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We discuss the behavior of a quantum glassy system coupled to a bath of quantum oscillators. We show that
the system localizes in the absence of interactions when coupled to a sub-Ohmic bath. When interactions are
switched on localization disappears and the system undergoes a phase transition towards a glassy phase. We
show that the position of the critical line separating the disordered and ordered phases strongly depends on the
coupling to the bath. For a given type of bath, the ordered glassy phase is favored by a stronger coupling.
Ohmic, sub-Ohmic, and super-Ohmic baths lead to different transition lines. We draw our conclusions from
analysis of the partition function using the replicated imaginary-time formalism and from the study of the
real-time dynamics of the coupled system using the Schwinger-Keldysh closed time-path formalism.
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[. INTRODUCTION These results also hold for sub-Ohmic baths while weakly
damped oscillations persist for super-Ohmic batAs finite
The effects of a dissipative environment on the dynamicdemperaturegbut low enough such that thermal activation
of quantum systems have been intensively investigated dugan be neglectgdthere is no localization but the probability
ing the last two decadés The most widely studied problem ©f finding the system in the state it was prepared decreases
is that of asingle macroscopic variable coupled to a set of Slowly with time era>aCF_“T- , ] )
microscopic degrees of freedom that act as a bath. The envi-_1nese conclusions, derived forsingle TLS interacting

ronment is usually described in terms of its collective exci-‘(’j".ilth a:jbath, can behapplihed.to a m_acrosbcopic sys;[]em in the
tations (lattice vibrations, spin or charge fluctuations, ptc. dilutedregime,i.e. when the interactions between the TLS's

that may be thought of as an ensemble of independent qua re unimportant compared with those between a TLS and the

: . RN . '~ “bath!’ There are, however, physical systems that can be
tu_m “"?“m"”'c oscillator$.” Their c_oupllng tosthe system is viewed as alenseset of TLS’s in which their mutual inter-
given in terms of a spectral densityw) > aw® for v<w,,

. X . X : actions can no longer be neglected. The question then arises
whereq is a dimensionless coupling constant asyda high- g g g

: . as to which are the effects of the interplay between the in-
frequency cutoff. The exponers characterizes different (oractions between the TLS’s and their coupling to the noise

types of environment. The Ohmic case<(1) is quite gen-  on the physics of the interacting system.

erally encounterédbut super-Ohmicg>1) and sub-Ohmic In this paper we discuss this issue in the context of a
(s< 1) baths.also occur, 1%'9" in the case of the Kondo effecglassymacroscopic system witrandom long-rangedinter-
in unconventional hosf. actions. This situation is realized experimentally in systems

The question of how dissipation destroys quantumsuch as uniaxial spin glasses in a transverse magneti¢®field
coherencé™®® in two-level systemgTLS's) has been exten- and disordered Kondo alloy&2° Metallic glasses with tun-
sively investigated in the literature. The low-energy physicsneling defects are also systems in which the effects that are
of many tunneling systems is well described by the spin-of interest here could be observed experimentally.
boson modet:? In this model, the two equivalent degenerate  In thermodynamic equilibrium, in the absence of the bath,
states of the TLS'’s are represented by the two eigenstatdbe interactions between the TLS’s lead to the appearance of
o,=~*1 of an Ising pseudospin. A transverse field coupled tcan ordered state at low enough temperature. If the interac-
o, (say represents the tunneling matrix element. Much istions are of random sign, as in the models we consider here,
known about the properties of this model and its relationshighe latter will be a spin-glaséSG) state. In this phase the
to several other models including the one-dimensigh&) symmetry between the state$= =1 at any particular site is
Ising model with inverse squared interactidhghe aniso- broken but there is no global magnetizatian,( o7)=0.
tropic Kondo modet?*2or the resonant modét. Three dif-  Since the coupling to the bath also tends to locally break the
ferent regimes are possible depending on the value:aft  symmetry between the degenerate states of the TLS's, both
the Ohmic case, at zero temperature, there is a phase trangiteractions compete with the tunneling term in the Hamil-
tion ata=1.*°For a<1 there is tunneling and two distinct tonian. We thus expect the presence of noise to increase the
regimes develop. [kk<1/2, the system relaxes with damped stability of the SG state against quantum fluctuations. The
coherent oscillations; in the intermediate region<l/2<<1 consequences of this fact are particularly interesting when
the system relaxes incoherently. Fer-1 quantum tunnel- the coupling to the bath leads by itself to localization at some
ing is suppressed andr,)# 0, signaling that the system re- a=a°R'T. Consider a system of sizd with a>a°R'T at
mains localized in the state in which it was prepared. T=0 and suppose that we turn off the interactions between
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the TLS’s. The ground state of the system is théhf@d  quantum generalizatiéfir?® of the randomp-spin spherical
degenerate as each TLS can be in one of the statfs modef’ coupled to a bath of quantum harmonic oscillators.
=+ g, (say independently. If we now turn on an infinitesi- The principal merit of this model is that it is simple enough
mal random interaction between the TLS's, this macroscopithat it can be studied in detail. Yet many of its properties are
degeneracy will be immediately lifted as the system will se-generic and expected to hold at least qualitatively for more
lect among its ¥ degenerate configurations the ofme one  realistic model€® The usual methods of equilibrium quan-
among the oneghat minimizes the interaction energy. If we tum statistical mechanics are inappropriate to describe the
denote byd the typical scale of the interactions and®yR'T  nonstationary situation. We solve the model using two meth-
the localization threshold, we thus expect a quantum criticapds especially designed to treat systems out of equilibrium.
point atd=0, a=a R'T petween a quantum paramagnet and One is based on the Schwinger-Keldy&K) real-time

the ordered state such that, fer- aCR'T, the SG phase sur- approach to nonstationary systems. It_ was first applied in this
context to the quantump-spin model in Ref. 23 and used

vives down toJ=0. . . .

. . . , subsequently in other cases including the SYfully con-
_ Asystem of noninteracting Iocahze_d .TL_SS. and a SG Statenected Heisenberg model in the limit of largé (Ref. 29
in equilibrium are in some way similar: in both cases

A . and the soft spin version of the Sherrington-Kirkpatrick
=i(07)=0 and the presence of order is reflected by a nong, ;40130 1 allows one to obtain the full time dependence of
vanishing value of the long-time limit of the correlation

_ i 1 . ; . the symmetrized correlatioB(t+t,,,t,).
function, gea=lim_.N""2(oi(t)o7(0)) (since we as- The second method is based on #esatzof marginal
sume equilibration the correlation is stationary a_nd the referétability (AMS) within the replica analysis of the partition
ence time can be taken to be zerblowever, this resem- ¢ nction. Originally developed for classical systethghis
blance is only superficial. In renormalization-group method was recently used to discuss the low-temperature
language)J is a relevant variabl&! Therefore the details of properties of quantum glassy systefié23ts main advan-
the dynamics of the two systems are expected to be quiteage is that it uses a formalism that is closely related to the
different, in particular the way in which the correlation func- imaginary-time approach to equilibrium quantum statistical
tion reaches its asymptotic limifgo, which determines the mechanics. In Ref. 25 the AMS was extensively applied to
low-energy part of the excitation spectrum of the system. the quantum sphericgl-spin model in the absence of the
Further differences between the localized state and the Sgath. It was shown that the position of the dynamic transition
state are seen from the study of the out-of-equilibrium relaxiine predicted by this method coincides precisely with that
ation of such states. Indeed, an important feature of glassybtained using the real-time approach. It was also shown that
systems is that their low-temperature dynamics occurs out ahe time-dependent correlation function computed using the
equilibrium. If the system is macroscopic, its sidés very  AMS in the absence of the bath is identical to #tationary
large. In a realistic macroscopic situation, the asymptotigart of the nonequilibrium symmetrized correlation function
long-time limit follows this large-size limit. Many experi- (C>qg,) when one takes the long-time limit first and the
ments, simulations, and analytical studies show that the timgmit in which the coupling to the bath goes to zero next. The
needed to reach equilibrium after entering the glassy phas@arginality condition imposed by thAnsatzis intimately
diverges so quickly that the relevant relaxation occurs out ofelated to the fact that the symmetrized correlation will fur-
equilibrium. The dynamics at low temperatures is then nonther decay frongg , towards zero(The details of this second
stationary; i.e., the dynamic correlation functions loose timegecay as, for instance, the two-time scaling are not accessible
translation invariance. If, denotes the time elapsed since awith this method. A localized solution withC(t+t,,,t,,)
quench from the high-temperature phase into the SG phasgpproaching, and never leaving, the plateawygat corre-
the symmetrized correlation functio@(t+t,,,t,) depends sponds, in replica terms, to a stable replica symmetry solu-
on botht andt,,. The order in which the limit$,,— and tion. In this paper we extend the AMS to study the dynamics
t—co are taken is in this case very important. For sufficientlyof the model in the case in which the system is coupled to the
long t andt,, but in the regime<t,,, the dynamics is sta- environment.
tionary and the symmetrized correlation function reaches a This paper is organized as follows. In Sec. Il we motivate
plateauge,. Much of what was said above for the equilib- and introduce our model and discuss its relationship to the
rium state also holds for this stationary regime. However, formore usual spin-boson model. In Sec. Ill we outline the
timest>t,,, the system enters aaging regime where the imaginary-time formalism used to solve the problem at equi-
symmetrized correlation function depends on the waitindibrium and within the AMS. We compute the partition func-
time t,, explicitly. In this regime, the symmetrized correla- tion of the coupled system and determine its phase diagram
tion function vanishes at long times, Im,.C(t+t,,t,) in both situations. We also discuss the long-time dynamics of
=0, at a rate that depends op. In this regime, even for the coupled system using a very accurate long-time
a>aR'T small interactions will result in theestructionof ~ approximatioA>® that allows us to solve the model analyti-
localization of the TLS’s at long enough times. cally. This approximation is then used to discuss the influ-
The problem of a single TLS being a difficult one, that of ence of a coupling to different types of environment on the
an infinite set of interacting TLS’s seems hardly solvable afT=0 quantum phase transition. The real-time dynamics of
this stage. Therefore, as a first step, we shall focus on ththe system is discussed in Sec. IV and the results are com-
low-temperature dynamics of a very simple model that mim-pared with those of Sec. Ill. Section V contains a brief sum-
ics some of the features of more realistic ones. This is anary of our main results and our concluding remarks.
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Il. MODEL and we have introduced the spectral density of the environ-

In order to motivate our model, we start by considering amentl”(w) through

collection ofN identical interacting TLS’s coupled to a bath (cici*+ci*cl))
. ) . 6 1C 1€
of independent harmonic oscillatdt$® We assume for the Lij(w)=m>, o
moment and until otherwise stated that twmbinedsystem ! m
IS In thermodynam|c equ|l|pr|um. The Hamiltonian of the We make the S|mp||fy|ng assumption that the dynamic inter-
coupled system may be written as action betweenlifferentTLS'’s generated by integration over
H=Hg+Ha+Heg, 2.1 the degrees of fr.ee.dom of.the bath (-:an. be neglec’iezd com-
pared to the static interaction potential includedVipo?].
where Hg, Hg, and Hgg denote the Hamiltonians of the Therefore we write
system, the bath, and their coupling, respectively. These are

w—w). (2.9

given by lij(w)= 8l (w), (2.10
N and we choose the standard parametrization
Hs= —AZ ol +V(ai, 05, ....08), (2.2 w |51
=t I(w)=2aﬁ(—) we™ ', (2.10)
1 p? “en
Hg== 2 _I+meI2XI2)’ (2.3y  wherea is a dimensionless coupling constaat, is a high-
2T \m frequency cutoff, andw,, is a microscopic phonon fre-

guency necessary in the non-Ohmic cases in order to &eep
(2.4) dimensionless. For simplicity, we shall restrict the exporsent
to lie in the interval G<s<<2. With this choice the integral on
) ) _ the right-hand side of Eq2.8) converges without the need
Here, the Pauli matrices{" represent the TLS's pseudospins, of introducing an infrared cutoff and the upper cutoff may be

A/ is their tunneling frequency, andtheir mutual interac-  gjiminated by taking the limito,— . This leads to the ex-
tion potential, which we leave unspecified for the moment. pressjon

andp, are the coordinate and momentum of ttte oscillator
andm; and w; its mass and frequency, respectively. We de- _ at
note byc, the coupling constant between tit TLS and the Klow=———|wl* (2.12
[th oscillator. wpn SIN(7S/2)

Using standard methotfs'®the oscillator degrees of free-
dom may be integrated out to express the partition function

_ i z
HSB—_Zl C|X|(Ti.
I

We shall consider diagongtspin interactions of the form

of the system solely in terms of the TLS variables as N
57 = A r AR s 4
X S V[U]_i1<2<ip J'l""po-'l Tip: (213
Z=Tre P1=Tr, Texp( - —) , (2.5 _ _
h with random couplmgsJil.._ip. These are taken from a
with Gaussian distribution with zero mean and variance

h . - \2-32R1 p—1
S:J' Bdr[—AE UiX(T)+V[z;Z(T)]] (i) 7= PPUENE, (219
0 : where the overline represents an average over disorder.
1 hp [hp In the casgp=2 and for an Ohmic baths& 1), Eq.(2.6)
+§ E f f drd7r’ Kjj(r—7")of(r)oj(7'), is equivalent to the action of a disordered Kondo alloy
hoJo Jo model®* In this context:®* A =J, the transverse Kondo cou-
(2.6)  pling, and (I-a)<1 is proportional toJff the parallel

) . . » . Kondo coupling. In the opposite limik<<1, Eq.(2.6) is a
whereTis the imaginary-time ordering operator and we haVerepresentation of the partition function of the SK spin-glass

introduced the notatjonzz(ai,qél,s. SO model in a transverse magnetic figldveakly coupled to a
The kernelK;;(7) in Eq. (2.6) is phonon(or spirf) bath.
1 The main difficulty in solving the quantum statistical me-
Ki(r)=— > K. expl —i , 2 chanical problem defined by E¢.6) stems from the dis-
i(7) hpB % (e X =T eer) @7 crete nature of the spins. It was shown by Cugliandolo,

Grempel, and da Silva Sanf8$CGS that, in the absence of
Uk _ the bath, a solvabléand yet nontrivigl model can be ob-
coefficientsK;; (wy) are given by tained by generalizing the’ eigenvalues; = + 1 to continu-

2 ous variables— o <s;<o and replacing the hard constraint
“do ljj(w) Zwk ' (2.8 s?=1 by the soft spherical constraif(s?)=N. The deri-
0T 0 o tog vation of the effective continuous model in the presence of

where w,=2mk/(h ) are the Matsubara frequencies, the

Kij(w)=
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the bath is analogous to that given in CGS for the isolatedum fluctuations and acquires glassy order. per2, how-
system and we refer the reader to this reference for the dever, the ordered phase is of a trivial type, with a structure-
tails. After performing a Trotter-like decomposition of the less order parametésee below. Its physical properties are
time-ordered exponential in E@2.5 the trace becomes a nongeneric and qualitatively different from those of discrete
functional integral over classical fieldg(7) and the tunnel-  spin systems. The presence of a coupling to the bath does not

ing term in the action acquires the low-energy form change this situation. For gi>2 the ordered ground state is
) nontrivia?®~?®and the model shares a number of qualitative
he M (B [ 3s” features with more realistic ones. Therefore, from here on,
—A dro*(7)— = drl —| , (2.15 . . . }
0 2J)o ar we shall discuss this case, choosing the particular vplue

=3 in our numerical calculations.

The second point is about the cabe0. In this case Eq.
f7o ( 5 ) (2.17 reduces to a simplified model for a TLS whose phys-

where we introduced themass

M= 7'” (2.16 ics differs in some ways from that of real two-level systems.
ForJ=0 we have

ATO

and 7y is a cutoff representing a microscopic spin-flip time
that we identify withw_*. Since we work in the regime in

which 7w, is the highest energy scale in the problem, 0 <|S(wk)|2>3:0=Mw2+Z+R(w ) (219
<M<, k K

The continuous version of E@2.6) is thus given by where K (wy) is defined in Eq(2.12 and Eq.(2.18 at T

=0 reads

1 he asi(7)\?
== f dTM( '(T))

2 i 0 aT 1 (= 3

1=—f do———=—=142). 2.2
7)o Mw?+K(w)+z {2 (229

1B z
+f d7' K(7=)si(n)si(7') +5{sf(1) 1]
0 We consider the Ohmic case first. For 1, Eq.(2.19 is the
N B propagator of a simple damped harmonic oscillator with fre-
- > . d7J; .. s.(1)---s (7), (2.17  quency wy=+z/M self-consistently determined by Eq.
1 p 1 p
f1=o<lp J0 (2.20. From the position of the poles of E¢.19 we see
wherez is a Lagrange multiplier that enforces the sphericalthat there is a transition between underdamped and over-
constraint damped regimes a= «*42/(4M). Using this value of in
Eqg. (2.20 (with s=1) and solving fora we find that this
R - 1 - 5 occurs ate= 2/, independent oM. Away from this value
(s(7)-s(7"))| = "=hB ; (Is()|)=N, (2.18  we easily find the following limiting behaviors:

where the angular brackets represent the average with respect h? da

to the action(2.17. Equations(2.17) and (2.18 define the aM 1- 7+ ], @<l
guantump-spin spherical model that we discuss in the rest of 7= (2.21)
this paper. The mass parametel is a measure of the 5242

strength of quantum tunneling. X,/A <1, M is large. In expl— ma), a>1.

this case, the gradient term favors configurations in which M

si(7) is aIsztq- independent. The' partition functio_n isthen £or 4<1 the system exhibits weakly damped oscillations
largely dominated by the contribution from the static fluctua-,;i, frequencywo~#/M. In the opposite limita>1, the
tions (i.e., those withw,=0). SinceK(w,=0)=0, these correlation function decays exponentially with a time con-
variables are unaffected by the coupling to the bath whichstant that increases exponentially with the strength of the
drops out of the partition function in this limit. With increas- coupling, 7~ a ~?exp(ra).
ing A, M decreases and the amplitude of the quantum fluc-  Comparing with the results for the spin-boson model sum-
tuations becomes large. Thedependence ofi(7) then be-  marized in the Introduction, we see that the transition be-
comes essential. _ _ _ ~ tween coherent and incoherent motion at a universal value of
There are three points worth discussing before presenting<1 is preserved in the spherical model but the localization
the solution of the model. The first one is their dependencgransition ata=1 is replaced by a crossover to a high cou-
on the value ofp. For p=2 the action is quadratic and the pling regime characterized by an exponentially small energy
problem is readily diagonalizable by Fourier transformation.scale xexp(—ma). In this regime, tunneling is not sup-
This simple case was extensively discussed in the literaturgressed but its rate is strongly reduced.
both wi_thoufG and witt* a bath. In the former case, the  |n the super-Ohmic case there is no localization transition
competition between the mass and interaction terms in Either. One can easily show that fer-1 the expression on
(2.17) leads to the existence of a critical malgk.~#%2/J the second line of EqQ.(2.21) is replaced by z
above which the ground state of the system overcomes quaﬁ-hwphal’(lfs) for «>1. The decay rate of the correlation
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function still decreases continuously as the strength of the A. Formalism

coupling to the bath increases but only as a power law.  The presence of disorder makes it necessary to compute

In the case of a sub-Ohmic environment the situation ishe averages of all physical quantities and, in particular, of
different. Fors<1 the integral on the right-hand side of Eq. the free energy. To this effect we use the replica trick; i.e., we
(2.20 is finite atz=0 where it takes its maximum value. For write

fs(0)<1, Eg. (2.20 cannot be satisfied for any positive

value ofz This phenomenon, completely analogous to Bose- — 11— 1 1 —

Einstein condensation, signals a localization transition. Solv- pt=- N InZ=- NL'":)ﬁInZ : 3.

ing the equatiorf4(0)=1 we find the critical coupling given -

by The derivation of the expression for the free energy associ-

ated with the action in Eq2.17) closely follows that per-
formed for the isolated system in CGS where the interested
3 )1—5 reader will find all the necessary details. An imaginary-time-

aCR'T~(W (2.22 dependent order parame®y,(7,7') is defined as
ph

l——

Conversely, for any value of the system localizes for a Qar(m7) N<Sa(7) (7)), 3.2
sufficiently high value oM. These results are analogous 10 \yherea b are replica indices. The spherical constraint im-
those obtained for discrete T_'-§J S- ~ poses the restrictio®,,(0)=1. We are interested in a sta-

One must keep these differences between the originglonary situation in whichQ,,(7,7') depends only on time
model and its spherical version in mind when interpretinggifferences and is a periodic function of its argument with
our results, especially those discussed in Sec. Il D 2. In Segeriod %. We thus introduce the Fourier transforms
IV we shall illustrate the interplay between the localization Qab(wk):ngdTQab(T)EXDka) in terms of which the aver-
observed forJ=0 and the glassy dynamics that appearsaged free energy is found as
whenJ>0. _

The third point we want to stress is that the coupled sys- Bf=1m G, (3.3
tem can be thought as describing the motion of a quantum n—0
Brownian particle of mas#$/, constrained to move on  \yhere
hypersphere of radiugN, in the presence of a random po-
tential V(§). The Brownian nature of the motion arises be- _ } P~
cause of its interaction with the quantum thermal bath. The Go= EK Trinf(A%) Q]
infinite-dimensional spherical limit yields, however, non-

. . . H 52
physical results if one wants to compare it to the well-known _ o ~ ~ _ J°B
problem of the diffusion of a free quantum particle coupled Ek: ! n# % Oan(@i) Qal @) 2hn
to a phonon bath in a finitB-dimensional space. While here L ]
we find a localization transition when the bath is sub-Ohmic ph : =
1 X PR— — _—
such a transition does not exist in the absence of disorder in ;:; 0 dT(ﬁ,B 2k“ exp IwkT)Qab(wk)) Az
the finite-dimensional problem. 3.4
and the operato®,,(wy) is defined by
Ill. REPLICA SOLUTION
Oap(@i)=—18[Mwg+z+K(wp]. (3.5

It is by now well established that several properties of
disordered systems can be derived with the help of the rep- The equations of motion are found from the saddle point
lica trick. This approach enables one to derive an effectiveof the free energy with respect to variations @f,(wy).
action for an imaginary-time-dependent matrix order paramThey read
eter. It has been noticed that differeAhsaze that param-
etrize this order parameter describe different physical situa-
tions as thermal equilibriunfequilibrium condition and the
asymptotic dynamic regimeAMS). The bulk of this section
is devoted to the analysis of the consequences of the AMS.
As discussed in the Introduction we expect that as soon as
interactions are switched on, full localization is replaced by a
glassy solution with nontrivial dynamics. This argument jus- (3.6
tifies the use of the AMS from the start. We briefly commentEquation (3.6) together with the spherical constrai,,
at the end on the equilibrium properties of the model. (7=0)=1 determines the different phases in the model.

1 -
F[Mog+z+K(00]0

- J%p (1B _ -
=<Q—1>ab<wk>+§fo dr expliwgr) Q% (7).
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In the following, we discuss the solutions to E®.6). 2
Except when otherwise stated, we shall work with dimen- Bm=(p—2) —qg}\”z, (3.19
: . : : . p(p—1)
sionless variables. These are defined by measuring energies

in units of J and time in units ofi/J. The strength of quan-
X

tum tunneling and of the coupling to the bath are then mea- B Gea __%p (3.15
sured by the parameters 04(0) m+x,’ '
r= h? B a fiwpp s 3 and
“Gw) a3 ) 0 @7 ) .
respectively. Sredlw) = EJO dg° (1)~ qRa*]cog wy 7).
In the paramagnetic phasM), Q.(wy) is a diagonal (3.16
matrix,
The parametex,, takes the value
Qan(wk) =dg(@k) Fap - (3.9
) Xp=p—2. (3.17
Equation(3.6) then reduces to
’ . 5 For givenp andea, Egs.(3.12—(3.16 have solutions with
@k s_ Ef ; p—1 gea# 0 only for low enough values df andT. Otherwise,
r Tzt adoyd _ad(wk) * 2Jo drexpiogr)dy (7). thermal or quantum fluctuations destroy the ordered state.

(3.9  There is thus a boundaly(T) in the T-I' above which the

i system is in the PM state. We determine its shape below.
In the SG phase, we search for one-step replica symmetr))/

breaking(RSB) solutions of the form
B. Dynamic phase diagram
Qab( @) =[Ua( k) — Yeal + deacab (3.10 We determined the phase diagram for the coupled system

for p=3 using the numerical methods described in CGS. A
critical line with a second-order sectipclose to the classical
critical point (T4,I'=0)] and a first-order sectioftlose to
. . ; . the quantum critical point{=0,I"y4)] is also obtained in the
CGS that thlsAnsa'52|s an e.XaCt solution of the isolated presence of an environment. The second-order critical line is
model. The proof~st|ll holds in the presence of the bath Proyetermined by the conditiom=1: the first-order critical
vided that lim, .oK(»)=0, which is verified herd¢cf. Ed. |ine is defined as the locus of the points where a marginally
(2.12]. ) ) stable solution first appears with decreasingor T fixed

To completely determine the order-parameter mafiby  (see Fig. 3. For eachl’ and a this defines alynamictran-
may be done in two different ways, each leading to a physiT (1" 4) precisely coincides with the temperature below
caIIy_ d|fferent_state. Within the&n_satz of marginal stability \yhich the real-time dynamics of the system loses time-
Qe is determined by extremization of the free energy nd  ransjation invariance and the fluctuation-dissipation theorem
is chosen such that the stability of the ordered state is MalEDT) is violated?

ginal, i.e., that its excitation spectrum contains a zero-energy The qualitative features of the phase diagram, similar to

wheree,,=1 if aandb belong to the same diagonal block of
size mxXm and zero otherwise, and we introduced the
Edwards-Anderson order parametgs,. It was shown in

mode. 5 those found for the isolated system, are as follows. jFor
Decomposing the diagonal order parameigfw) in @  >2, the transition isliscontinuousn the sense that the order
singular and a regular part, parameteqg jumps across the phase boundary. The transi-
_ _ tion line contains aricritical point (T*,I'*) that divides it
da( @) = BAeASw, 0T Arec( @K, (3.1)  into two sections. Foif=T*, physical properties areon-

5 tinuous across the transition. The latter is therefeexond

an equation fomgeg(wy) can be derived by a straightfor- order in the thermodynamic sense. FAr<T*, instead,
ward generalization of the results of CGS to the case irphysical quantities ar@liscontinuousacross the transition
which noise is present. It reads which is thusfirst order. The origin of this behavior is the

) fact that the values taken by the parameteon the transi-

g e ~ ~ tion line are different above and below. For T>T*, m

T T7 tadod’~[2red(@r) ~2rec(0)]|drec(@) =1, =1 along the transition line. This is its value in the paramag-

(3.12 netic phase, meaning that is continuous across the transi-

tion and so are the observables. Aer T*, m+# 1 along the

with transition line but it is a decreasing function Bfthat van-
14x ishes linearly asT—0. Crossing the phase boundary Tat
z'= Blgm o p—_ (3.13  <T’, mis discontinuous and so are physical properties.

2 Xp We show on the right panel of Fig. 1 the dynamic phase
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6 T T T 6 T T T
First order —%— First order —%—

Second order Second order

4| . 4| .

—~ —
2 - 2| .
0 1 0
0 0.2 04 0.6 0.8 0 0.2 04 0.6 0.8

T T

FIG. 1. Static(left) and dynamidright) phase diagrams for the=3 spin model coupled to an Ohmic bats=1). The couplings to the
bath area= 0, 0.25, and 0.5 from bottom to top. The solid line and line points represent second- and first-order transitions, respectively.

diagrams obtained fqu=3 and three values of the coupling frequency needed to destroy the ordered state must increase
to an Ohmic bathe=0,0.25,0.5. The solid line and the line with «. Even if the localized state and the glassy state may
points represent second- and first-order transitions, respeseem superficially similar, they are indeed very differ-

tively. We make the following observations. o ent. In the former, the symmetrized correlation function
(i) In the limit '—0 the transition temperature is inde- C(t+t,,t,) approaches a plateau as a functiontcdnd
pendent of the strength of the coupling to the bath. never decays towards zero while in the latter the relaxation

(i) The size of the region in phase space where the systefst approaches a plateau but it eventually leaves it to reach
is in the ordered state increases with Coupling to the  erg fortst,,. We shall see this difference explicitly in the
dissipative environment thus stabilizes this state. analysis of the real-time dynamics of Sec. IV.

(iii) The dynamic tricritical temperature decreases rapidly  1ne fact that the coupling to the environment favors the

with increasinger. .ordered state also reflects itself in the value taken by the
Our first observation is a consequence of the fact that i rder parametergy() andge,. We display in Fig. 2 the-
EA* .

the limit '—=0 the partition function is essentially deter- dependence of the diagonal part of the order paranggte)

Vrcmé? :étggcziggaegg?nn% ecg;n(tggg esnéz OD{ t.lr.ﬁspf:;j?Sp%r the static and dynamic solutions at a fixed temperature
’ andI" for different values ofa. It can be seen that, as

is, however, nontrivial from a dynamical point of view, since ¢ , ‘ )
it implies that the dynamic transition of a classical systemincreasesqq(r) reaches a higher plateau level at long imagi-

coupled to a bath with no#-correlationg“colored” bath) is ~ Nary times. The analysis @fg, is postponed to Sec. Il D.
not modified by the latter. Figure 3 displays then dependence df at a fixed tem-
The second feature follows from simple physical consid-perature T<T"), for different values of the coupling to the
erations. The interaction term in the action favors spin-glasgoise. The functiod”(m) is double valued and the physical
order. Coupling to the bath favors localization and its effectbranch is that on whicdm/dI'>0. This is a consequence of
is to reduce the effective tunneling frequency. Therefore, irEq. (3.13), which shows tham is a decreasing function of
the presence of the bath, the value of the bare tunnelingg, which itself is a decreasing function bf It can be seen

1 T T T T 1
0.8 & 0.8
0.6 0.6
i L
S— SN—
S S
0.4 0.4
02FB=10,T"'=4 02Fp=10,T'=4 a=0.5
. D . =20 "==-n
Static ynamic P |
0 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
T T

FIG. 2. The diagonal pady() for the static(left) and dynamidright) solutions.
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1 T T T T T C. Equilibrium phase diagram
il In thermodynamic equilibrium bothg, andm are deter-
08 Fa=025 = mined by imposing that the free energy be an extremum with
a=05—— respect to their variation. This leads to the conventional ther-
0.6 _ modynamic equilibrium state. The value rf is obtained
from
g
" ) % IN(14x)+ —P——0 3.1
—————1In Xp) + ———=0. .
P(L1+Xp) ( p) (1+xp) (318
0.2 |- -
The transition line is defined as the locus of the points where
0 | | . . i ' the free energies of the PM and SG phases coincide. For each
0 1 2 3 4 5 6 7 I' and « this defines a freezing temperatutg(l’,«) at

r which the system enters the SG state. The qualitative features
of the equilibrium phase diagram shown on the left panel of

FIG. 3. The break point as a function of” for three values of  Fig. 1 are similar to those found for the dynamic case. Notice

the coupling to an Ohmic environmeat g=20>p3". that the lineT4(T", a) lies alwaysabove T(T",«) and that, in
contrast to what we found for the dynamic tricritical tem-

that for fixedl" andT, m decreases with increasing Thus, perature, the equilibrium tricritical tempgratuTé depends
the coupling to the bath results in a higher effective temperag)nIy weakly on the strength of the coupling o the bath.
ture in the glassy phadeee Sec. IV for a definition of g ) _
and a discussion on this isgue D. Low-energy properties of the marginal SG state

We have also studied the phase diagram in the non-Ohmic Insights into the low-energy properties of the model may
cases. Figure 4 shows a comparison of the effects of abe gained by studying it in the framework of a simple and
Ohmic bath and two non-Ohmic ones, sub-Ohnse-(/2), accurate approximation applied to the isolated model in
and super-Ohmicg= 3/2) for the same value af. It may be  CGS. It consists in deriving the exact low-frequency form of
seen that for the chosen values of the parameters the regiope(w,) and using it over the whole frequency range as-
of stability of the ordered phase is enhan¢estluced fora  suming that physical properties at low temperatures are
sub-Ohmic (super-Ohmig bath with respect to an Ohmic mainly determined by the low-energy excitations of the sys-
one. This feature is not generic as there are other values ¢¢m. We consider in the following the=0 case.
wpp for which the relative sizes of the effects of Ohmic and _
non-Ohmic baths are different. Indeed, in preparing these 1. Low-frequency form of geg(ew)
figures we usedv,,=10 in the non-Ohmic cases and this  \yie start by assumingand verifying latey that grec(7)

wsntin (o).

Orea( )| 7| 7% (3.19
Then, we may writdcf. Eq. (3.16)]
20 T T T
- - p (8
First order —%— EREG(wk)_EREG(O):_J dT(COkaT— 1)
16 - Second order - 2)o

X[(p—1)aRaUrec(T) + -+ -]
o1+ ), (3.20

where the ellipsis represents terms that vanish in the limit
wi— 0. Therefore, in the long-time limit,

S red( @) — Srec(0)

0 1 1
0 0.2 0.4 0.6 0.8 p(p—1) ., ~ ~
T ST ABa°[drec( @k) —Orec(0)].
FIG. 4. The dynamic critical line for sub-Ohmis< 1/2, upper (3.21)

curvg, Ohmic (s=1, middle curvg, and super-Ohmicg=1.5, o ) _
lower curvé baths.fw,,/3=10 in the non-Ohmic cases. The di- Substituting Eq.(3.21 in Eq. (3.12 and solving for
mensionless coupling to the bathds=0.5 in all cases. Jrec(wy) we find
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2
2T + ag wy|5+ 2kpt VolIT + ag oS0l T + ag w5+ 4rcy ,

(3.22

aREG(wk):

where we introduced the parameter , PAEL N
P

o [PP DR’ (323 “
P 2 ' ' The result for the Ohmic casgpeo(@)*|w|Y? was previ-

Equation(3.22 is exact in the low-frequency limit where it ©USly found forp=2 continuous and discrete Kondo-alloy
reduces to models at the quantum critical poitft.In the marginally

stable state, this behavior persists throughout the low-
1 temperature phase.
1— — (0T + ag wy/%) 2 Equation(3.22 is also exact as,— > where it reduces

Vip

aREG(wk)=K;1

P to grec(wi) ~T'/w? . Therefore, we expect it to be a reason-
s able interpolation in the whole frequency range. It will be
—>K;1 1- K—|wk|3’2 . (3.29 seen in the following that this approximation allows one to
P gain useful insight into the effects of the environment on the
This leads to the long-behavior physics of the interacting system.
(7 lag 1 (3.25 2. Quantum phase transition
T)™~ e T .
fAred Kp | 7|12 The normalization condition and E¢3.11) lead to the

The assumptioni3.19 is thus self-consistent with the expo- following equation for the order parametgg, atT=0:

nent{=1+s/2. In the absence of the bath E§.22) leads to 1 = de

11 1_QEA:,8 % aREG(wk)HTzoj_wZQREG(w)- (3.28
Orec(7)~ \/F——Kg 2 (3.26
P

This is still an implicit equation for the order parameter as
the result found previously in CGS for the isolated system. AQre (@) depends omg, through K, [cf. EQ.(3.23)].
crossover between these two regimes occurs gt We now approximate Ed3.28 by assuming that the in-
=T ag¥*"2). The analytic continuation of Eq(3.24  tegral on the right-hand side is dominated by the low fre-
yields the low-frequency limit of the imaginary part of the quencies. Then, we use fggre(w) the expression given in

susceptibility: Eq. (3.22 and write
1 - 2 f“ dw (3.29
dea=r 0 wT + agws+ 2kpt \/wZ/F+aSws\/w2/F+asws+4kp. -

It is convenient to make the change of variables Kp J o\S g2 Us-2)
_ 1(2-9)y ; ; - _ -
(Tas) x in Eq. (3.29 which leads to € L, T hwph[( Mo h) e g Kp -
(F'*ag)z=s P
* dx (3.32
Ay (1l- =f
AmGen= | e zer VEHXEX+ X5+ de
=09s(e), (330 Equation (3.30 will be used to study thef=0 quantum
where phase transition. We shall mostly be interested in the vicinity
of the quantum transition where the system is close to the
A :z(rsfla )U(2-9) guantum paramagnetic state. We discuss separately different
52 s types of environment.
7 h e . (3.30 a. Ohmic caseSettings=1 in Eq.(3.30 the equation of
2 Mgy sinrs/2 ' ' state may be written as
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1

0.8
0.6
<
3]
Sl
0.4
T
0.2 |- Eﬁact solution —K— _
pproximate =«----
0 1 1 | i |
’ ’ ! 6 8 10
o

FIG. 5. The dynamic Edwards-Anderson parameter as a func- ) ) ) .
tion of the coupling to an Ohmic bathy, for I'=4 and g=10. 0.0 0.2 0.4 0.6 0.8 1.0
Solid line with point: exact numerical calculations. Dashed line: the YEa
low-frequency approximation of E¢3.29.

FIG. 6. T as a function ofjg, at T=0 for p=3 and an Ohmic
bath. The curves follow from the numerical solution to E833).

E(l—q )= Jw dx The coupling to the batlx runs from 0 to 1.2 in intervals of 0.2
2 EA 0 X2+ X+ 26+ X2+ X X2+ x+ de from bottom to top.
Egl(é), (333) 1 “ ,
- Ta(l—q
with €=k, /(I"a?). I'=—2V30eq€ EA), (3.3

We show in Fig. 5 thex dependence alfigz, in the mar-
ginally stable case fop=3 at fixedI'=4. We represent with  This function has a maximum at
line points the results obtained numerically from the full
equations at a finite but low temperatufes 0.1. The dashed N 1
line instead represents the approximate solution derived from Qen™ 2ra’ (3.39
Eqg. (3.29. The agreement between the two calculations is
very good even if the approximation strictly applies to thewherel” reaches the value
zero temperature case only.

Figure 6 showsl’ as a function ofgg, for p=3 and 3
several values o as obtained from the numerical solution Fma=la~ \ 5 —sexpra. (3.37
to Eq. (3.33. The T=0 transition takes place at the maxi-
mum value ofl’, I'y. The corresponding value ok is the  we thus find the two features mentioned above: namely, a
discontinuity of the order parameter at the first-order transireduction of the discontinuity of the order parameter and a
tion. While I'y increases rapidly withe, the jump of the  rapid increase of'y for high values ofa. Expressing Eq.
order parametedecreasess the strength of the coupling to (3.3 in terms of the original variables of the probldif.
the bath increases. The presence of the Ohmic bath thysy (3.7)] we find that, in the high noise limit, th&=0
tends to make the first-order transition smootkighis prop-  gynamic freezing transition takes place at the critical cou-
erty tells us that it will be very difficult to see the first order pjing
transition by solving numerically the real-time dynamic
equations. _ had?

This behavior results from the fact thgi(e) diverges Jg~ v
logarithmically ase—0. In order to see this, we decompose

the interval of integration into two partssOx<1 and I=x ~ . . .
<. The integral over the second interval is a finite constant NUS: fora>1, J4 is proportional to the exponentially small

ate=0. In the integral over the first interval we may neglect &Nergy scale of Eq2.21) associated with incoherent tunnel-
x2 compared tox and write ing in the isolated TLS’s. It must be emphasized that the

existence of this scale is a feature of the spherical model

expl— ma). (3.39

. 1 dx used in this paper. Real TLS(ge., described by Ising spihs
—-(1-0ea) :"oj localize ata=1. Therefore J4 is expected to vanisire-
2 € N ~d
0 x+2e+ VXX +4e ciselyat a=1 for discrete spins.
1 Deep in the ordered phase the system is expected to freeze
=— Eln e+0O(1). (3.39  with gga~1. This regime occurs for sufficiently high values

of a or sufficiently low values of". Consider first the former
We choosg =3 for concreteness and solve Eg.34) for I’ case with['a?>1. Then,e<1 and we can still use Eq.
to obtain the equation of state in the high-noise limit: (3.34) which, forqga~1, reduces to
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15.0
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qEA

FIG. 7. T as a function ofgg, at T=0 for p=3 and a sub-
Ohmic baths=1/2 from Eq.(3.29. The couplinga,,, runs from 0
to 2 in intervals of 0.4 from bottom to top.

1 1| Fa® Ta?>1 3.3
Oep™~ —Enm, a>1, (3.39

wherek,(1)=+p(p—1)/2.

In the opposite casd,a?<1, € is large. In this case

2 3
=—|1l-—=+- -, 3.4
g1(e) 3\/E< 8JE+ (3.40
leading to
4 r 1/2 3 r 1/2
Gen™ —g("p(l)) [l_g(’(p(l)> ate)
Ia?<1. (3.41)

In both regimes the effect of the noise leads to an increase

in gga, thus stabilizing the ordered phase.
b. Sub-Ohmic caséigure 7 showd™ as a function ofjg,

for p=3 and several values of the coupling to a sub-Ohmic
bath withs=1/2. The results were obtained by numerically
solving Eqg.(3.29. The qualitative features of these curves

are similar to those found in the Ohmic case.

PHYSICAL REVIEW 86, 014444 (2002

We consider for simplicity the case<1/2 and takep
=3 for concreteness. Far~a“R'T, Eq. (3.30 acquires the
form

M L \ves
?\/QEAxl_(WJ (1-9en), (343

wherea®R'T is given in Eq.(2.22. There is a maximum at

aea% (IM/%2)2. The dynamic transition thus takes place at

ﬁz o )1/2
1—-———| .

jdoc_

v (3.49

a,CRIT

The jump of the order parameter at the transitiongfs,
% (1— al a®R'T). Therefore, fora=a*R'T the dynamic tran-
sition is continuous Summarizing, fora<a“R'T the transi-
tion between PM phase and SG phase occurs at a finite value
of J4 while for >a°R'T an infinitesimald is enough to
render the system glassy. We expect to obtain this same be-
havior for an interacting TLS in an Ohmic bath.

At large couplingsg> a®R'T gqga~1 and we find

(3.4

oCRIT| 1/(2-s)
qEAwl_( )

o

Notice the absence dtdependent corrections that appear at
higher order ¢ 2).

In the opposite limitlargeJ), e is large. Then,

2
gs(e):ﬁ(l—asésfz—% ), (3.46
€
with ag a constant. We find
4 r 1/2
37 Kp(l))
s hwpn R
X 1=as—— ~ +
Sqy\ J . TS
sin—-
2
(3.47

As discussed in Sec. I, in the sub-Ohmic case the isolate@ls pefore, the presence of noise favors the ordered phase.

TLS has a localization transition at a critical vala&R'T of

The comparison of Eqs3.39 and (3.45 shows that, at

the coupling to the bath. We thus expect a transition to thetrong coupling, an Ohmic bath is more effective than a sub-

ordered phase at=0 for all >aCR'T in the interacting

system. Near the critical point @=0, € is small. Fors
<1 the integral on the right-hand side of E§.30 is finite
at e=0 andg(0)=f4(0)/2 wherefy is the function defined
in Eq. (2.20. Detailed inspection of the behavior gf(e€)
shows that, ag—0,

e for 0<s<1/2,
eln(1/e) for s=1/2,

1-s
e s for 1/2<s<1.

0s(0) —gs(e) (3.42

Ohmic bath in freezing the spins. At weak coupling we have
a linear dependence anin both cases. For<1, however,
the slope is higher in the latter case which results now in
higher values ofjz,. Notice the presence of the extra factor
(ﬁwphlj)l‘s, which amplifies this effect if the phonon en-
ergy is larger than the magnetic energy.

c. Super-Ohmic casén the super-Ohmic case no local-

ization transition exists at=0. Fors>1, g(e€) diverges as

€19/ in the limit e—0. This corresponds to small or
large as. A calculation similar to those performed above
yields the critical coupling
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s\ st Cams(t) = 1lim Coyp(t+ty,,ty), (352
siny v
Jg~fiwpn a >l (348 valid for all values ofa. The aging regimé>t,, in which

) ) . . . Cpyn(t+t,,,t,) decreases belowg, is not accessible in
As in the Ohmic case, the critical coupling decreases withpig approach.

increasinga but only as a power law. The jump of the order | this section we shall analyze in detail several time re-

parameter at the transition is however independent.of gimes inC(t). We use throughout this section the original
Deep in the ordered phase, for small valueg ofve find  variables of the problem.

_ms\ 57t 1. No coupling to the bath
~ (1-s)/s| SIN—
q ~1—( Jg ) 2 (3.49 We consider first the case in which there is no coupling to
EA hwpn a ' ' a bath. Then, the analytic continuation of £8.22 is
For small values ofr Eq. (3.47) is still valid. Notice that w [M\Y? w2M
for s>1 the enhancement of the order parameter due to the Xreg(w)= 22\ 33 4drp— 5 (3.53
P

coupling to the bath decreases Whepn/TJ increases.
Substituting this expression in E¢3.50 and making the
E. Real-ime correlation function change of variables = vV4«,J/M x in the integrals we ob-

In thermodynamic equilibrium the correlation function tain the correlation function

and the imaginary part of the susceptibility are related by 72

2h 4\ Y2 (1
1 B “do C(t)=qEA+F M_jp fo dx x\1—x2
CH=y 2| (si(t)si(0))=geath e Xrec( @) P
f
X coth Bfi w/2) cog wt). (3.50 X cogxt/ to)COtf(ﬁX) ! (3.54

If instead of the equilibrium response function we use inwheret, is a characteristic time given by
Eqg. (3.50 the expression foy”(w) obtained through the

AMS, we obtain a correlation function that is closely related Mo\ Y2
to the stationarypart of that obtained through real-time dy- to= = (3.55
namical calculations. This relationship was discussed exten- 4rpd
sively in CGS in the case of the isolated system with the
following conclusions. At T=0 Eq.(3.54 reduces to
(i) The temperaturdy below which the AMS solution 112
exists coincides precisely with the dynamical critical tem- C(t)=Qeat ﬂ Axp
perature obtained from the dynamical calculations. This is Gea Ty \ MJ
the temperature below which the real-time dynamics of the .
iSrXStem becomes nonstationary and violations of the FDT set % fo dx x\/mcos{xt/to)
(ii) The parametem precisely coincides wittX, the FDT
violation factor. This is related to theffectivetemperature of 2h |4k, vz
the system in the aging regim€.s= T/X (Ref. 37; see Sec. =Qeat m w3
V.
(iif) The response function derived from the AMS is iden- X 1 Fo(1;1/2,5/2:— (t/ty)?/4), (3.56)

tical to the out-of-equilibrium response function when the _ _ . _
long waiting time is taken first and the weak-coupling limit where ,F, is a generalized hypergeometric function. From

in taken later on. More precisely, the normalization conditiorC(t)=1 we find the quantum
equation of state
1
CAMS(t)ENZ (si(t)si(0)) ams 2% [ dsc\ V?
| rp(1=Oea)=5—| —=| (357
— lim lim Coyn(t+tyty).  (3.50 MJ
= Oty =2 found previously in CGS. The asymptotic behavior of the

. correlation function in the long-time limit is
A proof of the analogous properties for the system 9

coupled to the bath can be given following the same lines. o
The first two conclusions remain unchanged. The third one C(t)i=7. Qeat=——
generalizes to 0 3Ky

Ay

Y2y 32
2 f(thty), (3.
V& ( ) (t/ty), (3.58

t
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wheref is an oscillatory function that can be expressed inwhere yy= a# is the classical friction coefficient. Perform-
terms of Fresnel integrals. From Ed8.57) and (3.59 the ing the integral we find
frequency of the oscillations is

h Cl)— enite 22O
o (359 EAt>t (4K ’3)3/2
O M(1-dgn) P
—t7%2, T=0
At the dynamic transition pointjz4 depends only om. % :1/2 ' (3.65
Then,wy /M, the characteristic frequency of the noninter- AT/At™, T>hit

acting TLS’s. Deep in the ordered phagea~1 and EQ.  Notice the difference in sign between the results at zero and

(3.57) yields 1—gga~#%/VYMJ. Then, in this limit wy finite temperature. At zero temperatu@éT) approachesg,

~Jm . from below, whereas at #0 it does so from above. In the
At temperatures higher thafy, = #i/to~%\3/M , but low Ohmic case the exponent controlling the decay of The0

so that the results from the approximation can still be useacorrelation function_is t_he same that controls the ampl_itude
we can approximate coi-z L in the integral on the right- of the coherent oscillations found in the absence of noise.

hand side of Eq(3.54 and write f\ltlzfinite temperqture the decay is sloy\_/eﬁ_,(t)—qEA
ot . In the classical model, the nonequilibrium symme-

4T (1 <t trized correlation functiorC(t+t,,,t,,) approaches the pla-
C(t)~qeat ~—J dX\/l—XzCOS<—> teau gea as C(t+ty,,ty) —qeaxt™ " for t<t,. It was
mKpJ 0 to found™ that the temperature-dependent exponef¥) ap-
proaches 1/2 in the zero temperature limit in agreement with
= Qeat 2_TJ (l) to 3.60 OU result. The calculation of the temperature corrections to
EA 3Kp HNito) t ' the exponent lies beyond the power of our low-temperature
. . i approximation.
where J;(x) is the Bessel funct|o.n. Notice that E.60 At finite temperature, in the long-time limit, our results
also holds fomll temperatures for timets>7/T. The normal-  ¢oincide with those obtained from the solution of the classi-
ization condition now yields cal Langevin equation without inertia. Although the

asymptotic form of the correlation function is independent of
(3.61) M (i.e., of the tunneling frequency), it must be remem-
' bered that Eq(3.65 only holds for times longer than*
which does depend oA. A consequence of this fact is that

which is theclassical equation forgg, .38 In this classical the dynamics of the model in the limt—0 is trivial. In-
regime the long-time asymptotic behavior of the correlationdeed, it can be shown from E¢8.22 that
function is

o

4T (1 5
Kp(l—qEA)=—~f dxy1l—x"=
mJJo

” 5 Yo
2T /2t 312 37 ot XREG(w)Mw/yO>1 M203" (3.69
C(t)t>_t)0 Oeat =— ;( T) COS(T — t_) (3.62

JKp 0 Then, for any finitew,

Notice that the power-law decay of the amplitude of the os- l " _
o ) , im =0. 3.6
cillations =<t ~32 at high and low temperatures is the same. M,yO_mXREG(w) (3.67
2. Finite coupling to a bath Howeveryxres(w@) cannot be identically zero since the static

In the presence of a coupling to an Ohmic bath there aréusffptibility)?REG(o) Is finite and it is given byygec(0)
two different regimes. At frequencies higher than*  ~ “p according to Eq(3.22. Here xrec(0) can also be

—halM the inertial term in Eq(3.22 dominates over the €xPressed as
term proportional tax. For times shorter thatf = 1/w* the

system thus behaves as if it were isolated. At longer times, 0)= ) d_w XRE_G(“)) 3.6
. . . Xrec(0) . (3.69
when inertia may be ignored, we have —w T w
1 \/E 5o\ 12 Equations(3.67) and(3.68 are compatible only if
X~y +2k,3l% ( 2 3) (363 Xrec(®) 7
aw K K
P P lim 25— 5(w). (3.69
and the motion is overdamped. The correlation function then Miyg—ee ¢ Kp
reads Therefore, the system has no intrinsic dynamics in this limit.
2h 7 . In terms of the original spin model this is a simple conse-
C()=pQeat 2’0 f dwJwcoswt coth( Bhwl2), guence of the form of our starting Hamiltonian, Eg.4): if
m(2kpd)¥2 Jo A=0, the spin variables commute with the Hamiltonian and

(3.69 are thus constants of the motion. In terms of the particle
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td'["[Z(t,'[")C(t,t”) +D(t,t")R(t,t")]

nitely massive particle that is not able to move or to the limit Z(t) = o

interpretation the limitM/yy—o corresponds to an infi- j
of zero friction where there is no dissipation.

The expressions in Eq3.65 can be readily generalized o . oo .
to non-Ohmic baths. We find that in the long-time limit +M J’Odt Jodt [oR(t,t")ID(t",t")[R(t,t")]
Co<s+2w @) 1o +MZ[&tR(t,s)agtC(s,t)—aﬁtR(t,s)&t,C(s,t’)]lts:S.
4 1 1

(4.9

The total self-energy and vertex include the interaction with
the bath and are given by

C(t)—Qga> s » (3.70
cog 7t S2 - Tshlt.

J2 i p-1
IV. REAL-TIME DYNAMICS

S(tt)=—4p(t—t")— IDTlm C(t,t")— gR(t,t')} ,

. . . . (4.9
In this section we study the real-time dynamics of the

system coupled to the environment. We use the dynamic pJ2 i%

equations for the symmetrized correlation and linear re- D(t,t')zzﬁy(t_t')+_Re{c(t,t')__[R(t,t')
sponse functions derived in Ref. 23 with the Schwinger- 2 2

Keldysh formalism and we solve them numerically, as a p-1

function of time, for different couplings to the bath and dif- + R(t’,t)]} , 4.7
ferent environments. We compare the results to the ones ob-

tained in the previous section with the imaginary time for-with

malism.

v(t—t')= foxdwl(w)cotf(%Bﬁw)cos{w(t—t’)],

A. Dynamic equations

The dynamic equations for the model defined in Sec. Il 4.8
were derived in Ref. 23. They are of the Schwinger-Dyson w
form and read p(t—t')=— H(t—t’)fO dol(w)sifw(t—t")]. (4.9
5 % The spectral density of the bathiw), has been defined in
[Mat+z(t)]R(t,t’)=5(t—t’)+f dt”" 2 (t,t")R(t",t"), Eq. (2.1.%°
° (4.1) In the following we shall compare the effect of environ-

ments with different values of and using different coupling
. strengths. The high-frequency cutoff. is introduced to
[Mat2+z(t)]C(t,t’)=f dt’ 3 (t,t")C(t" ") avoid the divergence of(7). In the sub-Ohmic case, when
0 we solve the equations numerically, we also need a low-
frequency cutoff, which we impose in a hard manner by
+ ft’dt”D(t,t”)R(t’,t”), including a factorf(w —b) in the definition ofl (w).
0 The kernelsy and » can be computed for all values sf
4.2 In the numerical solution to the set of coupled integro-
' differential equation$4.1) and(4.2) it is more useful to use

with the equal-time condition€(t,t)=1 andR(t,t)=0 and the integral of the kerne}, 7(7)=/,d7’' (7'), which reads

1 ~ _ah ¢
lim 5tR(t,t’)=M, ”(T)_E uTgTz)slzcos{sarctanjwcr)]F(s)
vt (4.10
lim aR(t,t))=0, 4.3 and, whers takes the values 1/2,1,3/2, it becomes
t'—th ( \/aTC - .
— s=1/2 sub-Ohmic,
lim 9,C(t,t")= lim 4,C(t,t')=0. (4.4) 7
vt vt ()~ % s=1 Ohmic,
The symmetrized correlation function is defined@&,t")
=1/(2N)Z;(s(1)si(t') +5;(t)s(t)). The equation for the RN super-Ohmic.
Lagrange multiplierz(t) reads [ Voo
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On the right-hand side we have written the limiting form for 1=, T T Tocallzed
w.m1. Itis clear that, as for the imaginary-time kernels, the % e
dependence on, is very different in each of these cases. .
We shall rescale the real time and the other parameters Glassy
and functions in the dynamic equations to match the defini-
tions that we used in the Matsubara calculation. Under the
rescaling of time,t—J/#t, the symmetrized correlation
function remains unchanged and the response transforms as 02 .. i
R—#AR. The rescaled dynamic equations are identical to 0 e %
Egs.(4.1) and(4.2) with M replaced by’ 1.

C(t + tu, tw)

B. Numerical study of the real-time dynamics 0 10 15 20

As shown in Sec. Il B, both static and dynamic transition
lines depend strongly on the strength of the coupling be- g, 8. The decay of the symmetrized correlationTat0 in
twe_en system a_nd bath. We can also see this effect by fOlhree cases: localization far=4 andJ=0, glassy decay for two
lowing the real-time dynamics of the system coupled to the o . ~ .

. . nonvanishing values al, J=0.5, andJ=1, and a simple decay
environment. We have solved Eqg.1) and (4.2) numeri- .
. . : towards zero for the case of a small coupling to the bath0.2
cally with a predictor-corrector algorithm that allows us to 43=0. We h h b-Ohmic bath vtk 0.5
reach long times with a high accuracy. For each set of pa"in5 a; q ) =i0 z'il'\llf]eecu(;sl’letlr,l]ma zura;netg]r'; uZIs 1 > @ph
rameters we have checked the data collapse for different val- @e ' q P q '

ues of the iteration step in the discretized equations. In . . .
general, there is a good collapse foe0.02 and, typically the system does not localize and the symmetrized correlation
we have useth=0.01 andh=0.02. ' ’ " decays to zero with broad oscillations.

) ) o ) 2. Dynamics in the paramagnetic phase
1. Effect of the interactions: Localization against glassy ] o ]
behavior For a chosen coupling to a bath, at sufficiently high values

. of I" and/orT the system equilibrates with the environment

In the Introduction and Sec. | we recalled several results,q it quickly reaches a stationary regime where the quantum
for localization in dilute two-level systems coupled to a bath.ry7 s satisfied. This property has been proved forgtsmin
In this paper we focus on a soft spin version of the interacty,je| in Ref. 23, for the largbkfully connected Heisenberg
ing problem. Our first aim is to determine the effect of theSU(N) model in Ref. 29, and for a soft version of the quan-
couplingJ on the localization properties of this system from tum model in Ref. 30. In all cases the systems were coupled
a real-time dynamic point of view. In Fig. 8 we show the to an Ohmic environment and the limit of weak coupling,
decay of the symmetrized correlati@(t+t,,ty) using a jim,_glim, .., was considered. The symmetrized correla-

sub-Ohmic bath W|tI$=Q.5, wc=10, andwph:s_' The three tion and response have a rapid decay towards zero with os-
upper curves were obtained far=4 and changing the value jjations that depend on the value of the quantum parameter
of the SG coupling strength. WhenJ=0 the system local- T and, as we show here, on the coupling to and the type of
izes fora> a®R'™: for anyt,, and long enoughthe symme-  environment used.

trized correlation reaches a plateau and it does not decay e first consider a fixed Ohmic environment; i.e., we take
below this value. When a small coupling is switched on thes=1 and we fixw.=10. We display in Fig. 9 the decay of
decay changes. The symmetrized correlation approachestige symmetrized correlation and response functions for dif-
plateau for small values df-t,, but it subsequently leaves ferent values of in the PM phase. It is clear from the figure
the plateau and decays towards zero. The system has glasst the period of the oscillations decreases WitHn order
nonequilibrium dynamiCS that we shall quantify b?!OW Fi- to quantify this dependence one can Comwteo))/w and
nally, when the coupling to the bath is very small ahe0 follow the evolution of the peaks. We show two examples in

—

s Lo Lw Lo
[T

Law Law 3 | |

05
FIG. 9. The stationary symmetrized correla-

tion (left) and responséright) functions atT =2

for several values of the quantum paramdter

o given in the key. The bath is Ohmic ang.=5,

e a=0.8.

C(t + tu, tw)
R(t + tu, ty)

-0.5
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FIG. 10. The frequency dependence of
X" (w)/w. Left panel:T=0, «=0.6, w,=5, and
several values of'. Right panel:I'=5, T=0,
w.=10, and several values af. The environ-
ment is Ohmic in both cases.

Fig. 10. The data in the left panel correspond to those in Figobtained in Sec. Il D. We can also check this law by esti-
9. In the right panel we represegt(w)/w for T=0, I'=5,  mating the value ofjz, from the numerical solution of the
and several values af. For small values ot the system is real-time equations. If we plot the symmetrized correlation
deep in the PM phase and there is a well-defined peak ifunction for several values af on a log-log scale the plateau
x"(w)lw at a finite valuew, that increases with decreasing at gga can be easily identified. It is a slowly growing func-
a. At high enough values af a tail at low frequencies starts tion of « that is rather well described by E(B.39.
developing, indicating that the dynamics is slower and that We also investigated the effect of different environments
the system approaches the transition towards the glassdifferents) of the same strengttsamea) using the same
phase. Eventually, as discussed in Sec. lll A, for high enouglalue of the high-frequency cutoff that we took equal to
@, the parameters fall below the transition and the systenw,,. From the discussion in Sec. IllC for some values of

becomes glassy with slow dynamics. wpn We expect the relaxation to be slowest for the sub-
Ohmic bath, intermediate in the Ohmic case, and faster for a
3. Dynamics in the glassy phase super-Ohmic environment. This is illustrated in Fig. 12. The

In Fig. 11 we compare the behavior of the symmetrizeadecay IS slowecréivheiz 0.5 thanhln the other casei. In the_
correlation and response functions in the glassy phase Whéﬂ(treme czse h =4t ehsystem as gonerz]_act;oshs t. N t_ranS|-
the system is coupled to an Ohmic environment through difion towards the PM phase. However, this behavior is not

ferent coupling constants. We choobe 0.1, I'=4, and we generic. . .
compare the effect of =0.2 anda=1. The high-frequency The relation between the symmetrized correlation and re-

cutoff is w,=5. From the discussion in Sec. lll we expect sponse plays a key role in the description of t_he_ dy”af'?‘c
that the system is in the PM phase in the first case and in thléehawo_r of glgssy systems. When the system Is in equilib-
SG phase in the second. This is seen in Fig. 11.de0.2 rium, this relation is model independent and it is given by the

the symmetrized correlations rapidly reach a stationary rel'—.:tl)D T W?ﬁn the ds_%/sten: IS glasssr/] arsg it evolves outt oft_e?.u;
gime and they oscillate around zero. Fe# 1 the behavior lorium, the conditions to prove the theorem are not satisne

is different. There is a first rapid decay towards a plateau thal?;Jt sw(;]p)llgs%gnerallzanons have been exhibited in a number
has a low value and, then, a slow and monotonic decay to2' MOdels. : A .
wards zero. Aging effects are apparent from the figure. The The guantum FDT for a system in equiliorium, in the
response function also shows a qualitatively different behav[escaled variables, reads
ior according to the value of. In one case it quickly ac- ~
quires a stationary oscillatory behavior around zero; in the R(t)= 6(1)i fx dweiwttam,(ﬁ‘]_‘”)(:(w) (4.10)
other it has a long tail as expected in a glassy system. We — 2 '
then conclude that the system has undergone a dynamic
phase transition between the PM and SG phases at an inté¥here
mediate value ofx. .

An approximate expression for the dependence of the C(@)=2 RefﬂdTeiwtC(T)_ 4.12
Edwards-Anderson parameter Brand«, atT~0, has been 0

T T T T T LS — T T T T

08 . FIG. 11. Left: the symmetrized correlation
. C(t+t,.t,) as a function oft for «=0.2 (PM
phas¢ anda=1 (SG phasg The temperature is
T=0.1 in both cases. The different curves corre-
spond to different waiting time,=5,10,20. For
a=0.2 the curves collapse on an asymptotic one,
while for a=1 they show aging effects. Right:
the respons&(t+t,,,t,) as a function oft for
the same parameters. The effect is similar.

C(t + by, tw)
R(t + tu, tw)

10 12.5 15
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1 I I T I T T T I

Motessnsnass ergseneninine §=0.5 -xee-
e —— bty J— FIG. 12. The symmetrized correlation and the
0.5 F- e - s=4.0 .
- L — = linear response at=0.1, forI'=1. We compare
“5 ”; the effect of a sub-OhmicsE0.5), an Ohmic
Toor 1 3 b (s=1), and a two super-OhmicsE€ 1.5, s=4)
% T e T 7 baths. See the key for the details. The coupling to
05k = 0.5 e _ the bath is kept fixed tax=3 and the high-
iy S— frequency cutoff equals the phonon frequency,
1 ! ! |8:4f0 I 05 ] ] I I 1 wc:wph:5-
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t t

The quantum FDT is an integral relation between the stationT_.., change smoothly and there is a clear nontrivial depen-
ary linear response and the symmetrized correlation functiorgyence on this parameter. The panel on the right displays the
The asymptotic dynamics in the glassy phase take place ip(c) plot for a fixed value of the coupling: and several
two time scales that are separated by the plateau in the syWjz|es ofs, s=1,1.5,4. The first two cases are in the glassy
metrized correlation function. As shown in Ref. 23 for the yhaqe while the latter falls in the PM phase and the paramet-
weak-coupling limit, the stationary part of the decay, Wheni. ¢t does not show a straight line piece. It is difficult to

the symmetrized correlation decays from 1q,, is such decide from these fi :
. gures if the slopes depends on not.
that the quantum FDT holds. We have checked that this re- In order to sharpen our conclusions about the dependence

sult also holds when the system is strongly coupled to a - :
non-Ohmic bath. In the Weaz-coupling Iimitgv)\//hen t%e Sym_of Tere On the characteristics of the environment we take

metrized correlation decays beyoug,, the relation be- profit of the empirical relation betweeh: and the break-

tween linear response and symmetrized correlations takes tifdg point parametem in the replica analysis of the same
form of the classical FDT and it reads model, Tege=T/m. In Sec. lll we developed a low-
temperature, low-frequency approximation to solve the
~d saddle point equations stemming from the replicated Matsub-
R(D)=0(t) Berrd - C(1), (413 ara analysis of this problem. In these limits we derived a set
of equations that linkT/m to « and s that can be solved
whereBe¢ is the inverse of an effective temperattr€gq¢ numerically. We found that for fixed the effective tempera-

andJ appears since we have rescaled time. A concrete walre Tegg is a growing function ofx. This result is reminis-

of testing the validity of this equation is to plot the integratedcent to the dependence Bfr¢ on the external temperatufe
response function in a classical problem: the lowdr, the higherTggg, mean-

ing that higher values of the effective temperature are
reached when the system is deeper in the glassy phase. Each
curve approaches one whan-o and the corrections can be
read from the asymptotic analysis presented in Sec. Ill. The
against the symmetrized correlati@{t+t,,,t,) for along  gependence ofgrr on s is weak but nonmonotonid\We
enought,, and usingt as a parameter. For short time differ- have already encountered a nonmonotonicity related to the
ences, whent—t,<t, and C(t+t, t,)>0dea, this con-  f5¢t that the factowy,, ® changes the coupling between sys-
struction does not have any particular meaning and the curvg, and bath differently for different values sj

is nonmonotonic with strong oscillations. Instead, when

-t,~t, or longer andC(t+t,,t,)<dega, the curve be-
comes a straight line of slope 1/Tggg.
. . : . V. CONCLUSIONS
In Fig. 13 we display they againstC plots for different
values of the parameters, explained in the caption and keys. In this article we discussed the effect of a quantum envi-
The panel on the left shows thevs C curve for different  ronment on the nonequilibrium dynamic properties of an in-
values of the coupling.. The slopes of the curves, and henceteracting quantum glassy system. We have shown that, as in

t+ty
X(t+tw,tW)Ef dt'R(t+t,,,t") (4.19

tw

15 T 15 T — ;

FIG. 13. Left: the parametrigy againstC
curves for different values of the coupling to the
environment, at fixed =0.1, o.=5, and using
an Ohmic bath. Right: the dependence of ghe
againstC plot on the kind of bath used. We in-
clude a straight line as a guide to the eye. In all
curvesT=0.1, =2, andw.=5.

PM
0.5 [~

-0.6 -0.2 0.2 0.6 1
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the case of a simple TLS, the influence of the quantum batphase for any type of bath. By this we mean that for larger
is very important. value of @ the area of the spin-glass phase on thel)

Two limits of the quantum model are easy to derive orplane increases. We also characterized the dependenee on
were already known. On the one hand, in the absence aff several properties of the system as the Edwards-Anderson
interactions, the calculations shown in Sec. Il and the nuparameter, the effective temperature, etc. The lardenit
merical results of Sec. IVB1 prove that when the model isof our model is experimentally realized in Kondo all&}&’
coupled to a sub-Ohmic bath, it undergoes a localizatioRyhere the spins are coupled to conduction electrons through
transition at a critical value of the coupling The localized 5 kondo interactiondy . The spin-boson model is known to
phase is characterized by a symmetrized two-time correlatiogg gqyivalent to the Kondo mod&ith the identifications
function that, as a function of time difference, approaches . : Lo
nonvanishing asymptotic value andverdecays topzpero On %OCJK anq, in the Weak—_Kondo-coupImg I|_m|b;~1—JKpo

‘ wherepg is the conduction electron density of states at the

the other hand, it was known that when interactions arq:ermi level. Therefore, decreasdn the Kondo couplingl,

switched on and the limit of weak coupling;— 0, is taken, ds 1o ai in th lina to the bath. O
the model has glassy dynamics with a symmetrized correl corresponcs to amcreasen the coupling to the bata. Dur-
-finding that the extent of the spin glass phase increases with

tion function that depends on the waiting time and decays ir) .

two steps with a first approach to a plateau and a seconficreasinga is then consistent with the Doniach scen&ftio
decay towards zerd. according to which, at =0, the ordered phaga spin-glass

The aim of this article was to analyze the combined ef-in this casg exists forJ>Txexd —1/(Jkpo)]. Biroli and

fects of the interaction J#0) and a strong couplinga{  Parcollet® discussed thev—eo limit of the SU(V) Heisen-
#0) to quantum environments of different typ@different ~ berg disordered model with a Kondo coupling and they also
s). We summarize our findings as follows: found that the transition temperature decreases with increas-
First, we determined if the model has a localized phase g Jx -
the presence of interactions. How to define such a phase for We also studied the effect of different types of baths. Con-
an interacting system is a difficult questi¢see, e.g., Ref. cerning this issue the conclusions are cumbersome given the
41). Here, we adopted as evidence for a localized phase tH@ct that a new parameter, the phonon frequeagy, ap-
fact that for a long enough waiting tintg, the symmetrized pears in the spectral density whew# 1. If oy, is not equal
correlation function does not decay to zero at any time difto 1, the effect of different baths is complicated. For instance,
ferencet—t,,. With this criterion we saw that, as expected, the dependence @fz, on s can be nonmonotonic as well as
there is no localized phase when interactions are switchethe location of the critical line on theT(I") plane. We ex-
on. hibited some examples but we cannot draw general conclu-
This result can be interpretedposterioriby resorting to ~ sions concerning this issue.
the concept of effective temperatures generated by the non- Finally, an important issue that deserves discussion is the
equilibrum dynamics of glassy systems. Indeed, it has beeflependence of the order of the transition upon the coupling
shown for classical systems that the modification of theto the bath,a. In the Ohmic case, the jump of the order
fluctuation-dissipation theorem observed in systems evolvingarametereg, at T=0 decreases with increasiagand van-
slowly out of equilibrium is related to the self-generation of ishes only wherw— . Therefore, the tricritical temperature
effective temperaturegypically higher than the one of the is finite for all <+ and it goes smoothly to zero when
environment®’ The proof presented in Ref. 37 has not beena— . Instead, in the sub-Ohmic case, B0, gea Van-
extended to quantum systems yet. However, as argued ishes ate=a“R'T<+ and the transition becomes continu-
Ref. 23 for the quantum model studied in this paper wherous. As emphasized in Sec. Il D 2 we expedR'T to be
weakly coupled to an environment, the slow part of the refinite for discrete spins when coupled to an Ohmic bath,
laxation looks classica] with a quantum fluctuation- leading to a suppression of the first-order transition for suf-
dissipation relation that becomes classical with an effectivdiciently large coupling also in this case.
temperature that is higher than the temperature of the envi- The motivation for this study were manifold. The effect of
ronment. In particular, when the model is coupled a quantunguantum environments on interacting macroscopic quantum
bath at zero temperature it acquires a nonvanishing effectiveystems is a problem that is now being revisited in the con-
temperature. This effect has been observed in other quantutext of quantum computing® Decoherence, or how quantum
glassy systems ta0:*°When the system is strongly coupled interference effects are lost due to the interaction with the
to the environment the relaxation slows down with respect tenvironment, has to be as much reduced as possible to make
the weakly coupled case. However, the two-step relaxatioa quantum computer performing. Again in the context of
remains with a slow regime controlled by a nonvanishingguantum computing, an isolated Edwards-Anderson quantum
effective temperature. Thus, we conclude that generation ahodel in a random transverse field has been proposed to
an effective temperature by the interactions is consistent witlnimic an isolated quantum computer witshort-rangg in-
the fact that the system does not localize. It is well knownteractions between the spifthat represent qubit@nd with
that even in simple TLS’s the localization effects disappear astatic “imperfections” in the individual two-level system
finite temperature. energied? In this work we analyzed a soft limit of a disor-
Next, we analyzed the effect of a strong coupling to andered quantum model with long-range-2 interactions in a
environment on the glassy properties of the model. Weransverse field. It would be very interesting to see which, if
showed that stronger couplings to the bath favor the glassgny, of our conclusions are modified if the soft spin limit is
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