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Elisabeth Sjstedt and Lars Nordstno
Condensed Matter Theory Group, Physics Department, Uppsala University, S-75121 Uppsala, Sweden
(Received 17 January 2002; published 24 July 2002

Accurate density functional calculations have been performed for the fcc-based frustrated antiferromagnet
y-Fe. Several competing collinear as well as noncollinear magnetic structures have been considered: ferro-
magnetism, k, 2k, 3k, and double-layered antiferromagnetism, as well as noncommensurate helices. In
contrast to standard noncollinear methods, our scheme treats the magnetization density as a vector field which
is free to change in both magnitude and direction throughout space. The noncollinear method is implemented
in the alternative linearization of the full-potential augmented-plane-wave method, closely related to the con-
ventionally linearized method, but computationally more efficient. The most stable magnetic strucjdfe of
is found to vary sensitively with volume. At the experimental voluae6.82 a.u., the moments are ordered
in a collinear double-layered antiferromagnetic structure, while the ground state is almost degenerate between
two different helices of different equilibrium volumes=6.63 a.u. anda=6.61 a.u., respectively. The ob-
tained results are analyzed and compared with earlier calculations and existing experiments. For instance, we
notice that the results are altered when we introduce an atomic moment approximation in our calculations.
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[. INTRODUCTION energy of the SS approached that of the AF solution. The
lowest energy was found for the smallest volume examined,
The high-temperature fcc phase of irom;Fe, has at- at a SS havingl vector
tracted much interest due to its elusive magnetic character.
There are also practical implications since many important 27
iron alloys, such as the Invar alloys and several high-quality 9.=(0,0,0.6 . 2
stainless steels, are fcc ordered.

In 1989 Tsunoda managed to stabilize precipitates of The same ordering vector was obtained in the calculations

y-Fe inside an fcc Cu matrix. They could then explore theperformed by Uhlet al? later the same year. They used the

magnetic properties of three-dimensionally constrained Clusaugmented spherical wavASW) method and included also

ters of y-Fe, each one spherically shaped with a mean d|amg vectors anng(_\7v. Antropovet al? let the directions of the

eter of 50 nm. Interestingly enough, the ground state wa . Ve freely i LMTO calculati
found to be a helical spin density wave, or a spin sgi&9 ma_lgnetlc moments evolve reely In an - calcu ation,
' ' using a supercell with 32 atoms. They confirmed that the

with a wave vector . . . .
magnetic configuration was extremely sensitive to volume
25 changes. Their results changed quantitatively when the local
qexptz(o.lo,o,m?. (1) spin density approximatioLSDA) was replaced by a gen-
eralized gradient approximatid@GA) but the trend was the
Herea is the lattice constant of the conventional fcc Cu cellS&Me, going from more complex orderings at small volumes
(6.822 a.u.), inherited by the iron precipitates. This wave(@<6.78 a.u. anda<6.69 a.u. for the LSDA and GGA,

vector nearly yields a typeantiferromagneti¢AF) system, respectively into a double-layered AF structure for increas-
cf. gae=(0,0,1)2/a. ing volumes. For larger volumes af7.05 and a

From a theoretical point it is unclear what magnetic>6-950 a.u.), the structure preferred the FM state. James
ground statey-Fe is predicted to have, since there is an un-et al” performed LMTO calculations where they compared
usual large spread in earlier published results. The first spirfhe total energy as function of the volume for a large number
spiral calculations performed fop-Fe were presented by Of AF orderings iny-Fe. Using the LSDA they found a more
Mryasovet al? in 1991. Using the linearized muffin-tin or- complex ordering of the moments at smaller volunzes
bital (LMTO) method they investigated ordering vectors in <6.78 a.u., with the global minimum aa=6.55 a.u.
the T'X direction of the fcc Brillouin zonéBZ), where theg Again, the double-layered AF structure became the most

vectorl is equivalent to a ferromagnetiEM) structure, and stable for increasing volumes.

the orderingqvectox represents a ?ypeAF structure. They In their paper from 199.6’ Kiting and Ergoﬁ'reproduced
found that the magnetic ground state depends on the fillin ess structure_ of ordering vectgy, for a !attlce constant
of 3d electrons, withy-Fe lying at a crossing point between =6.80 a.u. using _the LMTO ”.‘ethOd W'th LSDA' How-
the FM and AF regions in a magnetic phase diagramaf 3 ever, _When mtroducmg. the GGA into their calculations, they
metals in fcc lattices. They also showed how the magnetic?tablllzed a new SS with an ordering vectonit

structure ofy-Fe could be changed from FM into different
SS structures by lowering the lattice parameter from 4s=(0.5.0 ])2_77 3)
7.11 a.u. down to 6.81 a.u. For the smaller volumes, the B T a
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This g vector is not in agreement with,,;, but neverthe-  tion) they find the most stable SS to have an ordering vector
less it showed that the GGA had a large effect on their reequal tog,. The aim of the present paper is, inspired by the
sults. different results and contradictions found when reviewing
All the calculations above have in common that they rep-previous results, to investigate the theoretical ground state of
resented their potential using the atomic sphere approximay-Fe using the highly precise alternative linearization of the
tion (ASA). However, Kaling and Ergofi showed how their FLAPW (FP-APWA-lo) method within the GGA. The mag-
collinear LMTO-ASA magnetization energies were overesti-netization density is represented by a field quantity every-
mated compared to full-potential linearized augmentedwhere in the unit cell, in order to make the calculations as
plane-wave(FLAPW) calculations. The magnitude of this accurate as possible.
overestimation was comparable to the relative stabilization The paper is organized as follows. The scheme used to
energy between the lowest-lying SS and the AF solutions oflescribe noncollinearity is presented in Sec. Il. Although this
the LMTO-ASA. method has been used befdfel®it has never been properly
This result pointed out the demand for more exact nondescribed, so we take the opportunity to discuss its imple-
collinear calculations for determining the most stable strucimentation in some details. Section Il holds the results in the
tures in fcc Fe, and subsequently a few non-ASA calculaform of total energies and magnetic moments of the various
tions have been presented. First, Herpeal.” compare three  magnetic structures. The discussion and conclusions are pre-
collinear orderings in their energy versus volume curve: thesented in Secs. IV and V.
FM, the typet AF, and the double-layered AF orderings.
Using the FLAPW method and GGA, they find the AF and

double-layered AF structures to form almost degenerate l. METHOD
ground states, with equilibrium lattice constants af Since the pioneering work a decade a§&" quite a few
=6.60 a.u. an&a=6.68 a.u., respectively. density-functional-based electronic structure calculations

The ultrasoft pseudopotential calculations allowing for apazye been reported which have allowed for noncollinear
noncollinear spin spiral by Bylander and Kleinnfahowed  magnetism(NCM). However, a majority of the calculations
no dr_astic changes from the _correspo_nding ASA calculationqjp to present day have in common that they have assumed
yielding a stable SS state with ordering vector closel40  that the noncollinearity is on an interatomic scale; i.e., each

o atom has a single spin-quantization axis and the magnetiza-
g=(0,0,0.55 —. (4 tion density is locally collinear within the region of an atom.
a Although this approximation with a locally collinear atomic
ygoment, which we will refer to as an atomic moment ap-
proximation(AMA), is a fast and convenient approximation,
it is by no means enforced by the LSDiRef. 18 to the

What instead altered the energy versus ordering vector cur
was their GGA implementatiohThis calculation gave, how-

ever, a larger energy fay= X than forg=T", in contradiction ) k
with earlier collinear calculations as well as all noncollineard€nsity functional theory.

calculations. The most stable ordering vector was, however, e Will here describe how a general implementation of
still that of Eq.(4). In order to correct for some known de- e LSDA, with no shape or directional approximations for

ficiencies of the GGA, they added au hoc*spin-stiffiness (& magnetization densitfig. 1), can be implemented in a
correction” to the GGA, which changed the shape of their full-potential method.

energy curve drastically, now with the global minimum at First, ashort rev_iew of the general non_colline_ar version _of
q=X. the LSDA will be given together with a discussion of gradi-

In a recent paper Kinle et al,lt presented anodified ent corrections. Then we will describe how this scheme can

ASW method(MASW), in order to take care of some full be implemented in the presently used full-potential linear

potential effects beyond the ASA approximation. For lattice2Ugmented-plane-wav&P-APWtlo) (Ref. 19 method. Es-
constantsa<6.75 a.u. the modified method gives a neWpemally, details of the implementation of the noncommensu-
ground-statey vector rate helical spin wave, which is often referred to as a spin

spiral, will be discussed.

2
4c=(0.15,0,3 a’ ©) A. Noncollinear local spin density approximation
which agrees well with experiments, although for somewhat When generalizing density functional thedB®FT) (Refs.
smaller lattice constants. Their results are not altered drastR0 and 2] to a spin-dependent theory, von Barth and
cally either by the introduction of the GGA or by turning off Hedin™® introduced a X 2 density matrixp(r) which gener-
the intra-atomic noncollinear magnetism introduced in thisally can be expanded gs=(nZ+m- ¢)/2, whereZ is the
method. Thus, the stabilization of this new ordering vector2x2 unit matrix ando= (o ,0y,0,) are the Pauli spin ma-
must be understood as due to the the full potertfi®) cor-  trices. The new physical quantity, besides the charge density
rections to the atomic sphere approximation. Ketzl'?  n, is the magnetization density(r) which naturally is a
usedy-Fe witha=6.70 a.u. as a trial system in their pre- vector density.
sentation of different implementations of the GGA in the The effective one-electron potential, which is defined
LAPW method. Going beyond the ASA, but still using a kind through functional derivatives of the total energy functional
of atomic moment approximatiofsee Sec. Il for a defini- with respect to the density;** also becomes a:22 matrix,
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I —p|r W wherem(r) = &|m(r)|/dm(r) is the direction of the magne-
r T . tization density at the point. As is clear from Eq(8), the

AR R

) e / LI otentialb is collinear to the magnetization densityevery-
PPN, & :E\‘i%f > £ hb'?jf \F/)vhere. ? vever
il A S N A A Although the potential of Eq(8) is obtained within the
e TR A T e R I LSDA, we would like to stress the difference to the usual
"%\hly A ‘}ur-éw)\ty by A enforced collinear adaptation, where the spin magnetization

density enters as a scalar quantity.

In contrast to the local approximation there exists no for-
mulation for a noncollinear gradient corrected approximation

FIG. 1. The magnetization density of the SS, showninthez ~ (GGA).2*% This is because the assumption of a collinear
plane of the conventional fcc cell. Thecoordinate is fixed aa/4 spin magnetization leads to only one gradient, while a gen-
for a=6.63 a.u.; thus, the corner atoms, along with the centera| formulation requires three, one for each component.
atom, liea/4 out from the paper, while the atom on the middle of \p/hen generalizing existing GGA schemes to the noncol-
each side liesa/4 into the paper. The magnetization density iS |izear case, one can choose whether the sole magnetization
treated as a vector field; i.e., it is free to change both in magnituc:%radient refers to the gradient of the magnitude of the mag-

and direction throughout space. The gray scale shows differe etization density or the gradient of the component locally
magnitudes of the moments, with darker shades corresponding E

larger moments, and the noncollinear directions are indicated b arallel to the magnetization density. In practice, this choice
unﬁ vectors ' as little importancé? and we have chosen the latter, the

longitudinal gradient, approach. However, for consistency a
true noncollinear GGA should be formulated, which would

. ; : ) include the effect of the gradient of the transversal compo-
besides the exchange-correlation potential, the nuclei attraCiants too. In the absence of this effect. the exchange-

tion and the Hartree term, while the magnetic i{rf) of the ., ye|ation magnetic field falls out to be locally parallel to

potential matrix only has contributions from the exchange+he magnetization density, as in the LSDA. There have been
correlat!on func.tlon.al. Since we are here interested in th%uggestions for improving upon the existing GGA deficiency,
magnetic contributions, we will focus on the exchange-giinar by introducing arad hocspin stiffness terd? or by
correlation terms. deriving the GGA from current density formalisth.

1Igl the LSDA the exchange-correlation functional is given = 11,4 spin-dependent Kohn-Sh#hHamiltonian becomes

by
H=—IV?+V(r)={-V2+u(r)}Z-b(r)-o. (9

Exc[n(r),m(r)]=f n(r)ey(n(r),m(r))dr, (6) If the eigenfunctionsy; of this Hamiltonian are written in
spinor form, the magnetization and charge densities can be
where g,(n,m) is the exchange-correlation energy densitydirectly constructed by summing over the occupied states,
for a spin-polarized homogeneous electron gas with charge oce oce
density n and magnetization density of magnitude The _ t _ _ T _
actual functional form of,.(n,m) which has been param- m“)‘z vi(roy(r) and ”(”‘Zi vi(nwi(n),
etrized in various different way$°>?*has no importance for (10)

our general discussion. The LSDA exchange-correlatloq,vhich readily allow for the usual iterative solution. A self-

funct||or:_al Ieatldst_ tlo the nonmagnetic scalar exchangesqnsistent solution is obtained when the input charge and
correlation potentia magnetization density produce the same output charge and

V(r)=v(r)Z—Db(r)- o. The nonmagnetic part(r) includes,

magnetization density; i.e., also the noncollinearity of the
OEy¢ o A . ;
V() =—— magnetization density is given by this self-consistency pro-
on(r) cedure.

The expression for the total energy looks like

dey(n,m)
=sxc(n(r),|m(r)|)+n(r) T occ 1
(. m=imo) E=> si——f n(ryve(r)dr
(7) T2
and to the magnetic potential, which is in the form of a
magnetic field - f [N(N){0xe(1) = £x(1)} = m(r)-b(r)]dr, (11)
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whereg; are the eigenenergies ang is the classical Cou- potential linearized-augmented-wave meth@&efs. 28 and
lomb part of the spin-independent potential, i.e., the Hartre®9) in the way the plane-wave basis functions are augmented
and nuclei contributions. and has proved to be more efficient. The FLAPW and FP-
Collinear magnetism can easily be seen to be the specidlPW+lo methods are, however, closely related, and the fol-
case with the magnetization density parallel to a global didlowing description of the noncollinear LSDA implementa-

rection, say,e. In this case, it is possible to define global tion into the FP-APW-lo method can equally well be used

. : L - for the FLAPW method.
spin-up and spin-down potentials==v=b-e, and the L
Hamiltonian (9) may be transformed into a block diagonal . In the aug.mented—plane—wa\_/e method the space is divided
into two regions: nonoverlapping spheres centered at each

form e
atom, so-called muffin-tifMT) spheres, and the rest—the
— V2457 (r) 0 interstitial (). In the interstitial the basis set consists of plane
H' =UHUT= , , (12 waves, while in the muffin tins these plane waves are aug-
0 —Vito () mented by a spherical expansion of radial functions, i.e.,

whereU is the spin-1/2 rotation matrix for a rotation of the ()~ V2gi(k+Gy)-r el
spin-quantization axis, from to e. The eigenspinors in this
representation are of pure spin-up or spin-down character, xj(k,r)= D (T YL(Fe), FeMT, (14)
which will provide that the output magnetization density will aLl

be collinear, with the global directioa However, it should
be noted that when spin-orbit coupling is included in the
Kohn-Sham Hamiltonian a truly collinear solution is actually
never possiblesince the spin-orbit coupling term always
gives arise 3to some nontrivial spin mixture in the centered coordinate of atom
eigenspinors:

As discussed above, a common approach to NCM is to The radial functio_ns inside th_e muffin-tin_sphere of atom

approximate this magnetization density, continuous both irf dqrtle Sexr?%nded using .MT orbitalg, , which solve the

direction and magnitude, by one where the direction is getadial schrainger equation

fined on a coarse mesh, i.e., with different local spin quanti- a2 1(+1)
- +

zation axes for different atoms. This is Whatyve already have () =€l [T Dr(r)=0. (15)
denoted AMA and corresponds to substitutimgby dr r

wherek is a wave vector in the Brillouin zonés; is the
reciprocal lattice vector of the plane wawg, are spherical
harmonics,L ={Im} is the angular momentum inde&) is
the volume of the unit cell, and,=r —R,, is the muffin-tin

Sincev ,(r) is the spherical part of the actual potential, these
functions are capable of giving a good description of the
local wave function for energies around the linearization en-
ergy €,, - This expansion can be performed in different
ways. The traditional FLAPW method uses a linear combi-

Onation of ¢,,, and their energy derivatives,,,, which
gives continuous and differentiable basis functions at the
sphere boundary. In the FP-APWb method, the corre-
ﬁponding augmentation is simply; .. (r)=aj, ¢, (r).

These basis funct?&sd E(L4), are then complemented by a

Maua(r)=e, for re atom a, (13

and|m|=m-m by maya-m in Eq. (8). Heree, is the direc-
tion of the local spin-quantization axis of atom which is
parallel to the local moment of the atom),=[,mdr.
This means that the magnetic potential is locally parallel t
the atomic moment, which is why we have given this ap-
proach its namé’ The partitioning of space into atomic re-
gions is of course somewhat arbitrary and may vary betwee
different calculations. .
It should also be noted that in AMA approaches, the fourSet of local orbital
guantities used to describe th&x2 density matrix are often
taken to ben, m=|m|, 0, andp, whered and¢ are the polar xXi(kir) =

angles which describes the direction rof or, equivalently,

e,. However, in the present case, where we need a Cont'mﬁperegjﬂ(rh ¢W|(f)+bjaL¢ml(r)- Thus, each local or-

ous description, these angles are not well suited, because e o
P . it j has a specifiexL character and is independent of the
the presumptive jumps by and the nondefined values of . -
wave vectork. The two expansion coefficientssand b are

¢ wheng=0 or . Since it is crucial that the relevant quan- o, by the criterion that the basis functions should be con-
tities are continuous and easy to Fourier transform, we in-

stead prefer to work witlm and the three Cartesian compo- tlnuo_us at the sphe're boundary. For' the plane wave basis
functions the analytical expressions is found by using the

0 rel,

OjaL(ra)YL(T,) TEMT, (16)

nents ofm. : . i
well-known expansion of a plane wave in spherical Bessel
o functions.
B. Implementation into the FP-APW+Ilo method In most spin-polarized versions of the augmented plane-

We implemented this noncollinear LSD&to our knowl- ~ wave method, there are spin-up and spin-down versiows of
edge for the first time in its general form, in the full-potential and ¢ which are the solutions of Eq15) with the local
linear augmented plane-wave method. The method we usspherical spin-up and spin-down potentials, respectively. In
(FP-APWHlo) (Ref. 19, differs from the traditional full- the present implementation we have chosen to use a spin-
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independent basis, and, is taken to be the spherical aver- structed according to Eq10) and subsequently expanded in
age of the nonmagnetic potential around atoma. This  plane waves and spherical harmonics.

drastically simplifies the augmentation at the sphere bound- Since the LSDA exchange-correlation potential, due to its
ary, since nowthe basis senever involves globally spin- nonlinear dependence on the local densities, preferably is
mixed spinors. In cases of strong exchange splitting the losgvaluated in real space, there are not much extra effort in
of flexibillity of this spin-independent basis set inside theevaluating the general magnetic potential of B).in com-

MT spheres can be more than compensated by an extentigrarison with a collinear one. Neither in the total energy cal-
of the the basis set, Eg&l4) and(16), with another type of culations does the exchange-correlation contribution cause
local orbital$® where the energy derivative @f is replaced —any extra work. This stems from the fact that the total energy

by a second radial function, so that is usually, for sake of convenience, evaluated using the input
densities, which means that andb are parallel in Eq(11).
Gjal (M=, (1) +Cjardpa(r). (17)  As FP-APW+lo is an all-electron method the core states are

This new functiong, ., is the solution of Eq.(15) for a re(_:alculated in each iteration step. Hc')wever,.here we dg re-
. o pal T EgLL strict ourselves to the AMA for the spin-polarized potential.
linearization energ i # & a : The coefficientc is set so This should have very little, if any, influence on the calcula-
that the value Of. the I(_)cal orbital matches zero at the Spherf?ons, especially when properties influenced by the core elec-
boundary. The inclusion of extra local orbitals leads to qrons. e 9., hyperfine fields, are not in focus

rather small increase in the numbiErof spin-independent TEY ' '

basis functionsy;, while ¢,,, provides an increased flex-

ibility to the wave functions within the MT spheres. We have C. Spin-spiral symmetry

performed tests for the ferromagnetid &etals and verified The above formalism is valid for cases where the mag-
that such a spin-independent basis reproduces the ordinaggtic unit cell is identical to the unit cell used in the calcu-
collinear spin-dependent basis set results. lation. However, it was shown by Herrifigthat if spin space

~ The generalized eigenvalue problem at the wave véCtor can pe decoupled from the lattice, i.e., when the relativistic
is of the order X 2N and has, with our choice of spin- gpin-orbit coupling can be neglected, noncommensurate he-

independent basis functions, the form lical or cyclic waves can be treated with a unit cell governed
by the chemical rather than the magnetic symmetry. These
[{H(k)— & O(K)}Z-B(k)- 0] =0, (18) systems are often referred to as spin spirals. Sandratskii and

Guletskii have discussed how to implement them into DFT

methods.’ Here we will discuss mainly how to generalize

this technique, developed for AMA methods, to the case of a
full-potential method.

Oij(k):f xi (k,r)x;(k,rydr, (19 A spin spiral with wave vectoq is defined by its transla-
tional properties,

whereg; is theith eigenvalue and; is the corresponding
eigenvectorQ is theNX N overlap matrix

andH is theNX N nonmagnetic Hamiltonian matrix
Im(r)=m(r+R)=TR(q-R)Ym(r), (23

H--(k)zf (K, {=V2+o(r)}xi(k,rdr. (20
N A { X where R(¢) is a rotation by the angleé=q-R around a

They are identical to the matrices which would enter a non9iVen axis andR is any lattice vector. Since spin and space
spin-polarized calculation with a potential equal the nonmag@'€ not coupled, we have the freedom to take this axis to be

netic potential. The magnetic potential enters throughNhe Parallel toq in space and parallel win spin space. Hence,
% N matricesB: the two components perpendicular to this afis., x andy

components continuously rotate when the spiral propagate
alongq. When thez component is identical zero, we refer to
Bij(k):f xi (k,r)b(r) x;(k,r)dr. (21)  the spiral as planar, otherwise as conical.
Now one can introduce some generalized translation op-
These matrix elements are evaluated independently for therators7,=7R ~17, under which the spin-spiral magnetiza-
three components by expanding the potential in the usualon density is an invariantZ,m=m. As the exchange-
way”?in terms of plane waves in the interstitial and sphericalcorrelation field is everywhere parallel to the magnetization
harmonics within the MT spheres—and performing the re-density, both in the LSDA and in the present version of the
sulting integrals. The ¥ eigenspinors that are obtained after GGA, this is also true for the magnetic fietd
the matrix diagonalization are of the form In the present implementation into a method which uses
plane-wave representations of densities and potentials, these
N N . . . . . .
aj | quantities ought to be translationally invariant with the peri-
ik =2 6 xj(k)=2 (ﬁ, ‘)Xj(k'r)’ (220 odicity of the chemical unit cell in order to efficiently make
: J " use of fast Fourier transforms. Hence, we have to take a
i.e., with the spin dependence entering through the coeffislightly different route compared to previous formulations,
cientsc=(a,B)". The charge density and the three compo-which were more suitable to methods using local representa-
nents of the magnetization density are independently cortions of the basid! First, new complex quantitiasandh are
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introduced, which represent the rotations of the two compo-
nents perpendicular to the spin spiral axis, €
o
u(r)y=e "' my(r)+imy(r)} (24) 8
3
and 0
5
h(r)=e™"%"{b(r)+iby(r)}. (25) £
§ 00 a=6.78 !
These new densities are translationally invariant by construc- -- a=6.;3 Ls)
tion, e.g.,Zu=u. Further, following from the parallelism of 2l ﬁ::g;m |
m andb, they areparallel, so that argi=argh. 0-02a-6.66 é
The Kohn-Sham Hamiltonian now becomes n:g E
A £
H={-V?+uv(r)}Z—{e'9"h(r)o_+H.c}—b,(r)o,, =
(26) >
2
whereo_=3(oy—ioy). L
It was shown by Herring} that { is diagonalized by the

generalized Bloch spinors

q-vector

ei(k—qlz)-raj (D)

¢j,k(r):(ei(k+q/2)-rﬁj (1))’ (27)

FIG. 2. The upper and lower panels show the moments and the
total energy, respectively, as a function of the spin-spiral wave vec-

wherea and 8 are translationally invariant functions, from tor. Each curve represents a volume corresponding to lattice con-

which we construct the new densities, especially, stants 6.6&a<6.82 a.u. The experimental wave vector is shown
as the vertical dashed line. Two stable spin spirals are found, indi-
occ cated agy; andqg,. The total energies are given relative to the FM
u(r)=% w;’k{e—lq-r20+}¢j’k. (28)  structure an=6.82 a.u.
B. Spin spirals
IIl. RESULTS The first magnetic structures examined are the spin spiral

. o . states for vectors along the symmetry liné& and XW of

The calculations presented in this section are performeg,q - gz. Starting from the lattice constant of copper
using the full-potential linearized augmented-plane-wave_g gy g . the volumes are successively decreased in order
methqd(FR-APV\HIo) (Ref. 19. ,W'th the GG.A correction as 4, getermine the equilibrium volume. The lower panel of Fig.
described in Sec. Il A. In addition to the different spin spiral 5, 1,0\« how the total energy varies wifor different fcc
structures, we examine the noncollinedr and X order- |5ice constants. At large volumes, the most stable spin-
ings, and finally the collinear double-layered antlferromag—spira| structure is found to have an ordering vector
netic structure.

2

A. Calculational details a9:=(0.0a) a’ 29

All calculations are converged ik points as well as in  whereq changes with volume from 0.53 to 0.59; see Table I.
number of basis functions. The BZ integration is performedThis energy minimum exists for all volumes considered, and
by means of specidt points, around 400& points in the the energy of this spin-spiral structure stays around 3 mRy
first BZ, together with a temperature broadeningkgff  lower than the corresponding FM energy, while the energy
=5 mRy. The plane-wave cutoff is set tdK,.,  difference between the SS and the AF state decreases with
=4.9 a.u’!, except for the double-layered AF structure volume.
whereK ,,,,=4.4 a.u.!, and the augmentation is performed  The magnitude of the magnetic momefis), in the up-
for angular momenturh<9. The two kinds of local orbitals, per panel of Fig. 2, is found through integration of the mag-
Egs.(16) and (17), are used foil =s, p, andd throughout.  netic moment vector field over the muffin-tin sphere. Here
The MT sphere is treated using a logarithmic radial mesh obne can clearly observe the crossover from a FM high-spin
1450 steps, fromy=1.15<10 ® a.u., to the muffin tin ra- (HS) state to a FM low-spiiiLS) state that occurs at a lattice
diusryt=2.25 a.u. Non-MT contributions are added to theconstant just belova=6.78 a.u. This crossover exists only
last 300 mesh points. This particular mesh was found to bat the center of the BZ. Further out in the BZ, e.g.,dgrthe
converged in number of mesh points. Smaller meshes wer@ecrease of the magnetic moments is continuous. So for the
found to give unreliable results, especially for the spin-spiraFM state we observe moments in the range (1.0+25)
calculations. while the AF moments only vary between ggand 1.8
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TABLE 1. Wave vectors q;=(0,00)2w/a and Q,
=(w,0,1)2x/a yielding the lowest energy betweéhand X and X o T (FM)
andW, respectively. The energy minima are found through interpo- © X (AF)
lation of the energy vs wave vector curves in Fig. 2. 0r $g; 7
o 2k
Lattice parameter q E(qy) w E(q,) & 2kesS
(a.u) (MRy) (MRy) Tr omwsk 1
x dIAF
6.82 0.53 —2.84 0.25 —-1.09 =
6.78 0.54 —-3.82 0.24 —2.45 Dé -2+ 1
6.74 0.54 —4.63 0.20 —3.65 ~
6.70 0.55 —5.28 0.19 —4.61 §
6.66 0.55 —-5.71 0.19 —5.30 CICJ -3 r 7
6.60 0.59 —5.67 0.19 —5.69 w
4+ i
From Fig. 2 we also see that a second minimum forms,
on theXW symmetry line already foa=6.78 a.u. The new 5l |
SS becomes the global minimum @&t 6.60 a.u. with &g
vector R
5 6.50 6.55 6.60 6.66 6.70 6.74 6.78 6.82
a .
q2=(w,0,1)?. (30) Lattice parameter (a.u.)

FIG. 3. Total energies vs volume, relative to the energy of the
Herew is close to 0.25 for the two largest volumes examinedFM structure ata=6.82 a.u., for eight different orderings of the
and around 0.19 for the remainder of the volumes; see Tabl@agnetic moments. The energies presented forcgheds,, and
|. This second SS state lies only around 0.3 mRy lower in2k+ss structures are thgocal) minimum energies with respect to
energy than the AF state for all volumes considered. the ordering vector for each lattice constant. The most stable order-
It is very interesting to observe the almost degenerate erf9S are in order of decreasing volume: the double-layered AF or-
ergies in Fig. 2, for a large range of wave vectors betwgen 9€1n9 @=6.76 a.u.), the spin spiral of wave vecigy (6.60<a
andq, for the case o0B=6.60 a.u. This has occurred since <6.76 a.u), and finally the spin spiral of wave vectpy (a
the AF state gradually becomes closer in energy tah8s <6.60 a.u.). The lowest energy is almost degenerate between the
. .. two spin spirals, giving equilibrium volumes=6.63 a.u. anda
Figure 3 shows the volume dependency of the energies for ¢ o |, respectively.
several magnetic structures, including the FM, 4F,andq, ' o '
orderings. Here we can observe that the transition from the ) .
q, state to that ofg, takes place for a lattice constaat mvolvmg two an_d thre_e independent Afvectors, respec-
—=6.60 a.u. and that the global energy minimum is almosj'vely' We have investigated these commensurate structures

degenerate between the two SS within the accuracy of o' the cases when
calculations. Theg; SS has its lowest energy at a lattice

constanta=6.63 a.u. yieldingE(qg;)=—5.79 mRy below Mak(r)=m(r)(e'% " e'% " 0),
the reference energy, which should be comparedt (qg,)
=—5.70 mRy al=6.61 a.u. The magnetization density of Ma(r)=m(r)(e'% " el% " %), (31)

the former solution is displayed in Fig. 1.

Ideally, one ought to investigate the full irreducible wedgeThe g vectors point aX in the x, y, or z direction, according
of the BZ, in order to determine the most stable SS. How-+o their subscripts. The resulting magnetic structures are il-
ever, this would be too computational demanding. Insteadustrated in Fig. 4, seen from tH@01) surfaces of the con-
we have looked at whether the minima found along]f_ﬁe ventional fcc cells. In the Heisenberg model, considering
and XW symmetry lines are local minima or merely saddle nearest-neighbor interaction only: these three AF structures
points. This requires calculations along one and two perperf-tK; 2k, and X) are degenerate in energy.

dicular directions around, andgs, respectively. Those cal-  1he total energy curves in Fig. 3 show how the@hd X
culations resulted in higher energies, confirming that logth ~ Structures are almost degenerate in energy for all volumes,
andq, are truly local minima. while the 1k (AF) energy crosses their energies around

=6.73 a.u., ending up considerably lower for volumes close
to the equilibrium volume.
C. 2k and 3k orderings One can also add a SS to th& 2tructure, propagating
The typet AF ordering in Sec. Il B is also referred to as along z so that theq vector rotates the R ordered (001)
a 1k structure, as it only involvesne AF ordering vector. planes relative to each other. This combined structure is in-
There are also the more complicatekl &nd & structures, teresting, since the experimental neutron scattering résults
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results for this collinear structure show that this is true only
for a=6.76 a.u.(see Fig. 3 where the dIAF structure in-
deed has the lowest energy of the structures considered. This
means that at the lattice constant of Cu, the dIAF state is the
most stable structure among the here considered. However,
the energy of they; SS lies considerably below that of the
dIAF structure around the equilibrium volume.

IV. DISCUSSION

FIG. 4. Top views of the conventional fcc cell, showing the . b h . di |
directions of the moments as in thé 2left picture and 3 (right First, we observe that our energies corresponding to col-

picture structures as black arrows. The gray and white arrows shoW/n€ar structures in Fig. 3 are in very good agreegnenlt with
the x andy components of the moments, respectively. earliercollinear FLAPW calculations using the GGAThis

is crucial and shows that our noncollinear implementation is

would not distinguish between that ordering of the moment§0”?0tt- EIOthtca|‘t3U|atiC;n% fégd the ?'_AF grdeéi”g tlo b(tahthe
L o most stable structure at=6.82 a.u., lying 3 mRy below the
antljt ?spsuéZnSiﬁ g:gegnt%glggg;%re?é?/?go\cvvéred by the AF state. The equilibrium volumes of the AF and dIAF struc-

spin spiral, but only by 0.4 mRy/atom at most. This is for the;uc:teﬁr:g It:k:ge g’n?arrzilgsrt]gcl;ié tgetggﬁgr;:z?;;é:mﬂggh d\illyfeerdt())y
smallest volume examined and yieldsjaector around 0.6 mRy, a difference probably hidden in the coarser
o energy resolution of the earlier calculation.
03=(0.16,0,2 —, (32 Taking noncollinear structures into account, we find a
a transition from the dIAF structure to the; SS ata
d——6.76 a.u., which stays lowest in energy for smaller lattice
constants. The same general trend, a dIAF structure changing
into a more complex noncollinear ordering as the volume
D. Double-layered antiferromagnetism decreases, has been found also in some ASA calculdtins.
The fact that theoretical calculations in general give aUsing the LSDA, Antropoet al* found their dIAF structure

very stable energy minimum for ordering vectors arogad 10 change into a8 ordering fora<6.78 a.u., while in their
could be an indication of an even more stable double-layere@GA calculations the dIAF structure was followed by a non-
typed AF (dIAF) state, which corresponds to a commensu-collinear configuration described in an eight-atom unitcell.

rate longitudinal, instead of helical, spin density wave. Our'N€ transition occurred aroura=6.69 a.u., and the new
noncollinear structure could be viewed as a slightly distorted

g, SS. In fact, the eight-atom structure and the SS were

thus an ordering vector that lies very close to the one foun
experimentally.

10| E | nearly degenerated foa>6.60 a.u. and identical foa
i S <6.60 a.u., since the distortion then had disappeared.
! ] Antropov et al? also compared two different LMTO basis
o0 | §q ;ajggi au. | | sets for their GGA calculations, using the ASA with the
—_ | P .:;6:70 “combined correction” term. The first basis set includes only
u>:’ E A a=6.60 | spd orbitals, while the second has additioriarbitals. The
E -80f} | 1 outcomes of the two calculations are very differéait Fig. 2
~ | ] and Fig. 6 in Ref. % and only those of the latter are consis-
> W tent with our results. The LSDA calculations by James
d 4O e | 1 etal,” using the LMTO-ASA method, without the “com-
Lﬁ ’\‘\?\,_./' ] bined correction” term and witk pd orbitals in the basis set,
50 1 A\E\‘/ | show a trend in line with our results. However, they find a
—~ stable X structure fora<6.78 a.u., in accordance with the
§ 1 LSDA results of Antropo\et al. Thus, it seems that while the
60 L | i LSDA stabilizes a R structure for intermediate volumes, the
5 GGA calculations prefer a SS.

All calculations show a crossover from a HS to a LS state
X qs W . . . "
q-vector for the fgrromagnghc solution. The corresppnplmg transition
volume in Fig. 3(just belowa=6.78 a.u.) is in excellent
FIG. 5. Total energy as a function of the wave vector for a spin@dreement with the full-potential calculations of Ref. 7. The
spiral on top of the R structure. The total energies are given rela- ASA calculations show a fairly large spread for this transi-
tive to the FM structure aa=6.82 a.u., and the lowest energy is tion. In the calculations by Mryasaat al.” the HS-LS cross-
found for the ordering vecta; ata=6.60 a.u. This wave vector OVEr is found at a larger lattice constant, giving a LS solution
lies close to the experimental wave vector, indicated by the verticaven fora=6.80 a.u., while Antropoet al” find the cross-
dashed line. over already ata=6.71 a.u. The calculations by James
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2

STy, ; AMA calculations confirm our AMA increase in energy for
D- - Dwith AMA i q vectors close td".
| exp
i

N -y Interesting SS results are found along ¥/ symmetry
0., AN P, ! line. The eager search fmrexpt has'led to a nl_meer of dif-
RN CanLLL LN RNy i U ferent results for this region in earlier calculations. We repro-
!\ n o o duce the SS ofiz=W found in Ref. 6, only as a local mini-

2F U

mum for the largest volume. Apart from the stabilization of
g, ata=6.60 a.u., it is highly interesting to see the remark-
able flattening of the energy curve. Together with a change in

, ! A moments from almost 145 down to 1.24g for g vectors
P

I betweenqg; andq,, this opens the possibility of the coexist-

Energy (mRy)

I
}
i
I
I
}
i

4|

\“1\ =D i /’ﬁ/ . . .
\\‘_*"____—A:m\‘é_%//ﬁ/ ence of a number of noncollinear structures with varying
iy | - sizes of the magnetic moments. The flat energy curve could
ad : also explain why the MASWRef. 11, calculation finds a
r 1 da X q; w g . . .
q-vector wave vectom slightly different fromg,, since the results in

this region are probably very sensitive to any modification of
FIG. 6. Comparing the atomic moment approximation with athe potential. It should be noted, however, that giteet al.
full vector treatment of the magnetic moments for three differentfind qc to be stable already @=6.70 a.u.
volumes. The energies fromi to X are largely effected by the The 2k structure in combination with a SS yields the
approximation, shifting the stable SS towaixis lowest energy fon, close to the experimental wave vector.
. . It is therefore very tempting to believe that this is the mag-
5 _
\?\}itil.ojrg\évd% trsansmon around=6.78 a.u. in agreement netic structure they observed in the experiment, although the
However algtjhb h the ASA calculations show the Correctvolume is much smaller than what they claim to have in the
\I,Ivtv d ug_ th | ud : d W fth experiments. Further, the energy of this structure lies 0.4
overall trend regarding the volume dependence of the magthy above the global energy minimum in Fig. 3.
netic structures, there are some systematic errors in the en-
ergies as shown by Klbing and Ergorf. This is maybe most
clearly displayed in the spin-spiral calculations. Comparing V. CONCLUSIONS
to other SS calculations, our results confirm a stable SS al-
most halfway froml’ to X. Here it can be noted that we, in We have presented a noncollinear implementation into a
accordance with other methods using a vector field treatmeritll-potential linearized augmented-plane-wave method. Ac-
of the magnetic momenfs'! i.e., beyond the AMA, find a cording to our FP-APW-lo calculations fory-Fe, using the
wave vector closer taj=(0,0,0.55) fora>6.60 a.u., as GGA and investigating a number of collinear as well as non-
compared to the the AMA calculation$®*2where the most collinear magnetic orderings, the double-layered AF struc-
stable wave vector is found closerXpatq, defined in Sec. ture has the lowest energy for the largest lattice constant
l. considered, equivalent to that of coppes=(6.82 a.u.),
In order to study this effect we have performed forcedwhile the ground state consists of a set of almost degenerate
AMA [see Eq(13)] calculations for three different volumes. Spin-spiral statesarounda=6.61-6.63 a.u.).
In Fig. 6 it is clearly seen how the energies along e The stable magnetic structure is very sensitive to volume
direction are the most sensitive to restrictions of the noncol€hanges, and the dIAF is stable for lattice constants down to
linearity inside the MT spheres. The energies of theSS &= 6.76 au., where a SS structure pecomes lower in energy.
state in the AMA are approximately 1 mRy higher than in the ThiS SS, in turn, changes the ordering vector fraio g,
full field calculations for the two smaller volumes, and the for volumes witha<6.60 a.u. From our results together

stable SS is therefore shifted from to q,. Further, thegs, with earlier calculation&® one can conclude that while the
SS is stabilized already far=6.70 a.u. in the AMA calcu- GGA stabilizes a SS structure at smaller volumes, the LSDA

lations. seems to predict thek3to be lowest in energy. Calculations
Now, if one studies the unconstrained magnetization den@r€ in progress to verify if this is the case also for the LSDA

sity in Fig. 1, it is possible to observe that it is fairly collinear With an unconstrained vector representation of the magneti-

closer to the atomic sites and the rotations occur mainly inZation density. _ _

between the atoms. However, these rotations may be signifi- At @=6.60 a.u. there is a continuum of vectors be-

cant already inside the muffin-tin spheres, which in Fig. 1, iffweenad; and g, being almost degenerate in energy. This

displayed, would be almost touching circles centered arounfattening of the energy curve is not seen within the AMA

the nine atomic centra. (see Fig. 8 since the energies in tHeX direction are dra-
Kurz et al}2 uses the same kind of AMA as we did above, matically altered by the restriction of the noncollinearity

with fixed directions within each muffin-tin sphere but full within each MT sphere.

freedom in between, in their LAPW study of spin spirals for ~The Z and X structures have quite high energies for all

a=6.70 a.u. Unlike our results in Fig. 6, their most stableexamined volumes. However, a SS of wave vectgr

SS at this volume has the ordering vectgr, which might =(0.16,0,1)27/a superimposed on thek2structure ata

be an effect of a smaller plane-wave cutoff. However, their=6.60 a.u. lowers the energy to only 0.4 mRy above the
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global energy minimum. This structure, as well asdhesS,

is compatible with the reported experimental restiltst it

PHYSICAL REVIEW B 66, 014447 (2002

ume there is actually a nearly degenerate continuum of SS
states betweeq; andq,. This is very interesting, since this

becomes stable only at volumes much smaller than the vokituation with many different magnetic structures close in
ume which is claimed to be the experimental. Hence, one hasnergy is related to what has been found and used to explain
to conclude that state-of-the-art density functional calculathe Invar effect for the alloy fcc BgNig g5.°2

tions fail to reproduce the experimental magnetic structure

for fcc Fe at the lattice constant of Cu.

Finally, the lowest energy of all structures and all volumes
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