z!#21,

~14!

whereep is the asymptotic single-particle dispersion relati
near the saddle point defining the ETT, Eq.~2!, ni denotes
the concentration of impurities, andu0 is the impurity scat-
tering strength, here assumed independent ofp. Performing
the integrations as in Refs. 9,66, but now for the 2D ca
one arrives at the self-consistent expression

SR52
i

2t0
lnS A11z1A11v1SR

A2v2z1SR D , ~15!

where t0
215p21ni uu0u2(m1m2)1/2, and all energies are in

units of a cut-off energy;r21. Figure 4 shows the renor
malized quasiparticle inverse lifetimet21522ImSR(v
50,z) as a function of the critical parameterz, for several
values oft0

21. As anticipated, one observes a maximum
t21 at z*0, as an effect of crossing an ETT.

The study of a 2D superconductor in the dirty limit go
beyond the reach of the present analysis. The dependen
D0 as well as of the DOS on the impurity concentration h
been derived in thed-wave case in Ref. 67, for an isotrop
1-5
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dispersion relation. Ind-wave superconductors, Dirac-lik
single-particle excitations can be created at virtually no
ergy cost near the gap nodes.68–70Within the QCP scenario
long-range interaction between such gapless modes is m
ated via the fluctuations of an intervening order paramete
T50. Current proposals for the HTSC include the possibi
of the proximity to a quantum ordered phase characteri
by either charge or~AFM! spin fluctuations, as well as fluc
tuations related to the opening of another subdominant c
tribution to the superconducting OP, usually accompanied
time-reversal breaking.24,25Recent results for 2Dd-wave su-
perconductors in the presence of disorder yield correction
the density of states coming both from the diffusion (Q
50) and the Cooperon mode,71 as well as from the diffusive
mode withQ5(p,p).72

V. GINZBURG-LANDAU STIFFNESS NEAR AN ETT

As is well known, the normal state of HTSC is charact
ized by several anomalous properties at the transition e
Such properties include a peak in thec-axis resistivity, an
anomalously large sign-changingc-axis magnetoresistance
as well as the opening of a pseudogap, which is obser
both in thec-axis optical conductivity, in tunneling exper
ments, and in the NMR relaxation rate~see Ref. 40 for a
review!. On the basis of the Fermi liquid theory, it has be
recently demonstrated that the renormalization of the o
electron DOS in the vicinity of the Fermi level due to th
electron-electron interaction in the Cooper channel is abl
explain satisfactorily many of these pseudogaplike mani
tations both in the overdoped and in the optimally dop
compounds.40 Moving across the phase diagram of t
HTSC from the overdoped, bad metallic region, towards
derdoping, the enhancement of the mentioned effects co
lates with an increase of the Ginzburg-Levanyuk param
Gi(2D)'Tc /EF , thus making perturbation theory les
reliable.40 Nevertheless, such a rapid growth of the norm
state anomalies with the decrease of doping strongly o

FIG. 4. Renormalized quasiparticle inverse lifetimet215
22ImSR, Eq. ~15!, resulting from isotropic impurity scattering
Different curves correspond to increasing values oft0

21 ~bottom to
top!. The proximity to an ETT induces a nonmonotonic depende
of t21 on the critical parameterz, with t21 assuming its maximum
value atz*0.
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comes the theoretical predictions, thus making it difficult
attribute such an effect to the mere shrinking of the FS.

Indeed, ARPES studies indicate a marked increase of
FS anisotropy in theab plane with underdoping, which is
accompanied by the development of an extended sa
point in the electronic spectrum.43 One can identify two char-
acteristic energy scales related with such a FS, namely
size of its ‘‘bulk’’ part EF'0.3 eV and the ‘‘width’’ of the
saddle pointuzu5um2«cu'0.01 eV. The large difference in
the magnitude of such energy scales is therefore sugge
of a crossover, related to the special role played by the e
tronic states lying close to the saddle point~the so-called
‘‘slow’’ electrons!. Intuitively, one may expect a replaceme
of EF with a small z in the denominator of Gi(2D) , which
would result in the breakdown of the perturbative approa
developed in Ref. 40. Nevertheless, as is demonstrated
low, the sole existence of an ETT in the electronic spectr
is not able to change the character of the isotropic electr
electron interaction in the Cooper channel. This implies t
the breakdown of fluctuation theory in the underdoped co
pounds has to be related to some other properties of
HTSC. In order to substantiate the above statements, in
present section we shall derive the momentum depende
of the two-particle Green function in the Cooper chann
nearTc and close to an ETT.

In the case of a 2D electron system characterized by
approximate spectrum given by Eq.~2!, close to an ETT, the
single-particle Green function can be written as

G~p,vn ;z!5~ ivn2ep1z!21. ~16!

Here, the electron quasimomentump is measured from the
saddle point location, as in Eq.~2!, andvn52pT(n1 1

2 ) are
the fermionic Matsubara frequencies. As already emphas
in Sec. II, the conditionz.0 describes the case of an ope
Fermi surface without any disrupted neck, whereas the
posite one,z,0, is appropriate to a closed Fermi surfa
with respect to theG point ~Fig. 1!. The two-particle Green
function in the Cooper channelL(q,Vn) can be expressed
within the ladder approximation by means of the polarizat
operatorP(q,Vn) as40

L21~q,Vn ;z,T!5l212P~q,Vn ;z,T!. ~17!

Here, l.0 denotes the momentum independent effect
electron-electron interaction,q is the Cooper pair momen
tum, and

P~q,Vn ;z,T!

5T(
vn

E d2p

~2p!2
G~p1q,vn1n ;z!G~2p,2vn ;z!

[T(
vn

I ~q,vn1n ,2vn ;z!, ~18!

with Vn52pTn the bosonic Matsubara frequencies.

e

1-6
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The superconducting critical temperature can be cha
terized as the temperature at whichL presents a pole atq
50 andVn50. The procedure to deal with the integral
Eq. ~18! is outlined in Appendix B. One eventually arrives
the result

P~0,0;z,T!5
m

p
T (

vn>0

vD /(2pT)
1

vn
lnS vD

2

vn
21z2D , ~19!

wherem5Am1m2 is the geometric average mass around
saddle point, and the Debye frequencyvD has been intro-
duced as a cutoff in the summation over the Matsubara
quencies. The equation for the critical temperature then re

l215
m

p
Tc (

vn>0

vD /(2pTc)
1

vn
lnS vD

2

vn
21z2D . ~20!

For smallz (uzu!vD), one recovers the well-known result44

Tc;
vD

2p
expS 2

1

Alr
D , ~21!

where r5m/(2p2) denotes the DOS at the saddle poi
Equation~21! is in agreement with thes-wave result forD0,
Eq. ~8!, when the assumption of a phonon-mediated pair
mechanism is made and the limitr→0 is taken. Vertex and
cross corrections to Eq.~21! in terms of the Migdal adiaba
ticity parametervD /EF have been shown to decrease t
enhancement ofTc due to the proximity to an ETT.73,74

Analogously, for the two-particle Green function close to t
superconducting transition and in the proximity of an ET
(uzu!T;Tc), one finds

L21~0,0;z,T!52r lnS vD

2pTc
D T2Tc

Tc
. ~22!

One observes that the presence of the ETT results in
appearance of the additional large factor; ln(vD /Tc) in
front of the reduced temperature.

In order to determine the superconducting stiffness ten
h i(z), one is led to consider theq dependence of the polar
ization operator, Eq.~18!. ExpandingI (q,vn ,2vn ;z) in Eq.
~18! for small q andz, up to quadratic order inq, one has

I ~q,vn ,2vn ;z!5I 0~0,vn ,2vn ;z!1I 1~q2,vn ,2vn ;0!

1I 2~q2,vn ,2vn ;z!, ~23!

where I j are defined in Appendix B, andI 0 has been used
above for the definition of the critical temperature, Eq.~19!.
One eventually finds for theq2-dependence of the two
particle Green function in the limituzu!T;Tc the relatively
classical form

L21~q,0;0,T!52rF lnS vD

2pTc
DT2Tc

Tc
1h1q1

21h2q2
2G ,

~24!
01450
c-

e

e-
ds

.

g

he

or

where the components of the superfluid stiffness tensor
given by

h i~z!5
7z~3!EF

8p2T2mi

, ~25!

to the lowest order inz/EF . The latter expression is analo
gous to the result obtained in the standard 2D isotropic c
with jp5p2/(2m)2m, where the superfluid stiffness read
h57z(3)EF /(16p2T2m), and the DOS per spin isr (2D)
5m/(2p) ~Ref. 9!. It is worth noting that in Eq.~24! the
effective mass of the fluctuating Cooper pair gets increa
by a factor ln(vD/2pTc), with respect to the case in which
parabolic spectrum is assumed. This implies a reduced
of fluctuations near an ETT. Indeed, our results demonst
that the temperature range of the fluctuation regime is g
erned by essentially the same Gi, while the propagator’s
fective mass is enhanced.

Summarizing, the results obtained above shows that a
pological singularity in the electronic spectrum practica
does not affect the Ginzburg-Landau stiffness, in contras
what was intuitively speculated.40 The reason thereof is tha
the value ofh is formed by gathering the contributions of th
electronic states belonging to the whole Fermi surface,
only by the ‘‘slow’’ ones. Finally, we note that in the ap
proach we followed, only the polarization loop Eq.~18! is
critical, since Cooper pairing of nonzero center-of-mass m
mentum is not taken into account.62

VI. CONCLUSIONS

We have reviewed the effects of an electronic topologi
transition on the superconducting properties of a 2D elect
system, with an energy spectrum characterized by a m
mum at theG point and an extended, doping depende
saddle point at (p,0), as is typical for most single-layered
hole-doped HTSC. We analytically derived the expressio
for the superconducting gapD0 at T50 close to an ETT,
both in thes-wave and in thed-wave case. In contrast to th
3D result,18 D0 turns out to be characterized by a nonmon
tonic behavior as a function of the critical parameterz, with
a maximum atz.0, i.e., close to the ETT. Due to th
electron-hole symmetry-breaking induced by a nonz
value of the hopping ratior, we find that the maximum ofD0
actually occurs atz*0, i.e., it is slightly shifted towards the
holelike region, as observed in LSCO.6 We point out that in
previous calculations15,19–21,28the maximum ofTc as a func-
tion of the critical parameterz occurs at the ETT,z50. This
result has been often used as an objection against the
evance of the van Hove scenario for the cuprates, si
ARPES data show that the optimal doping does not co
spond to the critical pointz50, and that the FS preserves
holelike character over the entire doping range for almost
hole-doped compounds~see, however, also the recent resu
of Ino et al. for the LSCO compound6!. On the contrary, we
have shown that the observed difference between opti
doping and the doping actually corresponding to the ETT
be justified by taking into account an electronic spectr
beyond the hyperbolic approximation. Moreover, we fi
1-7
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that the dependence ofD0 on the hopping ratior is in good
qualitative agreement with the phenomenological results
lected by Pavariniet al. for several HTSC materials,39 thus
demonstrating the role of the band structure peculiarities a
in particular, of next-nearest-neighbor hopping, in stabiliz
high-temperature superconductivity in the cuprates.

In the presence of impurities, the Fermi line is effective
smeared, and one expects the anomalies due to the prox
to an ETT to occur at a larger value of the critical parame
as soon as such a ‘‘blurred’’ Fermi line touches the zo
border. We also derived the energy dependence of the
tarded quasiparticle self-energySR due to impurity scatter-
ing in the 2D case, for a simplified, hyperbolic dispersi
relation. In contrast to the 3D case,SR is again characterized
by a nonmonotonicz dependence, thus confirming that th
quasiparticle lifetimetk is generally an anisotropic quantit
over the 1BZ.

Finally, we addressed the issue of the range of fluctuati
nearTc . By explicitly computing the two-particle propagato
in the Cooper channel nearTc , we derived the expression fo
the superfluid stiffnessh close to an ETT. Although the
Fermi velocity vanishes at the saddle point, we find a n
zero value ofh, in complete analogy with the Ginzburg
Landau result for an isotropic electronic spectrum, th
showing that all electronic states participate in establish
the superconducting correlations. Moreover, our results s
that the role of fluctuations even diminishes near the E
Indeed, while their temperature range is determined by ab
the same value of Gi, the effective mass of the fluctuat
Cooper pair increases by a factor ln(vD /2pTc) with respect
to the case of a parabolic spectrum. Therefore, in the
nominator of any fluctuation contribution there appears
large logarithm, which implies a relative suppression of flu
tuation effects near the ETT.
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APPENDIX A: EVALUATION OF THE PAIRING
SUSCEPTIBILITY IN THE d-WAVE CASE

We briefly outline the derivation of the asymptotic depe
dence of the integrated pairing susceptibility close to an E
in 2D. In thes-wave case, changing integration variables
the gap equation, Eq.~6!, from wave vectork to energy, we
can write the pairing susceptibility integrated between
ETT and either band edges as
01450
l-

d,

ity
r,
e
e-

s

-

s
g
w
.
ut
g

e-
a
-

.
.
T
.

-
T

e

S652E
0

1 ln~a6j!dj

A~j7z6!21d6
2

, ~A1!

where we have introduced the dimensionless auxiliary qu
tities z65z/(4t68t8), d65D0 /(4t68t8), and a65(1
62r )/(4A2A124r 2).

In thed-wave case, the double integration over wave v
tor k cannot be reduced to a simple integration over ene
and one has to change variables toj56(«k2«c)/
@4t(162r )#, g5gk . In such a case, Eq.~6! can be written
as

p2t

2l
5D11D2 , ~A2!

where the integrated pairing susceptibility now reads

D65
1

4E0

1

djE
0

12j

dg
g2

A~j7z6!21d6
2 g2

1

AJ1J2J3

,

~A3!

and

J15~122rg !214r @g2r 1~162r !j#, ~A4a!

J25~11g!22~12AJ1!2/~4r 2!, ~A4b!

J35~12g!22~12AJ1!2/~4r 2!. ~A4c!

Equation~A3! leads to hyperelliptic integrals, that cannot b
generally expressed in terms of known special function75

We next setV52(12AJ1)/(2r ), with V→j asr→0, with
which D1 in Eq. ~A3! transforms into

D15
1

4E dVE dg
g2

A@r ~v22g2!2z#21D0
2g2

3
1

A@~11V!22g2#@~12V!22g2#
, ~A5!

where all energies are in units of 4t and the integration is be
to performed over the curvilinear triangle defined byg>0,
g<12V, andv22g2>0, with v2511V21V/r . Such tri-
angle represents the holelike region of the 1BZ,«k>«c , in
these new coordinates.

In the limit r→0, one branch of the hyperbola defined b
g5v reduces to theV50 axis, andr (v22g2)→V. A fur-
ther change to polar coordinates asV5r cosu, g5r sinu
then allows one to exactly decouple the two integrations
Eq. ~A5!, the integration overr leading to elliptic integrals.
Extracting the logarithmic divergence of these latter neau
5p/2 ~corresponding to the ETT, together withr51) yields
the answer@see Eq.~A6! below, with r 50#.

In the caserÞ0, we could not find any such simpl
change of variables, allowing to exactly decouple the in
grations in Eq.~A5!. However, since only the behavior of th
dispersion relation close to the ETT is believed to determ
the asymptotic properties of the integrated pairing susce
1-8
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bility, we may linearly expandr (v22g2) nearV50, g51
and setV12r (g21)5r cosu. Within such approximation
Eq. ~A5! then reads

D15
1

4E0

p/2

du
sin2u

Acos2u1D0
2 sin2u

3
ua2b1u

124r 2

3E
0

a2

dr
r2

A~a11r!~a22r!~b11r!~b22r!
,

~A6!

where

a65
162r

cosu1~122r !sinu
, ~A7a!

b65
162r

cosu2~112r !sinu
. ~A7b!

Following standard methods~see, e.g., Ref. 76!, the inner
integral can be now expressed as a combination of elli
integrals, which diverge logarithmically asu→p/2, whence
Eq. ~9! follows.

APPENDIX B:
EVALUATION OF THE POLARIZATION OPERATOR

The momentum integration in Eq.~18! for the polariza-
tion operator can be performed by reducing the integra
domain to the first quarter of the 1BZ, and dividing the lat
into the two triangles defined by$p:p2<(m/m1)p1 ;p1>0%
and$p:p2>(m/m1)p1 ;p1>0%, respectively. One finds

P~0,0;z,T!5T(
vn

I ~0,vn ,2vn ;z! ~B1!

5
2m

p2
T(

vn

@ f ~vn ,2vn ;z!1 f ~vn ,2vn ;2z!#,

~B2!

where

f ~vn ,2vn ;z!5E
0

`

dx1E
0

x

dx2

1

x2
22x1

22 ivn1z

3
1

x2
22x1

21 ivn1z
. ~B3!

Performing the inner integration, one obtains

f ~vn ,2vn ;z!5
1

2ivn
E

0

`

dxF ln~x2 iAz2 ivn2x2!

Az2 ivn2x2

2
ln~x1 iAz2 ivn2x2!

Az2 ivn2x2
2H.c.G . ~B4!

The last integration can be carried out observing that
01450
ic

n
r

ln~x6 iAz2 ivn2x2!

Az2 ivn2x2
56

i

2

d

dx
ln2~x6 iAz2 ivn2x2!,

~B5!

and choosing the branches of the logarithms in order to m
them complex conjugated of each other. Finally, we obta

I ~0,vn ,2vn ;z!5
m

2p

1

uvnu
ln

vD
2

z21vn
2

. ~B6!

In order to calculate the GL stiffness, let us now expa
the polarization operator up to quadratic order inq. One has

P~q,0;z,T!5P~0,0;z,T!1r (
i 51,2

h iqi
2 , ~B7!

where the componentsh i of the stiffness tensor are define
by

r (
i 51,2

h iqi
25T(

vn

@ I 1~q2,vn ,2vn ;0!

1I 2~q2,vn ,2vn ;z!1•••#. ~B8!

One explicitly finds

h i~z!5
1

2mi
T(

vn

E d2x

x2
22x1

22 ivn

xi
2

~x2
22x1

21 ivn!3

2
z

2mi
T(

vn

E d2x(
k50

1
3k

~x2
22x1

21 ivn!31k

3
xi

2

~x2
22x1

22 ivn!22k

to the first order inz/EF . The first integral, giving the prin-
cipal contribution to the stiffness, can be evaluated us
polar coordinates as

h i~z50!

5
T

mi
(
vn

1

vn
2E0

2p

dfE
0

`

dr
r 3~r 4 cos22f21!cos2f

~r 4 cos22f11!3

52
pT

4mi
(
vn

1

vn
2E0

`

dtF ]

]a
1

]2

]a2G 1

AaAt1a
ua51

;
pT

mi
(
n>0

1

vn
3

EF5
7z~3!EF

8p2T2mi

. ~B9!
1-9
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