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Model exact low-lying states and spin dynamics in ferric wheels: Fe6 to Fe12
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Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the
exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe12. The largest calculation
involves the Fe12 ring which spans a Hilbert space dimension of about 1453106 for theMS50 subspace. Our
calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally
measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for
ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap
between the ground and first excited states defining the inverse of the moment of inertia. We have studied the
quantum dynamics of Fe10 as a representative of ferric wheels. We use the low-lying states of Fe10 to solve
exactly the time-dependent Schro¨dinger equation and find the magnetization of the molecule in the presence of
an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization
which is dependent on the amplitude of the ac field. We have also studied the torque response of Fe12 as a
function of a magnetic field, which clearly shows spin-state crossover.

DOI: 10.1103/PhysRevB.66.014441 PACS number~s!: 75.45.1j, 75.50.Xx, 75.60.Ej
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I. INTRODUCTION

In recent years polyoxometalates which are practical r
izations of nanomagnets have become an area of intens
search because of their enormous variety of structures
fascinating magnetic properties. A particular aesthetic c
is that of the ring-shaped iron~III ! compounds denoted a
molecular ferric wheels. The decanuclear wheel Fe10 synthe-
sized by Taftet al.1 may be regarded as a prototype of th
class. Meanwhile, synthesis of ferric wheels with 6, 8, 1
and 18 sites have also been reported.2 These materials have
dominant antiferromagnetic coupling between the Fe~III !
spins and a singlet ground state. The magnetic propertie
such nanoscopic molecules result from the interplay of
perexchange interactions between the atomic spins, dip
coupling of the local moments, and on-site anisotropies a
ing from ligand configurations. The emergence of fer
wheels has led to a renewed interest in the properties of
Heisenberg chain, especially for large spin values. In 1
Bonner and Fisher used a classical treatment,3 in which spin
quantization is absent, to study the properties of the Heis
berg Hamiltonian and found analytical solutions for the th
modynamic properties of the system. Numerous quan
mechanical calculations have been made for the Heisen
Hamiltonian, mostly for spin-1/2 chains. Calculations f
largerSbecame more interesting after Haldane’s conjectu4

regarding the presence of an energy gap in the excita
spectrum from the ground state for integerS chains.

To fit the experimental temperature dependence of
magnetic susceptibility data for Fe10, Taft et al. adopted a
classical spin treatment to obtain the value of the excha
interaction parameterJ. But below 50 K this treatment fails
Ferric wheels withS55/2 and system size of up to eigh
sites have been treated exactly using the irreducible te
operator technique5 with the aid of point group symmetry a
well as by using the invariance of the spin Hamiltonian w
regard to interchange of spin sites.6 Recently there have bee
0163-1829/2002/66~1!/014441~9!/$20.00 66 0144
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theoretical studies to explain the low-temperature magn
susceptibility data of Fe10.7 The magnetization of ferric
wheels exhibit a steplike field dependence at low tempe
ture due to the occurrence of field-induced ground-state le
crossing, a spectacular manifestation of quantum size eff
in these nanomagnets.1,8 There have been NMR and specifi
heat studies of these ferric wheels to investigate the ene
level structure.9,10 In appropriate parameter regime these ri
systems are considered to be candidates for the observ
of macroscopic quantum phenomena,11 in the form of quan-
tum coherent tunneling of the Ne´el vector.12 To understand
these low-temperature properties of ferric wheels in detail
need to know the low-lying eigenvalue spectrum for the
systems. It is also of interest to compare and contrast
zero-temperature density of states ofS55/2 rings with that
of the exactly knownS51/2 chain. In this paper we hav
used spin parity together with rotational symmetry of t
ferric wheels to obtain the low-lying eigenvalue spectrum
rings with 6, 8, 10, and 12 spin-5/2 sites. The dispers
spectrum reveals interesting features. There have been re
reports of solving the low-lying eigenspectrum of Fe10 using
the density matrix renormalization group method.13 To the
best of our knowledge, our’s is the first study of ferric whee
using exact methods up to a ring size of 12,S55/2 iron~III !
ions.

We have also studied the quantum spin dynamics of fe
wheels in the presence of an alternating field after setting
the Hamiltonian matrix in the subspace of low-lying state
This Hamiltonian includes multipolar spin-spin interactio
terms besides a time varying magnetic field~Zeeman term!.
We have then evolved an initial state, which is taken to
the ground state with a specific value ofMS ~the z compo-
nent of the total spin! in the absence of a magnetic field, b
using the time-dependent formulation of the problem in
restricted subspace. We observe a nontrivial oscillation of
magnetization whose frequency depends on the amplitud
©2002 The American Physical Society41-1
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the alternating field. This phenomenon is very similar
what has been observed in case of uniaxial magnets.14

II. MODEL HAMILTONIAN AND COMPUTATIONAL
DETAILS

A. Symmetry adaptation of correlated states

The full symmetry of electronic states is of central inter
in quantum theory. Since nonrelativistic HamiltoniansĤ do
not depend explicitly on spin, molecular eigenstates can
labeled by the total spinS and the appropriate irreducibl
representation of the point group. The model Hamilton
employed in this study is the isotropic exchange Hamilton
involving an exchange interaction between nearest ne
bors,

Ĥ5(̂
i j &

Ji j ŝi• ŝj , ~1!

where the exchange interactionJi j takes the values dictate
by experimental studies of the structure and magnetic p
erties. For Fe6, the J value depends on the central alka
metal atom; for Na: Fe6 , J532.77 K, whereas for Li :Fe6
J520.83 K. In Fe8 , Fe10, and Fe12, J is 22 K, 15.56 K, and
31.97 K, respectively.15

The total dimensionality of the Fock space of the fer
wheel is given by

DF5)
1

n

~2Si11!, ~2!

wheren is the total number of spins in the wheel andSi is the
spin on each ion. In the case of Fe10, there are ten iron~III !
ions with the dimensionality of the Fock space bei
60 466 176. In the case of Fe12, which we have solved ex
actly, this dimension is 2 176 782 336.

Specializing to a given totalMS leads to Hilbert space
dimensionalities which are lower than the Fock space dim
sionality. In the case of the Fe12 cluster, theMS50 space has
a dimensionality of about 1453106 ~144 840 476!. The ma-
jor challenge in an exact computation of the eigenvalues
properties of these spin clusters lies in handling such la
bases and the associated matrices. While the dimensions
overwhelming, the matrices that represent the operator
these spaces are rather sparse. Usually, the number of
zero elements in a row is of the order of the number
exchange constants in the Hamiltonian. This sparsenes
the matrices allows one to handle fairly large systems. Ho
ever, in the case of spin problems, generating the bases s
and using the symmetries of the problem is nontrivial.

The isotropic exchange Hamiltonians conserve total s
S besides thez component of the total spinMS . Besides
these symmetries, the geometry of the cluster also lead
spatial symmetries which can often be exploited. The s
plest way of generating bases functions which conserve t
spin is the valence bond~VB! method, which employs the
Rumer-Pauling rule.16 It is quite easy to generalize th
Rumer-Pauling rules to a cluster consisting of objects w
different spins to obtain states with a desired total spinS.
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However, setting up the Hamiltonian matrix in such a ba
can be computationally intensive since the exchange op
tors operating on a ‘‘legal’’ VB diagram~a diagram that
obeys Rumer-Pauling rules! could lead to ‘‘illegal’’ VB dia-
grams, and resolving these illegal VB diagrams into le
diagrams would present the major bottleneck. Indeed,
same difficulty is encountered when spatial symmetry ope
tors operate on a VB function. Thus, the extended VB me
ods are not favored whenever one wishes to apply it t
motley collection of spins or when one wishes to expl
some general spatial symmetries that may exist in
cluster.17

It is advantageous to partition the spaces into differ
total spin spaces because of the usually small energy g
between total spin states which differ inSby unity. To avoid
the difficulties involved in working with total spin eigen
functions, we exploit parity symmetry in the systems. T
parity operation involves changing thez component of all the
spins in the cluster fromMSi

to 2MSi
. There is a phase

factor associated with this operation given by (21)Stot1( iSi.
The isotropic exchange operator remains invariant under
operation. If this symmetry is employed in theMS50 sub-
space, the subspace is divided into ‘‘even’’ and ‘‘odd’’ pari
spaces depending upon the sign of the character unde
irreducible representation of the parity group. The spa
which corresponds to even~odd! total spin we call the even
~odd! parity space. Thus, employing parity allows part
spin symmetry adaptation which separates successive
spin spaces, without introducing the complications enco
tered in the VB bases. However, the VB method can lead
complete factorization of the spin space leading to sma
complete subspaces.

In the ferric wheels, besides spin symmetries, there a
exist spatial symmetries. The topology of the exchange in
action leads to aCn point group symmetry, wheren is the
number of iron ions in the ring. Hence, Fe6 , Fe8 , Fe10, and
Fe12 will have C6 , C8 , C10, andC12 symmetry, respectively
It should be mentioned that among these ferric wheels o
Fe10 strictly has a tenfold rotational symmetry; the rest
them only approximately have the above-mentioned sym
try. For computational advantage we have assumed rotati
symmetry for all the ferric wheels. This point group appea
at first site to present difficulties because the characters in
irreducible representation are in some cases complex w
could lead to complex bases functions. This, however, can
avoided by recognizing that in theCn group, states with
wave vectorsk and 2k are degenerate. We can therefo
construct a linear combination of thek and2k states which
is real. The symmetry representations in theCn group would
then correspond to the labelsA, B, andE, with the characters
in the E representation given by 2 cos(rk) under the symme-
try operationCn

r , with k5p/n. The parity operation com-
mutes with the spatial symmetry operations, and the
point group of the system would then correspond to the
rect product of the two groups. Since both parity and spa
symmetries can be easily incorporated in a constantMS ba-
sis, we do not encounter the difficulties endemic to the V
theory.
1-2
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The generation of the complete basis in a given Hilb
space requires a simple representation of a state on the
puter. This is achieved by associating with every stat
unique integer. In this integer, we associateni bits with spin
si , such thatni is the smallest integer for which 2ni>(2si
11). In the integer that represents the state of the cluster
ensure that theseni bits do not take values which lead to th
ni bit integer value exceeding (2si11). For each of the al-
lowed bit states of theni bit integer, we associate anMSi

value between2si andsi . For a spin cluster ofn spins, we
scan all integers of bit lengthN5S i 51

n ni and verify if it
represents a basis state with the desiredMS value. In Fig. 1,
we show a few basis functions with specifiedMs values for
some typical ferric wheels along with their bit represen
tions and the corresponding integers. The generation of
bases states is usually a very fast step, computationally. G
erating the basis as an ordered sequence of integers tha
resent them also allows for a rapid generation of the Ham
tonian matrix elements as will be seen later.

The symmetrization of the basis by incorporating par
and spatial symmetries involves operating on the cons
MS50 basis by the symmetry operators. Since the spa
symmetry operators permute the positions of equiva
spins, every spatial symmetry operator operating on a b
function generates another basis function. Every symm
operator can be represented by a corresponding vector w
i th entry gives the state that results from operating on thei th
state by the chosen operator. This is also true for the pa
operator, in theMS50 subspace.

The first step in constructing symmetry-adapted lin
combinations is to represent the symmetry operators in
chosen basis as matrices. In our case, the symmetry oper
are such that a symmetry operation by any operator o
basis state leads to a resultant which is a single basis s
Thus all our symmetry operators can be represented as
tors; the entry in positioni gives the index of the basis func
tion generated by the symmetry operation on the basis stai.
Since the basis is very large, it is prohibitive to store a
manipulate the full basis together with all the associa

FIG. 1. RepresentativeMs50 states in~a! six-spin-12 cluster,~b!
Fe12 wheel with all the sites having spinS5

5
2 . Numbers in paren-

theses correspond to theMs value at the site. The bit representatio
as well as the integer value is given just below the diagrams.
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symmetry vectors. To avoid these difficulties, we have c
structed the symmetry matrices in small invariant subspa
These invariant subspaces are obtained by sequent
choosing a state and operating on it by all the symme
operators. This gives rise to a set of states on which we a
operate by all the symmetry operators and continue this p
cess until no new basis states are generated. The collectio
all these basis states resulting at the end of this process i
invariant subspace. We can set up symmetry combination
the basis states in each of the invariant subspaces inde
dently. The symmetry combinations can now be obtain
operating on each state by the group-theoretic projection
erator

P̂G i
5

1

h (
R

xG i
~R!R̂ ~3!

on each of the basis states of the invariant subspace. HeG i

is the i th irreducible representation,R̂ is the symmetry op-
eration of the group, andxG i

(R) is the character underR̂ in

the irreducible representationG i . This process is repeate
with the next basis state that has not appeared in any of
invariant subspaces already constructed. The process co
to an end when all the basis states have appeared in any
of the invariant subspaces.

The resulting symmetrized basis is usually overcompl
in each of the invariant subspaces. The linear depende
can be eliminated by a Gram-Schmidt orthonormalizat
procedure. However, in most cases, ensuring that a g
basis function does not appear more than once in a sym
trized basis is sufficient to guarantee linear independence
weed out the linearly dependent states. A good check of
procedure is to ensure that the dimensionality of the sym
trized space in the invariant subspace agrees with that ca
lated from the traces of the reducible representation obta
from the matrices corresponding to the symmetry opera
in the chosen invariant subspace. Besides, the sum of
dimensionalities of the symmetrized spaces should co
spond to the dimensionality of the unsymmetrized invari
subspace in each of these subspaces.

The generation of the Hamiltonian matrix is rath
straightforward and involves operating with the Hamiltoni
operator on the symmetry-adapted basis. This results in
matrix SH, whereS is the symmetrization matrix represen
ing the operatorP̂G i

, andH is the matrix whose elementshi j

are defined by

Ĥu i &5(
j

hi j u j &. ~4!

The states$i% correspond to the unsymmetrized basis fun
tions. The Hamiltonian matrix in the symmetrized basis
obtained by right multiplying the matrixSH by S†. The re-
sulting symmetric Hamiltonian matrix is stored in the spa
matrix form, and the matrix eigenvalue problem is solv
using the Davidson algorithm.18

The computation of the properties is easily done by tra
forming the eigenstate in the symmetrized basis into tha
the unsymmetrized basis. Since the operation by any com
1-3
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nation of spin operators on the unsymmetrized basis ca
carried out, all relevant static properties in different eige
states can be obtained in a straightforward manner.

B. Quantum spin dynamics

We have studied the dynamics in ferric wheels by sett
up the Hamiltonian matrix in the desiredMS space, which in
all cases is restricted toMS50, 1, and 2. In each subspac
we have obtained a few low-lying states using the David
algorithm.18 We have also calculated the spin-spin corre
tion functions in each of the states. Using the spin-spin c
relation functions, we have computed the expectation va
of the S2_total operator, from which we have identified th
total spin of the state. We observe from the eigenvalue sp
trum of all the ferric wheels that the ground state and the fi
excited state are spin-singlet (S50) and -triplet (S51)
states, respectively, in accordance with the Lieb-Schu
Mattis theorem.19 These states belong to different spat
symmetry subspaces as well as different parity subspace
they will not mix unless there is a perturbation which spo
both theC10 symmetry of the molecule and the parity. W
also notice that the first~triplet! and the second~quintet!
excited states again fall into different symmetry subspac
This is true in all the ferric wheels we have studied.

To study quantum dynamics we have considered the
lowing Hamiltonian:20

Ĥ5Es2DŜz,total
2 1c~Ŝx,total

2 2Ŝy,total
2 !2gh~ t !Ŝz,total. ~5!

Here D is the quadratic anisotropy factor,g is the Lande´ g
factors for the iron~III ! spin, respectively, andh(t) is the
time-dependent magnetic field, expressed ash(t)
5H0 cos(vt), wherev is the frequency at which the field i
ramped andH0 is the amplitude of the field. We have chos
D58.831023 and c51023 ~in units of J! in accordance
with the experimental values for Fe10. We takeg52.0. The
constantsEs in Eq. ~5! correspond to the lowest energie
obtained from Eq.~1!. The second-order anisotropy term a
lows transitions between states withDMS562. Both the
second and third terms in Eq.~5! arise due to the magneto
crystalline anisotropy. The exact form of the anisotropy
ferric wheels is not very well established. We have includ
anisotropy terms only up to second order in the spin v
ables. The anisotropy in the plane can be formed artificia
e.g., by means of external electric or magnetic fields, p
sure, or using an anisotropic substrate.20

To observe spin dynamics, we begin with the initial sta
uS51,MS521&, and then apply an external field in Eq.~5!
of the form

h~ t !5H0 cos~vt !. ~6!

The Hamiltonian in Eq.~5! does not allow the mixing of the
ground state~singlet! and the first excited state~triplet! in
Fe10 because of the symmetry reasons already mentio
Therefore, to observe the dynamics in the magnetization
have chosen the above initial state.21 To study the evolution
of the magnetization as a function of the applied oscillat
field, we start in the initial state at timet50 and time-evolve
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the state in small steps ofDt50.01 (\/J) by solving the
time-dependent Schro¨dinger equation

i\
dc

dt
5Ĥ~ t !c. ~7!

In actual practice, the state is time evolved according to
equation

c~ t1Dt !5e2 iĤ (t1Dt/2)Dt/\c~ t !. ~8!

The evolution is carried out by explicit diagonalization of th
Hamiltonian matrixH(t1Dt/2), and using the resulting ei
genvalues and eigenvectors to evaluate the matrix of the
evolution operatore2 iĤ (t1Dt/2)Dt/\. We set up the Hamil-
tonian matrix for time evolution in the truncated basis
three states corresponding to total spinS51. We repeatedly
carry out the time evolution in small time steps of sizeDt to
obtain the time evolution over longer periods.

III. RESULTS AND DISCUSSION

A. Analysis of the low-lying spectrum

We have solved the exchange Hamiltonian@Eq. ~1!# ex-
actly using the method mentioned earlier to obtain the lo
lying eigenvalue spectrum for 6-, 8-, 10-, and 12-site ir
n~III ! rings. We find that the ground state and first, seco
and third excited states are, respectively, singlet and trip
quintet, and heptet for all ferric wheels. We notice that th
is no accidental degeneracy between the energy levels
longing to different symmetry subspaces. The gap betw
the ground state and the first excited state is shown in Fi
as a function of inverse ring size. According to the Halda
conjecture, the gap should extrapolate to zero. The extra
lated value, while small, is still finite, suggesting that in the
rings finite-size effects are still at play at the ring sizes
have studied.

Using the exchange constants estimated for the diffe
ring systems, we estimate the gap between the ground
and the first excited state to be 22.67 K, 11.81 K, and 6.8
for Na : Fe6 , Na:Fe8 , Na:Fe10, respectively. Our calculated

FIG. 2. Plot of ground-state energy~in units of J) vs inverse
system size for ferric wheels up to Fe12.
1-4
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FIG. 3. Plot of lowest energy~in units of J! in every total spin
sector vs the total spin (Stot) in case of Fe12. It clearly obeys the
conjecture of Taftet al. ~Ref. 1!.
ota-
er

01444
values compare very well with the experimental valu
which are 22.0 K, 12.1 K, and 6.45 K for Na :Fe6 , Na:Fe8,
and Na:Fe10, respectively.15 This agreement shows that fo
all practical purposes ferric wheels can safely be assume
rings neglecting the slight deviation from the exact circu
geometry. Our calculated gap for Fe12 is 12.09 K, corre-
sponding to the exchange constants predicted from exp
ments. However, an experimental estimate of this gap
lacking.

If we defined i to be the energy difference between thei th
excited state and the ground state, we find from Fig. 3 t
the following relationship is satisfied for the ferric wheels

d i5
Si~Si11!

2
E1 , ~9!

whereE1 is the energy gap between the ground state and
first excited state. This indicates that the lowest spin s
obeys the Lande interval rule, in agreement with the conj
ture of Taftet al.1 If we assumeE1 to be the inverse of the
moment of inertia, then the above expression gives the r
tional energy of a rigid rotor in a state with quantum numb
FIG. 4. Plot of energy~in units of J! vs momentum vectork for Fe6 , Fe8 , Fe10, and Fe12.
1-5
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Si . Thus, the spin states of ferric wheels can be viewed
the quantized states of a rigid rotor.

In Fig. 4 we have shown the dispersion spectrum of fe
wheels. The value ofk corresponding to a wave functionc
can be defined as

Tc5eikc, ~10!

whereT is the translation operator which in the case of a r
rotates the ring by one lattice spacing. We have used
spatialCn symmetry of the ferric wheels, which enables
to identify the value ofk easily for a specified eigenfunction
We observe that the ground state switches betweenA1 (k
50) andB1 (k5p) subspace for systems withN54n and
N54n12 spins, respectively. This was also observed
Mattheiss in the case of a spin-1/2 chain and can be un
stood from Marshall’s sign rule. We find that, in the mome
tum ~k! sector which contains the ground state, the low
excitation is to a quintet state, while the lowest triplet ex
tation has a momentum which differs byp from the momen-
tum of the ground state. In fact, for any momentum differe
from that of the ground state, the lowest excitation is a trip
state for all the four system sizes shown in Fig. 4; if th
trend continues, we expect the triplet to be lower in ene
than the quintet for anyk value different from that of the
ground state in the thermodynamic limit. Previous studie22

on antiferromagnetic spin-1/2 Heisenberg chains show
the excitation spectrum is given by\v5(p/2)Jusinku,
where k is the wave vector of the excited states measu
with respect to that of the ground state. Simple antiferrom
netic spin-wave theory, based on the use of the Holst
Primakoff transformation for each sublattice, leads to the
citation spectrum (S is the magnitude of the individual spi
Si)

\v52JSusinku. ~11!

This relation is supposed to be correct forS→`. We notice
that the excitation spectrum for ferric wheels can be fitted
a usinku kind of function. Isolated data points ink50 or k
5p deviate from the above sinusoidal function. This is
finite-size effect. In the thermodynamic limit of an infinit
chain length, there is no distinction between chain length
N54n andN54n12, and the lowest-energy excitation wi
indeed be given by Eq.~11!.

We have also calculated the spin-spin correlation funct
(^Si

zSj
z&) of ferric wheels and Fourier-transformed it to fin

the structure factor

S~q!5
1

N2 (
m,n

eiq(m2n)^Sm
z Sn

z&, ~12!

where the allowed values ofq are given by the cyclic bound
ary conditions. In Fig. 5, we have plotted the structure fac
as a function of the wave vectorq for different symmetry
subspaces. In each part of the figure, we have plotted
structure factor for wheel sizesN56, 8, 10, and 12. In all
casesS(q) shows a peak atq5p; the peak height increase
slowly with wheel size. This is in agreement with the simp
spin-wave analysis which shows that the peak height
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creases as ln(N). The peak height is the largest in the grou
state. The peak heights in the three excited states are co
rable to each other; a similar spin-wave analysis shows
the peak heightS(p) for the excited states is slightly smalle
than the height in the ground state by a constant addi
factor which is independent of the wheel size. The grou
state is a Ne´el-ordered state; the peak atS(p) signifies that
the ground state is unstable to a spontaneous distortion
wave vectorp.

B. Evolution of magnetization in the presence of an ac field

We follow the evolution of the magnetization, beginnin
with the initial stateuS51, MS521&, in the presence of an
axial ac magnetic field whose amplitude is varied. We ha
kept the frequency of the field fixed atv51023. We calcu-

FIG. 5. Plot of static structure factorSq for the ground and three
lowest excited states for Fe6 , Fe8 , Fe10, and Fe12. Note that the
spatial symmetry label for a given state alternates between 4n and
4n12 systems.
1-6
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late the magnetization at each time step. When we dra
smooth curve for the time evolution over long time period
we find a sinusoidal motion

M ~ t !;cos~Vt !, ~13!

which can be seen in Fig. 6. Unexpectedly, the frequencyV
of this sinusoidal motion does not correspond to an eigen
quency of the system or to the period of the external fie
When we change the amplitudeH0 of the field, the period of
the magnetization changes, which is shown in Fig. 7. We fi
that the frequency of oscillationV becomes very small fo
some values ofH0, and then it increases again. A simil
behavior is observed in the transverse field Ising mode14

Indeed the physics of our model is similar to the model st

FIG. 6. Plot of evolution of magnetization in the presence of
alternating axial magnetic fieldH0 ~in units ofJ/\) of three differ-
ent amplitudes.

FIG. 7. Field amplitude (H0) dependence of frequencyV ~de-
fined in the text!. The dotted line shows the inverse square ro
nature of the upper envelope.
01444
a
,

e-
.

d

-

ied in Ref. 14 since the quadratic anisotropy factorD@c in
Eq. ~5!. The upper envelope ofV as a function ofH0 can be
empirically fitted to an inverse square root curve.

For very small values ofH0, the magnetization oscillate
with a frequency given byDE/\, whereDE is the energy
difference between the two approximate eigenstatesuS
51,MS521& and uS51,MS51& of Eq. ~5!. SinceDE;c
@wherec is the amplitude of the mixing term in Eq.~5!# and
is comparable tov51023, the frequency of oscillation of
M (t), V, is also comparable tov. Hence the ratioV/v
rapidly increases to 1 for smallH0.

For large values ofH0, the probabilityp of remaining in
the ground state is small and, in fact, decreases as 1/H0.14

Thus we have a nonadiabatic situation in which the state
its magnetization remain unchanged with a probability
2p which is close to 1. One can then show that the mag

FIG. 8. ~a! Plot of the ŷ component of torque~in units of
J/\ rad) with change in magnetic field for different directionsu in
the x-z plane.~b! Plot of energy levels corresponding to differe
spin states as a function of magnetic field atu5p/4. Note that the
jump in the torque occurs at the field values where there is a cha
in the Ms value of the ground state.
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tization oscillates with a low frequency and that the upp
envelope of the curveV/v versus H0 behaves asAp
;1/AH0.14

This nontrivial variation ofV with H0 can be understood
from the viewpoint of Floquet’s theorem.23 Nonadiabatic
transitions are possible whenever any two energy levels
system are close to crossing, which, in our model, occ
whenever cos(vt) is close to zero. For these times, the tw
states with different magnetizations are nearly degener
leading to large tunneling amplitudes between the sta
which are manifested in oscillations of the magnetizati
This magnetization oscillation can be related to that of m
roscopic quantum coherence, which is predicted
Zvezdin.20

C. Torque magnetometry

Corniaet al. have used a novel cantilever torque magn
tometry technique to study the spin-state crossover in fe
wheels. The torqueT experienced by a magnetically anis
tropic substance in a uniform magnetic fieldB is given by

T5M3B, ~14!

where M is the magnetization of the sample.T vanishes
when the magnetic field is applied along one of the princi
directions x̂, ŷ, ẑ of the susceptibility tensor, since in th
caseM andB are collinear. Theŷ component of the torque
operator,Ty , can be easily obtained for an applied magne
field of the form

B5B~cosu ẑ1sinu x̂!, ~15!

in Eq. ~5!, and is given by

^Ty&52gmBB~^Sx&cosu2^Sz&sinu!, ~16!

where ^Sa&5( i 51
N ^Si ,a& is the ground-state expectatio

value of the componenta of the total spin operator.
From the structure of the Hamiltonian in Eq.~5!, we see

that the susceptibility tensor is diagonal and has the fo
x i i 5(a,b,g) for i 5x,y,z, with a'b!g. This implies that
for an applied field of the form given in Eq.~15!, MW takes the
form B(g cosuẑ1a sinux̂). Hence ^Ty&;B(g
2a)sinu cosu, which has a maximum atu5p/4. If on the
at-

g.
-

.
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other hand, had we chosenBW 5B(cosux̂1sinuŷ) lying in the
x-y plane, then MW would take the form B(a cosux̂

1b sinuŷ), and ^Tz& would be of the form B(a
2b)sinu cosu. Sincea'b, this would be much smaller in
magnitude than for a field in thex-z plane, although theu
dependence would be similar.

We have computed̂Ty& for Fe12 on the basis of the
eigenvectors of the Hamiltonian in Eq.~5!. In Fig. 8~a!, we
have shown the variation of^Ty& with the magnetic field for
various values ofu, and we do observe a maximum in^Ty&
for u5p/4. We can clearly observe the step behavior of
torque component which is a manifestation of the le
crossing of singlet, triplet, and quintet states. The fields
which the torque shows a jump are also seen to coincide w
fields at which theMs value of the ground state change
abruptly as indicated in Fig. 8~b!.

IV. SUMMARY AND OUTLOOK

We have implemented a general and efficient proced
that allows us to block-factorize the spin Hamiltonian mat
based on its invariance under cyclic symmetry and pa
operations. This method can be used in general for syst
of other symmetries also. We have obtained the low-ly
eigenvalue spectrum of ferric wheels up to Fe12 using theCn
rotational symmetry of the molecules. We have also analy
the dispersion spectrum and structure factor. To reprod
the low-temperature properties of ferric wheels, we need
know the low-lying eigenvalue spectrum of these system
We have also studied the dynamics of the ferric wheel
evolving an initial state whose magnetization is directed
posite to the direction of the magnetic field. We observe
nontrivial oscillation of magnetization in the presence of
alternating magnetic field. We have also obtained the tor
of the ferric wheels in the presence of a nonaxial magn
field and find that the torque also exhibits a steplike behav
with field. Evidently a study including the effect of nonze
temperature on this oscillation is a challenging problem
future research.
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