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Mean-field glassy phase of the random-field Ising model
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The emergence of glassy behavior of the random-field Ising m&HM) is investigated using an extended
mean-field theory approach. Using this formulation, systematic corrections to the standard Bragg-Williams
theory can be incorporated, leading to the appearance of a glassy phase, in agreement with the results of the
self-consistent screening theory of Mezard and Young. Our approach makes it also possible to obtain infor-
mation about the low-temperature behavior of this glassy phase. We present results showing that within our
mean-field framework, the hysteresis and avalanche behavior of the RFIM is characterized by power-law
distributions, in close analogy with recent results obtained for mean-field spin-glass models.
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I. INTRODUCTION namically stable state exists. This assumption may not be
warranted if another phase transition, presumably of glassy
The random-field Ising modé€RFIM) (Ref. 1) is one of  character, would precede any uniform ordering, which would
the simplest models used to describe the frustration introlead to the breakdown of dimensional reduction. Of course,
duced by disorder in interacting many-body systems. Despitsuch a glassy phase is not found in the naive BWMFT, so
its simplicity, its behavior proved to be the source of muchthat more sophisticated theoretical schemes have to be used
controversy, primarily due to the lack of reliable theoreticalin order to identify the corresponding instability of the high-
methods that one can use for such systems. Still, efforts ttemperature paramagnetic phase. Such a theory was formu-
elucidate the basic properties of the RFIM continue to attraclated by Mezard and Yound, who utilized the self-
considerable attention, primarily because of its direct rel-consistent screenin@CS approach of Bray? and identified
evance to a number of important physical problems. Thesthe glassy phase by carrying out a replica-symmetry-
include not only the behavior of diluted magnets in externabreaking stability analysis. Similar results were obtained by
magnetic field$, but also several aspects of electronic trans-numerically solving the mean-field equations for a fixed re-
port in disordered insulatotsand systems near the metal- alization of disorder by Lancastet al,'® confirming the
insulator transitiorf:° In addition, the nonequilibrium behav- existence of the glassy phase. Finally, Mezard and
ior of the RFIM has been used to model the physics ofMonassort, and De Dominiciset al® presented arguments
hysteresis and avalanche behavior and the origin of selfthat the glass phase should persist even at weak disorder, and
organized criticality’ Finally, nondisordered models with in- everywhere precede the uniform ordering, in agreement with
finitesimal random fields have been studiéd order to in-  the breakdown of the dimensional reduction.

vestigate self-generated glassy behdViashserved in While these approaches provided important information
systems such as supercooled liqulds; even underdoped on the RFIM, several aspects remained unsatisfactory. The
cuprates? SCS scheme, while being able to identify the glass phase,

The simplest effect of turning on a weak random field isproved of considerable complexity, making it difficult to ob-
the resulting depression of the critical temperature for unitain simple analytical results. In addition, the physical con-
form ordering, while for sufficiently strong randomness thetent of this formulation does not appear very transparent,
ordered phase completely disappears. This behavior is appanaking it difficult to establish what crucial ingredients are
ent even in the simplest Bragg-William{W) mean-field necessary for a theory in order to be able to identify and
theory (MFT), but understanding the disorder-induced modi-describe such a glass phase. Finally, the low-temperature
fication of the relevant critical behavior proved much moreproperties of the glass phase also seem very difficult to es-
difficult. Very early on, perturbative renormalization-group tablish using this approach, which presents a severe limita-
(RG) results of Parisi and Sourfdssuggested the existence tion in applying the RFIM to the problem of the “Coulomb
of a “dimensional reduction” by which the random problem glass™ and the related theory of Efros and Shklovskii.
belongs to the same universality class as a clean one in two The main goal of the present paper is to identify the sim-
dimensions less. plest possible approach that is capable of providing a de-

Unfortunately, the beautiful result of PS was found to bescription of the glassy phase. We will show that to do this,
in conflict not only with the heuristic argument of Imry and two requirements have to be satisfi€d: the theory has to
Ma,'? but also with the exact results of Imbfidand thus identify the correct order parameters, diidlit has to incor-
deemed incorrect. More recently, the origin of these discrepporate spatial fluctuations beyond the naive BW theory. Both
ancies was tracé@to the implicit assumption of Parisi and of these are automatically satisfied by the SCS theory, but we
Sourlas that outside the ordered phase, a single thermodyvill show how the same goals can be achieved in a simpler
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and more transparent fashion, by examining systematic coprdination number in order to obtain a finite result in the
rections to the BW theory. To do this, we follow an approachz— c limit. The random magnetic fields are assumed to be
used by Plefk® to derive the Thouless-Anderson-Palmer Gaussian distributed, with zero mean and a variafic®
(TAP) equations for spin glassé3A similar formulation was ~ —H2_.

subsequently used by Georgetsal,* to obtain systematic Using standard replica methotfswe can formally aver-

corrections to the MFT of the Sherrington-Kirkpatri€BK)  age over disorder, and the resulting partition function takes
model. This approach fixes the desired order parameters Rte form (@=1, ... n; n—0)

introducing appropriate source fields, and then evaluates the
corresponding Gibbs free energy by an expansion in powers BJ 1 2
of the interaction. A brief description of some of our results Z”=Trexr{7 > 2SS+ E(BHRF)ZE (2 Sa) }
in the electronic context has already been presented in Ref. 5, « (D Py @
but the present paper provides many more details and a num-
ber of other interesting results. We proceed by taking advantage of the tree-like structure of
The rest of the paper is organized as follows. In Sec. Ilthe Bethe lattice, by formally summing over all the degrees
we begin our discussion by examining the RFIM on a Betheof freedom in one branch. The resulting functiod®(Sg) is
lattice, where a particularly simple derivation of the BW 3 function only of the variabl&g at the branch origin, and

fcheory and its leading corrections can be obtained, resultinggn, pe easily seen to obey the following self-consistent equa-
in the emergence of the glass phase. A more general strategyn

based on the Plefka approach is presented in Sec. Ill, show-

ing that these leading corrections take the same form on ar- BJ

bitrary lattices. The low-temperature structure of the glass (D(SS‘):Trsg{ eXF{? > Sist

phase is discussed in Sec. IV, where the hysteresis and ava- “

lanche behavior in our extended MFT is examined, showing 1 2

the emergence of self-organized criticality similar to that re- +5(BH RF)Z( > Si') }4321(5?)]- ()
cently discovered by Pazmanet al?? for the SK model. @

The role of higher-order corrections to our theory and its

relation to the 17 expansion approach is discussed in Sec. V, A. Bragg-Williams theory

where we show that the leading nontrivial corrections to the In order to examine the largelimit, it is convenient to
BWMFT represent dominant contributions in the joint limit define a single-site effective action b’y

of large coordinatiorandlarge random fields. In this section,

we also comment on the relevance of our approach to the 1 2

controversial question of self-generated glassy behavior in L[S“]E—E(BHRF)Z(E S‘f) —In[®Z"Y(SY)]. (4)
systems without disorder, which we discuss by examining @

the limit of weak random fields. Our conclusions are sum-, yoo, limit, this expression simplifies, since the inter-

marlzgd in Sec. VI, where we also outline some mterestlngémtion has been scaled byz1&nd the functionadb(S2) can
directions for future work. . . . o
be obtained by expanding the self-consistency condition, Eq.
(3), in powers of the interactiod. To leading order, only the

Il. BETHE LATTICE termslinear in J survive, and we find

The simplest theoretical formulation of the random-field
Ising model(RFIM) is obtained by considering the large co- (L) ca1— _ e 2 o
ordination limit, where the standard Bragg-Williams mean- LHsT= BJ; S'm*=(BHre) D,Zﬁ s )
field theory(BWMFT) becomes exact. However, one has to
go beyond this limit in order to obtain nontrivial results, and Here, the index1) indicates that only terms linear ihare
we address this question by examining systematic corredetained. As we expect for a Bragg-Williams theory, this lo-
tions to the BWMFT. The large coordination limit and the cal effective action corresponds to a single spin which, in
leading corrections are particularly easily formulated in theaddition to the local random field, also experiences the pres-
special case of the Bethe lattice, where a simple recursivence of a “molecular” fieldJm® due to interaction with the
procedure can be used. This approach also gives some iAeighbors.
sight in the mechanism for the emergence of the glass phase, We emphasize that this proceduaatomatically defines
so we begin our discussion by concentrating on the Bethéhe order parameters entering the local effective action. In

lattice in the limit of large coordination. the z—c limit only the magnetizatiom® appears, which
The Hamiltonian of the random-field Ising model is given from Eq. (3) satisfies the following self-consistency condi-
by tion:
m*=(S%g - 6)
Hint:—<i21_> JijSiSj_Ei h;S . (1) (S"s

Since the interaction term does not mix the replicas, they
Here,S=*1, andJ;;=J/z are uniform ferromagnetic inter- trivially decouple, and the self-consistency condition for the
actions between nearest-neighbor sites, rescaled with the coragnetizatiorm®=m takes the form
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1.2 T T second order in the interactiahy and in the expression for
() the local effective action a new term, quadratidjrappears:
08 [ T L=L@W4 @)
T
04 -1 (2) 1 2 2
A ™ LO=——(p))? Y s [q - (m")?]. (8§
a<f
0.0 I I The order parametan® is still given by Eq.(6) [although
1.2 T T the average is now computed with respect to the extended
action of Eq.(8)], but the new order parametgf? appears,
08 | which is self-consistently determined by
4 qP=(S") g - 9
04 7 This quantity is nothing but the familiar Edwards-Anderson
order parameté®. Note that in our Bethe lattice procedure, it
0.0 . appears automatically, as a result of an expansion in powers
0.0 1.0 1.9 2.9 of the interaction] to the lowest nontrivial order beyond the
Hg/J BWMFT. Its presence reflects the fact that in finite-

coordinated lattices, local Weiss fieltis are random num-
bers with a finite dispersion. More precisely, they are de-
scribed by the distribution of local field3(h;), the explicit
form of which is determined by the replica matigg?.
As in standard spin-glass thedfythe solution of these
equations assumes the simplest form in the high-temperature
m:f Dx tanh BHgex+ BIM), 7) phase, where re;plica symmetry is vglid, such thﬁft=m
andq®?=q. In this case, our self-consistency conditions take
the form
whereDx=dxexp(—x%/2)/y/2#. This equation is a straight-
forward generalization of the well-known Bragg-Williams
condition to include the effect of random fields. The critical
temperature where the magnetization vanishes is easily com-

FIG. 1. Phase diagram for coordination numbers~ (a) and
z=4 (b). Ferromagnetic(FM), paramagnetic(PM), and glass
phases are found. Note that the glass phase does not exist for

=00,

mzj Dx tanh

2 1/2

puted, and is found to vanish at a critical strengitf./J x| [ (BHRrp) 2+ (BJ) (q—m?) /X+BJm},
= \/2/7 of the random fields, as shown in Figal Outside z
this ferromagnetic phase the local effective action of &4.
reduces to that of noninteracting spins in the presence ran- q:f Dx tani?
dom fields, and no further phase transition can be found.

The reason for this limitation of the BWMFT is very 2 12
simple, and can be appreciated by considering trermally x| | (BHRp) 2+ (BI) (q-m?)| x+pBJ m}. (10)
average§l Weiss field h}"’=<2jJiij)T produced by the z

neighboring spins on a given site. In a uniform systéifiis  1ps is sufficient to determine the ferromagnéefidv) phase

the same on every site, but in presence of randomness, it Mgy, nqary which, as before, is determined by settimg 0.
display apprgmable spatial fluctuauons. This is especially IMBy numerically solving these equations, we find that the FM
portant outside the any uniformly ordered phase, where thgpase is only slightly reduced due to the fluctuation correc-
spatial averag¢a=<hi"")site vanishes, but the local vaIthW tions, as shown in Fig.(b).

of the Weiss field may remain finite, reflecting thecal Identifying the glassy freezing is more difficult. For stan-
breaking of the up-down symmetry. This behavior is encoundard spin-glass models, the glassy freezing coincides with
tered in spin glasses, whené'=0, but(h!")? becomes finite  the breaking of the up-down symmetry, so that the glass
below a temperature corresponding to the glassy freezing. Itiansition temperature can be identified even within replica
the simple BWMFT, only the first moment'~m is re- symmetric theory, as the point where the Edwards-Anderson

tained, and thus its inability to describe any glassy orderingorder parameteq=(S;)? assumes a nonzero value. In our
case, the random magnetic field plays a role of a source
conjugate to the order parameter, locally breaking the up-
down symmetry. The situation is similar as in spin-glass
In order to search for the existence of nontrivial behaviormodels in a uniform external fiefd,where the replica sym-
outside the uniformly ordered phase, we have to go beyonchetric order parametey remains nonzero for any tempera-
the BWMFT, i.e., thez=o limit. The leading correction is ture, and thus cannot be used to identify glassy freezing.
obtained by iterating the self-consistency condition Byto  Instead, we follow Mezard and Yourt§,and look for an

B. Leading corrections and glassy freezing
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instability to replica symmetry breakinRSB) within the 30
paramagnetic phase. To do this, we canmsetO, and note
that the remaining equation fg*# is in factidenticalto that 25

describing the Sherrington-Kirkpatrick moé&in presence
of random magnetic fields. This model is also described with 20
the Hamiltonian of Eq.(1), but this time withJ;;’s being &
Gaussian random variables with zero mean and varianceg 15
<Ji2]-)EJ2/z N, whered is the interaction of the original lattice ©
model. 10
The advantage of mapping our equations to those of ar
infinite range model will be also used in Secs. IV and V, 5
where we examine the low-temperature structure of the glas:
phase. In addition, the calculation for obtaining the replica ¢ | | | | | | |
symmetry-breakingRSB) boundary can be carried out using 0 1 2 3 4 5 6 7 8
standard method®:?%following the approach of de Almeida Hgg (Tesla)
and Thouless (AT). A more general strategy for performing
the RSB stability analysis, which is applicable for arbitrary
lattices, and to higher-order fluctuation corrections will be
presented and discussed in Sec. V. Here we just quote t
result valid to the leading nontrivial order, which takes the
form

1

FIG. 2. Glass transition temperature as a function of the
random-field strength. Open circles are the experimental data for
Fey 31ZNg6d 0.2 (from Ref. 2, and the line is the prediction of Eq.
‘fl). The inset shows hoW s~ 1/Hg at large fields.

47?2

Te~ o ~1/Hge. (12
(,BJ)ZQ)UZX ¢ 3zHge RF

2
1= (B9 f Dx cosh *
z

((ﬂH RE)Z+
(11) It is interesting that our glass transition temperature thus
decreases verslowly with the random field strength, in con-
As expected, in the large coordination—¢) limit, the  trast to the form of the de Almeida—Thouless fihé (infi-
glass transition temperature vanishes, and our results reduggte ranged spin glasses in a uniform fieldhere Tg~exp
to standard BWMFT predictions. For finie the SG phase (—H?%2J?). This fact could be particularly significant for
emerges, in agreement with the results of Mezard andtrongly disordered electronic systefriswhere it would
Young* The above equation can easily be solved numerisuggest the possibility to observe the glassy behavior of elec-
cally, and the results are shown in FigblL In contrast to the  trons at finite temperatures. The physical reason for this be-
predictions of the SCS approach, our SG phase emerges ortivior in our case is not obvious, but we will see that it
for sufficiently strong random fields. This is a simple resultreflects some very subtle features of the low-temperature
of the fact that in simple mean-field treatments such as ourgjlass phase, which will be discussed in Sec. IV.
different phases do not directly affect each other, since there From the physical point of view, an instability to RSB,
is no “precursor” of the ordering in the disordered phase. such as we find, is knovt? to describe the emergence of
an extensive number of metastable states, and the associated
slowing down in the relaxational dynamics of the spins. Ex-
perimentally, this results in the onset of the history depen-
It is interesting to note that the situation is especiallydence of cooling, and the related bifurcation of field-cooled
simple in the limit of large random fields. In the extreme casgFC) and zero-field-cooledZFC) spin susceptibilities. Such
Hgrr—, the interactions can be ignored and all the spinsexperiments have been carried out on diluted antiferromag-
tend to align with their local random fields. In this case therenets in uniform external fields, which have long been be-
is only one thermodynamic state, so that the emergence ofleved to be realizations of the RFIM. Here, the effective
multitude of metastable states associated with the RSB instatrength of the random field can be varied by modifying the
bility is clearly suppressed. We conclude that the glass tranmagnitude of the external magnetic field. In one such
sition temperature must be depressed to zerdlgs— o, experiment the field dependence of the “irreversibility
just as in the case of spin glasses in uniform external fieldine” has been determined, defined as the temperature where
discussed by de Almeida and Thouless. However, thehe FC and ZFC susceptibilities start to differ. Interestingly,
asymptotic form ofTg(Hgrp) proves to be different in our these experiments show a rather slow decrease of this glass
case, which may be significant for several experimental systransition temperature, in agreement with our predictions. We
tems. have digitized the data from Ref. 2, and compared them to
In the limit of large random fields, our results simplify our predictions, as shown in Fig. 2, where an apparent con-
considerably, since the RSB boundary resides at very lovfirmation of our To~1/Hge law can be seerfsee inset
temperatures. The leading-order behavior can be obtained Byhile this agreement of our theory and experiment is en-
replacing theg(T) in Eq. (11) by its zero-temperature limit couraging, it should not be taken too seriously, given the
g(0)=1, and we find uncertainties of the precise correspondence of the experi-

C. Limit of large random fields
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mental system and the RFIM that we consider. More experi- A. Extended mean-field theory
ments on other related systems would be welcome to test our 1 gptain an extended mean-field theory

S . ’ we can expand
predictions in more detail.

— BG to a desired order in powers of the reduced interaction

e=BJ, while fixing the value of the independent variables
Ill. GENERAL LATTICES: g . In doing this, one has to keep in mind that source fields

LEGENDRE TRANSFORM APPROACH £%F are by Eq.(15) implicit functions of the order param-

So far, we have seen how leading corrections to the BVetersq®” . The form of these functions is also a function of
theory can be obtained on the Bethe lattice, resulting in théJ, SO in order to be consistent, one has to expand the fields
emergence of the glass phase. This example was useful, b&*” to a given order in3J as well, while fixingg**'s. De-
cause it automatically introduces the correct order paramfining — 8G,/N=g, we can write
eters, thus allowing the emergence of the glass phase. How-

ever, we would like to formulate a more general approach, in 9(e)=9otGint(e), (17
order to demonstrate the generality of our conclusions, and

also to be able to systematically examine higher-order fluc- c gk

tuation corrections. In the case of the RFIM, the desired or- gint(s)zgl i Ik (18

der parameters cannot be introduced as for standard spin-
glass models, where one decouples the disorder-averaggdl this expression, the coefficientg, are functions ofq®?
interaction term using a Hubbard-Stratonovich transformaeyaluated at =0. Explicitly, we find
tion. In absence of random interactions, the “bare” disorder-
averaged Hamiltonian has only terms linear in the interaction 1
J, but higher order terms can be generated by fluctuations. In 9ol al=Tol €1 > X EPP, (19
this case, one has to introduce the order parameters “by oash
hand,” and then expand the free energy to the lowest nonyhere
trivial order in the interaction), in order to obtain glassy
ordering. To do this, we follow a strategy introduced by 1
Plefka® and Georgest al,?! and use a Legendre transform fol€]=InTr exp{ — Lo}, (20
approach, introducing external source fie}.j;i“z? in order to
fix the Edwards-AndersofEA) order parameterg” . Here  and the reference effective action is defined by
and in the rest of the paper, we are mostly interested in the
emergence of the glassy phase of the RFIM, so we concen- . "
trate on the nonmagnetian=0) solutions. The disorder- LOZ_Z QZB L& BJF(ﬁHRF)Z]SI S'ﬁ (22)
averaged Helmholtz free energy takes the form
The interaction terms take the form

Jd
— BF=lim—[ - BF.], 13 1
o™ 6=~ () (22
where

1
_BF.=InTr exp[ﬂ_; S S sy 92= (6= ( D)o X~ (X)o))o. 23

M

1]

~
~

H 2 2
> (2 s +2 3 arsef|

where we have defined

(14
. 1 o QU
The EA order parameters are given by b= 7 > 2> S'S, (249
a (i
d(—BF)
aff__ _ 3
gif=———= : (15) ves O
TR x=2 2 S'sfg (25)
i a<p &€
and the corresponding Gibbs free energy is
P g 9y In these expressions, the averages are taken with respect to
J the reference effective actidr,, which is a function of the
- BG= Iim%[—,BGn]; external fields¢*® . Note that since the coefficients are
n—0 — -
evaluated at =0, after the cumulants are evaluated, the ex
ternal fields should be set equal §8°(e =0)=¢2#, which
—BG,=—fBF,— > > ¢*Fqeh. (16 are implicit functions of the independent variabig®’, as
" = I determined by the following constraint condition:
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P to introducing the Onsager reaction field correction, the re-
q“ﬁz—aﬁfo[ &]| ep can=(S'SP),. (26)  sults are independent of the lattice geometry, as also found in
i I o

other problemg®??
At this stage, we have taken the order paramgftétto be
uniform, since the system is translationally invariant after IV. T=0 GLASS PHASE: SELF-ORGANIZED
averaging over disorder. CRITICALITY

The equation of state is obtained from the saddle-point

o . The nature of the glass phase is in general much more
condition, giving

complicated than the usual ordered phases, and is character-
a0lq] _ iz_ed by a large density of_loyv-energy excitations z_ind low-
0= = => [&yéfo_qyﬁ]aaﬁgofs_ £2P Jap Dint lying metastable states. Within the class of mean-field mod-
aq o els for spin glasses, the structure of the ordered phase has
(27)  been investigated most extensively in the vicinity of the glass
transition, where the Parisi theory is analytically tractable.
Much less is known about the low-temperature behavior, al-
though some of the most interesting phenomena are most
pronounced there, including the hysteresis and avalanche be-

where we have used the notatimﬁza/&q“ﬁ, and Baﬁ
=9/9¢&*P. Using the constraint condition E@26), we can
eliminate 2 and write

B havior.
q :(9a,8fo|:(9 Ointl- (28)
The described expansion can be carried out to any desired A. Hysteresis and avalanches behavior
order in e, generating fluctuation corrections to the Gibbs in presence of random fields

potgntigl. It is worth not?ng that_, sinqe this expansion is a investigate the glass phase, we concentrate orTthe
SEries in powers of the mteractlon , 1t .generates COITeC- _ g pehavior of our model. To do this, we limit our attention
tions due toshort-rangedfluctuations, in contrast to the to the J2 theory described above, where the RFIM maps to

usual loop expan_sion that is_ dominated by the Iong'the SK spin-glass model in presence of additional random
wavelength fluctuations. Accordingly, we expect that the pre-

o o ) magnetic fields. This mapping allows us to use different
diction for the critical behavior of the order parameter and g bping

. Lo . - _methods to investigate thHE=0 behavior, which would be
response fL_mc'uons to maintain t.h? mean-field character if th8ifficult to address using the Parisi theory. In particular, we
expansion is truncated at any finite order. y

investigate the hysteresis and avalanche behavior within our
extended mean-field theory of the RFIM, by following recent
B. Leading fluctuation corrections: the J? theory work of Pazmandi, Zarand, and Ziman(;ﬁ’ZZ).zz In their
The leading fluctuation corrections to the BW theory areoriginal calculation, PZZ have examined the standard SK
obtained by retaining terms up to second ordes,imvhich is ~ model, and the only modification that we introduce is the
the lowest order to which we can identify a glass phaseadditional presence of random magnetic fields. Our proce-
Using the up_down Symmetry of the Ham"tonian' we find dur-e |$ as f0||0WS One fl_rSt |ntr0duces-a |arge external mag-
(see Appendix Athat(¢),=0 andy(s=0)=0, so that the netic field(in addition to fixed random fieldsso that all the

above expressions simplify giving N spins are aligned with it. The external field is then slowly
reduced and the stability of the spin configuration is exam-
9,:=0, (290  ined with respect to any single spin flips. As soon as the

system becomes unstable, the spin configuration is allowed
to relax to a local energy minimum, causing an “avalanche.”
. (30 The procedure is then repeated, resulting in the system fol-
lowing a hysteresis loop. If the external field is swept to large
This expression is valid to any orderén but using in the n_egat?ve valuessuch that all the spins align in the negative
leading theonfterms toO(£2)], we find direction, and then the prc_Jcedure reversed, the_n the state of
the system follows a “major”(external hysteresis loop. If
&2 the field is instead reversed before the major loop is com-
aaﬁgint:7qaﬁv (31 pleted, then the system embarks on one of the minor hyster-
esis loops. This procedure is illustrated is Fig. 3 where a
giving typical “hysteresis spiral” is presented.

_l 2\ 1
gz—ﬁ<¢ >O_Z

n+2>, q*¥q*f
a<pf

. (32) B. Distribution of local fields

1
E(,BJ)ZQ

qa/S': aaﬁfo
To characterize spin-glass state, we examine the probabil-
This equation of state is precisely the same asikeD limit ity distribution P(H;) of local magnetic fieldsH;=h;

of the expressiofEq. (9)] that we have obtained on the +X,;J;;S; acting on a given spif; . In the high-temperature
Bethe lattice. We have thus demonstrated that to leading nophase P(H;) has a simple Gaussian distribution. To see this,
trivial order beyond the BW theory, we find the same glassywe recall that above the glass transition, the replica symme-
phase for arbitrary lattices. To this order, which correspondsry remains valid, so that the presence of the interaction term
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1.0

wherea=1 andC=z/J? is independent of the random-field
strength. This universality is consistent with the findings of
Pazmandi, Zarand, and Zimarfyiwho have shown that it
reflects the self-organized criticality which characterizes the
T=0 behavior of the mean-field glassy systems. Our results
confirm that the conclusions of Pazmandi, Zarand, and Zi-
manyi remain valid in presence of random fields, thus repre-
senting a very robust property of glassy phases, at least
within the confines of the considered mean-field descrip-

0.5

i tions.
By following these procedures, we have carefully verified
FIG. 3. Atypical hysteresis spiral. that all the findings that Pazmandi, Zarand, and Zimanyi

have establishédfor the SK model also hold in the presence
in the local effective actiofisee Eqs(9) and (10); we use  of random fields, and thus also apply to the RFIM within the
m=0 herd simply renormalizes the effective distribution of present mean-field formulation. In particular, we have con-
random fields, such tha*lngf= [(Hrp)?+J32%q/z. The distri-  firmed that the avalanche sizes are distributed on all scales,
bution P(H;) therefore remains a simple Gaussian of widthand are characterized by a power-law distribution, character-
given byH&! . From Parisi theor§? we expect this distribu- istic of self-organized criticality It is most remarkable that
tion to acgtlire a nontrivial fom’1 upon replica symmetry this critical nature is not confined to the ground state, but

breaking, but we would like obtain its specific form in the persists for all the metastable states within the hysteresis
spin-glas:s state. loop. It is particularly interesting, as we have explicitly veri-

To calculate this quantity on the hysteresis loop, we fol-fied by simulation, that not all local minima of the energy
low a simulation procedure identical to that used for the Skhave this property. Instead, the critical states forsulseof
model by Pazmandi, Zarand, and Zimaipiz2).22 In this meta_stable states that can be reached by the described hys-
procedure, one considers a finite-size system spins, with teresis procedqre. In this way, the ground state seems not to
a given realization of random interactiods and random have any special features, but rather to share the same prop-

fields h,, and let the system explore the metastable state@rt?es wij[h an extensive numbgr'of critical mg_tast'able stgtes.
sampled on the hysteresys loop. The values of the local fieldsiS notion offers a natural origin for the criticality that is
H,; are then computed for every spin, and the procedure i£°“”‘?'* since all the states along the hysteresis loop can be
repeated for many realizations of disorder in order to generconsidered to ben the brink of an avalanchand are there-

ate a large ensemble from which the desired distribution c:aFP.“.a m_herently unstable to .weak perturbatlon, _makmg the
be computed. To implement this procedure, we have carrieﬁr't'c"’_‘“ty poss.|ple. In fact, it is pre_C|ser the requirement for
large-scale simulations using systems with upNte 3200 marginal _stablllty of the hy_steres_ls states that was used by
spins, and obtaining ensembles Mf=500 000 data points Pazmandi, Zaranpl, anq Z.'m?‘ﬁi“to qlerlve the unlvers_al
from which the distribution histograms were obtained. Theform of t.h.e chal—ﬂeld dlstr|bu.t|on. This arg_umgnt examines
resulting distributions for several values of the random-fieldthe modification of _the Ioc_al .f'equi upon flipping a given
strength are shown in Fig. 4. We find that the distribution isS€t ©fNfiip Other spins. This is given by

characterized by the emergence of a universal pseudogap of

the form
SHi=H/—H+2 > J;s. (34
jflipped
P(H;)~CH®,(H;<J), (33

One then computes the probability that the local field is re-
0.8 T T T T T versed, so that instabilities are created, triggering avalanches.
Note, however, that the variatiord#; is independenof the
value of the(external random fieldsh; present in our case.
As a result, the rest of the argument goes as in Ref. 22 giving
the above marginality condition.

From the historical perspective, evidence of marginal sta-
bility of the spin-glass phase in mean-field models has long
been appreciated based on Parisi and the Thouless-
Anderson-PalmefTAP) theory?® In addition, stability argu-

0 05 10 15 20 25 30 ments requiringe=1 have been presented by Palmer and
! Pond?* based on early ideas of TAPHowever, it was not
’ clear why this bound has to be satisfied, or that even the

FIG. 4. Distribution of local fields foN=23200, as a function of prefactorC assumes a universal value. In this sense, the hys-
random-field strength, foge\z/J=0.5, 1.0, 2.0(as indicated by ~ teresis and avalanche study of Ref. 22 has provided an im-
arrows. Note the universal form of the pseudogap. The finite valueportant conceptual advance, linking this universality with the
of P(0)~1/\N is a finite-size effectRef. 22. self-organized criticality of the mean-field models.
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C. Self-organized criticality and the AT line tic arguments provides additional evidence for the self-

We have seen that the glass transition temperature in ofganized critical nature of the ground state in these models.
random-field case decreases very slowly,Tas-1/Hgr at Finally, it is interesting to examine how the presented
large random fields. This is very different than in the case of'€Uristic argument applies to the usual SK model in a uni-
the familiar AT lin€2 of the SK model in a uniform field, form field. In this case, the only modification is introduced

; ; by the fact that in the high-temperature phase, the uniform
where the RSB temperature decreasgsonentiallywith the : : ) : . L
uniform field strength. In the following we present a simplef!eld simply shifts the entire Gaussian dlzstnbzunon of local
heuristic argument that explains the physical origin of both{€!dS: AS @ resultPeg(H;=0H)~exp—H72J%}, and we N
behaviors based on the self-organized criticality of the glassjnd that the AT temperature decreases exponentially wit
ground states in these mean-field models. uniform field, in agreement with the analytical restitsf de

What emerges from the analysis of Ref. 22 for the skAlmeida and Thouless.

model, and which also applies in our extended mean-field
formulation for the RFIM, is the phenomenon thatTat 0 D. Relevance for the Coulomb glass problem
the distribut?on of local fields assumes a l_miversa_l form at  Tnhe nontrivial nature of mean-field glass models may be
Hi—0, as given by Eq(33). We have established this prop- particularly significant for the Coulomb glass problem, rel-

erty for all the states within the hysteresis loop following theeyant for disordered insulators. The Hamiltonian for the
methods of Ref. 22. However, it is very likely that a similar coylomb glass is given by

universal distribution of local fields also characterizes the

exact ground state of the system. In fact, this possibility has e2

been proposed a long time ago both by Thouless, Anderson, H=> r(ni_<n>)(nj_<nj>)_2 gini. (36
and Palmét and by Palmer and Porffi consistent with the e '

notion of the marginal stability of the spin-glass state foryere n,.=0,1 are the occupation numberg, is the intersite
infinite-range models. Similarly to those of Ref. 22, the ar-gistance, and:; are the random site energies. The transfor-
guments of Palmer and Pond can also be extended to includgaiions = 2n,— 1 immediately maps this Hamiltonian to an
the addition of random magnetic fields, resulting in a Stab"'antiferromagneticRFIM with long-range interactions. Note

ity bound that remains universal, i.e., independent of thnat the presence of long-range antiferromagnetic interac-
random-field strength. To establish more firmly this universakjons |eads to considerably stronger frustration than that in

form of the pseudogap for the ground state, one would havg,e ferromagnetic RFIM considered in this paper, which is
to carry out more elaborate numerical simulations. Efficientq,,q only for sufficiently strong randomness. These differ-
optlmlzatzlon methods needed for such computations argnces may be crucial in low dimensional systems, possibly
available?® but this requires extensive efforts which are be'leading to a low-temperature glassy phase for the Coulomb
yond the scope of this paper. system even if a similar behavior is suppressed for the fer-
_For our purposes, we will assume that the pseudogap rgymagnetic RFIM case. However, on the mean-field level,
tains a universal form for al=0 critical states, including ayen the standard RFIM displays such glassy ordering, the
the hysteresis states as well as the ground state. If this is trugnaracter of which may be closely related to that of the Cou-
we can now make a simple estimate of the “condensatiofymp glass.
energy” gained by glassy ordering, which should scale with  The pest established property of the Coulomb glass model
the gap size. Having in mind that the replica symmetricis the existence of a “Coulomb gap,” as predicted by Efros
(high-temperature distribution Prg(H;) is a Gaussian of anq Shklovskii(ES).2 According to them, the electronic sys-
width given byHZY, and the fact that the pseudogap has aem would be unstable, unless the single-particle density of
universal, linear form, we conclude that the gap size shouldtates(which corresponds to our local-field distributionas
scale as a pseudogap of the form

Egap~Pre0)~ 1Hg, (35 p(e)=C(d)s* ™, (37

atHgr—. Here, we have used the fact thigT=0)=1,s0  whereC(d) is a universal constant id dimensions. More

to leading ordeH&N~Hg for large random fields. Using precisely, Efros and Shklovskii have examined the stability
this result, we can immediately estimate the glass transitionf the system with respect to one-electron excitations, show-
temperature, which should also scale with this gap size, sindag that the form of Eq(37) represents anpper boundor

Egap is the only energy scale characterizing the ground statehe density of states. If this bound would be saturated, then
We thus conclude thafy~1/Hgg, in agreement with our the pseudogap would assume a universal form, but no con-
analytical calculations based on the RSB analysis. It is wortlvincing arguments have been presented why this should hap-
emphasizing here that the simple relationship between thpen. However, large-scale numerical stutfiémve obtained
gap energy and the random-field strength directly followsresults similar to the ES predictions, failing to produce any
from the universality of the pseudogap form. Has the gap hadvidence of the hard gap. Still, the reason for saturating the
another functional fornte.g., a randomness-dependent expo£S bound has remained a mystery.

nent«), this relationship would be modified, resulting in a  Another aspect of the Coulomb glass that has not been
different dependence dfy(Hgg). In this way, the agreement properly clarified is the presence or absence of a finite-
between our analytical RSB results and the presented heurisemperature glass transitiéh,and the nature of the glass
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phase. In this respect, the main difficulty was the absence of

an appropriate order parameter that would allow identifying

the transition. Since the random site energies in this model é —0
play a role of random fields, the situation is identical as in (a) (b) (c) (d)

the uzsgual RFIM, and the usual EA order parameter cannot be
used<® As we have seen, the transition at best can have - e
character of an AT line, which should be most easily identi—?b)’ and (c) correspond to thé*); term, and(d) to the (#*x")S
. . . . term. Here, thep bonds are represented by a full line, and the local
fied in changes of the dynamics as the temperature is low-, term is re ted b ircl
\ . : presented by an open circle.
ered. Some numerical evidence that such a dynamical tran-
sition may exist has been obtained by using the “damageHere,x’ = dx/de, and the brackets - - )$ indicates that only
spreading” algorithm$? giving hints of ergodicity breaking connected diagrams, which give nonvanishing contributions,
below a certain temperature. In addition, severalshould be retained. This refers to diagrams obtained by rep-
experiment® have reported history-dependent transport andesenting the quantity [see Eq.(24)] by a bond, since it
other glassy features in disordered insulators. stems from the interaction terms connecting two nearest
Despite the successes of the ES theory, several basic quéseighbors on a lattice. While each power éfinvolves a
tions remain unanswered. Most importantly, it is not clearsum over all possible embeddings of such a bond, only dia-
whether the emergence of the universal ES gap is related {§rams consisting of a close loop of such bonds produce non-
the possible low-temperature glassy state of the model. Ipanishing results, due to the average up-down symmetry of
this respect, the scenario that we have presented for th@e problem. Four different classes of such diagrams are
RFIM provides an interesting possibility. It is conceivable shown in Fig. 5, corresponding to tlié contributions that
that, as in our mean-field theory, a glassy phase exists belowe consider. The evaluation of these terms is straigthfor-
a well-defined transition temperature, which corresponds t@yard. Here, we only emphasize the following properties of
the emergence of a large number of metastable states. If thifese diagrams, that are valid even to higher ordel, ias
phase were characterized by self-organized criticality, theffollows. (i) Diagrams(a), (b), and(d) contain vertices with
the associated marginal stability would naturally explain thefour emerging bonds, that in the replica calculation give rise
saturation of the ES bound, and the resulting universality ofo expressions which include moments of the forpy, s
the Coulomb gap. An an interesting way to address these (s*sPS7s?)  with a# B+ y# 8. Such moments cannot
questions would consist of examining tfie=0 hysteresis pe simply expressed in terms of the order paramegtér In

properties of this model, following the approaches ofcontrast, the “loop” diagram(c) is expressed as a power
Pazmandi, Zarand, and Zimanyi, but this direction will beggrieg involving only powers af*. (ii) The lattice embed-

FIG. 5. Diagrams contributing to ordel. The diagramsga),

pursued elsewhere. ding factors, which specify thedependence, do not depend
on the specific replica decorations that have to be carried out
V. HIGHER-ORDER CORRECTIONS on each diagram, but are determined only by the topology of
AND THE 1/z EXPANSION the diagram(iii) We find that diagramsb) and(d) result in

_ . . identical expressions, except for the lattice embedding pref-
So far, we have examined the leading-order corrections t9ciors, which are different. As a result, cancellations occur,

the BW theory, producing the glass phase. On general,ch that the sum db) and(d) produces a contribution to
grounds, one does not expect that higher-order fluctuationg,q free energy which is of ordéf/z3, as is the contribution
corrections of a finite order id would produce qualitative ¢ (a). (iv) The leading contribution, of orde¥*/z?, follows
modifications in this mean-field context. Nevertheless, Weomy from the loop diagranic). (v) :I'he diagram’s(a) (b)
shall examine the next-to-leading terms, in order to assert thgnd(d) consist of self-retracting paths, and as such are iden-

convergence properties of such an expansion. tical for both a hypercubic and the Bethe lattice with the
samez. The “open loop” diagram(c) is specific to the hy-
A. J* theory percubic, but absent for the Bethe lattice.

. . 4 . .
In Sec. Ill, we have already calculated the terms up the to " €xamining thel” (and higher-ordgrcorrections, we are

orderJ? in the expansion of the Gibbs free energy. Terms urprlmarlly interested in identifying a limit where these terms

“ ” H 2 H H
to order J* can be computed using the same proceduresare small,” so that only the leadind~ contributions may be

where we use the average up-down symmetry of the probleﬁ’?tained' On a Bethe lattice, all the contributions are of order

outside the ferromagnetic phase. In contrast toJththeory, 1./23’ anq thus can be ignored in the limit of Iarge coorqma—
these additional terms depend on the specific form of thdon- It is easy to see that the same conclu.S|on applies to
lattice. To be specific, we concentrate on the hypercubic |at§1rb|trary lattices with purely random interactions such that

tice in d dimensions(so thatz=2d). After lengthy algebra, (3i)=0, as found in spin-glass modéfssince in this case
the resulting contributions up to ordaf take the form only self-retracting paths survive. In contrast, for the RFIM
on general lattices, where the interactions are uniform, the

open loop diagram&) survive, and provide the leading con-

tribution, which is of the same order as in the term. We

1 expect that similar conclusions apply to higher-order contri-
— (M + N butions as well. This property, that the open loop diagrams

94 N[<¢ Yot (67X o] 39 provide a leading contribution in large dimensions, is well

g3:O! (38)
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known?! and has been extensively used to study models ofmodel. In the following, we present a general approach to the
strong electronic correlation in large dimensidA3o getthe RSB stability analysis, which can be used even if higher-
leading contributions for large one would therefore have to order terms are retained.
sum up such open loop contributions to all orderslinn To identify the RSB instability we follow de Almeida and
absence of randomness such re-summations have been c@ihouless® and examine the variations of the Gibbs free en-
ried out®2put at least for the electronic models, the resultsergy with respect to the deviations from replica symmetry
were not qualitatively different from those obtained on theq*#=q+ 6q*#. From the definition of the Gibbs free energy,
Bethe lattice, where only the second-order terms may be reEq. (19), the corresponding stability matrix is
tained.

In our case such re-summations are more difficult to carry Tapys 9=~ 0apE”’+ dap,ys Gint (43
out due to the presence of randomnerespliga indiceg ar_wd Here, we have used the notation, ;= #216q%P3q”°. To
will n(_)t be at_te_mp;ec_i here. Instead,_we.wnl show that if oneg|iminate the quantity&aﬁgy‘s, we take a variation of the
examines thgoint limit of large coordination and strong ran- -gnstraint condition Eq26), and obtain
dom fields, even thé* terms represent subleading contribu-
tions, and the simpld? theory suffices. To show this, we ~
only consider the leading loop contribution&ig. 5(c)], Ozéaﬁ,vﬁ_z‘; Iysuv Fol €]0ap€"”, (44)
which takes the form a
where we have used, o= 0% 3£*P9¢?°. To write these
expressions in a more compact form, we introduce a matrix

notation @) ap,yo=dap.y6 9 (Gind) ap.ys=ap.ys Yint’
(g,)aﬁ,yﬁzaaﬁ g'y&; (fi”r‘lt)aﬁ,yﬁzaaﬁ,yﬁ fo[g]! gIVIng

3
9=—|62 (q*h)?+4 > q*fgfrgre+ X (q*h)*
Z a3 aF BFy aF

+2 > (@P2AgP2+ X q*Pgfrgrige|.
aF BFy aF PBFy#FS

9'=—&+qi, (45
(40 <
o=I—f"-¢". (46)
B. 1/z corrections to the equation of state: RS solution In this form, the matrix’ can be eliminated and we get
A general expression for the equation of state, valid to A a1 An
arbitrary order, is given by Ed28). To compute the relevant g"=—(")""+ Gin- (47)

J* corrections in the replica symmetric case, we calculate theo simplify the calculation further, we note that in the high-

variation ofg;n., which to this order reads temperature phase all the eigenvalueg/bfre positive, but
the RSB instability is identified when at least one of its

2 2\ 2
up gim|RS:8_q+3 _) q(1-q)?, (41) eigenvalues vanishes, such that tfeterminant(at fixedn)
z z vanishes. Using this property, an equivalent approach to the
where we have taken the—0 limit. RSB stability analysis can be formulated by examining the

We are especially interested in examining the form of theStability of an auxiliary matrix,
solution in the largeHgg limit, where the RSB transition ~y a2 A
occurs at low temperatures. We examine the relative magni- g;=f"-g" (48)
tude of the terms appearing iy, . At first sight, _th_eJ“ This is true, since
terms seem to be dominant in the IGwhimit, since it is of
ordgrs“z(,BJ);. However, note that this term is also pro- detg})=det")detq"), (49)
portional to 69“=(1—q)*, which is small at low tempera- ) N o ] _
tures, sincg— 1 atT—0. To see this, it sufficeto leading and it can be verified by explicit calculation that the matrix

orden to computeq(T) atJ=0, giving f” remains nonsingular in the temperature range of interest.
In other words, to identify the RSB instability, we need to
2 1 compute the eigenvalues of the auxiliary stability matrix
qJ=0:1_\/__ﬁH—..._ (42
T 61 =F" g1 (50)

This gives 8q~(BHgrp) %, so that BJ)*q(1—q)? _ _
~(B)%(Hge/d) 2. The J* term is down by a factor We now present a general strategy for computing the ei-

(Hre/J) 2, thus contributing only tsubleadingorder in the genvalues of this matrix. Our first observation is that any
limit of large random fields. replica matrix of the form considered has at most three dif-

ferent matrix elements, as discussed by de Almeida and
Thouless?® In addition?® for any such matrix there can be
found three different(degenerate eigenvectors. Most re-
Within the J? theory (Secs. Il and 1I}, we have mapped markably, theform of these eigenvectodoes notdepend on
the RFIM to an equivalent infinite-range model, making itthe value of the corresponding matrix elements. Thus any
possible to carry out the RSB analysis similarly as for the SKreplica matrix has the same eigenvectors, and only the cor-

C. RSB stability analysis: A general approach
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responding eigenvalues depend on the value of the matrix D. Weak random fields and self-generated glass
elements. Since a product of two replica matrices is again a Another instance where terms not contained in the sim-

replica matrix, we conclude that the relevant eigenvectors irglest‘lz theory may be important is the limit of weak ran-

our case are identical to those computed by de Almelda A omness. On general grounds, one there expects the system
Thouless, and we only need to evaluate the relevant eigen-

values. Only one of the eigenvalues vanishes at the RS@t low temperature to. assume some umfo.rm order. In many
. . : , - cases the corresponding transition has a first-order character,
transition, call it\3, and the corresponding eigenvectay

The ei UG i b ted by acti so that upon rapid cooling the system may remain trapped in
€ €igenvalua In our case can be computed by acling oNy atq._staple state and undergo glassy freezing. This process

X with the matrixg;, and we find is believed to be even more likely in the presence of com-
C it peting uniform interactions, which typically can depress the
Azg=A3-Az3 —1, (51)  uniform ordering down to very low temperatures. A model

. int ) ) for this behavior has been proposed a long time %agased
where; andA3™ are the respective eigenvalues of the Ma-on earlier work® that emphasized the relation between
trices f” and g/,,. We emphasize that this strategy is not mode-coupling theori€$ of supercooled liquids and a spe-
specific to ourd* theory, but is valid to arbitrary order in the cial class of infinite-range spin-glass models displaying a
expansion. first-order glass transition scenario. The possibility of glassy

To obtain the desired* corrections, we need to compute freezing in the absence of randomness has recently attracted
the corresponding corrections to the matri€ésndg’,,, as  renewed attention, and several stuifebave concentrated
done in Appendix B. For gener#drr, we find that thel* on uniformly frustrated infinite-range models where these
corrections are of theameorder as the)? ones, leading to a processes can be studied in detail. However, a more general
glass transition temperatur@g~1/\z. Clearly, all the approach would be even more useful, where one could ex-
higher-order terms coming from the “loop” diagrams are @mine the competition between uniform and glassy orderings
also of the same order, and would have to be included ai & controlled scheme, and which could be applied to mod-
well, in order to collect all the leading contributions in 1/ €ls with realistic interactions and lattice geometries.

expansion, similarly as in other problems in large In principle, these questions can be addressed within our
dimensions? approach by examining the fate of the glassy phase in the

However, as shown in Appendix B the expressions simdimit of weak random fields, an idea that was introduced a

plify in the limit of large random fields, where all th#  long time 3909- In the simplestJ? theory, and outside the
contributions are down by a factod/Hgg)2, and to leading ferromagnetic phase, our model maps to the SK model in the
order expressions are obtained by simply retaining only th@resence of random fields, leading to the glass transition line
J2 terms. We conclude that thi theory, which provides the 9iven in Fig. 1b). As the random fields are reduced, the
leading nontrivial order in our extended mean-field theory,dlassy phase is enhanced, but for sufficiently weak random-
represents an asymptotically exact formulation in jbiat ness,_glassy freezing is pre-e_mpted by_unlform ferr(_)magnenc
limit of large coordination and large random fields. TheseOrdering. On the other hand, if we restrict our attention to the
conclusions have been obtained by examining the exampleonmagnetic ifi=0) solution, then the glass transition line
of a simple hypercubic lattice with nearest-neighbor interaccan be extended tgr=0, leading toTg(Hgr=0)=J/z.
tions, in the limit of large coordination. Since the generalln this way, our formulation may be considered the simplest
structure of the diagrammatics and the relevamépendence approach that can lead to glassy behavior in the absence of
is qualitatively the same for general lattices, we expect theseandomness. However, the prediction of this lowest-order ap-
results to hold for any model with short-range interactions. Proximation cannot be considered as reliable for weak ran-
The situation is more complicated for models with long- dom fields, since corrections to any orderJimake contri-
range interactions, such as the Coulomb glass. In such casésitions of the comparable magnitude, even in the limit of
the diagrammatic expansion cannot be truncated to any finit@rge coordination. In fact, using expressions that we have
order in the interaction, in order to avoid well-known diver- obtained within theJ theory, it is not difficult to compute
gences associated with the screening proceSseise sim-  the resulting correction to the glass transition temperature,
plest consistent treatment has to sum up all the “chain” dia-which remains of order 1/z, but with anincreasedprefac-
grams, leading to the Debye-Huckel approximatidmhich  tor. The details will not be elaborated, since stopping at any
is also known as the random-phase approximation in thénite order inJ is clearly not sufficient. The enhancement of
electronic context* This class of diagrams is, in fact, the glass phase in the limit of weak random fields due to
equivalent to the class of loop diagrams in our expansion othese fluctuation corrections may indicate the possibility that,
the free energy, which provides the leading contributions ironce all the leading corrections are retained, the glass tran-
the limit of large coordination. Thus, to address the behaviosition would precedeany uniform ordering as suggested by
of the Coulomb glass model, one should extend our calculathe SCS theory of Mezard and Youlylf this is correct, it
tion to sum up all the loop diagrams, which can straightfor-would indicate that the convergence of the &kpansion is
wardly be done even within our formulation. The resulting not uniform as a function of the random-field strength, since
theory should be capable of addressing the interplay ol g(Hrr— %)~ 1z, but Tg(Hrg—0)~O(1). In that case,
screening effects and glassy freezing, a topic of great relthe correct mean-field theory should not be formulated by
evance for disordered electronic systems. performing az-dependent rescaling of the interactions and
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then lettingz— . Instead, the formulation should retain all fact that in such systems the dominant interactions have a
the leading 17 corrections, in finite dimensions. It is inter- dipolar and thus longer-range character, bringing the behav-
esting to note that recent work of Lopatin and 18fis  ior of these materials closer to the predictions of mean-field
closely related to the approach that we propose, since glassy models. These features may also be of particular im-
singles out all the leading d/corrections for a specific uni- portance in applications of the RFIM to disordered electronic
formly frustrated model, in the limit of large dimensions. In systems and the related physics of the Coulomb glass behav-
this particular model, the interactions are sufficiently frus-ior.
trated, precluding any uniform ordering, and resulting in a In this work, have also outlined how our theory could be
particularly simple large coordination limit. In more general extended to examine models with either longer-range inter-
cases, competition between uniform and glassy ordering anaictions or the limit of weak random fields, which is of par-
the possibilities of having either first- or second-order tran4icular importance to the long-puzzling question of the self-
sitions should be considered and may be determined by thgenerated glassiness in uniform systems. Our theory is
details of the interactions or the presence of disorder. closely related to other recent approacdfié$® ’that address

the emergence of glassy phases on a mean-field level. These

theories taken as a whole appear to shed light on a number of

VI. CONCLUSIONS experimentally relevant systems, and present a fairly com-

In this paper, we have presented a systematic approadiete and consistent picture of glassy behavior.
that can incorporate short-range fluctuation corrections to the
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tion. The structure of the resulting glassy phase is very simi-
lar to that found in familiar infinite-range spin-glass models, APPENDIX A:
and is characterized by universal behavior emerging from the CANCELLATIONS DUE TO UP-DOWN SYMMETRY

self-organized criticality of the ground state. In investigating the glassy phase of the RFIM outside the

The major puzzle that remains to be resolved is the exterF_,M phase, and in zero uniform field, we can make use of the

to which the application of these mean-field ideas is relevant, .. ', -+ after averaging, the system respects up-down sym-
to the low-temperature behavior of low-dimensional system etry. As a result, a nL’meer of terms vanish. so that the

with short-range interactions. An alternative approach, base \pressions simplify. In the following, we discuss these can-
on droplet arguments presents a very different scenario, pre ; PUty- . 9

; T . . . cellations in some detail.
particularly in situations where external fields, either uniform
or random, explicitly breaks the symmetry of the Hamil- _ _ _
tonian. In this instance, droplet arguments would preclude 1. Moments of spins on different sites
the existence of any finite-temperature glass transition, in The term( ¢), contains expectation values of a product of
contrast to the mean-field predictions. In addition, recent nuspins on different sites. Since the averages are computed at
merical result? ond=3 RFIM have also been used to argue ¢ =0, such terms very genera"y factor out, so that we can
against the existence of a finite-temperature transition in grite
field. In this context, it is worth noting that self-organized
criticality is not found in recent studi€sof hysteresis and (S .. 8™y =(S"),- - (S =mK (A1)
avalanche behavior of RFIM with short-range interactfons "1 O AT A0 o

in low dimensions. For these models, although hysteres_iﬁ,herem is the magnetization. Outside the FM phase, and at

behavior is present, the distribution of avalanche sizes igj—( the magnetization and thus all such moments vanish.
bounded, and criticality is found only by fine tuning the pa- ’

rameters of the system to a particular point of the phase ,

diagram. Similar results have been obtained in studies that 2. Bvaluation of (¢}, and (x)o

have examined the sensitivity of tlte=1,2 RFIM to small An immediate consequence of the above factorization

random perturbations of the quenched disorfder. property is the fact that¢),=0, since this expression con-
In our opinion, more general emergence of self-organizedains products of two spins on different sites. The expression

criticality similar to that found in mean-field glassy models for y contains a derivative of the source field of the form

most likely requires the existence of longer-range spin-spirf{g/ge) £** . To compute this derivative, we use the fact that

interactions and/or high spatial dimensions. On the othegue to the definition of the Legendre transform, we can write
hand, experiment8 measuring the Barkhausen noise on sev-

eral “hard magnets” have indicated power-law distribution 9
of avalanche sizes and avalanche times, consistent with self- iaB: aﬁ(,@G). (A2)
organized criticality. Such behavior may be a result of the aq;
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To calculate(x),, we need to compute the derivative of 2. Calculation of g/,

af —
&'"(e), evaluated at =0, and we get From Eq.(31), the J2 contribution reads

25 g 9 (#)o 2
de Szo_éqiaﬁ de (’86)‘80_ PRI =0. (A3) Topvo 92="> Sap,ys- (B2)
We therefore conclude thaf),=0 as well. The J* contribution can be calculated using the same proce-
dure as for the first variation, and we find
3. Terms with odd powers of ¢

In evaluating higher order terms in tikeexpansion, terms aiﬁ,vﬁ 04
of the form (P (x',x")), appear, wherei(x’,x") is an
arbitrary polynomial function ofy’ and x”, and p is an 48
odd number. To evaluate such terms, we note that as before, :§ 5&7% ApuPust AayApst 5ﬁ5§ AapPuy|-
spin moments on different sites factor out, but we still
have to compute nontrivial spin moments of the fo(rﬁﬁ“l (B3)

-+-S8")4, with r having the same parity g5 i.e.,r is odd.  In the replica symmetric theory, the resulting matrix ele-
Here, we have used the fact that quantifjés-(d/de) xy and  ments ofgi"nt are given by
X" = (0%l 9e?) x arequadratic in local variablesi.e., contain

products of the forn8*SP. In addition, the considered mo- 5 o1 2
ments will have an odd number of spins only if the consid- P=(q) :8_+ - _) [2(1—-g?)+1]
ered lattices have no odd-membered rings, such as found for nvep.ef =z "2\ z '
example on a triangular lattice. If any of the replica indices
coincide, then §*)?=1, and anevennumber of spins drop 622
out, but the remaining expression still has the form (g:(@;’m)aﬁ a5=§<—) [29(1—q)+q],
: z
MS=<S|011- . ~S|as>o, a<a,<---asg. (A4) -

~ . 1/e
Using well-known properties of replic&S8 it is readily seen R:(giﬁnt)aﬁ’,yézz(?) q°. (B4)
that

o Given these matrix elements, one can immediately evaluate
Ms=(S)*=m°=0. (A5)  the relevant eigenval@&of the matrixg/,,, which takes the

Therefore the expression of the considered form vanish afé)rm

well for lattices with no odd-membered rings.
2

(1-@% (B9

2 2
int_ B ALD— €
APPENDIX B: VARIATIONS OF THE GIBBS FREE Ng =P=2Q+R=—+3|—
ENERGY
) ) In this expression, we note that similarly as in the computa-
A general procedure needed to obtain the equation of statg,, of the J2 correction to the RS equation of state, tHe
and the RSB stability criterion involves computing the varia- .o raction is proportional tasq=1—q, and is ther’efore
tions of thg Gibbs free energy with rgspect to the order Pagown by a factor J/Hgp)? compared to the leading term.
rameterq®”. In the following we outline how these varia- \ye again conclude that in the limit of large random fields, to
tions can be computed by concentrating only on the leadingging order it suffices to retain th& contribution.
order contributions from the loop diagram.

1. Calculation of @ ,4Qin: 3. Calculation of *

The functionalf [ £] is the free energy of free spins in
presence of field§*#, and we are interested in computing its
second variation at the saddle point wh@t‘éezﬁaﬁgim.
Therefore this evaluation is almost identical as for the SK
model?® In addition, since this quantity is evaluated in the
RS theory,d,z0int assumes the form that we have already
a9, IA,s 24 - discussed when we examined the RS equation of state. We

== (A% ap- (B1) conclude that for this quantity as well, to leading order in the

limit of large random fields, the argument bf can be re-
In the RS limitq*#=q and takingn—0 this reduces to the placed by itsJ? approximation, and we straightforwardly
expression of Eq(41). obtain Eq.(11).

The calculation o, 50, to orderJ? is already computed
in Sec. Il A. Here, we compute th#* correction. Defining
the matrixA=1+0Q, we can writeg,=(3/z%) Tr[A*], and
find

J g = _— =
aB J4 3 aAyﬁ &q“ﬁ 22
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