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Noncollinear full-potential studies of g-Fe
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Condensed Matter Theory Group, Physics Department, Uppsala University, S-75121 Uppsala, Sweden
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Accurate density functional calculations have been performed for the fcc-based frustrated antiferromagnet
g-Fe. Several competing collinear as well as noncollinear magnetic structures have been considered: ferro-
magnetism, 1k, 2k, 3k, and double-layered antiferromagnetism, as well as noncommensurate helices. In
contrast to standard noncollinear methods, our scheme treats the magnetization density as a vector field which
is free to change in both magnitude and direction throughout space. The noncollinear method is implemented
in the alternative linearization of the full-potential augmented-plane-wave method, closely related to the con-
ventionally linearized method, but computationally more efficient. The most stable magnetic structure ofg-Fe
is found to vary sensitively with volume. At the experimental volumea56.82 a.u., the moments are ordered
in a collinear double-layered antiferromagnetic structure, while the ground state is almost degenerate between
two different helices of different equilibrium volumesa56.63 a.u. anda56.61 a.u., respectively. The ob-
tained results are analyzed and compared with earlier calculations and existing experiments. For instance, we
notice that the results are altered when we introduce an atomic moment approximation in our calculations.

DOI: 10.1103/PhysRevB.66.014447 PACS number~s!: 75.25.1z, 71.15.Mb
ct
an
lit

of
h
lu
m
a

el
v

tic
n

pi
y
-
in

lin
n
3
et
t

om
th

he
ed,

ons
e

n,
the
me
cal

-

es
,
s-

es
ed
ber
e

ost

-
ey
I. INTRODUCTION

The high-temperature fcc phase of iron,g-Fe, has at-
tracted much interest due to its elusive magnetic chara
There are also practical implications since many import
iron alloys, such as the Invar alloys and several high-qua
stainless steels, are fcc ordered.

In 1989 Tsunoda1 managed to stabilize precipitates
g-Fe inside an fcc Cu matrix. They could then explore t
magnetic properties of three-dimensionally constrained c
ters ofg-Fe, each one spherically shaped with a mean dia
eter of 50 nm. Interestingly enough, the ground state w
found to be a helical spin density wave, or a spin spiral~SS!,
with a wave vector

qexpt5~0.10,0,1!
2p

a
. ~1!

Herea is the lattice constant of the conventional fcc Cu c
(6.822 a.u.), inherited by the iron precipitates. This wa
vector nearly yields a type-I antiferromagnetic~AF! system,
cf. qAF5(0,0,1)2p/a.

From a theoretical point it is unclear what magne
ground stateg-Fe is predicted to have, since there is an u
usual large spread in earlier published results. The first s
spiral calculations performed forg-Fe were presented b
Mryasovet al.2 in 1991. Using the linearized muffin-tin or
bital ~LMTO! method they investigated ordering vectors
theGXW direction of the fcc Brillouin zone~BZ!, where theq
vectorG is equivalent to a ferromagnetic~FM! structure, and
the ordering vectorX represents a type-I AF structure. They
found that the magnetic ground state depends on the fil
of 3d electrons, withg-Fe lying at a crossing point betwee
the FM and AF regions in a magnetic phase diagram ofd
metals in fcc lattices. They also showed how the magn
structure ofg-Fe could be changed from FM into differen
SS structures by lowering the lattice parameter fr
7.11 a.u. down to 6.81 a.u. For the smaller volumes,
0163-1829/2002/66~1!/014447~10!/$20.00 66 0144
er.
t
y

e
s-
-
s

l
e

-
n-

g

ic

e

energy of the SS approached that of the AF solution. T
lowest energy was found for the smallest volume examin
at a SS havingq vector

qA5~0,0,0.6!
2p

a
. ~2!

The same ordering vector was obtained in the calculati
performed by Uhlet al.3 later the same year. They used th
augmented spherical wave~ASW! method and included also
q vectors alongXWW . Antropovet al.4 let the directions of the
magnetic moments evolve freely in an LMTO calculatio
using a supercell with 32 atoms. They confirmed that
magnetic configuration was extremely sensitive to volu
changes. Their results changed quantitatively when the lo
spin density approximation~LSDA! was replaced by a gen
eralized gradient approximation~GGA! but the trend was the
same, going from more complex orderings at small volum
(a,6.78 a.u. anda,6.69 a.u. for the LSDA and GGA
respectively! into a double-layered AF structure for increa
ing volumes. For larger volumes (a.7.05 and a
.6.90 a.u.), the structure preferred the FM state. Jam
et al.5 performed LMTO calculations where they compar
the total energy as function of the volume for a large num
of AF orderings ing-Fe. Using the LSDA they found a mor
complex ordering of the moments at smaller volumesa
,6.78 a.u., with the global minimum ata56.55 a.u.
Again, the double-layered AF structure became the m
stable for increasing volumes.

In their paper from 1996, Ko¨rling and Ergon6 reproduced
the SS structure of ordering vectorqA for a lattice constant
a56.80 a.u. using the LMTO method with LSDA. How
ever, when introducing the GGA into their calculations, th
stabilized a new SS with an ordering vector atW,

qB5~0.5,0,1!
2p

a
. ~3!
©2002 The American Physical Society47-1
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This q vector is not in agreement withqexpt, but neverthe-
less it showed that the GGA had a large effect on their
sults.

All the calculations above have in common that they re
resented their potential using the atomic sphere approxi
tion ~ASA!. However, Körling and Ergon6 showed how their
collinear LMTO-ASA magnetization energies were overes
mated compared to full-potential linearized augment
plane-wave~FLAPW! calculations. The magnitude of thi
overestimation was comparable to the relative stabiliza
energy between the lowest-lying SS and the AF solutions
the LMTO-ASA.

This result pointed out the demand for more exact n
collinear calculations for determining the most stable str
tures in fcc Fe, and subsequently a few non-ASA calcu
tions have been presented. First, Herperet al.7 compare three
collinear orderings in their energy versus volume curve:
FM, the type-I AF, and the double-layered AF ordering
Using the FLAPW method and GGA, they find the AF a
double-layered AF structures to form almost degene
ground states, with equilibrium lattice constants ofa
56.60 a.u. anda56.68 a.u., respectively.

The ultrasoft pseudopotential calculations allowing fo
noncollinear spin spiral by Bylander and Kleinman8 showed
no drastic changes from the corresponding ASA calculatio
yielding a stable SS state with ordering vector close toqA ,

q5~0,0,0.55!
2p

a
. ~4!

What instead altered the energy versus ordering vector c
was their GGA implementation.9 This calculation gave, how
ever, a larger energy forq5X than forq5G, in contradiction
with earlier collinear calculations as well as all noncolline
calculations. The most stable ordering vector was, howe
still that of Eq.~4!. In order to correct for some known de
ficiencies of the GGA, they added anad hoc‘‘spin-stiffness
correction’’10 to the GGA, which changed the shape of th
energy curve drastically, now with the global minimum
q5X.

In a recent paper Kno¨pfle et al.,11 presented amodified
ASW method~MASW!, in order to take care of some fu
potential effects beyond the ASA approximation. For latt
constantsa<6.75 a.u. the modified method gives a ne
ground-stateq vector

qC5~0.15,0,1!
2p

a
, ~5!

which agrees well with experiments, although for somew
smaller lattice constants. Their results are not altered dra
cally either by the introduction of the GGA or by turning o
the intra-atomic noncollinear magnetism introduced in t
method. Thus, the stabilization of this new ordering vec
must be understood as due to the the full potential~FP! cor-
rections to the atomic sphere approximation. Kurzet al.12

usedg-Fe with a56.70 a.u. as a trial system in their pr
sentation of different implementations of the GGA in t
LAPW method. Going beyond the ASA, but still using a kin
of atomic moment approximation~see Sec. II for a defini-
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tion! they find the most stable SS to have an ordering vec
equal toqA . The aim of the present paper is, inspired by t
different results and contradictions found when reviewi
previous results, to investigate the theoretical ground stat
g-Fe using the highly precise alternative linearization of t
FLAPW ~FP-APW1lo! method within the GGA. The mag
netization density is represented by a field quantity eve
where in the unit cell, in order to make the calculations
accurate as possible.

The paper is organized as follows. The scheme use
describe noncollinearity is presented in Sec. II. Although t
method has been used before,13–15it has never been properl
described, so we take the opportunity to discuss its imp
mentation in some details. Section III holds the results in
form of total energies and magnetic moments of the vari
magnetic structures. The discussion and conclusions are
sented in Secs. IV and V.

II. METHOD

Since the pioneering work a decade ago,16,17 quite a few
density-functional-based electronic structure calculatio
have been reported which have allowed for noncollin
magnetism~NCM!. However, a majority of the calculation
up to present day have in common that they have assu
that the noncollinearity is on an interatomic scale; i.e., ea
atom has a single spin-quantization axis and the magne
tion density is locally collinear within the region of an atom
Although this approximation with a locally collinear atom
moment, which we will refer to as an atomic moment a
proximation~AMA !, is a fast and convenient approximatio
it is by no means enforced by the LSDA~Ref. 18! to the
density functional theory.

We will here describe how a general implementation
the LSDA, with no shape or directional approximations f
the magnetization density~Fig. 1!, can be implemented in a
full-potential method.

First, a short review of the general noncollinear version
the LSDA will be given together with a discussion of grad
ent corrections. Then we will describe how this scheme
be implemented in the presently used full-potential line
augmented-plane-wave~FP-APW1lo! ~Ref. 19! method. Es-
pecially, details of the implementation of the noncommen
rate helical spin wave, which is often referred to as a s
spiral, will be discussed.

A. Noncollinear local spin density approximation

When generalizing density functional theory~DFT! ~Refs.
20 and 21! to a spin-dependent theory, von Barth a
Hedin18 introduced a 232 density matrixr(r ) which gener-
ally can be expanded asr5(nI1m•s)/2, whereI is the
232 unit matrix ands5(sx ,sy ,sz) are the Pauli spin ma
trices. The new physical quantity, besides the charge den
n, is the magnetization densitym(r ) which naturally is a
vector density.

The effective one-electron potential, which is defin
through functional derivatives of the total energy function
with respect to the density,18,21 also becomes a 232 matrix,
7-2
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V(r )5v(r )I2b(r )•s. The nonmagnetic partv(r ) includes,
besides the exchange-correlation potential, the nuclei att
tion and the Hartree term, while the magnetic partb(r ) of the
potential matrix only has contributions from the exchang
correlation functional. Since we are here interested in
magnetic contributions, we will focus on the exchang
correlation terms.

In the LSDA the exchange-correlation functional is giv
by18

Exc@n~r !,m~r !#5E n~r !«xc„n~r !,um~r !u…dr , ~6!

where«xc(n,m) is the exchange-correlation energy dens
for a spin-polarized homogeneous electron gas with cha
density n and magnetization density of magnitudem. The
actual functional form of«xc(n,m) which has been param
etrized in various different ways18,22,23has no importance fo
our general discussion. The LSDA exchange-correlat
functional leads to the nonmagnetic scalar exchan
correlation potential

vxc~r !5
dExc

dn~r !

5«xc„n~r !,um~r !u…1n~r !F]«xc~n,m!

]n G
n5n(r ),m5um(r )u

~7!

and to the magnetic potential, which is in the form of
magnetic field,

FIG. 1. The magnetization density of theq1 SS, shown in thexz
plane of the conventional fcc cell. They coordinate is fixed ata/4
for a56.63 a.u.; thus, the corner atoms, along with the cen
atom, liea/4 out from the paper, while the atom on the middle
each side liesa/4 into the paper. The magnetization density
treated as a vector field; i.e., it is free to change both in magnit
and direction throughout space. The gray scale shows diffe
magnitudes of the moments, with darker shades correspondin
larger moments, and the noncollinear directions are indicated
unit vectors.
01444
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b~r !52
dExc

dm~r !
52

dum~r !u
dm~r !

dExc

dum~r !u

52m̂~r !n~r !F]«xc~n,m!

]m G
n5n(r ),m5um(r )u

,

~8!

wherem̂(r )5dum(r )u/dm(r ) is the direction of the magne
tization density at the pointr . As is clear from Eq.~8!, the
potentialb is collinear to the magnetization densitym every-
where.

Although the potential of Eq.~8! is obtained within the
LSDA, we would like to stress the difference to the usu
enforced collinear adaptation, where the spin magnetiza
density enters as a scalar quantity.

In contrast to the local approximation there exists no f
mulation for a noncollinear gradient corrected approximat
~GGA!.24,25 This is because the assumption of a colline
spin magnetization leads to only one gradient, while a g
eral formulation requires three, one for each compone
When generalizing existing GGA schemes to the nonc
linear case, one can choose whether the sole magnetiz
gradient refers to the gradient of the magnitude of the m
netization density or the gradient of the component loca
parallel to the magnetization density. In practice, this cho
has little importance,12 and we have chosen the latter, th
longitudinal gradient, approach. However, for consistenc
true noncollinear GGA should be formulated, which wou
include the effect of the gradient of the transversal com
nents too. In the absence of this effect, the exchan
correlation magnetic field falls out to be locally parallel
the magnetization density, as in the LSDA. There have b
suggestions for improving upon the existing GGA deficien
either by introducing anad hocspin stiffness term10 or by
deriving the GGA from current density formalism.26

The spin-dependent Kohn-Sham21 Hamiltonian becomes

H52I¹21V~r !5$2¹21v~r !%I2b~r !•s. ~9!

If the eigenfunctionsc i of this Hamiltonian are written in
spinor form, the magnetization and charge densities can
directly constructed by summing over the occupied state

m~r !5(
i

occ

c i
†~r !sc i~r ! and n~r !5(

i

occ

c i
†~r !c i~r !,

~10!

which readily allow for the usual iterative solution. A sel
consistent solution is obtained when the input charge
magnetization density produce the same output charge
magnetization density; i.e., also the noncollinearity of t
magnetization density is given by this self-consistency p
cedure.

The expression for the total energy looks like

E5(
i

occ

« i2
1

2E n~r !vC~r !dr

2E @n~r !$vxc~r !2«xc~r !%2m~r !•b~r !#dr , ~11!
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where« i are the eigenenergies andvC is the classical Cou-
lomb part of the spin-independent potential, i.e., the Hart
and nuclei contributions.

Collinear magnetism can easily be seen to be the spe
case with the magnetization density parallel to a global
rection, say,ê. In this case, it is possible to define glob
spin-up and spin-down potentialsv65v7b•ê, and the
Hamiltonian ~9! may be transformed into a block diagon
form

H85UHU†5S 2¹21v1~r ! 0

0 2¹21v2~r !
D , ~12!

whereU is the spin-1/2 rotation matrix for a rotation of th
spin-quantization axis, fromẑ to ê. The eigenspinors in this
representation are of pure spin-up or spin-down charac
which will provide that the output magnetization density w
be collinear, with the global directionê. However, it should
be noted that when spin-orbit coupling is included in t
Kohn-Sham Hamiltonian a truly collinear solution is actua
never possible, since the spin-orbit coupling term alway
gives arise to some nontrivial spin mixture in th
eigenspinors.13

As discussed above, a common approach to NCM is
approximate this magnetization density, continuous both
direction and magnitude, by one where the direction is
fined on a coarse mesh, i.e., with different local spin qua
zation axes for different atoms. This is what we already h
denoted AMA and corresponds to substitutingm̂ by

m̂AMA ~r !5êa for rP atom a, ~13!

andumu[m̂•m by m̂AMA•m in Eq. ~8!. Hereêa is the direc-
tion of the local spin-quantization axis of atoma, which is
parallel to the local moment of the atom̂m&a5*am dr .
This means that the magnetic potential is locally paralle
the atomic moment, which is why we have given this a
proach its name.27 The partitioning of space into atomic re
gions is of course somewhat arbitrary and may vary betw
different calculations.

It should also be noted that in AMA approaches, the fo
quantities used to describe the 232 density matrix are often
taken to ben, m5umu, u, andw, whereu andw are the polar
angles which describes the direction ofm̂ or, equivalently,
êa . However, in the present case, where we need a cont
ous description, these angles are not well suited, becaus
the presumptive jumps by 2p and the nondefined values o
w whenu50 or p. Since it is crucial that the relevant qua
tities are continuous and easy to Fourier transform, we
stead prefer to work withn and the three Cartesian comp
nents ofm.

B. Implementation into the FP-APW¿lo method

We implemented this noncollinear LSDA,13 to our knowl-
edge for the first time in its general form, in the full-potent
linear augmented plane-wave method. The method we
~FP-APW1lo! ~Ref. 19!, differs from the traditional full-
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potential linearized-augmented-wave method~Refs. 28 and
29! in the way the plane-wave basis functions are augmen
and has proved to be more efficient. The FLAPW and F
APW1lo methods are, however, closely related, and the
lowing description of the noncollinear LSDA implement
tion into the FP-APW1lo method can equally well be use
for the FLAPW method.

In the augmented-plane-wave method the space is div
into two regions: nonoverlapping spheres centered at e
atom, so-called muffin-tin~MT! spheres, and the rest—th
interstitial ~I!. In the interstitial the basis set consists of pla
waves, while in the muffin tins these plane waves are a
mented by a spherical expansion of radial functions, i.e.,

x j~k,r !5H V21/2ei (k1Gj )•r, rPI,

(
aL

f j aL~r a!YL~ r̂a!, rPMT,
~14!

where k is a wave vector in the Brillouin zone,Gj is the
reciprocal lattice vector of the plane wave,YL are spherical
harmonics,L5$ lm% is the angular momentum index,V is
the volume of the unit cell, andra5r2Ra is the muffin-tin
centered coordinate of atoma.

The radial functions inside the muffin-tin sphere of ato
a are expanded using MT orbitalsfna l , which solve the
radial Schro¨dinger equation

H 2
d2

dr2
1

l ~ l 11!

r 2
1va~r !2«na lJ rfna l~r !50. ~15!

Sinceva(r ) is the spherical part of the actual potential, the
functions are capable of giving a good description of t
local wave function for energies around the linearization
ergy «na l . This expansion can be performed in differe
ways. The traditional FLAPW method uses a linear com
nation of fna l and their energy derivativesḟna l , which
gives continuous and differentiable basis functions at
sphere boundary. In the FP-APW1lo method, the corre-
sponding augmentation is simplyf j aL(r )5aj aLfna l(r ).
These basis functions, Eq.~14!, are then complemented by
set of local orbitals,29,30

x j~k,r !5H 0 rPI,

gj aL~r a!YL~ r̂a! rPMT,
~16!

wheregj aL(r )5fna l(r )1bj aLḟna l(r ). Thus, each local or-
bit j has a specificaL character and is independent of th
wave vectork. The two expansion coefficientsa and b are
fixed by the criterion that the basis functions should be c
tinuous at the sphere boundary. For the plane wave b
functions the analytical expressions is found by using
well-known expansion of a plane wave in spherical Bes
functions.

In most spin-polarized versions of the augmented pla
wave method, there are spin-up and spin-down versions of

and ḟ which are the solutions of Eq.~15! with the local
spherical spin-up and spin-down potentials, respectively
the present implementation we have chosen to use a s
7-4
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independent basis, andva is taken to be the spherical ave
age of the nonmagnetic potentialv around atoma. This
drastically simplifies the augmentation at the sphere bou
ary, since nowthe basis setnever involves globally spin-
mixed spinors. In cases of strong exchange splitting the
of flexibillity of this spin-independent basis set inside t
MT spheres can be more than compensated by an exte
of the the basis set, Eqs.~14! and~16!, with another type of
local orbitals30 where the energy derivative off is replaced
by a second radial function, so that

gj aL~r !5fna l~r !1cj aLfma l~r !. ~17!

This new functionfma l is the solution of Eq.~15! for a
linearization energy«ma lÞ«na l . The coefficientc is set so
that the value of the local orbital matches zero at the sph
boundary. The inclusion of extra local orbitals leads to
rather small increase in the numberN of spin-independen
basis functionsx j , while fma l provides an increased flex
ibility to the wave functions within the MT spheres. We ha
performed tests for the ferromagnetic 3d metals and verified
that such a spin-independent basis reproduces the ord
collinear spin-dependent basis set results.

The generalized eigenvalue problem at the wave vectok
is of the order 2N32N and has, with our choice of spin
independent basis functions, the form

@$H~k!2« iO~k!%I2B~k!•s#ci50, ~18!

where « i is the i th eigenvalue andci is the corresponding
eigenvector.O is theN3N overlap matrix

Oi j ~k!5E x i* ~k,r !x j~k,r !dr , ~19!

andH is theN3N nonmagnetic Hamiltonian matrix

Hi j ~k!5E x i* ~k,r !$2¹21v~r !%x j~k,r !dr . ~20!

They are identical to the matrices which would enter a n
spin-polarized calculation with a potential equal the nonm
netic potential. The magnetic potential enters through thN
3N matricesB:

Bi j ~k!5E x i* ~k,r !b~r !x j~k,r !dr . ~21!

These matrix elements are evaluated independently for
three components by expanding the potential in the us
way29 in terms of plane waves in the interstitial and spheri
harmonics within the MT spheres—and performing the
sulting integrals. The 2N eigenspinors that are obtained aft
the matrix diagonalization are of the form

c i~k,r !5(
j

N

ci , jx j~k,r !5(
j

N S a i , j

b i , j
D x j~k,r !, ~22!

i.e., with the spin dependence entering through the coe
cientsc5(a,b)T. The charge density and the three comp
nents of the magnetization density are independently c
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structed according to Eq.~10! and subsequently expanded
plane waves and spherical harmonics.

Since the LSDA exchange-correlation potential, due to
nonlinear dependence on the local densities, preferabl
evaluated in real space, there are not much extra effor
evaluating the general magnetic potential of Eq.~8! in com-
parison with a collinear one. Neither in the total energy c
culations does the exchange-correlation contribution ca
any extra work. This stems from the fact that the total ene
is usually, for sake of convenience, evaluated using the in
densities, which means thatm andb are parallel in Eq.~11!.
As FP-APW1lo is an all-electron method the core states a
recalculated in each iteration step. However, here we do
strict ourselves to the AMA for the spin-polarized potenti
This should have very little, if any, influence on the calcu
tions, especially when properties influenced by the core e
trons, e.g., hyperfine fields, are not in focus.

C. Spin-spiral symmetry

The above formalism is valid for cases where the m
netic unit cell is identical to the unit cell used in the calc
lation. However, it was shown by Herring31 that if spin space
can be decoupled from the lattice, i.e., when the relativis
spin-orbit coupling can be neglected, noncommensurate
lical or cyclic waves can be treated with a unit cell govern
by the chemical rather than the magnetic symmetry. Th
systems are often referred to as spin spirals. Sandratskii
Guletskii have discussed how to implement them into D
methods.17 Here we will discuss mainly how to generaliz
this technique, developed for AMA methods, to the case o
full-potential method.

A spin spiral with wave vectorq is defined by its transla-
tional properties,

Tm~r !5m~r1R!5R~q•R!m~r !, ~23!

where R(f) is a rotation by the anglef5q•R around a
given axis andR is any lattice vector. Since spin and spa
are not coupled, we have the freedom to take this axis to
parallel toq in space and parallel toz in spin space. Hence
the two components perpendicular to this axis~i.e., x andy
components! continuously rotate when the spiral propaga
alongq. When thez component is identical zero, we refer t
the spiral as planar, otherwise as conical.

Now one can introduce some generalized translation
eratorsTR5R 21T, under which the spin-spiral magnetiza
tion density is an invariant,TRm5m. As the exchange-
correlation field is everywhere parallel to the magnetizat
density, both in the LSDA and in the present version of t
GGA, this is also true for the magnetic fieldb.

In the present implementation into a method which u
plane-wave representations of densities and potentials, t
quantities ought to be translationally invariant with the pe
odicity of the chemical unit cell in order to efficiently mak
use of fast Fourier transforms. Hence, we have to tak
slightly different route compared to previous formulation
which were more suitable to methods using local represe
tions of the basis.17 First, new complex quantitiesu andh are
7-5
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introduced, which represent the rotations of the two com
nents perpendicular to the spin spiral axis,

u~r !5e2 iq•r$mx~r !1 imy~r !% ~24!

and

h~r !5e2 iq•r$bx~r !1 iby~r !%. ~25!

These new densities are translationally invariant by const
tion, e.g.,Tu5u. Further, following from the parallelism o
m andb, they areparallel, so that argu5argh.

The Kohn-Sham Hamiltonian now becomes

H5$2¹21v~r !%I2$eiq•rh~r !s21H.c.%2bz~r !sz ,
~26!

wheres25 1
2 (sx2 isy).

It was shown by Herring31 that H is diagonalized by the
generalized Bloch spinors

c j ,k~r !5S ei (k2q/2)•ra j ,k~r !

ei (k1q/2)•rb j ,k~r !
D , ~27!

wherea and b are translationally invariant functions, from
which we construct the new densities, especially,

u~r !5(
j ,k

occ

c j ,k
† $e2 iq•r2s1%c j ,k . ~28!

III. RESULTS

The calculations presented in this section are perform
using the full-potential linearized augmented-plane-wa
method~FP-APW1lo! ~Ref. 19! with the GGA correction as
described in Sec. II A. In addition to the different spin spi
structures, we examine the noncollinear 2k and 3k order-
ings, and finally the collinear double-layered antiferroma
netic structure.

A. Calculational details

All calculations are converged ink points as well as in
number of basis functions. The BZ integration is perform
by means of specialk points, around 4000k points in the
first BZ, together with a temperature broadening ofkBT
55 mRy. The plane-wave cutoff is set toKmax
54.9 a.u.21, except for the double-layered AF structu
whereKmax54.4 a.u.21, and the augmentation is performe
for angular momentuml<9. The two kinds of local orbitals
Eqs. ~16! and ~17!, are used forl 5s, p, andd throughout.
The MT sphere is treated using a logarithmic radial mesh
1450 steps, fromr051.1531026 a.u., to the muffin tin ra-
dius r MT52.25 a.u. Non-MT contributions are added to t
last 300 mesh points. This particular mesh was found to
converged in number of mesh points. Smaller meshes w
found to give unreliable results, especially for the spin-sp
calculations.
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B. Spin spirals

The first magnetic structures examined are the spin sp
states forq vectors along the symmetry linesGXW andXWW of
the fcc BZ. Starting from the lattice constant of copper,a
56.82 a.u., the volumes are successively decreased in o
to determine the equilibrium volume. The lower panel of F
2 shows how the total energy varies withq for different fcc
lattice constants. At large volumes, the most stable sp
spiral structure is found to have an ordering vector

q15~0,0,q!
2p

a
, ~29!

whereq changes with volume from 0.53 to 0.59; see Table
This energy minimum exists for all volumes considered, a
the energy of this spin-spiral structure stays around 3 m
lower than the corresponding FM energy, while the ene
difference between the SS and the AF state decreases
volume.

The magnitude of the magnetic moments^m&, in the up-
per panel of Fig. 2, is found through integration of the ma
netic moment vector field over the muffin-tin sphere. He
one can clearly observe the crossover from a FM high-s
~HS! state to a FM low-spin~LS! state that occurs at a lattic
constant just belowa56.78 a.u. This crossover exists on
at the center of the BZ. Further out in the BZ, e.g., forq1, the
decrease of the magnetic moments is continuous. So for
FM state we observe moments in the range (1.0–2.5)mB ,
while the AF moments only vary between 1.3mB and 1.8mB .

FIG. 2. The upper and lower panels show the moments and
total energy, respectively, as a function of the spin-spiral wave v
tor. Each curve represents a volume corresponding to lattice
stants 6.60<a<6.82 a.u. The experimental wave vector is show
as the vertical dashed line. Two stable spin spirals are found, i
cated asq1 andq2. The total energies are given relative to the F
structure ata56.82 a.u.
7-6
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From Fig. 2 we also see that a second minimum form
on theXWW symmetry line already fora56.78 a.u. The new
SS becomes the global minimum ata56.60 a.u. with aq
vector

q25~w,0,1!
2p

a
. ~30!

Herew is close to 0.25 for the two largest volumes examin
and around 0.19 for the remainder of the volumes; see T
I. This second SS state lies only around 0.3 mRy lower
energy than the AF state for all volumes considered.

It is very interesting to observe the almost degenerate
ergies in Fig. 2, for a large range of wave vectors betweenq1
andq2 for the case ofa56.60 a.u. This has occurred sinc
the AF state gradually becomes closer in energy to theq1 SS.

Figure 3 shows the volume dependency of the energies
several magnetic structures, including the FM, AF,q1, andq2
orderings. Here we can observe that the transition from
q1 state to that ofq2 takes place for a lattice constanta
56.60 a.u. and that the global energy minimum is alm
degenerate between the two SS within the accuracy of
calculations. Theq1 SS has its lowest energy at a lattic
constanta56.63 a.u. yieldingE(q1)525.79 mRy below
the reference energy, which should be compared toE(q2)
525.70 mRy ata56.61 a.u. The magnetization density
the former solution is displayed in Fig. 1.

Ideally, one ought to investigate the full irreducible wed
of the BZ, in order to determine the most stable SS. Ho
ever, this would be too computational demanding. Inste
we have looked at whether the minima found along theGXW

and XWW symmetry lines are local minima or merely sadd
points. This requires calculations along one and two perp
dicular directions aroundq1 andq2, respectively. Those cal
culations resulted in higher energies, confirming that bothq1
andq2 are truly local minima.

C. 2k and 3k orderings
The type-I AF ordering in Sec. III B is also referred to a

a 1k structure, as it only involvesoneAF ordering vector.
There are also the more complicated 2k and 3k structures,

TABLE I. Wave vectors q15(0,0,q)2p/a and q2

5(w,0,1)2p/a yielding the lowest energy betweenG andX andX
andW, respectively. The energy minima are found through inter
lation of the energy vs wave vector curves in Fig. 2.

Lattice parameter q E(q1) w E(q2)
~a.u.! ~mRy! ~mRy!

6.82 0.53 22.84 0.25 21.09
6.78 0.54 23.82 0.24 22.45
6.74 0.54 24.63 0.20 23.65
6.70 0.55 25.28 0.19 24.61
6.66 0.55 25.71 0.19 25.30
6.60 0.59 25.67 0.19 25.69
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involving two and three independent AFq vectors, respec-
tively. We have investigated these commensurate struct
for the cases when

m2k~r !5m~r !~eiqx•r,eiqy•r,0!,

m3k~r !5m~r !~eiqx•r,eiqy•r,eiqz•r !. ~31!

Theq vectors point atX in thex, y, or z direction, according
to their subscripts. The resulting magnetic structures are
lustrated in Fig. 4, seen from the~001! surfaces of the con-
ventional fcc cells. In the Heisenberg model, consider
nearest-neighbor interaction only, these three AF structu
(1k, 2k, and 3k) are degenerate in energy.

The total energy curves in Fig. 3 show how the 2k and 3k
structures are almost degenerate in energy for all volum
while the 1k ~AF! energy crosses their energies arounda
56.73 a.u., ending up considerably lower for volumes clo
to the equilibrium volume.

One can also add a SS to the 2k structure, propagating
along z so that theq vector rotates the 2k ordered (001)
planes relative to each other. This combined structure is
teresting, since the experimental neutron scattering res1

-

FIG. 3. Total energies vs volume, relative to the energy of
FM structure ata56.82 a.u., for eight different orderings of th
magnetic moments. The energies presented for theq1 , q2, and
2k1ss structures are the~local! minimum energies with respect t
the ordering vector for each lattice constant. The most stable or
ings are in order of decreasing volume: the double-layered AF
dering (a>6.76 a.u.), the spin spiral of wave vectorq1 (6.60,a
,6.76 a.u.), and finally the spin spiral of wave vectorq2 (a
<6.60 a.u.). The lowest energy is almost degenerate between
two spin spirals, giving equilibrium volumesa56.63 a.u. anda
56.61 a.u., respectively.
7-7
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would not distinguish between that ordering of the mome
and a pure SS ordering withq vector alongXWW .

It is seen in Fig. 5 that the 2k energyis lowered by the
spin spiral, but only by 0.4 mRy/atom at most. This is for t
smallest volume examined and yields aq vector

q35~0.16,0,1!
2p

a
, ~32!

thus an ordering vector that lies very close to the one fo
experimentally.

D. Double-layered antiferromagnetism

The fact that theoretical calculations in general give
very stable energy minimum for ordering vectors aroundq1
could be an indication of an even more stable double-laye
type-I AF ~dlAF! state, which corresponds to a commens
rate longitudinal, instead of helical, spin density wave. O

FIG. 4. Top views of the conventional fcc cell, showing th
directions of the moments as in the 2k ~left picture! and 3k ~right
picture! structures as black arrows. The gray and white arrows sh
the x andy components of the moments, respectively.

FIG. 5. Total energy as a function of the wave vector for a s
spiral on top of the 2k structure. The total energies are given re
tive to the FM structure ata56.82 a.u., and the lowest energy
found for the ordering vectorq3 at a56.60 a.u. This wave vecto
lies close to the experimental wave vector, indicated by the ver
dashed line.
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results for this collinear structure show that this is true o
for a>6.76 a.u.~see Fig. 3!, where the dlAF structure in-
deed has the lowest energy of the structures considered.
means that at the lattice constant of Cu, the dlAF state is
most stable structure among the here considered. Howe
the energy of theq1 SS lies considerably below that of th
dlAF structure around the equilibrium volume.

IV. DISCUSSION

First, we observe that our energies corresponding to
linear structures in Fig. 3 are in very good agreement w
earliercollinear FLAPW calculations using the GGA.7 This
is crucial and shows that our noncollinear implementation
correct. Both calculations find the dlAF ordering to be t
most stable structure ata56.82 a.u., lying 3 mRy below the
AF state. The equilibrium volumes of the AF and dlAF stru
tures in Fig. 3 are identical to those in Ref. 7, although we
not find the energies to be degenerate. Instead they diffe
around 0.6 mRy, a difference probably hidden in the coar
energy resolution of the earlier calculation.

Taking noncollinear structures into account, we find
transition from the dlAF structure to theq1 SS at a
56.76 a.u., which stays lowest in energy for smaller latt
constants. The same general trend, a dlAF structure chan
into a more complex noncollinear ordering as the volu
decreases, has been found also in some ASA calculation4,5

Using the LSDA, Antropovet al.4 found their dlAF structure
to change into a 3k ordering fora,6.78 a.u., while in their
GGA calculations the dlAF structure was followed by a no
collinear configuration described in an eight-atom unitce
The transition occurred arounda56.69 a.u., and the new
noncollinear structure could be viewed as a slightly distor
q1 SS. In fact, the eight-atom structure and the SS w
nearly degenerated fora.6.60 a.u. and identical fora
,6.60 a.u., since the distortion then had disappea
Antropov et al.4 also compared two different LMTO basi
sets for their GGA calculations, using the ASA with th
‘‘combined correction’’ term. The first basis set includes on
spd orbitals, while the second has additionalf orbitals. The
outcomes of the two calculations are very different~cf. Fig. 2
and Fig. 6 in Ref. 4!, and only those of the latter are consi
tent with our results. The LSDA calculations by Jam
et al.,5 using the LMTO-ASA method, without the ‘‘com
bined correction’’ term and withspdorbitals in the basis set
show a trend in line with our results. However, they find
stable 3k structure fora,6.78 a.u., in accordance with th
LSDA results of Antropovet al.Thus, it seems that while the
LSDA stabilizes a 3k structure for intermediate volumes, th
GGA calculations prefer a SS.

All calculations show a crossover from a HS to a LS st
for the ferromagnetic solution. The corresponding transit
volume in Fig. 3~just below a56.78 a.u.) is in excellent
agreement with the full-potential calculations of Ref. 7. T
ASA calculations show a fairly large spread for this tran
tion. In the calculations by Mryasovet al.,2 the HS-LS cross-
over is found at a larger lattice constant, giving a LS solut
even fora56.80 a.u., while Antropovet al.4 find the cross-
over already ata56.71 a.u. The calculations by Jame
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et al.5 show a transition arounda56.78 a.u. in agreemen
with our findings.

However, although the ASA calculations show the corr
overall trend regarding the volume dependence of the m
netic structures, there are some systematic errors in the
ergies as shown by Ko¨rling and Ergon.6 This is maybe most
clearly displayed in the spin-spiral calculations. Compar
to other SS calculations, our results confirm a stable SS
most halfway fromG to X. Here it can be noted that we, i
accordance with other methods using a vector field treatm
of the magnetic moments,8,11 i.e., beyond the AMA, find a
wave vector closer toq5(0,0,0.55) for a.6.60 a.u., as
compared to the the AMA calculations2,3,6,12where the most
stable wave vector is found closer toX, at qA defined in Sec.
I.

In order to study this effect we have performed forc
AMA @see Eq.~13!# calculations for three different volumes
In Fig. 6 it is clearly seen how the energies along theGXW
direction are the most sensitive to restrictions of the nonc
linearity inside the MT spheres. The energies of theq1 SS
state in the AMA are approximately 1 mRy higher than in t
full field calculations for the two smaller volumes, and t
stable SS is therefore shifted fromq1 to qA . Further, theq2
SS is stabilized already fora56.70 a.u. in the AMA calcu-
lations.

Now, if one studies the unconstrained magnetization d
sity in Fig. 1, it is possible to observe that it is fairly colline
closer to the atomic sites and the rotations occur mainly
between the atoms. However, these rotations may be sig
cant already inside the muffin-tin spheres, which in Fig. 1
displayed, would be almost touching circles centered aro
the nine atomic centra.

Kurz et al.12 uses the same kind of AMA as we did abov
with fixed directions within each muffin-tin sphere but fu
freedom in between, in their LAPW study of spin spirals f
a56.70 a.u. Unlike our results in Fig. 6, their most stab
SS at this volume has the ordering vectorqA , which might
be an effect of a smaller plane-wave cutoff. However, th

FIG. 6. Comparing the atomic moment approximation with
full vector treatment of the magnetic moments for three differ
volumes. The energies fromG to X are largely effected by the
approximation, shifting the stable SS towardsX.
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AMA calculations confirm our AMA increase in energy forq
vectors close toG.

Interesting SS results are found along theXWW symmetry
line. The eager search forqexpt has led to a number of dif-
ferent results for this region in earlier calculations. We rep
duce the SS ofqB5W found in Ref. 6, only as a local mini
mum for the largest volume. Apart from the stabilization
q2 at a56.60 a.u., it is highly interesting to see the rema
able flattening of the energy curve. Together with a chang
moments from almost 1.5mB down to 1.2mB for q vectors
betweenq1 andq2, this opens the possibility of the coexis
ence of a number of noncollinear structures with varyi
sizes of the magnetic moments. The flat energy curve co
also explain why the MASW~Ref. 11!, calculation finds a
wave vectorqC slightly different fromq2, since the results in
this region are probably very sensitive to any modification
the potential. It should be noted, however, that Kno¨pfle et al.
find qC to be stable already ata56.70 a.u.

The 2k structure in combination with a SS yields th
lowest energy forq3, close to the experimental wave vecto1

It is therefore very tempting to believe that this is the ma
netic structure they observed in the experiment, although
volume is much smaller than what they claim to have in
experiments. Further, the energy of this structure lies
mRy above the global energy minimum in Fig. 3.

V. CONCLUSIONS

We have presented a noncollinear implementation int
full-potential linearized augmented-plane-wave method. A
cording to our FP-APW1lo calculations forg-Fe, using the
GGA and investigating a number of collinear as well as no
collinear magnetic orderings, the double-layered AF str
ture has the lowest energy for the largest lattice cons
considered, equivalent to that of copper (a56.82 a.u.),
while the ground state consists of a set of almost degene
spin-spiral states~arounda56.61–6.63 a.u.).

The stable magnetic structure is very sensitive to volu
changes, and the dlAF is stable for lattice constants dow
a56.76 a.u., where a SS structure becomes lower in ene
This SS, in turn, changes the ordering vector fromq1 to q2
for volumes with a,6.60 a.u. From our results togethe
with earlier calculations,4,5 one can conclude that while th
GGA stabilizes a SS structure at smaller volumes, the LS
seems to predict the 3k to be lowest in energy. Calculation
are in progress to verify if this is the case also for the LSD
with an unconstrained vector representation of the magn
zation density.

At a56.60 a.u. there is a continuum ofq vectors be-
tween q1 and q2 being almost degenerate in energy. Th
flattening of the energy curve is not seen within the AM
~see Fig. 6!, since the energies in theGXW direction are dra-
matically altered by the restriction of the noncollineari
within each MT sphere.

The 2k and 3k structures have quite high energies for
examined volumes. However, a SS of wave vectorq3
5(0.16,0,1)2p/a superimposed on the 2k structure ata
56.60 a.u. lowers the energy to only 0.4 mRy above

t
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global energy minimum. This structure, as well as theq2 SS,
is compatible with the reported experimental results,1 but it
becomes stable only at volumes much smaller than the
ume which is claimed to be the experimental. Hence, one
to conclude that state-of-the-art density functional calcu
tions fail to reproduce the experimental magnetic struct
for fcc Fe at the lattice constant of Cu.

Finally, the lowest energy of all structures and all volum
examined in the present work, were found to be almost
generate between theq1 and theq2 SS. The first SS has a
equilibrium volume ofa56.63 a.u. and lies 5.79 mRy be
low the reference energy~the energy of the FM structure a
a56.82 a.u.). The latter SS has its energy minimum aa
56.61 a.u., 5.70 mRy below the reference energy. Th
two states can, with the present computational accuracy
considered to be degenerate, and around this equilibrium
.

.

B.
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ume there is actually a nearly degenerate continuum of
states betweenq1 andq2. This is very interesting, since thi
situation with many different magnetic structures close
energy is related to what has been found and used to exp
the Invar effect for the alloy fcc Fe0.65Ni0.35.32
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