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Fractal study of magnetic domain patterns
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Fractal geometry is introduced into the analysis of ‘‘two-phase’’ magnetic domain patterns. The line-
measuring dimensionDline is selected to quantitatively describe the ‘‘line structure’’ patterns of the multi-
branched domains~MBD’s! formed in garnet bubble films, and a meaningfulDline can be related to the
numbers of vertical Bloch lines in their walls, i.e., to the hardness of the MBD’s. For quantitatively describing
the ‘‘plane-filling’’ domain patterns of magnetic materials with uniaxial anisotropy, such as corrugation and
spike, even ‘‘flower,’’ domains, the box-counting dimensionDbox is selected. For describing the series of
domains of Co and Dy-NdFeB single crystals due to branching process,Dline andDbox are used in section. Our
results show that two phase domain patterns possess fractal natures, and can be described by fractal dimen-
sions.
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The concept of ‘‘fractal’’ was proposed by Mandelbrot
1975.1 Since the 1980s, fractal study has become a rap
developing field, and has been applied in a variety
disciplines.2,3 Fractal is closely related to nonlinear pheno
ena, and is appropriate to analyze irregular and fragme
patterns; therefore, the fractal dimensionD is a better param-
eter to describe them quantitatively. In condensed-ma
physics, fractal study has mainly concentrated on grow
dynamics to describe the variation of patterns with tempe
ture and time, etc.

The existence of magnetic domain patterns is a comm
phenomenon in ferromagnets. They may exist to reduce s
field energies, or to the adapt to local anisotropy or sam
shape, depending on the material parameters and the sa
size. Actually, all these energies are nonlinear functions
space, and magnetic domain patterns result from their
ance. Therefore, magnetic domain patterns should poss
fractal nature.

In the field of magnetic domains, cellular domain patte
as self-organizing critical systems have been discusse4,5

But this discussion was limited to simple cellular patterns.
this paper, fractal study will first be introduced into th
analysis of ‘‘two-phase’’ complicated magnetic domain p
terns.

The intermediate states of the first kind of superconduc
and uniaxial ferromagnets are famous examples of a t
phase domain structure. In this paper we analyze two-ph
magnetic domain patterns of uniaxial ferromagnets in t
cases. The first case concerns multibranched dom
~MBD’s! in garnet bubble films, formed under nonline
bias-pulsed fields and in a finite space. The second case
cerns two-phase magnetic domain patterns formed b
branching process along the easy axis direction in unia
ferromagnetic plates with infinite dimensions. In the abo
two cases, we have found the existence of fractal natu
and introduced appropriate fractal dimensions to desc
their self-similarity and scale invariance in a statistical sen

The Bloch walls of stripe domains in bubble films g
through the film thickness perpendicularly, and separate
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‘‘black’’ and ‘‘white’’ domains with upward and downward
magnetizations, respectively. It was proposed that a sin
round-shaped MBD could be formed inside a pancake
with 1 mm inner diameter under the joint application of
bias fieldHb and a bias rectangular pulse fieldHp .6 In fact,
MBD’s were formed during a rapid drop (;60-ns falling
time! of Hp ; thus the formation of MBD’s is associated wit
a nanosecond nonlinear process in a finite space. With a
crease ofHb from H@d# ~which is called the ‘‘critical static
bias field for multibranched expansion’’ because a mu
branched expansion cannot occur ifHb.H@d# for bubble
films! the dynamically compressed bubble suffers a lar
and larger rapid drop ofHp @(Hb1Hp)5const.# during its
falling time, resulting in a more and more complicated p
terns of MBD with more and more vertical Bloch line
~VBL’s ! excited in their walls inside a pancake coil. In oth
words, the patterns of MBD’s are related to the numbers
VBL’s in their walls, i.e., the hardness of the MBD’s. In th
experiment, the formed MBD were contracted and classifi
into a type of hard domains.@There are three types of har
domains in bubble films, i.e., ordinary hard bubbles~OHB’s!
and the first and second types of dumbbell domains~ID and
IID !, and in their walls the numbers of VBL’s are succe
sively increased in the order OHB→ID→IID.7# Therefore,
on the one hand, we intend to use the fractal dimension
describe the MBD pattern quantitatively; on the other ha
by means of the statistical formation of MBD’s,6 the curve of
D vs Hb can also be related to the excitation of VBL’s in th
walls of MBD’s.

In our experiments, by using a transition polarizing m
croscope~Faraday effect observation!, 70 photos of MBD’s
and a few soft bubble~SB’s, i.e., normal bubbles! were taken
at 12Hb’s for sample No. 1 with a nominal composition o
(YSmCa)3(FeGe)5O12.6 For the fractal study, these photo
need to be processed. As an example, Fig. 1~a! is the photo
of a typical MBD, in which the inner edge of the 1-mm i
pancake coil is partially and faintly shown by the black ar
at the four corners, and the round-shaped ‘‘white’’ MBD
surrounded by the ‘‘white’’ stripe domains intruding into th
©2002 The American Physical Society33-1
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coil. The steps of the image processing involved~1! ‘‘wip-
ing’’ away all irrelevant ‘‘white’’ domains;~2! raising the
contrast between the ‘‘white’’ MBD~with downward magne-
tization! and the ‘‘black’’ domains~with upward magnetiza-
tion! around it by means of ‘‘dual value’’ processing, a
shown in Fig. 1~b!; ~3! adopting a ‘‘dual boundary method,
i.e., extracting all the pixel points on both sides of ea
branch, resulting in a ‘‘dual boundary description’’ o
MBD’s, as shown in Fig. 1~c!.

Figures 2~a!–2~d! typically show a SB and three MBD’s
formed at differentHb in a dual-value description (48
3580 pixels!. Three MBD’s were contracted into OHB, ID
and IID, respectively. In the fractal study of image patter
the usual way is to calculate their box-counting dimens
(Dbox). However, the patterns in Figs. 2~a!–2~d! are charac-
teristic of a ‘‘line’’ structure. Apparently, they cannot be d
scribed byDbox . After comparison, a ‘‘line-measuring di
mension’’Dline was selected.

The definition ofDline is

Dline52 limd→0

ln@L~d!#

ln d
. ~1!

Before calculatingDline , in order to obtain the domain
wall curve the patterns in a dual-value description@e.g., in
Figs. 2~a!–2~d!# should be converted to that in a ‘‘dua
boundary description.’’ An example is shown in Figs. 1~b!
and 1~c!. In this way, in the calculation ofDline , the running
direction of a domain curve is unique at every point. Th

FIG. 1. ~a! Photo of a typical MBD, formed at the static bia
field Hb5(44.0/4p)(kA/m), and contracted into an IID with a col
lapse fieldHcol5(93.6/4p)(kA/m). ~The photo length is about 0.9
mm! ~b! Dual value description of this MBD~figure sizes: 517
3480 pixels! ~c! Dual boundary description of this MBD (51
3480 pixels).
01443
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method is of significance not only in mathematics but also
physics, because the boundary of ‘‘white’’ and ‘‘black’’ do
mains is actually the domain walls of MBD’s.

The procedure to calculateDline starts from measuring the
length of a curve by using a ruler of lengthd. By changing
the rulerd to measure the wall curve lengthL(d) and carry-
ing out a linear regression to the curve of lnL(d) vs ln(d)
~called the ‘‘fractal curve’’ below!, Dline is obtained.

The corresponding fractal curves of Figs. 2~a!–2~d! are
shown in Figs. 2~e!–2~h!. As shown in Fig. 2~a!, the ‘‘single-
branch’’ domain with only one ‘‘head’’ and one ‘‘tail’’ is a
SB. But the patterns of OHB’s, as typically shown in Fi
2~b!, are characteristic of a few long curved branches a
comb teeth. For the ID@Fig. 2~c!#, they have many long
branches and more comb teeth growing from some lo
branches. For the IID@Fig. 2~d!#, the number of long
branches is large, and lots of comb teeth were grown fr
almost each long branch. It is obvious that with decrease
Hb from H@d#, the successive appearance of OHB’s, ID
and IID’s, i.e., the hardening process of MBD’s, is certain
associated with the growth and quantity increase of lo
branches and comb-teeth.

It is seen in Figs. 2~e!–2~h! that the four fractal curves
consist of three segments. On the first segment (lnd,2.6),
the calculatedDline is all about 1.05, indicating that thi
segment is not characteristic due to rulers that are too sh
However, for the second one (lnd;2.6–4.5),Dline is evi-
dently increased in the order OHB→ID→IID, indicating that
this segment is characteristic of MBD patterns. It also ma
fests that the rulers (d;14–90) used, and their correspon
ing lengths (;20–110 mm), well match with the length of
comb teeth and the bending parts of the long branches
that Dline can reflect their growth and quantity. In fact, th
existence of the scale invariance of MBD patterns has b
confirmed by the linearity of the second segment. Finally,
third one (ln d.4.5) should be cut off because the patter
are too curved to be correctly measured by straight long
ers.

The average values ofDline were calculated for all photos
taken at 12Hb’s, and the curve ofDline vs Hb is shown in
Fig. 3. The error ofDline mainly comes from the determina
tion of the characteristic segment and its linear regress
o-
-

g

to

e

ed.
FIG. 2. Typical patterns of a single-branch d
main and three MBD’s in a dual-value descrip
tion (4803580 pixels), and their correspondin
fractal dimension measurement curves.~a!
Single-branch domain, which was contracted in
a SB. ~b! MBD, OHB. ~c! MBD, ID. ~d! MBD,
IID. The static bias fieldHb , at which they were
formed, and their collapse fieldsHcol are marked.
~e!–~h! the corresponding fractal curves of th
domain patterns in~a!–~d!. TheDline values cal-
culated on the second segment are mark
Sample No. 1,H@d#5(55.0/4p)(kA/m), at room
temperature.
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and was estimated to be 0.03–0.05 for mostHb . For analy-
sis, the formation regions of OHB, ID, and IID~Ref. 6! were
marked in Fig. 3 to illustrate that the variation ofDline is also
related to the excitation of VBL’s in the walls of MBD’s.

It is seen in Fig. 3 that with decrease ofHb from H@d#,
Dline is slightly increased over the formation region
OHB’s, because the pattern difference between OHB’s
SB’s is small. However, whileHb is decreased into the ID
region, Dline is gradually increased. But whenHb is de-
creased into the IID region, theDline is steeply increased
Thus Dline seems a better parameter to quantitatively
scribe the MBD patterns, in particular the IID patterns. T
fact means that the hardness of the IID walls is remarka
We believe that this is associated with the remarkable st
characteristics of IID.7

The second case deals with the branching process of
phase domains along the easy axis direction in uniaxial
romagnetic plates of infinite dimensions. The theory of tw
phase domain branching was proposed early by Landau8 and
Lifshitz,9 then developed by Hubert.10 In their theories, the
geometric property of two-phase domains was described
the ‘‘domain width’’ w: For thinner crystals,w increases fol-
lowing a t1/2 law, i.e., w;Atgw, and the domain wall energ
densitygw can be calculated by measuringw for given t. But
for thicker crystals,w increases following at2/3 law, i.e.,w
;t2/3. Moreover, the thickness corresponding to the cro
over of the two power laws is defined as the critical thickn
ts .11 However,w is better for the simple domains, such
stripe, parallel plate, etc., in which the straight Bloch wa
are perpendicular to sample surface, and go through
whole thickness. But for the complicated surface domains
the materials with a uniaxial anisotropy, the concept of ‘‘d
main width’’ becomes faint. In fact, for these materials, w
an increase oft, branching, tilting, curving, and domain re
finement toward the surface occur gradually, which cau
the domain walls to no longer go through the whole thic
ness. As a result, the domain patterns in surface layer
gradually from simple to complicated, leading to the appe
ance of corrugation and spike domains, even to the m
complicated ‘‘flower’’ domains.

Due to the fact that the complicated domain patterns

FIG. 3. The line-measuring dimensionDline of the MBD of
sample No. 1 as a function of the static bias fieldHb , at which they
were formed. The critical static bias fieldH@d#5(55.0/4p)
3(kA/m) for the multibranched expansion, and the main regions
Hb for the formation of OHB’s, ID’s, and IID’s are marked.
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surface layers are entirely different from the simple ones
the interior of the crystals, in Ref. 11 the ‘‘surface doma
width’’ ws and the ‘‘basic domain width’’wb , were used to
describe them, respectively. However, as discussed ab
the complicated surface domains result from the ‘‘basic’’ d
mains along the easy axis by the nonlinear branching p
cess, such as ‘‘two branching,’’ ‘‘three branching,’’ etc. A
tually this is a fractal process in space; thus the resul
domain patterns should possess a fractal nature, i.e.,
similarity and scale invariance. Although the fractal nature
the domain branching process was pointed out by Hube11

we have used ‘‘fractal dimension’’ to quantitatively descri
the variation of domain patterns from simple to complicate
and to distinguish the complicated patterns in different m
terials.

In fact, the domain walls of complicated domains are
combination of Bloch walls and Ne´el walls, and the wall
energy density is a multivariable nonlinear function. With t
branching process, the domain walls sequentially vary fr
two ~2D! to three dimensional~3D! toward the surface along
the easy axis, while the domain patterns on surface la
vary from 1D to 2D. Now the question is how to use frac
dimensions to describe the above branching process and
variation of surface domains. For reaching this goal, it
crucial to acquire some series of reliable surface domain
terns of different magnetic single crystals with various thic
nessest ranging from small to very large. Fortunately, tw
series of domain patterns~Kerr effect observation! on the
basal plane of Co single crystals and Dy-modified NdFeB
available in Figs. 5.4 and 5.5 of Ref. 11, respectively. T
fractal dimension and its variation witht were calculated as
follows.

In Ref. 11, the patterns of Figs. 5.4~a! (t;0 –5 mm) and
5.5~a! (t;1 –14 mm ) for thinner crystals are essentially i
a ‘‘line’’ structure. Therefore, similar to the stripe domains
bubble films,Dline was calculated. Considering that in the
two photos the ‘‘line’’ structure patterns are still gradual
changed with an increase oft, Figs. 5.4~a! and 5.5~a! in Ref.
11 were reasonably split into four pieces to obtain more d
points. However, for thicker crystals the patterns of Fig
5.4~b!–5.4~d! (t;18, 50, and 400mm) and Figs. 5.5~b!–
5.5~d! (t;40, 120, 600mm) in Ref. 11 are characteristic o
‘‘plane filling;’’ therefore, the box-counting dimensionDbox
was calculated.

As examples, the ‘‘flower’’ patterns of the thickest Co an
Dy-NdFeB crystals@Figs. 5.4~d! and 5.5~d! of Ref. 11# were
copied in Figs. 4~a! and 4~b! of this paper, and their corre
sponding fractal curves calculated are shown in Figs. 4~c!
and 4~d!, respectively. Apparently, these two fractal curv
are similar, and all consist of two data segments with diff
ent slope. Taking the fractal curve of Dy-NdFeB@Fig. 4~d!#
as an example, in its second segment (lnd.3.0) the calcu-
latedDbox52 is actually the dimension of the whole imag
plane; thus this segment should be cut off. In the first s
ment (lnd,3.0) with smallerd, the calculatedDbox51.65 is
thus meaningful to describe this domain pattern. In the sa
way, from the first segment of the fractal curve of Co crys
@Fig. 4~c!#, the calculatedDbox51.55. We believe that the
linearity of the first segment is a confirmation of the ex

f
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tence of self-similarity and scale invariance. In fact, t
‘‘flower’’ domain patterns in both Figs. 4~a! and 4~b! are in
the metastable state by a self-organizing critical system,
sulting from a full branching process in a very thick C
crystal (t5400 mm) and a Dy-NdFeB crystal (t
5600 mm), respectively.

After the calculation ofDline and Dbox for the domain
patterns of Co and Dy-NdFeB crystals, their curves ofD vs
log t were obtained. Then the thickness, corresponding to
maximum of the curve]D/] log t vs logt, was defined as a
critical thicknesstc , which is actually the turn point for the
transition of domain patterns from simple to complicate
The calculatedtc’s for Co and Dy-NdFeB are 3.7 an
10 mm, respectively. As a result, their normalized curves
D vs log(t/tc) are shown in Fig. 5. These two curves indica
the following. ~1! Dline andDbox can describe the complex
ity degree of the ‘‘line’’ structure and ‘‘plane filling’’ pat-

FIG. 4. The ‘‘flower’’ patterns on the basal plane of the thicke
Co ~a! and Dy-NdFeB~b! crystals@quoted from Figs. 5.4~d! and
5.5~d! of Ref. 11, respectively#. The photo sizes are about 2
317 mm). Their corresponding fractal curves are shown in~c! and
~d!, respectively.

FIG. 5. The fractal dimensionD as a function of the normalized
thicknesst/tc , calculated from two series of domain patterns of C
~square! and Dy-NdFeB~circle! single crystals, shown in Figs. 5.
and 5.5 of Ref. 11, respectively. Solid and empty squares or cir
representDline andDbox , respectively.
01443
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terns, respectively.~2! The variation of domain patterns wit
t can be quantitatively expressed byDline and Dbox in sec-
tions. Furthermore, whent/tc is increased to several tens,D
approaches a saturated valueDsat , which means that the
domain patterns in a surface layer finally become fixed. A
tually, a saturated dimensionDsat and its corresponding
‘‘flower’’ patterns are characteristic of different materials.
particular, we think that the ‘‘flower’’ patterns seem to b
‘‘finger print’’ of the materials.

In order to study the correlation betweenDsat and mate-
rial parameters, in addition to Co and Dy-NdFeB crystals
also selected other two ‘‘flower’’ patterns, as shown in Fig
6~a! and 6~b!. They were taken from a NdFe10.5Mo1.5 thick
single crystal12 and a 60-m m-thick garnet bubble film by
using NanoScope IIIa magnetic force microscope. After
patterns of Figs. 6~a! and 6~b! were converted to that in
dual-value description, their box dimensionDbox i.e., the
saturated dimensionDsat were calculated.

As mentioned above, the ‘‘flower’’ patterns are develop
by a full branching process. Apparently, the ‘‘flowers’’ resu
from the balance of exchange energy and magnetos
energy. Therefore,Dsat should be related to the exchang
coupling length l ex of the materials. The definition o
l ex is

l ex5~2A/m0MS
2!1/2. ~2!

The exchange constant, saturated magnetization, the
respondingl ex , andDsat of the above four kinds of crystal
are listed in Table I. From the table, it seems that longerl ex
is, the higherDsat is.

t

es

FIG. 6. The ‘‘flower’’ domain patterns taken by using MFM o
the surface layer of~a! a thick NdFe10.5Mo1.5 single crystal and~b!
a 60-mm-thick magnetic garnet film~quoted from the ‘‘Magnetic
Force Microscopy Image Book,’’ DI, 1995!.

TABLE I. Exchange constantA, saturated magnetizationMs ,
exchange lengthl ex , and saturated dimensionDsat of Co ~Ref. 13!,
Dy-NdFeB ~Ref. 14!, NdFe10.5Mo1.5 ~Ref. 12! and garnet bubble
film ~Ref. 15!.

Materials A(310212 J/m) Ms ~kA/m! l ex (nm) Dsat

Co 10.3 1422 2.8 1.55
Dy-NdFeB 7.7~Ref. 16! 875 4.0 1.65
NdFe10.5Mo1.5 22 812 7.3 1.68
Bubble film ;1 ;16 ;79 1.74
3-4
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In conclusion, a fractal study was first introduced into
analysis of two types of ‘‘two-phase’’ magnetic domain p
terns. The two-phase domain patterns formed under the
plication of nonlinear fields, or in branching process pres
fractal nature. The line-measuring dimensionDline has been
selected to describe the ‘‘line’’ structure patterns, such
stripe and plate domains, and the MBD formed in bub
films. For describing the ‘‘plane-filling’’ patterns of compl
cated domains, such as corrugation and spike, even ‘‘flow
patterns, the box-counting dimensionDbox has been selected
s

in
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Finally, a series of domain patterns of Co and Dy-NdF
single crystals of various thicknesst have been described b
Dline andDbox in sections, resulting in a curve of D vs logt.
From the curves, the existence of the critical thicknesstc is
confirmed; moreover, a saturated dimensionDsat is acquired.
For different materials,Dsat is different, and the correlation
seems to be the longer the exchange coupling lengthl ex is,
the higherDsat is.
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