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Dissipative effects on quantum glassy systems
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We discuss the behavior of a quantum glassy system coupled to a bath of quantum oscillators. We show that
the system localizes in the absence of interactions when coupled to a sub-Ohmic bath. When interactions are
switched on localization disappears and the system undergoes a phase transition towards a glassy phase. We
show that the position of the critical line separating the disordered and ordered phases strongly depends on the
coupling to the bath. For a given type of bath, the ordered glassy phase is favored by a stronger coupling.
Ohmic, sub-Ohmic, and super-Ohmic baths lead to different transition lines. We draw our conclusions from
analysis of the partition function using the replicated imaginary-time formalism and from the study of the
real-time dynamics of the coupled system using the Schwinger-Keldysh closed time-path formalism.
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I. INTRODUCTION

The effects of a dissipative environment on the dynam
of quantum systems have been intensively investigated
ing the last two decades.1,2 The most widely studied problem
is that of asingle macroscopic variable coupled to a set
microscopic degrees of freedom that act as a bath. The e
ronment is usually described in terms of its collective ex
tations ~lattice vibrations, spin or charge fluctuations, et!
that may be thought of as an ensemble of independent q
tum harmonic oscillators.3–7 Their coupling to the system i
given in terms of a spectral densityI (v)}avs for v!vc ,
wherea is a dimensionless coupling constant andvc a high-
frequency cutoff. The exponents characterizes differen
types of environment. The Ohmic case (s51) is quite gen-
erally encountered2 but super-Ohmic (s.1) and sub-Ohmic
(s,1) baths also occur, e.g., in the case of the Kondo ef
in unconventional hosts.8–10

The question of how dissipation destroys quant
coherence1,4,5 in two-level systems~TLS’s! has been exten
sively investigated in the literature. The low-energy phys
of many tunneling systems is well described by the sp
boson model.1,2 In this model, the two equivalent degenera
states of the TLS’s are represented by the two eigenst
sz561 of an Ising pseudospin. A transverse field coupled
sx ~say! represents the tunneling matrix element. Much
known about the properties of this model and its relations
to several other models including the one-dimensional~1D!
Ising model with inverse squared interactions,11 the aniso-
tropic Kondo model,12,13 or the resonant model.14 Three dif-
ferent regimes are possible depending on the value ofa: in
the Ohmic case, at zero temperature, there is a phase tr
tion at a51.4,5 For a,1 there is tunneling and two distinc
regimes develop. Ifa,1/2, the system relaxes with dampe
coherent oscillations; in the intermediate region 1/2,a,1
the system relaxes incoherently. Fora.1 quantum tunnel-
ing is suppressed and̂sz&Þ0, signaling that the system re
mains localized in the state in which it was prepared.
0163-1829/2002/66~1!/014444~20!/$20.00 66 0144
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These results also hold for sub-Ohmic baths while wea
damped oscillations persist for super-Ohmic baths.1 At finite
temperatures~but low enough such that thermal activatio
can be neglected!, there is no localization but the probabilit
of finding the system in the state it was prepared decrea
slowly with time for a.aCRIT.

These conclusions, derived for asingle TLS interacting
with a bath, can be applied to a macroscopic system in
diluted regime,i.e. when the interactions between the TLS
are unimportant compared with those between a TLS and
bath.17 There are, however, physical systems that can
viewed as adenseset of TLS’s in which their mutual inter-
actions can no longer be neglected. The question then a
as to which are the effects of the interplay between the
teractions between the TLS’s and their coupling to the no
on the physics of the interacting system.

In this paper we discuss this issue in the context o
glassymacroscopic system withrandom, long-rangedinter-
actions. This situation is realized experimentally in syste
such as uniaxial spin glasses in a transverse magnetic fie18

and disordered Kondo alloys.19,20 Metallic glasses with tun-
neling defects are also systems in which the effects that
of interest here could be observed experimentally.

In thermodynamic equilibrium, in the absence of the ba
the interactions between the TLS’s lead to the appearanc
an ordered state at low enough temperature. If the inte
tions are of random sign, as in the models we consider h
the latter will be a spin-glass~SG! state. In this phase the
symmetry between the statess i

z561 at any particular site is
broken but there is no global magnetization,( i^s i

z&50.
Since the coupling to the bath also tends to locally break
symmetry between the degenerate states of the TLS’s,
interactions compete with the tunneling term in the Ham
tonian. We thus expect the presence of noise to increase
stability of the SG state against quantum fluctuations. T
consequences of this fact are particularly interesting w
the coupling to the bath leads by itself to localization at so
a5aCRIT. Consider a system of sizeN with a.aCRIT at
T50 and suppose that we turn off the interactions betw
©2002 The American Physical Society44-1
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the TLS’s. The ground state of the system is then 2N-fold
degenerate as each TLS can be in one of the states^s i

z&
56s0 ~say! independently. If we now turn on an infinites
mal random interaction between the TLS’s, this macrosco
degeneracy will be immediately lifted as the system will s
lect among its 2N degenerate configurations the one~or one
among the ones! that minimizes the interaction energy. If w
denote byJ̃ the typical scale of the interactions and byaCRIT

the localization threshold, we thus expect a quantum crit
point atJ̃50, a5aCRIT between a quantum paramagnet a
the ordered state such that, fora.aCRIT, the SG phase sur
vives down toJ̃50.

A system of noninteracting localized TLS’s and a SG st
in equilibrium are in some way similar: in both case
( i^s i

z&50 and the presence of order is reflected by a n
vanishing value of the long-time limit of the correlatio
function, qEA5 limt→`N21( i^s i

z(t)s i
z(0)& ~since we as-

sume equilibration the correlation is stationary and the re
ence time can be taken to be zero!. However, this resem
blance is only superficial. In renormalization-grou
language,J̃ is a relevant variable.21 Therefore the details o
the dynamics of the two systems are expected to be q
different, in particular the way in which the correlation fun
tion reaches its asymptotic limitqEA , which determines the
low-energy part of the excitation spectrum of the system

Further differences between the localized state and the
state are seen from the study of the out-of-equilibrium rel
ation of such states. Indeed, an important feature of gla
systems is that their low-temperature dynamics occurs ou
equilibrium. If the system is macroscopic, its sizeN is very
large. In a realistic macroscopic situation, the asympto
long-time limit follows this large-size limit. Many experi
ments, simulations, and analytical studies show that the t
needed to reach equilibrium after entering the glassy ph
diverges so quickly that the relevant relaxation occurs ou
equilibrium. The dynamics at low temperatures is then n
stationary; i.e., the dynamic correlation functions loose ti
translation invariance. Iftw denotes the time elapsed since
quench from the high-temperature phase into the SG ph
the symmetrized correlation functionC(t1tw ,tw) depends
on botht and tw . The order in which the limitstw→` and
t→` are taken is in this case very important. For sufficien
long t and tw but in the regimet!tw , the dynamics is sta
tionary and the symmetrized correlation function reache
plateauqEA . Much of what was said above for the equilib
rium state also holds for this stationary regime. However,
times t.tw , the system enters anaging regime where the
symmetrized correlation function depends on the wait
time tw explicitly. In this regime, the symmetrized correl
tion function vanishes at long times, limt→`C(t1tw ,tw)
50, at a rate that depends ontw . In this regime, even for
a.aCRIT, small interactions will result in thedestructionof
localization of the TLS’s at long enough times.

The problem of a single TLS being a difficult one, that
an infinite set of interacting TLS’s seems hardly solvable
this stage. Therefore, as a first step, we shall focus on
low-temperature dynamics of a very simple model that m
ics some of the features of more realistic ones. This i
01444
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quantum generalization22–26 of the randomp-spin spherical
model27 coupled to a bath of quantum harmonic oscillato
The principal merit of this model is that it is simple enoug
that it can be studied in detail. Yet many of its properties
generic and expected to hold at least qualitatively for m
realistic models.28 The usual methods of equilibrium quan
tum statistical mechanics are inappropriate to describe
nonstationary situation. We solve the model using two me
ods especially designed to treat systems out of equilibriu

One is based on the Schwinger-Keldysh~SK! real-time
approach to nonstationary systems. It was first applied in
context to the quantump-spin model in Ref. 23 and use
subsequently in other cases including the SU(N) fully con-
nected Heisenberg model in the limit of largeN ~Ref. 29!
and the soft spin version of the Sherrington-Kirkpatri
model.30 It allows one to obtain the full time dependence
the symmetrized correlationC(t1tw ,tw).

The second method is based on theAnsatzof marginal
stability ~AMS! within the replica analysis of the partitio
function. Originally developed for classical systems,31 this
method was recently used to discuss the low-tempera
properties of quantum glassy systems.25,32,33Its main advan-
tage is that it uses a formalism that is closely related to
imaginary-time approach to equilibrium quantum statisti
mechanics. In Ref. 25 the AMS was extensively applied
the quantum sphericalp-spin model in the absence of th
bath. It was shown that the position of the dynamic transit
line predicted by this method coincides precisely with th
obtained using the real-time approach. It was also shown
the time-dependent correlation function computed using
AMS in the absence of the bath is identical to thestationary
part of the nonequilibrium symmetrized correlation functi
(C.qEA) when one takes the long-time limit first and th
limit in which the coupling to the bath goes to zero next. T
marginality condition imposed by theAnsatz is intimately
related to the fact that the symmetrized correlation will fu
ther decay fromqEA towards zero.~The details of this second
decay as, for instance, the two-time scaling are not acces
with this method.! A localized solution withC(t1tw ,tw)
approaching, and never leaving, the plateau atqEA corre-
sponds, in replica terms, to a stable replica symmetry s
tion. In this paper we extend the AMS to study the dynam
of the model in the case in which the system is coupled to
environment.

This paper is organized as follows. In Sec. II we motiva
and introduce our model and discuss its relationship to
more usual spin-boson model. In Sec. III we outline t
imaginary-time formalism used to solve the problem at eq
librium and within the AMS. We compute the partition func
tion of the coupled system and determine its phase diag
in both situations. We also discuss the long-time dynamics
the coupled system using a very accurate long-ti
approximation25,26 that allows us to solve the model analyt
cally. This approximation is then used to discuss the infl
ence of a coupling to different types of environment on t
T50 quantum phase transition. The real-time dynamics
the system is discussed in Sec. IV and the results are c
pared with those of Sec. III. Section V contains a brief su
mary of our main results and our concluding remarks.
4-2
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II. MODEL

In order to motivate our model, we start by considering
collection ofN identical interacting TLS’s coupled to a ba
of independent harmonic oscillators.6,16 We assume for the
moment and until otherwise stated that thecombinedsystem
is in thermodynamic equilibrium. The Hamiltonian of th
coupled system may be written as

H5HS1HB1HSB, ~2.1!

where HS , HB , and HSB denote the Hamiltonians of th
system, the bath, and their coupling, respectively. These
given by

HS52D(
i 51

N

s i
x1V~s1

z ,s2
z , . . . ,sN

z !, ~2.2!

HB5
1

2 (
l

S pl
2

ml
1mlv l

2xl
2D , ~2.3!

HSB52(
i ,l

cl
ixls i

z . ~2.4!

Here, the Pauli matricess i
m represent the TLS’s pseudospin

D/\ is their tunneling frequency, andV their mutual interac-
tion potential, which we leave unspecified for the momentxl
andpl are the coordinate and momentum of thel th oscillator
andml andv l its mass and frequency, respectively. We d
note bycl

i the coupling constant between thei th TLS and the
l th oscillator.

Using standard methods15,16 the oscillator degrees of free
dom may be integrated out to express the partition func
of the system solely in terms of the TLS variables as

Z[Tr e2bĤ5Tr$s%FT expS 2
S

\ D G , ~2.5!

with

S5E
0

\b

dtH 2D(
i

s i
x~t!1V@sW z~t!#J

1
1

2 (
i j

E
0

\bE
0

\b

dt dt8 Ki j ~t2t8!s i
z~t!s j

z~t8!,

~2.6!

whereT is the imaginary-time ordering operator and we ha
introduced the notationsW z5(s1

z ,s2
z , . . . ,sN

z ).
The kernelKi j (t) in Eq. ~2.6! is15

Ki j ~t!5
1

\b (
vk

K̃ i j ~vk!exp~2 ivkt!, ~2.7!

where vk52pk/(\b) are the Matsubara frequencies, t
coefficientsK̃ i j (vk) are given by

K̃ i j ~vk![E
0

`dv

p

I i j ~v!

v

vk
2

v21vk
2, ~2.8!
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and we have introduced the spectral density of the envir
ment I i j (v) through

I i j ~v!5p(
l

~cl
icj

l
!1ci

l
!cj

l !

2mlv l
d~v2v l !. ~2.9!

We make the simplifying assumption that the dynamic int
action betweendifferentTLS’s generated by integration ove
the degrees of freedom of the bath can be neglected c
pared to the static interaction potential included inV@sW z#.
Therefore we write

I i j ~v!5d i j I ~v!, ~2.10!

and we choose the standard parametrization2

I ~v!52a\S v

vph
D s21

ve2v/vc, ~2.11!

wherea is a dimensionless coupling constant,vc is a high-
frequency cutoff, andvph is a microscopic phonon fre
quency necessary in the non-Ohmic cases in order to keea
dimensionless. For simplicity, we shall restrict the exponens
to lie in the interval 0,s,2. With this choice the integral on
the right-hand side of Eq.~2.8! converges without the nee
of introducing an infrared cutoff and the upper cutoff may
eliminated by taking the limitvc→`. This leads to the ex-
pression

K̃~vk!5
a\

vph
s21sin~ps/2!

uvkus. ~2.12!

We shall consider diagonalp-spin interactions of the form

V@sW z#5 (
i 1,•••, i p

N

Ji 1••• i p
s i 1

z
•••s i p

z , ~2.13!

with random couplingsJi 1••• i p
. These are taken from a

Gaussian distribution with zero mean and variance

~Ji 1••• i p
!25 J̃2p!/ ~2Np21!, ~2.14!

where the overline represents an average over disorder.
In the casep52 and for an Ohmic bath (s51), Eq.~2.6!

is equivalent to the action of a disordered Kondo all
model.34 In this context,13 D5J'

K , the transverse Kondo cou
pling, and (12a)!1 is proportional toJuu

K the parallel
Kondo coupling. In the opposite limita!1, Eq. ~2.6! is a
representation of the partition function of the SK spin-gla
model in a transverse magnetic field35 weakly coupled to a
phonon~or spin7! bath.

The main difficulty in solving the quantum statistical m
chanical problem defined by Eq.~2.6! stems from the dis-
crete nature of the spins. It was shown by Cugliando
Grempel, and da Silva Santos25 ~CGS! that, in the absence o
the bath, a solvable~and yet nontrivial! model can be ob-
tained by generalizing thesz eigenvaluessi561 to continu-
ous variables2`,si,` and replacing the hard constrain
si

251 by the soft spherical constraint( i^si
2&5N. The deri-

vation of the effective continuous model in the presence
4-3
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the bath is analogous to that given in CGS for the isola
system and we refer the reader to this reference for the
tails. After performing a Trotter-like decomposition of th
time-ordered exponential in Eq.~2.5! the trace becomes
functional integral over classical fieldssi(t) and the tunnel-
ing term in the action acquires the low-energy form

2DE
0

\b

dtsx~t!→ M

2 E0

\b

dtS ]sz

]t D 2

, ~2.15!

where we introduced themass

M5
\t0

2
lnS \

Dt0
D , ~2.16!

and t0 is a cutoff representing a microscopic spin-flip tim
that we identify withvc

21 . Since we work in the regime in
which \vc is the highest energy scale in the problem,
,M,`.

The continuous version of Eq.~2.6! is thus given by

S5
1

2 (
i
E

0

\b

dtFM S ]si~t!

]t D 2

1E
0

\b

dt8 K~t2t8!si~t!si~t8!1
z

2
@si

2~t!21#G
2 (

i 1,•••, i p

N E
0

\b

dt Ji 1••• i p
si 1

~t!•••si p
~t!, ~2.17!

wherez is a Lagrange multiplier that enforces the spheri
constraint

^sW~t!•sW~t8!&ut5t85
1

\b (
k

^usW~vk!u2&5N, ~2.18!

where the angular brackets represent the average with re
to the action~2.17!. Equations~2.17! and ~2.18! define the
quantump-spin spherical model that we discuss in the res
this paper. The mass parameterM is a measure of the
strength of quantum tunneling. IfDt0 /\!1, M is large. In
this case, the gradient term favors configurations in wh
si(t) is almostt independent. The partition function is the
largely dominated by the contribution from the static fluctu
tions ~i.e., those withvk50). Since K̃(vk50)50, these
variables are unaffected by the coupling to the bath wh
drops out of the partition function in this limit. With increas
ing D, M decreases and the amplitude of the quantum fl
tuations becomes large. Thet dependence ofsi(t) then be-
comes essential.

There are three points worth discussing before presen
the solution of the model. The first one is their depende
on the value ofp. For p52 the action is quadratic and th
problem is readily diagonalizable by Fourier transformatio
This simple case was extensively discussed in the litera
both without36 and with34 a bath. In the former case, th
competition between the mass and interaction terms in
~2.17! leads to the existence of a critical massMc;\2/ J̃
above which the ground state of the system overcomes q
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tum fluctuations and acquires glassy order. Forp52, how-
ever, the ordered phase is of a trivial type, with a structu
less order parameter~see below!. Its physical properties are
nongeneric and qualitatively different from those of discre
spin systems. The presence of a coupling to the bath doe
change this situation. For allp.2 the ordered ground state
nontrivial22–26 and the model shares a number of qualitat
features with more realistic ones. Therefore, from here
we shall discuss this case, choosing the particular valup
53 in our numerical calculations.

The second point is about the caseJ̃50. In this case Eq.
~2.17! reduces to a simplified model for a TLS whose phy
ics differs in some ways from that of real two-level system
For J̃50 we have

^us~vk!u2& J̃505
\

Mvk
21z1K̃~vk!

, ~2.19!

where K̃(vk) is defined in Eq.~2.12! and Eq.~2.18! at T
50 reads

15
1

pE0

`

dv
\

Mv21K̃~v!1z
[ f s~z!. ~2.20!

We consider the Ohmic case first. Fors51, Eq.~2.19! is the
propagator of a simple damped harmonic oscillator with f
quency v05Az/M self-consistently determined by Eq
~2.20!. From the position of the poles of Eq.~2.19! we see
that there is a transition between underdamped and o
damped regimes atz5a2\2/(4M ). Using this value ofz in
Eq. ~2.20! ~with s51) and solving fora we find that this
occurs ata52/p, independent ofM. Away from this value
we easily find the following limiting behaviors:

z55
\2

4M S 12
4a

p
1••• D , a!1,

\2a2

M
exp~2pa!, a@1.

~2.21!

For a!1 the system exhibits weakly damped oscillatio
with frequencyv0;\/M . In the opposite limita@1, the
correlation function decays exponentially with a time co
stant that increases exponentially with the strength of
coupling,t;a22exp(pa).

Comparing with the results for the spin-boson model su
marized in the Introduction, we see that the transition
tween coherent and incoherent motion at a universal valu
a,1 is preserved in the spherical model but the localizat
transition ata51 is replaced by a crossover to a high co
pling regime characterized by an exponentially small ene
scale }exp(2pa). In this regime, tunneling is not sup
pressed but its rate is strongly reduced.

In the super-Ohmic case there is no localization transit
either. One can easily show that fors.1 the expression on
the second line of Eq. ~2.21! is replaced by z
;\vpha

1/(12s) for a@1. The decay rate of the correlatio
4-4
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function still decreases continuously as the strength of
coupling to the bath increases but only as a power law.

In the case of a sub-Ohmic environment the situation
different. Fors,1 the integral on the right-hand side of E
~2.20! is finite atz50 where it takes its maximum value. Fo
f s(0),1, Eq. ~2.20! cannot be satisfied for any positiv
value ofz. This phenomenon, completely analogous to Bo
Einstein condensation, signals a localization transition. S
ing the equationf s(0)51 we find the critical coupling given
by

aCRIT;S \

Mvph
D 12s

. ~2.22!

Conversely, for any value ofa the system localizes for a
sufficiently high value ofM. These results are analogous
those obtained for discrete TLS’s.1

One must keep these differences between the orig
model and its spherical version in mind when interpret
our results, especially those discussed in Sec. III D 2. In S
IV we shall illustrate the interplay between the localizati

observed forJ̃50 and the glassy dynamics that appe

when J̃.0.
The third point we want to stress is that the coupled s

tem can be thought as describing the motion of a quan
Brownian particle of massM, constrained to move on aN
hypersphere of radiusAN, in the presence of a random po

tential V(sW). The Brownian nature of the motion arises b
cause of its interaction with the quantum thermal bath. T
infinite-dimensional spherical limit yields, however, no
physical results if one wants to compare it to the well-kno
problem of the diffusion of a free quantum particle coupl
to a phonon bath in a finiteD-dimensional space. While her
we find a localization transition when the bath is sub-Ohm
such a transition does not exist in the absence of disorde
the finite-dimensional problem.

III. REPLICA SOLUTION

It is by now well established that several properties
disordered systems can be derived with the help of the
lica trick. This approach enables one to derive an effec
action for an imaginary-time-dependent matrix order para
eter. It has been noticed that differentAnsätze that param-
etrize this order parameter describe different physical si
tions as thermal equilibrium~equilibrium condition! and the
asymptotic dynamic regime~AMS!. The bulk of this section
is devoted to the analysis of the consequences of the A
As discussed in the Introduction we expect that as soon
interactions are switched on, full localization is replaced b
glassy solution with nontrivial dynamics. This argument ju
tifies the use of the AMS from the start. We briefly comme
at the end on the equilibrium properties of the model.
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A. Formalism

The presence of disorder makes it necessary to com
the averages of all physical quantities and, in particular,
the free energy. To this effect we use the replica trick; i.e.,
write

b f̄ 52
1

N
ln Z52

1

N
lim
n→0

1

n
lnZn. ~3.1!

The derivation of the expression for the free energy ass
ated with the action in Eq.~2.17! closely follows that per-
formed for the isolated system in CGS where the interes
reader will find all the necessary details. An imaginary-tim
dependent order parameterQab(t,t8) is defined as

Qab~t,t8!5
1

N
^sWa~t!•sWb~t8!&, ~3.2!

wherea,b are replica indices. The spherical constraint im
poses the restrictionQaa(0)51. We are interested in a sta
tionary situation in whichQab(t,t8) depends only on time
differences and is a periodic function of its argument w
period b\. We thus introduce the Fourier transform
Q̃ab(vk)5*0

\bdtQab(t)exp(ivk) in terms of which the aver-
aged free energy is found as

b f̄ 5 lim
n→0

G0 , ~3.3!

where

2G052
1

n (
k

Tr ln@~b\!21Q̃#

2(
k

S 12
i

n\ (
ab

Õab~vk!Q̃ab~vk! D 2
J̃2b

2\n

3(
ab

E
0

b\

dtS 1

\b (
k

exp~2 ivkt!Q̃ab~vk! D p

2bz,

~3.4!

and the operatorÕab(vk) is defined by

Õab~vk![2 idab@Mvk
21z1K̃~vk!#. ~3.5!

The equations of motion are found from the saddle po
of the free energy with respect to variations ofQ̃ab(vk).
They read

1

\
@Mvk

21z1K̃~vk!#dab

5~Q̃21!ab~vk!1
J̃2p

2\2E0

\b

dt exp~ ivkt!Qab
p21~t!.

~3.6!

Equation ~3.6! together with the spherical constraintQaa
(t50)51 determines the different phases in the model.
4-5
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In the following, we discuss the solutions to Eq.~3.6!.
Except when otherwise stated, we shall work with dime
sionless variables. These are defined by measuring ene
in units of J̃ and time in units of\/ J̃. The strength of quan
tum tunneling and of the coupling to the bath are then m
sured by the parameters

G[
\2

~ J̃M !
, as[

a

sin~ps/2! S \vph

J̃
D 12s

, ~3.7!

respectively.
In the paramagnetic phase~PM!, Qab(vk) is a diagonal

matrix,

Q̃ab~vk!5q̃d~vk!dab . ~3.8!

Equation~3.6! then reduces to

vk
2

G
1z1asuvkus5

1

q̃d~vk!
1

p

2E0

b

dt exp~ ivkt!qd
p21~t!.

~3.9!

In the SG phase, we search for one-step replica symm
breaking~RSB! solutions of the form

Q̃ab~vk!5@ q̃d~vk!2qEA#1qEAeab , ~3.10!

whereeab51 if a andb belong to the same diagonal block
size m3m and zero otherwise, and we introduced t
Edwards-Anderson order parameterqEA . It was shown in
CGS that thisAnsatz is an exact solution of the isolated
model. The proof still holds in the presence of the bath p
vided that limv→0K̃(v)50, which is verified here@cf. Eq.
~2.12!#.

To completely determine the order-parameter matrix,qEA
andm must be computed. As discussed in detail in CGS,
may be done in two different ways, each leading to a phy
cally different state. Within theAnsatz of marginal stability,
qEA is determined by extremization of the free energy andm
is chosen such that the stability of the ordered state is m
ginal, i.e., that its excitation spectrum contains a zero-ene
mode.

Decomposing the diagonal order parameterq̃d(v) in a
singular and a regular part,

q̃d~vk!5bqEAdvk,01q̃REG~vk!, ~3.11!

an equation forq̃REG(vk) can be derived by a straightfor
ward generalization of the results of CGS to the case
which noise is present. It reads

Fvk
2

G
1z81asuvkus2@S̃REG~vk!2S̃REG~0!#G q̃REG~vk!51,

~3.12!

with

z85
p

2
bm qEA

p2111xp

xp
, ~3.13!
01444
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bm5~p22!A 2

p~p21!
qEA

2p/2 , ~3.14!

b
qEA

q̃d~0!
5

xp

m1xp
, ~3.15!

and

S̃REG~vk!5
p

2E0

b

dt@qp21~t!2qEA
p21#cos~vkt!.

~3.16!

The parameterxp takes the value

xp5p22. ~3.17!

For givenp anda, Eqs.~3.12!–~3.16! have solutions with
qEAÞ0 only for low enough values ofG andT. Otherwise,
thermal or quantum fluctuations destroy the ordered st
There is thus a boundaryGc(T) in the T-G above which the
system is in the PM state. We determine its shape below

B. Dynamic phase diagram

We determined the phase diagram for the coupled sys
for p53 using the numerical methods described in CGS
critical line with a second-order section@close to the classica
critical point (Td ,G50)] and a first-order section@close to
the quantum critical point (T50,Gd)] is also obtained in the
presence of an environment. The second-order critical lin
determined by the conditionm51; the first-order critical
line is defined as the locus of the points where a margin
stable solution first appears with decreasingG for T fixed
~see Fig. 3!. For eachG anda this defines adynamictran-
sition temperatureTd(G,a). It was shown in CGS tha
Td(G,a) precisely coincides with the temperature belo
which the real-time dynamics of the system loses tim
translation invariance and the fluctuation-dissipation theor
~FDT! is violated.23

The qualitative features of the phase diagram, similar
those found for the isolated system, are as follows. Fop
.2, the transition isdiscontinuousin the sense that the orde
parameterqEA jumps across the phase boundary. The tran
tion line contains atricritical point (T!,G!) that divides it
into two sections. ForT>T!, physical properties arecon-
tinuousacross the transition. The latter is thereforesecond
order in the thermodynamic sense. ForT,T!, instead,
physical quantities arediscontinuousacross the transition
which is thusfirst order. The origin of this behavior is the
fact that the values taken by the parameterm on the transi-
tion line are different above and belowT!. For T.T!, m
51 along the transition line. This is its value in the parama
netic phase, meaning thatm is continuous across the trans
tion and so are the observables. ForT,T!, mÞ1 along the
transition line but it is a decreasing function ofT that van-
ishes linearly asT→0. Crossing the phase boundary atT
,T!, m is discontinuous and so are physical properties.

We show on the right panel of Fig. 1 the dynamic pha
4-6
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FIG. 1. Static~left! and dynamic~right! phase diagrams for thep53 spin model coupled to an Ohmic bath (s51). The couplings to the
bath area5 0, 0.25, and 0.5 from bottom to top. The solid line and line points represent second- and first-order transitions, respe
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diagrams obtained forp53 and three values of the couplin
to an Ohmic bath,a50,0.25,0.5. The solid line and the lin
points represent second- and first-order transitions, res
tively. We make the following observations.

~i! In the limit G→0 the transition temperature is inde
pendent of the strength of the coupling to the bath.

~ii ! The size of the region in phase space where the sys
is in the ordered state increases witha. Coupling to the
dissipative environment thus stabilizes this state.

~iii ! The dynamic tricritical temperature decreases rapi
with increasinga.

Our first observation is a consequence of the fact tha
the limit G→0 the partition function is essentially dete
mined by the zero-frequency components of the pseudo
which are decoupled from the bath~see Sec. II!. This result
is, however, nontrivial from a dynamical point of view, sinc
it implies that the dynamic transition of a classical syst
coupled to a bath with non-d correlations~‘‘colored’’ bath! is
not modified by the latter.

The second feature follows from simple physical cons
erations. The interaction term in the action favors spin-gl
order. Coupling to the bath favors localization and its eff
is to reduce the effective tunneling frequency. Therefore
the presence of the bath, the value of the bare tunne
01444
c-

m

y

in

in

-
s
t
n
g

frequency needed to destroy the ordered state must incr
with a. Even if the localized state and the glassy state m
seem superficially similar, they are indeed very diffe
ent. In the former, the symmetrized correlation functi
C(t1tw ,tw) approaches a plateau as a function oft and
never decays towards zero while in the latter the relaxa
first approaches a plateau but it eventually leaves it to re
zero for t@tw . We shall see this difference explicitly in th
analysis of the real-time dynamics of Sec. IV.

The fact that the coupling to the environment favors t
ordered state also reflects itself in the value taken by
order parametersqd(t) andqEA . We display in Fig. 2 thet
dependence of the diagonal part of the order parameterqd(t)
for the static and dynamic solutions at a fixed temperat
and G for different values ofa. It can be seen that, asa
increases,qd(t) reaches a higher plateau level at long ima
nary times. The analysis ofqEA is postponed to Sec. III D.

Figure 3 displays them dependence ofG at a fixed tem-
perature (T,T!), for different values of the coupling to th
noise. The functionG(m) is double valued and the physica
branch is that on whichdm/dG.0. This is a consequence o
Eq. ~3.13!, which shows thatm is a decreasing function o
qEA which itself is a decreasing function ofG. It can be seen
FIG. 2. The diagonal partqd(t) for the static~left! and dynamic~right! solutions.
4-7
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that for fixedG andT, m decreases with increasinga. Thus,
the coupling to the bath results in a higher effective tempe
ture in the glassy phase~see Sec. IV for a definition ofTEFF

and a discussion on this issue!.
We have also studied the phase diagram in the non-Oh

cases. Figure 4 shows a comparison of the effects of
Ohmic bath and two non-Ohmic ones, sub-Ohmic (s51/2),
and super-Ohmic (s53/2) for the same value ofa. It may be
seen that for the chosen values of the parameters the re
of stability of the ordered phase is enhanced~reduced! for a
sub-Ohmic ~super-Ohmic! bath with respect to an Ohmi
one. This feature is not generic as there are other value
vph for which the relative sizes of the effects of Ohmic a
non-Ohmic baths are different. Indeed, in preparing th
figures we usedvph510 in the non-Ohmic cases and th
parameter modifies the coupling to the bath due to the fa
vph

s21 in I (v).

FIG. 3. The break pointm as a function ofG for three values of
the coupling to an Ohmic environmenta. b520.b!.

FIG. 4. The dynamic critical line for sub-Ohmic (s51/2, upper
curve!, Ohmic (s51, middle curve!, and super-Ohmic (s51.5,

lower curve! baths.\vph / J̃510 in the non-Ohmic cases. The d
mensionless coupling to the bath isa50.5 in all cases.
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C. Equilibrium phase diagram

In thermodynamic equilibrium bothqEA andm are deter-
mined by imposing that the free energy be an extremum w
respect to their variation. This leads to the conventional th
modynamic equilibrium state. The value ofxp is obtained
from

xp
2

p~11xp!
2 ln~11xp!1

xp

~11xp!
50. ~3.18!

The transition line is defined as the locus of the points wh
the free energies of the PM and SG phases coincide. For
G and a this defines a freezing temperatureTs(G,a) at
which the system enters the SG state. The qualitative feat
of the equilibrium phase diagram shown on the left pane
Fig. 1 are similar to those found for the dynamic case. Not
that the lineTd(G,a) lies alwaysabove Ts(G,a) and that, in
contrast to what we found for the dynamic tricritical tem
perature, the equilibrium tricritical temperatureT! depends
only weakly on the strength of the coupling to the bath.

D. Low-energy properties of the marginal SG state

Insights into the low-energy properties of the model m
be gained by studying it in the framework of a simple a
accurate approximation applied to the isolated model
CGS. It consists in deriving the exact low-frequency form
q̃REG(vk) and using it over the whole frequency range a
suming that physical properties at low temperatures
mainly determined by the low-energy excitations of the s
tem. We consider in the following theT50 case.

1. Low-frequency form of q˜REG„vk…

We start by assuming~and verifying later! that qREG(t)
@cf. Eq. ~3.11!# decays in imaginary time as a power law:

qREG~t!}utu2z. ~3.19!

Then, we may write@cf. Eq. ~3.16!#

S̃REG~vk!2S̃REG~0!5
p

2E0

b

dt~cosvkt21!

3@~p21!qEA
p22qREG~t!1•••#

}uvkuz21~11••• !, ~3.20!

where the ellipsis represents terms that vanish in the li
vk→0. Therefore, in the long-time limit,

S̃REG~vk!2S̃REG~0!

'
p~p21!

2
qEA

p22@ q̃REG~vk!2q̃REG~0!#.

~3.21!

Substituting Eq. ~3.21! in Eq. ~3.12! and solving for
q̃REG(vk) we find
4-8
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q̃REG~vk!5
2

vk
2/G1asuvkus12kp1Avk

2/G1asuvkusAvk
2/G1asuvkus14kp

, ~3.22!
it

-

.

e

y

w-

n-
e
to

the

as

-
re-
where we introduced the parameter

kp[Ap~p21!qEA
p22

2
. ~3.23!

Equation~3.22! is exact in the low-frequency limit where
reduces to

q̃REG~vk!5kp
21F12

1

Akp

~vk
2/G1asuvkus!1/2G

→kp
21F12Aas

kp
uvkus/2G . ~3.24!

This leads to the long-t behavior

qREG~t!;Aas

kp
3

1

utu11s/2
. ~3.25!

The assumption~3.19! is thus self-consistent with the expo
nentz511s/2. In the absence of the bath Eq.~3.22! leads to

qREG~t!;
1

AGkp
3

1

utu2
, ~3.26!

the result found previously in CGS for the isolated system
crossover between these two regimes occurs attcr
5(Gas)

1/(s22). The analytic continuation of Eq.~3.24!
yields the low-frequency limit of the imaginary part of th
susceptibility:
01444
A

xREG9 ~v!;sgn~v!S as

kp
3D 1/2

uvus/2. ~3.27!

The result for the Ohmic case,xREG9 (v)}uvu1/2, was previ-
ously found forp52 continuous and discrete Kondo-allo
models at the quantum critical point.34 In the marginally
stable state, this behavior persists throughout the lo
temperature phase.

Equation~3.22! is also exact asvk→` where it reduces
to q̃REG(vk);G/vk

2 . Therefore, we expect it to be a reaso
able interpolation in the whole frequency range. It will b
seen in the following that this approximation allows one
gain useful insight into the effects of the environment on
physics of the interacting system.

2. Quantum phase transition

The normalization condition and Eq.~3.11! lead to the
following equation for the order parameterqEA at T50:

12qEA5
1

b (
vk

q̃REG~vk!→T50E
2`

` dv

2p
q̃REG~v!. ~3.28!

This is still an implicit equation for the order parameter
q̃REG(v) depends onqEA throughkp @cf. Eq. ~3.23!#.

We now approximate Eq.~3.28! by assuming that the in
tegral on the right-hand side is dominated by the low f
quencies. Then, we use forqREG(v) the expression given in
Eq. ~3.22! and write
12qEA5
2

pE0

` dv

v2/G1asv
s12kp1Av2/G1asv

sAv2/G1asv
s14kp

. ~3.29!
ity
the
rent
It is convenient to make the change of variablesv
5(Gas)

1/(22s)x in Eq. ~3.29! which leads to

As~12qEA!5E
0

` dx

x21xs12e1Ax21xsAx21xs14e

[gs~e!, ~3.30!

where

As5
p

2
~Gs21as!

1/(22s)

5
p

2 S \

Mvph
D (s21)/(22s)S a

sinps/2D
1/(22s)

, ~3.31!
e5
kp

~Gsas
2!

1
22s

5
J

\
vphF S \

Mvph
D s a2

sin2ps/2G1/(s22)

kp .

~3.32!

Equation ~3.30! will be used to study theT50 quantum
phase transition. We shall mostly be interested in the vicin
of the quantum transition where the system is close to
quantum paramagnetic state. We discuss separately diffe
types of environment.

a. Ohmic case. Settings51 in Eq. ~3.30! the equation of
state may be written as
4-9
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pa

2
~12qEA!5E

0

` dx

x21x12e1Ax21xAx21x14e

[g1~e!, ~3.33!

with e5kp /(Ga2).
We show in Fig. 5 thea dependence ofqEA in the mar-

ginally stable case forp53 at fixedG54. We represent with
line points the results obtained numerically from the f
equations at a finite but low temperature,T50.1. The dashed
line instead represents the approximate solution derived f
Eq. ~3.29!. The agreement between the two calculations
very good even if the approximation strictly applies to t
zero temperature case only.

Figure 6 showsG as a function ofqEA for p53 and
several values ofa as obtained from the numerical solutio
to Eq. ~3.33!. The T50 transition takes place at the max
mum value ofG, Gd . The corresponding value ofqEA is the
discontinuity of the order parameter at the first-order tran
tion. While Gd increases rapidly witha, the jump of the
order parameterdecreasesas the strength of the coupling t
the bath increases. The presence of the Ohmic bath
tends to make the first-order transition smoother.~This prop-
erty tells us that it will be very difficult to see the first ord
transition by solving numerically the real-time dynam
equations.!

This behavior results from the fact thatg1(e) diverges
logarithmically ase→0. In order to see this, we decompo
the interval of integration into two parts 0<x<1 and 1<x
<`. The integral over the second interval is a finite const
at e50. In the integral over the first interval we may negle
x2 compared tox and write

pa

2
~12qEA!e→0

; E
0

1 dx

x12e1AxAx14e

52
1

2
ln e1O~1!. ~3.34!

We choosep53 for concreteness and solve Eq.~3.34! for G
to obtain the equation of state in the high-noise limit:

FIG. 5. The dynamic Edwards-Anderson parameter as a fu
tion of the coupling to an Ohmic bath,a, for G54 and b510.
Solid line with point: exact numerical calculations. Dashed line:
low-frequency approximation of Eq.~3.29!.
01444
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G5
1

a2A3qEAepa(12qEA). ~3.35!

This function has a maximum at

qEA
! '

1

2pa
, ~3.36!

whereG reaches the value

Gmax[Gd'A 3

2pa5exppa. ~3.37!

We thus find the two features mentioned above: namel
reduction of the discontinuity of the order parameter an
rapid increase ofGd for high values ofa. Expressing Eq.
~3.37! in terms of the original variables of the problem@cf.
Eq. ~3.7!# we find that, in the high noise limit, theT50
dynamic freezing transition takes place at the critical co
pling

J̃d;
\a5/2

M
exp~2pa!. ~3.38!

Thus, fora@1, J̃d is proportional to the exponentially sma
energy scale of Eq.~2.21! associated with incoherent tunne
ing in the isolated TLS’s. It must be emphasized that
existence of this scale is a feature of the spherical mo
used in this paper. Real TLS’s~i.e., described by Ising spins!

localize ata51. Therefore,J̃d is expected to vanishpre-
ciselyat a51 for discrete spins.

Deep in the ordered phase the system is expected to fr
with qEA'1. This regime occurs for sufficiently high value
of a or sufficiently low values ofG. Consider first the former
case withGa2@1. Then, e!1 and we can still use Eq
~3.34! which, for qEA'1, reduces to

c-

e

FIG. 6. G as a function ofqEA at T50 for p53 and an Ohmic
bath. The curves follow from the numerical solution to Eq.~3.33!.
The coupling to the batha runs from 0 to 1.2 in intervals of 0.2
from bottom to top.
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qEA'12
1

pa
lnS Ga2

kp~1! D , Ga2@1, ~3.39!

wherekp(1)5Ap(p21)/2.
In the opposite case,Ga2!1, e is large. In this case

g1~e!5
2

3Ae
S 12

3

8Ae
1••• D , ~3.40!

leading to

qEA'12
4

3p S G

kp~1! D
1/2F12

3

8 S G

kp~1! D
1/2

a1•••G ,
Ga2!1. ~3.41!

In both regimes the effect of the noise leads to an incre
in qEA , thus stabilizing the ordered phase.

b. Sub-Ohmic case. Figure 7 showsG as a function ofqEA
for p53 and several values of the coupling to a sub-Ohm
bath withs51/2. The results were obtained by numerica
solving Eq.~3.29!. The qualitative features of these curv
are similar to those found in the Ohmic case.

As discussed in Sec. II, in the sub-Ohmic case the isola
TLS has a localization transition at a critical valueaCRIT of
the coupling to the bath. We thus expect a transition to
ordered phase atJ̃50 for all a.aCRIT in the interacting
system. Near the critical point atJ̃50, e is small. Fors
,1 the integral on the right-hand side of Eq.~3.30! is finite
at e50 andgs(0)5 f s(0)/2 where f s is the function defined
in Eq. ~2.20!. Detailed inspection of the behavior ofgs(e)
shows that, ase→0,

gs~0!2gs~e!}H e for 0,s,1/2,

e ln~1/e! for s51/2,

e
12s

s for 1/2,s,1.

~3.42!

FIG. 7. G as a function ofqEA at T50 for p53 and a sub-
Ohmic bath,s51/2 from Eq.~3.29!. The couplinga1/2 runs from 0
to 2 in intervals of 0.4 from bottom to top.
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We consider for simplicity the cases,1/2 and takep
53 for concreteness. Fora;aCRIT, Eq. ~3.30! acquires the
form

J̃M

\2
AqEA}12S a

aCRITD 1/(22s)

~12qEA!, ~3.43!

whereaCRIT is given in Eq.~2.22!. There is a maximum a
qEA}( J̃M /\2)2. The dynamic transition thus takes place

J̃d}
\2

M S 12
a

aCRITD 1/2

. ~3.44!

The jump of the order parameter at the transition isqEA
!

}(12a/aCRIT). Therefore, fora5aCRIT the dynamic tran-
sition is continuous. Summarizing, fora,aCRIT the transi-
tion between PM phase and SG phase occurs at a finite v
of Jd while for a.aCRIT an infinitesimalJ̃ is enough to
render the system glassy. We expect to obtain this same
havior for an interacting TLS in an Ohmic bath.

At large couplings,a@aCRIT, qEA;1 and we find

qEA'12S aCRIT

a D 1/(22s)

. ~3.45!

Notice the absence ofJ̃-dependent corrections that appear
higher order (a22).

In the opposite limit~large J̃), e is large. Then,

gs~e!5
2

3Ae
~12ase

(s/221)1••• !, ~3.46!

with as a constant. We find

qEA'12
4

3p S G

kp~1! D
1/2

3F 12as

Gs/2

kp
12s/2~1!

S \vph

J̃
D 12s

a

sin
ps

2

1•••G .

~3.47!

As before, the presence of noise favors the ordered ph
The comparison of Eqs.~3.39! and ~3.45! shows that, at
strong coupling, an Ohmic bath is more effective than a s
Ohmic bath in freezing the spins. At weak coupling we ha
a linear dependence ona in both cases. ForG!1, however,
the slope is higher in the latter case which results now
higher values ofqEA . Notice the presence of the extra fact
(\vph / J̃)12s, which amplifies this effect if the phonon en
ergy is larger than the magnetic energy.

c. Super-Ohmic case. In the super-Ohmic case no loca
ization transition exists atJ̃50. Fors.1, gs(e) diverges as
e (12s)/s in the limit e→0. This corresponds to smallJ̃ or
large as . A calculation similar to those performed abov
yields the critical coupling
4-11
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J̃d;\vph
S sin

ps

2

a
D s21

, a@1. ~3.48!

As in the Ohmic case, the critical coupling decreases w
increasinga but only as a power law. The jump of the ord
parameter at the transition is however independent ofa.

Deep in the ordered phase, for small values ofJ̃, we find

qEA;12S J̃d

\vph
D (12s)/sS sin

ps

2

a
D s21

. ~3.49!

For small values ofa Eq. ~3.47! is still valid. Notice that
for s.1 the enhancement of the order parameter due to
coupling to the bath decreases whenvph / J̃ increases.

E. Real-time correlation function

In thermodynamic equilibrium the correlation functio
and the imaginary part of the susceptibility are related by

C~ t ![
1

N (
i

^si~ t !si~0!&5qEA1\E
0

`dv

p
xREG9 ~v!

3coth~b\v/2!cos~vt !. ~3.50!

If instead of the equilibrium response function we use
Eq. ~3.50! the expression forx9(v) obtained through the
AMS, we obtain a correlation function that is closely relat
to thestationarypart of that obtained through real-time d
namical calculations. This relationship was discussed ex
sively in CGS in the case of the isolated system with
following conclusions.

~i! The temperatureTd below which the AMS solution
exists coincides precisely with the dynamical critical te
perature obtained from the dynamical calculations. This
the temperature below which the real-time dynamics of
system becomes nonstationary and violations of the FDT
in.

~ii ! The parameterm precisely coincides withX, the FDT
violation factor. This is related to theeffectivetemperature of
the system in the aging regime,Teff5T/X ~Ref. 37!; see Sec.
IV.

~iii ! The response function derived from the AMS is ide
tical to the out-of-equilibrium response function when t
long waiting time is taken first and the weak-coupling lim
in taken later on. More precisely,

CAMS~ t ![
1

N (
i

^si~ t !si~0!&AMS

5 lim
a→0

lim
tw→`

CDYN~ t1tw ,tw!. ~3.51!

A proof of the analogous properties for the syste
coupled to the bath can be given following the same lin
The first two conclusions remain unchanged. The third o
generalizes to
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CAMS~ t !5 lim
tw→`

CDYN~ t1tw ,tw!, ~3.52!

valid for all values ofa. The aging regimet@tw in which
CDYN(t1tw ,tw) decreases belowqEA is not accessible in
this approach.

In this section we shall analyze in detail several time
gimes inC(t). We use throughout this section the origin
variables of the problem.

1. No coupling to the bath

We consider first the case in which there is no coupling
a bath. Then, the analytic continuation of Eq.~3.22! is

xREG9 ~v!5
v

2kp
2 S M

J̃3D 1/2A4kp2
v2M

J̃
. ~3.53!

Substituting this expression in Eq.~3.50! and making the

change of variablesv5A4kpJ̃/M x in the integrals we ob-
tain the correlation function

C~ t !5qEA1
2\

pkp
S 4kp

MJ̃
D 1/2E

0

1

dx xA12x2

3cos~xt/t0!cothS \

2Tt0
xD , ~3.54!

wheret0 is a characteristic time given by

t05S M

4kpJ̃
D 1/2

. ~3.55!

At T50 Eq. ~3.54! reduces to

C~ t !5qEA1
2\

pkp
S 4kp

MJ̃
D 1/2

3E
0

1

dx xA12x2cos~xt/t0!

5qEA1
2\

3pkp
S 4kp

MJ̃
D 1/2

3 1 F2„1;1/2,5/2;2~ t/t0!2/4…, ~3.56!

where 1F2 is a generalized hypergeometric function. Fro
the normalization conditionC(t)51 we find the quantum
equation of state

kp~12qEA!5
2\

3p S 4kp

MJ̃
D 1/2

, ~3.57!

found previously in CGS. The asymptotic behavior of t
correlation function in the long-time limit is

C~ t ! t@t0
→ qEA1

2\

3pkp
S 4kp

MJ̃
D 1/2S t0

t D 3/2

f ~ t/t0!, ~3.58!
4-12
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where f is an oscillatory function that can be expressed
terms of Fresnel integrals. From Eqs.~3.57! and ~3.55! the
frequency of the oscillations is

v0;
\

M ~12qEA!
. ~3.59!

At the dynamic transition pointqEA depends only onp.
Then,v0}\/M , the characteristic frequency of the noninte
acting TLS’s. Deep in the ordered phaseqEA'1 and Eq.

~3.57! yields 12qEA;\/AMJ̃. Then, in this limit v0

;AJ̃/M .

At temperatures higher thanTcr5\/t0;\AJ̃/M , but low
so that the results from the approximation can still be us
we can approximate cothz;z21 in the integral on the right-
hand side of Eq.~3.54! and write

C~ t !;qEA1
4T

p J̃kp
E

0

1

dxA12x2cosS xt

t0
D

5qEA1
2T

J̃kp

J1S t

t0
D t0

t
, ~3.60!

where J1(x) is the Bessel function. Notice that Eq.~3.60!
also holds forall temperatures for timest@\/T. The normal-
ization condition now yields

kp~12qEA!5
4T

p J̃
E

0

1

dxA12x25
T

J̃
, ~3.61!

which is theclassical equation forqEA .38 In this classical
regime the long-time asymptotic behavior of the correlat
function is

C~ t ! t@t0
→ qEA1

2T

J̃kp

A2

pS t0

t D 3/2

cosS 3p

4
2

t

t0
D . ~3.62!

Notice that the power-law decay of the amplitude of the
cillations }t23/2 at high and low temperatures is the same

2. Finite coupling to a bath

In the presence of a coupling to an Ohmic bath there
two different regimes. At frequencies higher thanv!

5\a/M the inertial term in Eq.~3.22! dominates over the
term proportional toa. For times shorter thant!51/v! the
system thus behaves as if it were isolated. At longer tim
when inertia may be ignored, we have

x9~v!;
1

\

Aav

av12kpJ̃/\
S \

2kpJ̃
D 1/2

~3.63!

and the motion is overdamped. The correlation function th
reads

C~ t ! t@t!→qEA1
2\Ag0

p~2kpJ̃!3/2 E0

`

dvAvcosvt coth~b\v/2!,

~3.64!
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whereg05a\ is the classical friction coefficient. Perform
ing the integral we find

C~ t !2qEAt@t!→ 2\Ag0 /p

~4kpJ̃!3/2

3H 2t23/2, T50,

4T/\t21/2, T@\/t.
~3.65!

Notice the difference in sign between the results at zero
finite temperature. At zero temperatureC(T) approachesqEA
from below, whereas atTÞ0 it does so from above. In the
Ohmic case the exponent controlling the decay of theT50
correlation function is the same that controls the amplitu
of the coherent oscillations found in the absence of noise

At finite temperature the decay is slower,C(t)2qEA
}t21/2 . In the classical model, the nonequilibrium symm
trized correlation functionC(t1tw ,tw) approaches the pla
teau qEA as C(t1tw ,tw)2qEA}t2n(T) for t!tw . It was
found39 that the temperature-dependent exponentn(T) ap-
proaches 1/2 in the zero temperature limit in agreement w
our result. The calculation of the temperature corrections
the exponent lies beyond the power of our low-temperat
approximation.

At finite temperature, in the long-time limit, our resul
coincide with those obtained from the solution of the clas
cal Langevin equation without inertia. Although th
asymptotic form of the correlation function is independent
M ~i.e., of the tunneling frequencyD), it must be remem-
bered that Eq.~3.65! only holds for times longer thant!

which does depend onD. A consequence of this fact is tha
the dynamics of the model in the limitD→0 is trivial. In-
deed, it can be shown from Eq.~3.22! that

xREG9 ~v!Mv/g0@1
→ g0

M2v3 . ~3.66!

Then, for any finitev,

lim
M /g0→`

xREG9 ~v![0. ~3.67!

HoweverxREG9 (v) cannot be identically zero since the sta
susceptibilityxREG(0) is finite and it is given byxREG(0)
5kp

21 according to Eq.~3.22!. Here xREG(0) can also be
expressed as

xREG~0!5E
2`

` dv

p

xREG9 ~v!

v
. ~3.68!

Equations~3.67! and ~3.68! are compatible only if

lim
M /g0→`

xREG9 ~v!

v
5

p

kp
d~v!. ~3.69!

Therefore, the system has no intrinsic dynamics in this lim
In terms of the original spin model this is a simple cons
quence of the form of our starting Hamiltonian, Eq.~2.4!: if
D50, the spin variables commute with the Hamiltonian a
are thus constants of the motion. In terms of the parti
4-13
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interpretation the limitM /g0→` corresponds to an infi
nitely massive particle that is not able to move or to the lim
of zero friction where there is no dissipation.

The expressions in Eq.~3.65! can be readily generalize
to non-Ohmic baths. We find that in the long-time limit

C~ t !2qEA}H cosS s12

4
p D t2(11s/2), T50,

cosS s

4
p D t2s/2, T@\/t.

~3.70!

IV. REAL-TIME DYNAMICS

In this section we study the real-time dynamics of t
system coupled to the environment. We use the dyna
equations for the symmetrized correlation and linear
sponse functions derived in Ref. 23 with the Schwing
Keldysh formalism and we solve them numerically, as
function of time, for different couplings to the bath and d
ferent environments. We compare the results to the ones
tained in the previous section with the imaginary time fo
malism.

A. Dynamic equations

The dynamic equations for the model defined in Sec
were derived in Ref. 23. They are of the Schwinger-Dys
form and read

@M] t
21z~ t !#R~ t,t8!5d~ t2t8!1E

0

`

dt9 S~ t,t9!R~ t9,t8!,

~4.1!

@M] t
21z~ t !#C~ t,t8!5E

0

`

dt9 S~ t,t9!C~ t9,t8!

1E
0

t8
dt9D~ t,t9!R~ t8,t9!,

~4.2!

with the equal-time conditionsC(t,t)51 andR(t,t)50 and

lim
t8→t2

] tR~ t,t8!5
1

M
,

lim
t8→t1

] tR~ t,t8!50, ~4.3!

lim
t8→t2

] tC~ t,t8!5 lim
t8→t1

] tC~ t,t8!50. ~4.4!

The symmetrized correlation function is defined asC(t,t8)
[1/(2N)( i^ŝi(t) ŝi(t8)1 ŝi(t8) ŝi(t)&. The equation for the
Lagrange multiplierz(t) reads
01444
t
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z~ t !5E
0

t

dt9@S~ t,t9!C~ t,t9!1D~ t,t9!R~ t,t9!#

1ME
0

t

dt9E
0

t

dt-@] tR~ t,t9!#D~ t9,t-!@] tR~ t,t-!#

1M2@] tR~ t,s!]st
2 C~s,t !2]st

2 R~ t,s!] t8C~s,t8!#u
t→t8
s→0 .

~4.5!

The total self-energy and vertex include the interaction w
the bath and are given by

S~ t,t8![24h~ t2t8!2
pJ̃2

\
ImFC~ t,t8!2

i\

2
R~ t,t8!G p21

,

~4.6!

D~ t,t8![2\n~ t2t8!1
pJ̃2

2
ReFC~ t,t8!2

i\

2
@R~ t,t8!

1R~ t8,t !#G p21

, ~4.7!

with

n~ t2t8!5E
0

`

dvI ~v!cothS 1

2
b\v D cos@v~ t2t8!#,

~4.8!

h~ t2t8!52u~ t2t8!E
0

`

dv I ~v!sin@v~ t2t8!#. ~4.9!

The spectral density of the bath,I (v), has been defined in
Eq. ~2.11!.40

In the following we shall compare the effect of enviro
ments with different values ofs and using different coupling
strengths. The high-frequency cutoffvc is introduced to
avoid the divergence ofn(t). In the sub-Ohmic case, whe
we solve the equations numerically, we also need a lo
frequency cutoff, which we impose in a hard manner
including a factoru(v2b) in the definition ofI (v).

The kernelsn andh can be computed for all values ofs.
In the numerical solution to the set of coupled integr
differential equations~4.1! and~4.2! it is more useful to use
the integral of the kernelh, ĥ(t)[*tdt8h(t8), which reads

ĥ~t!5
a\

2p

vc

~11vc
2t2!s/2

cos@s arctan~vct!#G~s!

~4.10!

and, whens takes the values 1/2,1,3/2, it becomes

ĥ~t!;5
Avc

t
s51/2 sub-Ohmic,

1

t
s51 Ohmic,

1

Avct
3

s53/2 super-Ohmic.
4-14
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On the right-hand side we have written the limiting form f
vct@1. It is clear that, as for the imaginary-time kernels, t
dependence onvc is very different in each of these cases

We shall rescale the real time and the other parame
and functions in the dynamic equations to match the defi
tions that we used in the Matsubara calculation. Under
rescaling of time, t→ J̃/\t, the symmetrized correlation
function remains unchanged and the response transform
R→\R. The rescaled dynamic equations are identical
Eqs.~4.1! and ~4.2! with M replaced byG21.

B. Numerical study of the real-time dynamics

As shown in Sec. III B, both static and dynamic transiti
lines depend strongly on the strength of the coupling
tween system and bath. We can also see this effect by
lowing the real-time dynamics of the system coupled to
environment. We have solved Eqs.~4.1! and ~4.2! numeri-
cally with a predictor-corrector algorithm that allows us
reach long times with a high accuracy. For each set of
rameters we have checked the data collapse for different
ues of the iteration steph in the discretized equations. I
general, there is a good collapse forh<0.02 and, typically,
we have usedh50.01 andh50.02.

1. Effect of the interactions: Localization against glassy
behavior

In the Introduction and Sec. I we recalled several res
for localization in dilute two-level systems coupled to a ba
In this paper we focus on a soft spin version of the intera
ing problem. Our first aim is to determine the effect of t
couplingJ̃ on the localization properties of this system fro
a real-time dynamic point of view. In Fig. 8 we show th
decay of the symmetrized correlationC(t1tw ,tw) using a
sub-Ohmic bath withs50.5, vc510, andvph55. The three
upper curves were obtained fora54 and changing the valu
of the SG coupling strengthJ̃. WhenJ̃50 the system local-
izes fora.aCRIT: for any tw and long enought the symme-
trized correlation reaches a plateau and it does not de
below this value. When a small coupling is switched on
decay changes. The symmetrized correlation approach
plateau for small values oft2tw but it subsequently leave
the plateau and decays towards zero. The system has g
nonequilibrium dynamics that we shall quantify below. F
nally, when the coupling to the bath is very small andJ̃50
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the system does not localize and the symmetrized correla
decays to zero with broad oscillations.

2. Dynamics in the paramagnetic phase

For a chosen coupling to a bath, at sufficiently high valu
of G and/orT the system equilibrates with the environme
and it quickly reaches a stationary regime where the quan
FDT is satisfied. This property has been proved for thep-spin
model in Ref. 23, for the large-N fully connected Heisenberg
SU(N) model in Ref. 29, and for a soft version of the qua
tum model in Ref. 30. In all cases the systems were coup
to an Ohmic environment and the limit of weak couplin
lima→0limtw→` , was considered. The symmetrized corre
tion and response have a rapid decay towards zero with
cillations that depend on the value of the quantum param
G and, as we show here, on the coupling to and the type
environment used.

We first consider a fixed Ohmic environment; i.e., we ta
s51 and we fixvc510. We display in Fig. 9 the decay o
the symmetrized correlation and response functions for
ferent values ofG in the PM phase. It is clear from the figur
that the period of the oscillations decreases withG. In order
to quantify this dependence one can computex9(v)/v and
follow the evolution of the peaks. We show two examples

FIG. 8. The decay of the symmetrized correlation atT50 in

three cases: localization fora54 and J̃50, glassy decay for two

nonvanishing values ofJ̃, J̃50.5, andJ̃51, and a simple decay
towards zero for the case of a small coupling to the bath,a50.2

and J̃50. We have chosen a sub-Ohmic bath withs50.5, vph

55 andvc510. The quantum parameterG equals 1.
a-
FIG. 9. The stationary symmetrized correl
tion ~left! and response~right! functions atT52
for several values of the quantum parameterG,
given in the key. The bath is Ohmic andvc55,
a50.8.
4-15
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FIG. 10. The frequency dependence
x9(v)/v. Left panel:T50, a50.6, vc55, and
several values ofG. Right panel:G55, T50,
vc510, and several values ofa. The environ-
ment is Ohmic in both cases.
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Fig. 10. The data in the left panel correspond to those in F
9. In the right panel we representx9(v)/v for T50, G55,
and several values ofa. For small values ofa the system is
deep in the PM phase and there is a well-defined pea
x9(v)/v at a finite valuev0 that increases with decreasin
a. At high enough values ofa a tail at low frequencies start
developing, indicating that the dynamics is slower and t
the system approaches the transition towards the gl
phase. Eventually, as discussed in Sec. III A, for high eno
a, the parameters fall below the transition and the sys
becomes glassy with slow dynamics.

3. Dynamics in the glassy phase

In Fig. 11 we compare the behavior of the symmetriz
correlation and response functions in the glassy phase w
the system is coupled to an Ohmic environment through
ferent coupling constants. We chooseT50.1, G54, and we
compare the effect ofa50.2 anda51. The high-frequency
cutoff is vc55. From the discussion in Sec. III we expe
that the system is in the PM phase in the first case and in
SG phase in the second. This is seen in Fig. 11. Fora50.2
the symmetrized correlations rapidly reach a stationary
gime and they oscillate around zero. Fora51 the behavior
is different. There is a first rapid decay towards a plateau
has a low value and, then, a slow and monotonic decay
wards zero. Aging effects are apparent from the figure. T
response function also shows a qualitatively different beh
ior according to the value ofa. In one case it quickly ac-
quires a stationary oscillatory behavior around zero; in
other it has a long tail as expected in a glassy system.
then conclude that the system has undergone a dyna
phase transition between the PM and SG phases at an i
mediate value ofa.

An approximate expression for the dependence of
Edwards-Anderson parameter onG anda, atT;0, has been
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obtained in Sec. III D. We can also check this law by es
mating the value ofqEA from the numerical solution of the
real-time equations. If we plot the symmetrized correlati
function for several values ofa on a log-log scale the platea
at qEA can be easily identified. It is a slowly growing func
tion of a that is rather well described by Eq.~3.39!.

We also investigated the effect of different environme
~different s) of the same strength~samea) using the same
value of the high-frequency cutoff that we took equal
vph . From the discussion in Sec. III C for some values
vph we expect the relaxation to be slowest for the su
Ohmic bath, intermediate in the Ohmic case, and faster fo
super-Ohmic environment. This is illustrated in Fig. 12. T
decay is slower whens50.5 than in the other cases. In th
extreme case ofs54 the system has gone across the tran
tion towards the PM phase. However, this behavior is
generic.

The relation between the symmetrized correlation and
sponse plays a key role in the description of the dynam
behavior of glassy systems. When the system is in equ
rium, this relation is model independent and it is given by t
FDT. When the system is glassy and it evolves out of eq
librium, the conditions to prove the theorem are not satisfi
but simple generalizations have been exhibited in a num
of models.38,23

The quantum FDT for a system in equilibrium, in th
rescaled variables, reads

R~ t !5u~ t !i E
2`

`

dve2 ivttanhS b J̃v

2
D C̃~v!, ~4.11!

where

C̃~ṽ !52 ReE
0

`

dteivtC~t!. ~4.12!
n

e-

e,
:

FIG. 11. Left: the symmetrized correlatio
C(t1tw ,tw) as a function oft for a50.2 ~PM
phase! anda51 ~SG phase!. The temperature is
T50.1 in both cases. The different curves corr
spond to different waiting timestw55,10,20. For
a50.2 the curves collapse on an asymptotic on
while for a51 they show aging effects. Right
the responseR(t1tw ,tw) as a function oft for
the same parameters. The effect is similar.
4-16
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FIG. 12. The symmetrized correlation and th
linear response atT50.1, forG51. We compare
the effect of a sub-Ohmic (s50.5), an Ohmic
(s51), and a two super-Ohmic (s51.5, s54)
baths. See the key for the details. The coupling
the bath is kept fixed toa53 and the high-
frequency cutoff equals the phonon frequenc
vc5vph55.
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The quantum FDT is an integral relation between the stat
ary linear response and the symmetrized correlation funct

The asymptotic dynamics in the glassy phase take plac
two time scales that are separated by the plateau in the s
metrized correlation function. As shown in Ref. 23 for t
weak-coupling limit, the stationary part of the decay, wh
the symmetrized correlation decays from 1 toqEA , is such
that the quantum FDT holds. We have checked that this
sult also holds when the system is strongly coupled t
non-Ohmic bath. In the weak-coupling limit, when the sy
metrized correlation decays beyondqEA , the relation be-
tween linear response and symmetrized correlations take
form of the classical FDT and it reads

R~ t !5u~ t !bEFFJ̃
]

]t
C~ t !, ~4.13!

wherebEFF is the inverse of an effective temperature37 TEFF

and J̃ appears since we have rescaled time. A concrete
of testing the validity of this equation is to plot the integrat
response function

x~ t1tw ,tw![E
tw

t1tw
dt8R~ t1tw ,t8! ~4.14!

against the symmetrized correlationC(t1tw ,tw) for a long
enoughtw and usingt as a parameter. For short time diffe
ences, whent2tw!tw and C(t1tw ,tw).qEA , this con-
struction does not have any particular meaning and the c
is nonmonotonic with strong oscillations. Instead, whent
2tw'tw or longer andC(t1tw ,tw),qEA , the curve be-
comes a straight line of slope21/TEFF .

In Fig. 13 we display thex againstC plots for different
values of the parameters, explained in the caption and k
The panel on the left shows thex vs C curve for different
values of the couplinga. The slopes of the curves, and hen
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TEFF , change smoothly and there is a clear nontrivial dep
dence on this parameter. The panel on the right displays
x(C) plot for a fixed value of the couplinga and several
values ofs, s51,1.5,4. The first two cases are in the glas
phase while the latter falls in the PM phase and the param
ric plot does not show a straight line piece. It is difficult
decide from these figures if the slopes depend ons or not.

In order to sharpen our conclusions about the depende
of TEFF on the characteristics of the environment we ta
profit of the empirical relation betweenTEFF and the break-
ing point parameterm in the replica analysis of the sam
model, TEFF5T/m. In Sec. III we developed a low
temperature, low-frequency approximation to solve t
saddle point equations stemming from the replicated Mats
ara analysis of this problem. In these limits we derived a
of equations that linkT/m to a and s that can be solved
numerically. We found that for fixeds the effective tempera-
ture TEFF is a growing function ofa. This result is reminis-
cent to the dependence ofTEFF on the external temperatureT
in a classical problem: the lowerT, the higherTEFF , mean-
ing that higher values of the effective temperature
reached when the system is deeper in the glassy phase.
curve approaches one whena→` and the corrections can b
read from the asymptotic analysis presented in Sec. III. T
dependence ofTEFF on s is weak but nonmonotonic.~We
have already encountered a nonmonotonicity related to
fact that the factorvph

12s changes the coupling between sy
tem and bath differently for different values ofs.!

V. CONCLUSIONS

In this article we discussed the effect of a quantum en
ronment on the nonequilibrium dynamic properties of an
teracting quantum glassy system. We have shown that, a
e

-
all
FIG. 13. Left: the parametricx against C
curves for different values of the coupling to th
environment, at fixedT50.1, vc55, and using
an Ohmic bath. Right: the dependence of thex
againstC plot on the kind of bath used. We in
clude a straight line as a guide to the eye. In
curvesT50.1, a52, andvc55.
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the case of a simple TLS, the influence of the quantum b
is very important.

Two limits of the quantum model are easy to derive
were already known. On the one hand, in the absenc
interactions, the calculations shown in Sec. II and the
merical results of Sec. IV B 1 prove that when the mode
coupled to a sub-Ohmic bath, it undergoes a localizat
transition at a critical value of the couplinga. The localized
phase is characterized by a symmetrized two-time correla
function that, as a function of time difference, approache
nonvanishing asymptotic value andneverdecays to zero. On
the other hand, it was known that when interactions
switched on and the limit of weak coupling,a→0, is taken,
the model has glassy dynamics with a symmetrized corr
tion function that depends on the waiting time and decay
two steps with a first approach to a plateau and a sec
decay towards zero.23

The aim of this article was to analyze the combined
fects of the interaction (J̃Þ0) and a strong coupling (a
Þ0) to quantum environments of different types~different
s). We summarize our findings as follows:

First, we determined if the model has a localized phas
the presence of interactions. How to define such a phase
an interacting system is a difficult question~see, e.g., Ref.
41!. Here, we adopted as evidence for a localized phase
fact that for a long enough waiting timetw the symmetrized
correlation function does not decay to zero at any time
ferencet2tw . With this criterion we saw that, as expecte
there is no localized phase when interactions are switc
on.

This result can be interpreteda posterioriby resorting to
the concept of effective temperatures generated by the
equilibrum dynamics of glassy systems. Indeed, it has b
shown for classical systems that the modification of
fluctuation-dissipation theorem observed in systems evolv
slowly out of equilibrium is related to the self-generation
effective temperatures~typically higher than the one of th
environment!.37 The proof presented in Ref. 37 has not be
extended to quantum systems yet. However, as argue
Ref. 23 for the quantum model studied in this paper wh
weakly coupled to an environment, the slow part of the
laxation looks classical, with a quantum fluctuation-
dissipation relation that becomes classical with an effec
temperature that is higher than the temperature of the e
ronment. In particular, when the model is coupled a quan
bath at zero temperature it acquires a nonvanishing effec
temperature. This effect has been observed in other quan
glassy systems too.29,30When the system is strongly couple
to the environment the relaxation slows down with respec
the weakly coupled case. However, the two-step relaxa
remains with a slow regime controlled by a nonvanish
effective temperature. Thus, we conclude that generatio
an effective temperature by the interactions is consistent w
the fact that the system does not localize. It is well kno
that even in simple TLS’s the localization effects disappea
finite temperature.

Next, we analyzed the effect of a strong coupling to
environment on the glassy properties of the model.
showed that stronger couplings to the bath favor the gla
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phase for any type of bath. By this we mean that for larg
value of a the area of the spin-glass phase on the (T,G)
plane increases. We also characterized the dependencea
of several properties of the system as the Edwards-Ande
parameter, the effective temperature, etc. The large-a limit
of our model is experimentally realized in Kondo alloys19,20

where the spins are coupled to conduction electrons thro
a Kondo interactionJK . The spin-boson model is known t
be equivalent to the Kondo model13 with the identifications
D}JK and, in the weak-Kondo-coupling limit,a'12JKr0

wherer0 is the conduction electron density of states at
Fermi level. Therefore, adecreasein the Kondo couplingJK

corresponds to anincreasein the coupling to the batha. Our
finding that the extent of the spin glass phase increases
increasinga is then consistent with the Doniach scenario42

according to which, atT50, the ordered phase~a spin-glass

in this case! exists for J̃.TK}exp@21/(JKr0)#. Biroli and
Parcollet29 discussed theN→` limit of the SU(N) Heisen-
berg disordered model with a Kondo coupling and they a
found that the transition temperature decreases with incr
ing JK .

We also studied the effect of different types of baths. Co
cerning this issue the conclusions are cumbersome given
fact that a new parameter, the phonon frequencyvph , ap-
pears in the spectral density whensÞ1. If vph is not equal
to 1, the effect of different baths is complicated. For instan
the dependence ofqEA on s can be nonmonotonic as well a
the location of the critical line on the (T,G) plane. We ex-
hibited some examples but we cannot draw general con
sions concerning this issue.

Finally, an important issue that deserves discussion is
dependence of the order of the transition upon the coup
to the bath,a. In the Ohmic case, the jump of the ord
parameterqEA at T50 decreases with increasinga and van-
ishes only whena→`. Therefore, the tricritical temperatur
is finite for all a,1` and it goes smoothly to zero whe
a→`. Instead, in the sub-Ohmic case, atT50, qEA van-
ishes ata5aCRIT,1` and the transition becomes contin
ous. As emphasized in Sec. III D 2 we expectaCRIT to be
finite for discrete spins when coupled to an Ohmic ba
leading to a suppression of the first-order transition for s
ficiently large coupling also in this case.

The motivation for this study were manifold. The effect
quantum environments on interacting macroscopic quan
systems is a problem that is now being revisited in the c
text of quantum computing.43 Decoherence, or how quantum
interference effects are lost due to the interaction with
environment, has to be as much reduced as possible to m
a quantum computer performing. Again in the context
quantum computing, an isolated Edwards-Anderson quan
model in a random transverse field has been propose
mimic an isolated quantum computer with~short-range! in-
teractions between the spins~that represent qubits! and with
static ‘‘imperfections’’ in the individual two-level system
energies.44 In this work we analyzed a soft limit of a disor
dered quantum model with long-rangep.2 interactions in a
transverse field. It would be very interesting to see which
any, of our conclusions are modified if the soft spin limit
4-18
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lifted and, even more importantly, if a finite-dimension
model is considered. This project, however, is a very diffic
one.

On a more physical side, glassy phases at very low t
peratures where quantum fluctuations are important h
been identified in a number of physical systems. In
proper analysis of these systems the role played by the q
tum environment has to be taken into account. Our res
are a first step towards the characterization of the effect
the environment. Again, it would be interesting to go beyo
the mean-field limit and derive similar results for a finit
dimensional model.
.
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