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Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the
exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fée largest calculation
involves the Fg, ring which spans a Hilbert space dimension of about4&° for the M s=0 subspace. Our
calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally
measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for
ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap
between the ground and first excited states defining the inverse of the moment of inertia. We have studied the
guantum dynamics of RFgas a representative of ferric wheels. We use the low-lying states.gfté-solve
exactly the time-dependent Schinger equation and find the magnetization of the molecule in the presence of
an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization
which is dependent on the amplitude of the ac field. We have also studied the torque responseasfa-e
function of a magnetic field, which clearly shows spin-state crossover.
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[. INTRODUCTION theoretical studies to explain the low-temperature magnetic
susceptibility data of Fg.” The magnetization of ferric
In recent years polyoxometalates which are practical realwheels exhibit a steplike field dependence at low tempera-
izations of nanomagnets have become an area of intense rewe due to the occurrence of field-induced ground-state level
search because of their enormous variety of structures argfossing, a spectacular manifestation of quantum size effects
fascinating magnetic properties. A particular aesthetic clasg these nanomagnet€.There have been NMR and specific
is that of the ring-shaped ir¢il) compounds denoted as heat studies of these ferric wheels to investigate the energy
molecular ferric wheels. The decanuclear wheabBgnthe-  |evel structure:*°In appropriate parameter regime these ring
sized by Taftet al* may be regarded as a prototype of this systems are considered to be candidates for the observation
class. Meanwhile, synthesis of ferric wheels with 6, 8, 12,4y macroscopic quantum phenoméhan the form of quan-
and 18 sites have also been repoftdthese materials have a tum coherent tunneling of the ‘Nevector*2 To understand
dominant antiferromagnetic coupling between thelllFe  ose ow-temperature properties of ferric wheels in detail we
spins and a singlet ground state. The magnetic properties 91feed to know the low-lying eigenvalue spectrum for these
such nanoscopic molecules result from the interplay of SUsystems. It is also of interest to compare and contrast the
perexchange interactions between the atomic spins, dipola i

) ; ; ; ._zero-temperature density of statesS#5/2 rings with that
coupling of the local moments, and on-site anisotropies aris-

ing from ligand configurations. The emergence of ferricmc the e>_<actly .knowr6= 172 (_:haln. In this paper we have
wheels has led to a renewed interest in the properties of th se.d spin parity together with Irotatl_onal symmetry of the
Heisenberg chain, especially for large spin values. In 1964€MTc wheels to obtain the low-lying eigenvalue spectrum for
Bonner and Fisher used a classical treatmientwhich spin ~ 1Ngs with 6, 8, 10, and 12 spin-5/2 sites. The dispersion
quantization is absent, to study the properties of the HeisersPectrum reveals interesting features. There have been recent
berg Hamiltonian and found analytical solutions for the ther-reports of solving the low-lying eigenspectrum of,fasing
modynamic properties of the system. Numerous quanturthe density matrix renormalization group methddlo the
mechanical calculations have been made for the Heisenbehgst of our knowledge, our’s is the first study of ferric wheels
Hamiltonian, mostly for spin-1/2 chains. Calculations for using exact methods up to a ring size of £ 5/2 iron(lll)
largerS became more interesting after Haldane’s conjeétureions.
regarding the presence of an energy gap in the excitation We have also studied the quantum spin dynamics of ferric
spectrum from the ground state for intedechains. wheels in the presence of an alternating field after setting up
To fit the experimental temperature dependence of théhe Hamiltonian matrix in the subspace of low-lying states.
magnetic susceptibility data for kg Taft et al. adopted a This Hamiltonian includes multipolar spin-spin interaction
classical spin treatment to obtain the value of the exchang&rms besides a time varying magnetic fiefsbeman terrn
interaction parametel. But below 50 K this treatment fails. We have then evolved an initial state, which is taken to be
Ferric wheels withS=5/2 and system size of up to eight the ground state with a specific value Mfs (the z compo-
sites have been treated exactly using the irreducible tensment of the total spinin the absence of a magnetic field, by
operator techniqewith the aid of point group symmetry as using the time-dependent formulation of the problem in the
well as by using the invariance of the spin Hamiltonian withrestricted subspace. We observe a nontrivial oscillation of the
regard to interchange of spin sittRecently there have been magnetization whose frequency depends on the amplitude of
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the alternating field. This phenomenon is very similar toHowever, setting up the Hamiltonian matrix in such a basis

what has been observed in case of uniaxial maghiets. can be computationally intensive since the exchange opera-
tors operating on a “legal” VB diagrania diagram that
Il. MODEL HAMILTONIAN AND COMPUTATIONAL obeys Rumer-Pauling rulesould lead to “illegal” VB dia-
DETAILS grams, and resolving these illegal VB diagrams into legal

diagrams would present the major bottleneck. Indeed, the
same difficulty is encountered when spatial symmetry opera-
The full symmetry of electronic states is of central interestiors operate on a VB function. Thus, the extended VB meth-
in quantum theory. Since nonrelativistic Hamiltoniddsdo  ods are not favored whenever one wishes to apply it to a
not depend explicitly on spin, molecular eigenstates can benotley collection of spins or when one wishes to exploit
labeled by the total spits and the appropriate irreducible some general spatial symmetries that may exist in the
representation of the point group. The model Hamiltonianc|ystert”
employed in this study is the isotropic exchange Hamiltonian |t js advantageous to partition the spaces into different
involving an exchange interaction between nearest neighgtg] spin spaces because of the usually small energy gaps
bors, between total spin states which differ &by unity. To avoid
the difficulties involved in working with total spin eigen-
A= > Jijgi.gj, (1)  functions, we exploit parity symmetry in the systems. The
() parity operation involves changing taeomponent of all the

where the exchange interactidy) takes the values dictated SPINS in the cluster fronMs to —Ms. There is a phase
by experimental studies of the structure and magnetic progiactor associated with this operation given by ) St 2iS,
erties. For Fg the J value depends on the central alkali- The isotropic exchange operator remains invariant under this
metal atom; for Na: Rg J=32.77 K, whereas for Li:kg operation. If this symmetry is employed in thés=0 sub-
J=20.83 K.InFg, Fey, and Fg,, Jis 22 K, 15.56 K, and  space, the subspace is divided into “even” and “odd” parity

A. Symmetry adaptation of correlated states

31.97 K, respectively? spaces depending upon the sign of the character under the
The total dimensionality of the Fock space of the ferricirreducible representation of the parity group. The space
wheel is given by which corresponds to evedd) total spin we call the even

(odd) parity space. Thus, employing parity allows partial
" spin symmetry adaptation which separates successive total
De=1] (2s+1), (2)  spin spaces, without introducing the complications encoun-
! tered in the VB bases. However, the VB method can lead to
wheren is the total number of spins in the wheel &®ds the ~ complete factorization of the spin space leading to smaller
spin on each ion. In the case of;gethere are ten ircfiil) ~ complete subspaces.
ions with the dimensionality of the Fock space being In the ferric wheels, besides spin symmetries, there also
60466 176. In the case of Ee which we have solved ex- exist spatial symmetries. The topology of the exchange inter-
actly, this dimension is 2176 782 336. action leads to &,, point group symmetry, whera is the
Specializing to a given totaMg leads to Hilbert space humber of iron ions in the ring. Hence, &eFe;, Feyo, and
dimensionalities which are lower than the Fock space dimenFe, Will have Cg, Cg, C4o, andC;, symmetry, respectively.
sionality. In the case of the Lecluster, theM s=0 space has It should be mentioned that among these ferric wheels only
a dimensionality of about 14510° (144 840 476 The ma- Fe, strictly has a tenfold rotational symmetry; the rest of
jor challenge in an exact computation of the eigenvalues anthem only approximately have the above-mentioned symme-
properties of these spin clusters lies in handling such largy. For computational advantage we have assumed rotational
bases and the associated matrices. While the dimensions lo§kmmetry for all the ferric wheels. This point group appears
overwhe|ming, the matrices that represent the operators it first site to present difficulties because the characters in the
these spaces are rather sparse. Usually, the number of ndfeducible representation are in some cases complex which
zero elements in a row is of the order of the number ofcould lead to complex bases functions. This, however, can be
exchange constants in the Hamiltonian. This sparseness 8¥oided by recognizing that in th€, group, states with
the matrices allows one to handle fairly large systems. Howwave vectorsk and —k are degenerate. We can therefore
ever, in the case of spin problems, generating the bases stag@struct a linear combination of tkeand —k states which
and using the symmetries of the problem is nontrivial. is real. The symmetry representations in @ggroup would
The isotropic exchange Hamiltonians conserve total spirthen correspond to the labeds B, andE, with the characters
S besides thez component of the total spiMg. Besides in the E representation given by 2 cok] under the symme-
these symmetries, the geometry of the cluster also leads toy operationC;,, with k= w/n. The parity operation com-
spatial symmetries which can often be exploited. The simmutes with the spatial symmetry operations, and the full
plest way of generating bases functions which conserve totgloint group of the system would then correspond to the di-
spin is the valence bon/B) method, which employs the rect product of the two groups. Since both parity and spatial
Rumer-Pauling rulé® It is quite easy to generalize the symmetries can be easily incorporated in a consthgta-
Rumer-Pauling rules to a cluster consisting of objects withsis, we do not encounter the difficulties endemic to the VB
different spins to obtain states with a desired total spin theory.
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(a) symmetry vectors. To avoid these difficulties, we have con-

O EY O EY O structedi the symmetry matrices in smaII_ invariant subspa(_:es.
2 ¥\ AR These invariant subspaces are obtained by sequentially
1 o0 1 o 1 1 choosing a state and operating on it by all the symmetry
operators. This gives rise to a set of states on which we again

I=4 operate by all the symmetry operators and continue this pro-

cess until no new basis states are generated. The collection of
all these basis states resulting at the end of this process is the
invariant subspace. We can set up symmetry combinations of

(b) the basis states in each of the invariant subspaces indepen-
EHEEOOmE®EYEDE)EYEYG dently. The symmetry combinations can now be obtained
operating on each state by the group-theoretic projection op-
001 101 100 011 101 011 010 001 000 010 001 O11 erator

[ = 14557188235

. 1 .
FIG. 1. Representativiel ;=0 states in(@) six-spin4 cluster,(b) PFi:H ; XFi(R)R ©)

Fe,, wheel with all the sites having spf= 3. Numbers in paren- . . .
theses correspond to tihé, value at the site. The bit representation ©N €ach of the basis states of the invariant subspace.lHere

as well as the integer value is given just below the diagrams.  is theith irreducible representatiof® is the symmetry op-
eration of the group, anﬂlri(R) is the character unde® in

tthe irreducible representationy; . This process is repeated
'With the next basis state that has not appeared in any of the
fhvariant subspaces already constructed. The process comes

unique integer. In this integer, we associafebits with spin to an end when all the basis states have appeared in any one
s;, such tham; is the smallest integer for which"2=(2s; of the invariant subspaces

+1). In the integer t_hat represents the state (_)f the cluster, we The resulting symmetrized basis is usually overcomplete
ensure that these, bits do not take values which lead to the j, e4ch of the invariant subspaces. The linear dependences
n; bit integer value exceeding 2+ 1). For each of the al- 5 pe eliminated by a Gram-Schmidt orthonormalization
lowed bit states of the bit integer, we associate s procedure. However, in most cases, ensuring that a given
value between-s; ands;. For a spin cluster of spins, we  basis function does not appear more than once in a symme-
scan all integers of bit lengthN==_,n; and verify if it  trized basis is sufficient to guarantee linear independence and
represents a basis state with the deslvegvalue. In Fig. 1, weed out the linearly dependent states. A good check of the
we show a few basis functions with specifibt}, values for  procedure is to ensure that the dimensionality of the symme-
some typical ferric wheels along with their bit representa-trized space in the invariant subspace agrees with that calcu-
tions and the corresponding integers. The generation of thiated from the traces of the reducible representation obtained
bases states is usually a very fast step, computationally. Gefrom the matrices corresponding to the symmetry operators
erating the basis as an ordered sequence of integers that rép-the chosen invariant subspace. Besides, the sum of the
resent them also allows for a rapid generation of the Hamildimensionalities of the symmetrized spaces should corre-
tonian matrix elements as will be seen later. spond to the dimensionality of the unsymmetrized invariant

The symmetrization of the basis by incorporating paritysubspace in each of these subspaces.
and spatial symmetries involves operating on the constant The generation of the Hamiltonian matrix is rather
Ms=0 basis by the symmetry operators. Since the spatiatraightforward and involves operating with the Hamiltonian
symmetry operators permute the positions of equivalenbperator on the symmetry-adapted basis. This results in the
spins, every spatial symmetry operator operating on a basiwatrix SH, whereS is the symmetrization matrix represent-
function generates another basis function. Every symmetrjsg the operatoPy , andH is the matrix whose elemenits;
operator can be represented by a corresponding vector Whoa?e defined by !
ith entry gives the state that results from operating orithe
state by the chosen operator. This is also true for the parity .
operator, in theM s=0 subspace. Hli)=2 hyli). 4

The first step in constructing symmetry-adapted linear .
combinations is to represent the symmetry operators in th&he statedi} correspond to the unsymmetrized basis func-
chosen basis as matrices. In our case, the symmetry operatdigns. The Hamiltonian matrix in the symmetrized basis is
are such that a symmetry operation by any operator on abtained by right multiplying the matri$H by S'. The re-
basis state leads to a resultant which is a single basis statgulting symmetric Hamiltonian matrix is stored in the sparse
Thus all our symmetry operators can be represented as vegyatrix form, and the matrix eigenvalue problem is solved
tors; the entry in position gives the index of the basis func- using the Davidson algorithf.
tion generated by the symmetry operation on the basisistate The computation of the properties is easily done by trans-
Since the basis is very large, it is prohibitive to store andforming the eigenstate in the symmetrized basis into that in
manipulate the full basis together with all the associatedhe unsymmetrized basis. Since the operation by any combi-

The generation of the complete basis in a given Hilber
space requires a simple representation of a state on the co
puter. This is achieved by associating with every state
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nation of spin operators on the unsymmetrized basis can b Energy gap vs. inverse system size
carried out, all relevant static properties in different eigen-
states can be obtained in a straightforward manner.

06

B. Quantum spin dynamics r

We have studied the dynamics in ferric wheels by setting 0.4 |-
up the Hamiltonian matrix in the desirddg space, whichin 4
all cases is restricted tMg=0, 1, and 2. In each subspace r
we have obtained a few low-lying states using the Davidson
algorithm?® We have also calculated the spin-spin correla-
tion functions in each of the states. Using the spin-spin cor- L
relation functions, we have computed the expectation value
of the S?_total operator, from which we have identified the 0 0 : 0'04 0(')8
total spin of the state. We observe from the eigenvalue spec ' TN
trum of all the ferric wheels that the ground state and the first
excited state are spin-singleS€0) and -triplet &=1) FIG. 2. Plot of ground-state energin units of J) vs inverse
states, respectively, in accordance with the Lieb-Schultzsystem size for ferric wheels up to fe
Mattis theorent® These states belong to different spatial
symmetry subspaces as well as different parity subspaces. 8t state in small steps aft=0.01 (i/J) by solving the
they will not mix unless there is a perturbation which spoilstime-dependent Schdinger equation
both theC,q symmetry of the molecule and the parity. We
also notice that the firstriplet) and the secondquinte) ihd—w=|:|(t)¢ @
excited states again fall into different symmetry subspaces. dt '

This is true in all the ferric wheels we have studied.

To study quantum dynamics we have considered the fol

lowing Hamiltonian2°

0.12 0.16

In actual practice, the state is time evolved according to the
equation

lﬂ(t"‘At):e_iﬁ(t+At/2)At/hlﬂ(t). (8)

|:| =Es— Dég,total+ C(éi,total_ Asi,total) - gh(t)éz,total' 5
. ) . . . The evolution is carried out by explicit diagonalization of the
HereD is the quadratic anisotropy factag,is the Landeg  amiltonian matrixH(t+ At/2), and using the resulting ei-
f_acto:js for (tjhe irofill) spin, ri_SF:SC“VEIV' andh((;) is the  genvalues and eigenvectors to evaluate the matrix of the time
tlnl]_le' ependent magnetic field, expressed a&t) . oo operatore” 'H(HAU2AUR \\e set up the Hamil-
=H, cost), wherew is the frequency at which the field is . ) ; LT .
. : . tonian matrix for time evolution in the truncated basis of
ramped andH is the amplitude of the field. We have chosen . :
three states corresponding to total spin 1. We repeatedly

D=8.8x10"2 and c=10"2 (in units of J in accordance . L2 ; .
: . carry out the time evolution in small time steps of sixeto
with the experimental values for kg We takeg=2.0. The . . . .
obtain the time evolution over longer periods.

constantsEg in Eq. (5) correspond to the lowest energies
obtained from Eq(1). The second-order anisotropy term al-
lows transitions between states wittiM g= *=2. Both the IIl. RESULTS AND DISCUSSION

second and third terms in E¢p) arise due to the magneto- A. Analysis of the low-lying spectrum
crystalline anisotropy. The exact form of the anisotropy in ,
ferric wheels is not very well established. We have included Ve have solved the exchange Hamilton[dy. (1)] ex-

anisotropy terms only up to second order in the spin vari2ctly using the method mentioned earlier to obtain the low-

ables. The anisotropy in the plane can be formed artificially!yin9 €igenvalue spectrum for 6-, 8-, 10-, and 12-site iro-

e.g., by means of external electric or magnetic fields, presr—‘(”l) r!ngs. we find that the ground state a_nd first, secpnd,
sure, or using an anisotropic substréfte. and third excited states are, respectively, singlet and triplet,
T(; observe spin dynamics, we begin with the initial Statequintet, and heptet for all ferric wheels. We notice that there

S=1Me=—1), and th | ¢ | field i is no accidental degeneracy between the energy levels be-
|0f the foSrm ), and then apply an external field in E@) longing to different symmetry subspaces. The gap between

the ground state and the first excited state is shown in Fig. 2
h(t)=H, cog wt). (6) as a function of inverse ring size. According to the Haldane

conjecture, the gap should extrapolate to zero. The extrapo-
The Hamiltonian in Eq(5) does not allow the mixing of the lated value, while small, is still finite, suggesting that in these
ground stategsingle) and the first excited staté@riplet) in  rings finite-size effects are still at play at the ring sizes we
Fe, because of the symmetry reasons already mentionedhave studied.
Therefore, to observe the dynamics in the magnetization, we Using the exchange constants estimated for the different
have chosen the above initial statélo study the evolution ring systems, we estimate the gap between the ground state
of the magnetization as a function of the applied oscillatoryand the first excited state to be 22.67 K, 11.81 K, and 6.88 K
field, we start in the initial state at timie=0 and time-evolve for Na: Fg, Na:Fg, Na:Fqq, respectively. Our calculated
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values compare very well with the experimental values,
which are 22.0 K, 12.1 K, and 6.45 K for Na eNa:Fg,

and Na:Fg,, respectively® This agreement shows that for

all practical purposes ferric wheels can safely be assumed as
rings neglecting the slight deviation from the exact circular
geometry. Our calculated gap for pes 12.09 K, corre-
sponding to the exchange constants predicted from experi-
ments. However, an experimental estimate of this gap is

lacking.
If we defines; to
excited state and t

be the energy difference between itte
he ground state, we find from Fig. 3 that

the following relationship is satisfied for the ferric wheels:

S S(S+1)

i > 9

19

whereE; is the energy gap between the ground state and the

first excited state.

This indicates that the lowest spin state

obeys the Lande interval rule, in agreement with the conjec-

ture of Taftet all If
moment of inertia,
tional energy of ar

we assumek; to be the inverse of the
then the above expression gives the rota-
igid rotor in a state with quantum number

Fe, ring

15
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FIG. 4. Plot of energyin units of J) vs momentum vectok for Fe;, Fe;, Feq, and Fe,.
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S. Thus, the spin states of ferric wheels can be viewed as °

the quantized states of a rigid rotor. , | Cround State (S=0) N A
In Fig. 4 we have shown the dispersion spectrum of ferric (a) - Fe?o (B")
wheels. The value of corresponding to a wave functiaf 30 ——- Fe, (A")
can be defined as @, [
Ty=e*y, (10 1}
whereT is the translation operator which in the case of aring o < : "k
. . . 0 4n/12 8n/12 n 16m/12 20m/12
rotates the ring by one lattice spacing. We have used the s -
spatialC,, symmetry of the ferric wheels, which enables us | 1"Excited State (S=1) Fo Eg\%
to identify the value ok easily for a specified eigenfunction. (b) —-— Fe,, (A)
We observe that the ground state switches betw&en(k 3t » ——- Fe, (B)

=0) andB™" (k=) subspace for systems with=4n and &
N=4n+2 spins, respectively. This was also observed by

Mattheiss in the case of a spin-1/2 chain and can be under 1 |
stood from Marshall’s sign rule. We find that, in the momen-

tum (k) sector which contains the ground state, the lowest % ax/12 8n/12 T 16—1;/12 20m/12
excitation is to a quintet state, while the lowest triplet exci- q

tation has a momentum which differs lyfrom the momen- 5

tum of the ground state. In fact, for any momentum different 2" Excited State (S=2) — Fe, (B)
from that of the ground state, the lowest excitation is a triplet 4 [ - iga ((‘}32)
state for all the four system sizes shown in Fig. 4; if this 5[ (o ) ——- Fe (A)

trend continues, we expect the triplet to be lower in energyg

than the quintet for ank value different from that of the 2
ground state in the thermodynamic limit. Previous studies 1L
on antiferromagnetic spin-1/2 Heisenberg chains show tha

i \\'\,\
/ My

the excitation spectrum is given b¥iw=(m/2)J|sink, %5 e an/12 . el 20012
wherek is the wave vector of the excited states measured ° . _
with respect to that of the ground state. Simple antiferromag- , [ * BetedSaes=s) - Ezz ES—;
netic spin-wave theory, based on the use of the Holstein- () —-— Fe,, (A)
Primakoff transformation for each sublattice, leads to the ex-33 | A —— Fe,(B)

citation spectrum $ is the magnitude of the individual spin @,

S)

1 -

fiw=2J39sink|. (11 o .
. I . 0 4n/12 8n/12 16n/12  20m/12
This relation is supposed to be correct . We notice " § qn i *
that the excitation spectrum for ferric wheels can be fitted to
a |sink| kind of function. Isolated data points k=0 or k FIG. 5. Plot of static structure fact&, for the ground and three

= deviate from the above sinusoidal function. This is alowest excited states for FeFe;, Fe, and Fe,. Note that the
finite-size effect. In the thermodynamic limit of an infinite Spatial symmetry label for a given state alternates betweeard
chain length, there is no distinction between chain lengths ofn+2 systems.
N=4n andN=4n+2, and the lowest-energy excitation will
indeed be given by Eq11). creases as IIN). The peak height is the largest in the ground
We have also calculated the spin-spin correlation functiorstate. The peak heights in the three excited states are compa-
((SS))) of ferric wheels and Fourier-transformed it to find rable to each other; a similar spin-wave analysis shows that
the structure factor the peak heigh®( ) for the excited states is slightly smaller
than the height in the ground state by a constant additive
1 q(m—n), oz oz factor which is independent of the wheel size. The ground
S(q)= N2 % e (SwSw)» (12 state is a Nel-ordered state; the peak $¢) signifies that
’ the ground state is unstable to a spontaneous distortion with
where the allowed values gfare given by the cyclic bound- wave vectors.
ary conditions. In Fig. 5, we have plotted the structure factor
as a function of the wave vectay for different symmetry
subspaces. In each part of the figure, we have plotted the
structure factor for wheel sizéd=6, 8, 10, and 12. In all We follow the evolution of the magnetization, beginning
casesS(q) shows a peak aj=; the peak height increases with the initial state S=1, Mg= — 1), in the presence of an
slowly with wheel size. This is in agreement with the simpleaxial ac magnetic field whose amplitude is varied. We have
spin-wave analysis which shows that the peak height inkept the frequency of the field fixed ait=10"3. We calcu-

B. Evolution of magnetization in the presence of an ac field
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ied in Ref. 14 since the quadratic anisotropy faddorc in

(a) H,=0.04
@ ® © ) He=007 Eq. (5). The upper envelope @ as a function oH, can be
(¢c) H=03 empirically fitted to an inverse square root curve.
1F For very small values ofl,, the magnetization oscillates
with a frequency given bWE/#, where AE is the energy
difference between the two approximate eigenstdi®s
05t =1Mg=—-1) and|S=1Mg=1) of Eq. (5). SinceAE~c
2 [wherec is the amplitude of the mixing term in E¢)] and
v is comparable taw=10"3, the frequency of oscillation of
0r M(t), Q, is also comparable t@. Hence the ratid)/w
rapidly increases to 1 for smai,.
For large values oH, the probabilityp of remaining in
-05 the ground state is small and, in fact, decreases ldg.'t/
Thus we have a nonadiabatic situation in which the state and
its magnetization remain unchanged with a probability 1
-1 o ; p P . —p which is close to 1. One can then show that the magne-
Time (x 10°)
0.2
FIG. 6. Plot of evolution of magnetization in the presence of an
alternating axial magnetic field, (in units of J/%) of three differ-
ent amplitudes.
0.15
late the magnetization at each time step. When we draw ¢
smooth curve for the time evolution over long time periods,
we find a sinusoidal motion
- 01

M(t)~cogQt),

which can be seen in Fig. 6. Unexpectedly, the frequeicy
of this sinusoidal motion does not correspond to an eigenfre- 005
guency of the system or to the period of the external field.
When we change the amplituéi, of the field, the period of

the magnetization changes, which is shown in Fig. 7. We find

13

that the frequency of oscillatio® becomes very small for 00_2 0.3
some values oH,, and then it increases again. A similar
behavior is observed in the transverse field Ising mdtiel. 8
Indeed the physics of our model is similar to the model stud- Se0 o=n/4
—_— = ///
==== S=1 ///
0.4 6L ——-8=2 -7 o
3 T
& 4T ===
; <:fi: ______________________ -
-~ ———
5 Ss=el et
3 2t ST e
L ~ =
3 e >"‘\\\\\\\
a e T > ‘—\——\—}\—\— —————————————
~~~~~~~~~ \\\ \\\\
_____ - -
0 - =— S~ = ~ —
______ =Z
] ‘-N\bﬁ‘-i
2 1 L Il
0 0.2 0.4 0.6 0.8
B

FIG. 8. (a) Plot of they component of torqudin units of
J/% rad) with change in magnetic field for different directiofisn
the x-z plane.(b) Plot of energy levels corresponding to different

FIG. 7. Field amplitude 1) dependence of frequendy (de- spin states as a function of magnetic fielddat 77/4. Note that the
fined in the text The dotted line shows the inverse square rootjump in the torque occurs at the field values where there is a change

nature of the upper envelope.

in the M value of the ground state.
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tization oscillates with a low frequency and that the upperyiner hand. had we chosén= B(cos@x+sin &) lying in the
env?/lﬁemof the curve/e versus Ho behaves asyp x-y plane, thenM would take the form B(a cosox
""1/ Ho. . ~ ,

This nontrivial variation of} with H, can be understood fﬁ)sé?naz)céos;ngirgei~v,¥;0l::1?s vt\)/gulgfbeﬂ;r?uc;\ogpna?lfe? in

from the viewpoint of Floquet's theorefi. Nonadiabatic . e
transitions are possible whenever any two energy levels of agnitude than for a f'e_ld_'n the-z plane, although the
ependence would be similar.

system are close to crossing, which, in our model, occur .
whenever cosgt) is close to zero. For these times, the two . We have computee{T¥> fqr Fei, on the pa3|s of the
states with different magnetizations are nearly degenerat%'genvECtorS of the_Hz_;thtonlan n E(p). In F'g'. 8@’ we
leading to large tunneling amplitudes between the state ave shown the variation ¢ff,) with the magngtlc field for
which are manifested in oscillations of the magnetization/arous values of), and we do observe a maximum ()
This magnetization oscillation can be related to that of macfo ¢=7/4. We can clearly observe the step behavior of the

roscopic quantum coherence, which is predicted byorqug component W.hiCh is a mgnifestation of th‘? level
Zvezdin® crossing of singlet, triplet, and quintet states. The fields at

which the torque shows a jump are also seen to coincide with
fields at which theM value of the ground state changes
abruptly as indicated in Fig.(B).

Corniaet al. have used a novel cantilever torque magne-
tometry technique to study the spin-state crossover in ferric V. SUMMARY AND OUTLOOK
wheels. The torqudé experienced by a magnetically aniso-
tropic substance in a uniform magnetic fidds given by

C. Torque magnetometry

We have implemented a general and efficient procedure
that allows us to block-factorize the spin Hamiltonian matrix
T=MXB, (14)  based on its invariance under cyclic symmetry and parity
) o ] operations. This method can be used in general for systems
where M is the magnetization of the sampl&. vanishes  of other symmetries also. We have obtained the low-lying
when the magngtic field is applied along one of the principlegsjgenvalue spectrum of ferric wheels up ta fesing theC,,
directionsx, y, z of the susceptibility tensor, since in this rotational symmetry of the molecules. We have also analyzed

caseM andB are collinear. They component of the torque the dispersion spectrum and structure factor. To reproduce
operator,T,, can be easily obtained for an applied magneticthe low-temperature properties of ferric wheels, we need to

field of the form know the low-lying eigenvalue spectrum of these systems.
We have also studied the dynamics of the ferric wheel by

B=B(cosf#z+sin 6X), (15)  evolving an initial state whose magnetization is directed op-

. L posite to the direction of the magnetic field. We observe a
in Eq. (5), and is given by nontrivial oscillation of magnetization in the presence of an

Toy=— B cosf— sing), 16 alternating_ magnetic.field. We have also obtaingd the torqqe

(Ty 9usB((S) (S ) (16 of the ferric wheels in the presence of a nonaxial magnetic

where (S,)=3" (S, ,) is the ground-state expectation field and find that the torque also exhibits a steplike behavior

value of the component of the total spin operator. with field. Evidently a study including the effect of nonzero
From the structure of the Hamiltonian in E), we see temperature on this oscillation is a challenging problem for

that the susceptibility tensor is diagonal and has the fornfuture research.

xii=(a,B,y) fori=x,y,z, with a~ B<vy. This implies that

for an applied field of the form given in E¢L5), M takes the

form B(y coséz+assin 6X). Hence  (T,)~B(y We thank CSIR, India, and DAE-BRNS, India, for finan-

—a)sinfcosh, which has a maximum &= «/4. If on the  cial support.
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