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Phase diagram of the quadrumerized Shastry-Sutherland model

Andreas Lachli, Stefan Wessel, and Manfred Sigrist
Institut fir Theoretische Physik, ETH-ggerberg, CH-8093 Zich, Switzerland
(Received 5 February 2002; published 20 June 2002

We determine the phase diagram of a generalized Shastry-Sutherland model, using a combination of dimer-
and quadrumer-boson methods and numerical exact diagonalization techniques. Along special lines in the
parameter space the model reduces to the standard Shastry-Sutherland model, the 1/5th depleted square lattice
and the two-dimensional plaquette square lattice model. We study the evolution of the ordered phases found in
the latter two unfrustrated models under the effect of frustration. Furthermore we present exact diagonalization
results for the Shastry-Sutherland model on clusters with up to 32 sites, supporting the existence of an
intermediate gapped valence bond crystal phase with plaquette long-range order.
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There has been considerable interest in recent years in thi¢ere K andJ are the two inequivalent nearest-neighbor ex-
study of low-dimensional quantum spin systems, both exchange couplings, wherea¥ denotes the next-nearest-
perimentally and theoretically. Special attention has been deeighbor alternating dimer coupling. The various couplings
voted to two-dimensional antiferromagnetic systems, wherare displayed in Fig. 1.
guantum fluctuations and frustration allow for various exotic Note that the lattice is self-dual under the exchange
guantum phases to compete with quasiclassical long-rangd«— K), hence only the casé<K will be considered. Fur-
magnetic ordet. thermore, the standard Shastry-Sutherland model is recov-

Already in the unfrustrated regime such spin liquid phasegred alongJ=K, and has a larger space-group symmetry.
occur in certain regions of the parameter space, a promine@ther lines of enhanced symmetry correspond to the 1/5th
example being the spin-1/2 Heisenberg model on the 1/5tldepleted square latticel€0), and the plaquette square lat-
depleted square latticen this model two distinct spin liquid tice (3’ =0), respectively.
phases, well described by resonating valence bd\B) The paper is organized as follows: In the next section we
-like states, are found along with an intermediate long-rang@resent the phase diagram of the quadrumerized SSM as ob-
antiferromagnetically ordered phas&The location of the tained from boson operator mean-field theory. Then in the
guantum critical points separating these phases is known tihird section we use exact numerical diagonalization to study
rather high precisiofl. the effects of frustration in the model and relate the numeri-

When considering frustrated systems, ground-state progeal results to the mean-field phase diagram. We concentrate
erties are less well established. A prominent example of reen the standard SSM in the fourth section and provide evi-
cent interest, due to its relevance for the spin gap systemdence for a VBC intermediate phase. A summary and con-
SrCw(B0Os),,>% is the Shastry-Sutherland mod&SM).” In  clusions are given in the final section.
this model the nearest-neighbor square lattice antiferromag-
net is frustrated by additional diagonal interactions, arranged
in a staggered pattern on alternate squares. This model re-
tains long-range N order for small diagonal coupling. Fur-
thermore, it becomes an exact dimer valence bond solid
(VBS) with singlets forming on the diagonal bonds for small
axial coupling. Concerning the existence and nature of inter-
mediate phases, despite numerous investigafiotfs defi-
nite picture has not yet emerged.

. THE MODEL

In this paper, we present exact diagonalization studies on
the SSM that indicate the occurrence of a valence bond crys-
tal (VBC) in the intermediate regime, with plaquette long-
range order. Furthermore, we are able to link this phase to a
consistent phase diagram of an extension of the SSM. There-
fore, we introduce the quadrumerized SSM, defined on the [ 1. The quadrumerized Shastry-Sutherland lattice. A spin-

square lattice by the following spin-1/2 Heisenberg Hamil-1/2 degree of freedom is located on each vertex. The various cou-
tonian: plings, represented by different line styles, are denotel bsolid),
J (dashegl andJ’ (dotted. The lattice is self-dual under the ex-
S'Sj‘*'\]’ E S-S. (1) change §—K). Arrows illustrate the ordered phase found fbr
o o =0 in the region)’ ~K.

H=K > S-§+J
(.o (
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Il. BOSON OPERATOR APPROACH Taking the interdimer couplingd and K into account and

We first review the numerical results obtained along thehtjSIng Eq/(3), the Hamiltonian(1) is mapped onto an equiva-

; T, D_ 4D 4D o )
unfrustrated lines in the parameter space of the Hamiltonial entt. boglonlc HlatmlltonlanH =Hg +Hy", containing qua
(1). For the 1/5th depleted square lattice=(0) there exists ratic, diagonal terms
a plaquette RVB-like phasé@RVB) at smallJ’'/K<0.94, 3 1
and a dimer RVB-like phaséDRVB) at largeJ’'/K>1.67, HP=0"> —=sfs +=(th . t, ,+th ot o+th _t, ),
with an intermediate long-range-order antiferromagnetic r A SR

phase® The classical configuration corresponding to this or- . b o ) ) .
der is depicted by the arrows in Fig. 1. and quartic termdd,” describing the interdimer scattering.

The plaquette square latticed’=0) is unfrustrated as The square lattice of dimers, with two dimers per unit cell, is
well. Using stochastic series-expansion quantum Moméoun_d to reduce to a square Ia_ttlce with a smgle site per unit
Carlo simulations a quantum critical point is found at Cell in the bosonic representation. Here, we first imagine ro-
(J/IK).~0.55, separating a PRVB spin liquid fad/K tating half of theJ’ dimers clockwise, so that all dimers

<(JIK), from a gapless Na-ordered phasE. This value align along the (% 1_) direction(cf. I_:ig. 1. Then we take_
agrees well with results from perturbation expansitns. the centers of the dimers as the sites and use a coordinate
While quantum Monte Carlo proves powerful for study- SyStem where is along the original (15 1) direction and
ing the unfrustrated limits of the Hamiltonidf), due to the Yo @long(1,1). To proceed, we need to implement the con-
sign problem other methods are needed, once frustration fraint (4) by means of ~a  Holstein-Primakoff
present. In order to study possible instabilities of the Spir{epresentatloﬁ,
liquid phases, we use standard boson operator mean-field . s s .
theory, which is known to work on a qualitative level even sT=s=1-tlt, —tfto—t t_,
for large frustration. Our analytical results will also be sub-
stantiated by the numerical approach of the following
sections.

and then decouple the quarHif via a linear approximation,

similar to linear spin-wave theory. The resulting total qua-

dratic HamiltonianHP, is then diagonalized in momentum
space using a generalized Bogoliubov transformaticrhis
approach is expected to work well inside the DRVB phase. A
Consider first the DRVB regime)’>J,K where the threefold-degenerate spectrum of triplet excitations is ob-

dimer-boson technique can be applt&dn this representa- tained, consistent with unbroken 8) symmetry,
tion, the spin-1/2 degrees of freedom on ed¢hdimer are

A. Dimer-boson approach

expressed by bosonic bond operators, w(kp)=\I'TI’ +(K—J)(cosk,— cosk,)]. (5)
|sy=s"10)=10,0), Here, the wave vectdtp= (k, k,)p is defined with respect
to the dimer coordinate system{,yp). The phase bound-
lt.)=th|0y=|1,—1), aries of the DRVB phase are obtained from the instabilities
of the triplet excitation spectrum, i.e., by a vanishing spin
|to>=tg|0)=|1,0>, gap atkp=(,0)p, signaling the condensation of the corre-
sponding bosons at this wave vectdMapping back onto
|t,>:ti|0)=|1,+ 1), ) the original square lattice, the corresponding magnetic order

is obtained, characterizing the phase beyond the instability
where the|S,S%) denote the states on a given dimer. Fromline 2(K—J)=J'. In fact, this magnetic order corresponds
the action of the spin operato8s, i = 1,2 (denoting the two to the long-range order found for the 1/5th depleted square
sites of a dimeron these states the representation of the spifattice, cf. Fig. 1.
operators can be deduced as

i B. Quadrumer-boson approach

1
Sf=§(t1t+—tit_)— T(tgs+ s'ty), When the parameters in the Hamiltonian of Ef) are
close to another limiting casd,J’ <K, a similar approach,
1 (—1) the quadrumer-boson technique, can be appfledhe
Sﬁz—(tltoﬂgt;)t (th—sTt;). 3) Hamiltonian of a single quadrumeH=K[S;-S,+S,-S;

2 2 +S5-5,+S,4-S;], can be expressed in terms of the total spin,
S=5,+S,+S3+ S, and the total subspin on each diagonal,
The spin commutation relations f&, i=1,2 are obtained S,=S/+S;, and Sg=S,+S,. The spectrum is given by
when the bond operators obey bosonic statistics. FU”heE(|S,SZ,SA,SB>):K/2(SZ—S§—S§). The lowest-lying trip-
more, the number of physical states available on each dimegt {|1.57,1,1),5=0,=1} has a gapA=K, to the ground
specifies a hard-core constraint for the bosons on each dimegfate|0,0,1,3. Since there is a further gap’ =K, to the

M higher excitations, we attempt to obtain the instabilities of
. . N N the PRVB phase by using a restricted quadrumer-boson
SuSutt, 1ty + Tt otuott, 1, =1 (49 method, omitting all the higher excitations on the quadrum-
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ers. Hence, the spin-1/2 degrees of freedom on each quadru- 2.0
mer are expressed by bosonic operators on the restricted Hil-
bert space,

Is)=5'10)=[0,0,L,3, 157

t)=t}]0)=[1,-11,1),

J/K
=

ltoy=14|0)=11,0,1,,

[t_y=t"|0)=|1,+1,1,2). (6) 05 |

From the action of the spin operatdss, i=1,...,4 in the
restricted Hilbert space, the following representation can be
deduced?® 0.0

0.0 0.2 04 0.6 0.8 1.0
—1) JKK
Slzzi(tlu—tit,)— ﬂ(tgﬁ s'ty),
4 \/é FIG. 2. Phase diagram of the quadrumerized Shastry-Sutherland
model. Ordered phases are characterized by the ordering wave vec-
.1 + + (—1) T N tors in the boson representations. Solid lines indicate second-order
S :ﬁ(t:to*'tot:)iﬁ(tzs_s ts). (7) transition lines, and the dashed line the first-order transition. Also
shown are points on the phase boundaries from quantum Monte
In the restricted Hilbert space, the hard-core consti@inis  Carlo (circles, (Refs. 4 and 1Bexact diagonalizatiofsquares and
now obeyed on each quadrumer. Expressing the Hamiltoniaffiangles, and series expansiddiamonds (Ref. 12. Dash-dotted
(1) in terms of the quadrumer-boson operators, a bosonitnes are guides to the eye. The increment of the parameter scan in
Hamiltonian,HP=H{+H?’, is obtained with a noninteract- €xact diagonalization waa(J/K)=0.1 [A(J'/K)=0.2] for the
ing diagonal part (7,7)p [(0,0)] phase boundary.

the Shastry-Sutherland lingdd€K). On the other hand, the
HE=K> —2sls,—(t] t, ,+t| g, o+t] t, ) largest extent of thes,w)p phase, for)'/K~1.3, is bound
" by (J/K)max<0.55 from exact diagonalization. This differ-
and a quartic scattering p&ﬁtlp_ Here the sum extends over ence can be traced back to the ratio of the number of frus-
the square lattice of quadrumers formed by Kadonds in  trating couplings to the number the initial couplings, which
Fig. 1. Following the decoupling procedure already used irs 1:4 when starting af’ =0, but 2:3 upon starting ai
the dimer-boson approach, the following threefold-=0.
degenerate triplet excitation spectrum is obtained in the Furthermore, from the phase diagram in Fig. 2, we find
PRVB regime, that the DRVB phase of the 1/5th depleted square lattice is
5 adiabatically connected to the exact dimer VBS phase of the
, standard Shastry-Sutherland mod#éhe dimer VBS state
w(kp)= \/K[K_ 3(23=J")(coskctcosky)|.  (8)  f4iis 10 be an exact eigenstate fb# K). On the other hand,
the DRVB phase is not adiabatically connected to the PRVB,
as expected on topological grourfdddence, we find a first-
order phase transition separating the two spin liquid phases
rE)eyond the regime of then( 7)p phase.

The minimum of this spectrum is located k= (7, 7)p
when J'>2J, and the gap vanishes fa¥'>3/4(K+2J),
corresponding again to the order depicted in Fig. 1. Furthe

more, forJ’<2J the minimum is located &= (0,0), and When turning to the cas&>K, the phase diagram shown
the gap is again closed for <2J—3/4K. In this regime the i, Fig 2 is obtained upon interchangidgandK, due to the
model becomes long-range éleordered. _ invariance of the Hamiltonian in Eq1) under the exchange
_Upon comparing the ground-state energies from the ;. ) Furthermore, we label the plaquette RVB-like phase
dimer- and the quadrumer-boson approaches inside the cor, J>K by PRVE, since now singlets are predominantly

mon range of stability, we can obtain the direct first-orders, .4 014 different set of quadrumers than in the PRVB
transition line between the DRVB and PRVB spin liquid phase. .

phaseg?®

. T_he overall phase diagra_m is shown in Fig. 2. The spin IIl. EXACT DIAGONALIZATION STUDIES

liquid phases are characterized by the corresponding RVB-

like state, while we label the long-range ordered phases by We include in Fig. 2 the positions of quantum critical

the ordering wave vectors in the boson operator approachegoints along the unfrustrated lines, obtained by quantum

Furthermore, solid lines represent second-order phase tranditonte Carlo simulation$® These compare rather well with

tions, whereas the dashed line indicates the first-order trarthe above mean-field theory. To extend the numerical analy-

sition line. sis into the frustrated regime we have performed exact di-
The Neel-ordered phase (0,Qextends up to rather large agonalization studies on clusters with=8, 16, and 32

frustration, with the largest extent of11(/J),.~1.2 along spins, using periodic boundary conditions, along various
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) FIG. 4. Ground-state energy per site of the Shastry-Sutherland
FI(_S' 3. E\_’0|Ut'0n of t,he order parameter of thﬁ'(”')P_p_haS? model from exact diagonalization of clusters witl+ 16 (squarep
upon increasing/K for J'/K=1.3. The inset shows the finite-size 20 (triangles, 24 (diamonds, and 32(circles sites. The solid line is

data obtained foN=8, 16, and 32 aJ/K=0,0.1,...,0.6(t0p 10 5 yide to the eye, and the dashed line is the exact dimer VBS state
bottom. energy.

lines in the phase diagram. We determine the finite-size val-

ues of the order parametevl’, defined bﬁo IV. SHASTRY-SUTHERLAND MODEL

) In the quadrumer-boson approach we find a finite window
>_ (9) on the Shastry-Sutherland lind=€ K), where both plaquette
spin liquid phases, PRVB and PRVBcome arbitrary close
to the J=K line. This already indicates an intermediate
phase in the standard SSM between thelhedered phase
and the dimer VBS phase. Similar conclusions were obtained
in a field-theoretical study of a generalized SSM, which does
not break the symmetry needed by the dimer VBS state to be
an exact eigenstafé We now focus on this intermediate re-
gime in the standard SSM.

There has recently been considerable interest in the nature
of the intermediate phase. In the large spin, classical limit the
For example, in Fig. 3 we show results obtained along thesystem retains Na order forJ’/J<1 and is helically or-
line J’=1.3, where quantum Monte Carlo simulationsJat dered otherwise, with a twist between next-nearest-neighbor
=0 give a maximum moment dfl’~0.23% Within exact  spins ofgq=arccos(-J/J’). Using Schwinger boson mean-
diagonalization we can reproduce this value, and furthermoréeld theory, Albrecht and Mila predicted the existence of a
observe a smooth decreaseNi upon increasing the frus- helical phase separating the dimer VBS and the ordered
tration, up to a critical point al/K~0.55, where we enter phase also for the spin-1/2 case, in a range<0.1J
into the spin liquid regime. Proceeding in a similar fashion<1.65% Field-theoretical studies by Chung, Marston, and
we obtain the critical points depicted by squares in Fig. 2Sachdev for a generalized sggwmodel with Sp(2N) sym-
Moreover, along the lined’=2J no finite order parameter metry suggest the helical order to occur in a larger range,
was obtained after finite-size scaling. 1.02<J'/3<2.7, at S=1/21° Furthermore, this approach

The two spin liquid phases cannot be separated withirpredicts a phase with plaguette order in the extreme quantum
exact diagonalization using space-group symmetry. Namelyimit, 1/S>5. Indeed, using series expansions around the
upon increasingl’/K for a constantl/K, the representation plaquette limit of Eq.(1), Koga and Kawakami found the
class of the ground state does not change. Nevertheless, framtermediate phase in a range 1<16'/J<1.48 to be adia-
the approximate slopes of the ground-state energy/ i at  batically connected to the PRVB phasklowever, extended
constant)/K in the regions of small and largé/K, respec- series expansions by Zheng, Oitmaa, and Hamer lead to dif-
tively, we estimated the first-order transition points indicatedferent conclusion$? They suggest the PRVB phase to be-
by triangles in Fig. 2. come unstable before the Shastry-Sutherland line is reached

Comparing these numerical results with the mean-fieldand found a columnar dimer phase to be a possible candidate
calculations in the last section, we conclude that the bosofor the intermediate phase.
operator approach gives a good qualitative account of the Here, we perform exact diagonalization studies on clus-
phase diagram of the quadrumerized SSM. Namely, the chaters with up to 32 sites, significantly beyond the largest clus-
acterization of the various phases and the location of théer sizes studied so fgR4 sites in Ref. 2R In Fig. 4 we
phase-transition lines agree well with numerical results.  show the ground-state energy of the SSM close to the tran-

M’2(N)=

E 65

1
N(N+2)<

Here ¢; takes on the values1 at sitei, according to the
pattern in Fig. 1 for the ¢, 7)p phase or the standard dle
order for the (0,09 phase, respectively. Using the finite-size
data we determin®’ from the scaling la®’

C C
-,z (10)

MI(N)=M '+t
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sition into the dimer VBS state for various cluster sizes. The TABLE I. Dimer-dimer correlations<C*(1,2ik,1) in the ground
solid line shows our results for the 32 site cluster, whereastate of the Shastry-Sutherland model on the 32 site cluster at
other sizes are represented by symbols. In addition, the ed-/J=1.45. The labeling of the sites is shown in Fig. 5.

ergy of the dimer VBS state is shown by the dashed line. Dué

to the different symmetry of the various clusters, the ground{k.!) C*(0.16k,1) (k1) C*(0,16k,1)
state energy per site does not show a monotonous finite-sizg .4 0.0213 20, 26 0.0140
dependence. Nevertheless, independent of the cluster size Y& 30 0.0222 21, 27 0.0180
find the system to be within the dimer VBS fdf/J>1.5, 1.9 0.0788 2o 1 0.0274
consistent with the upper bound for the intermediate phas 3 0.0825 17 '23 0.0152
given by Koga and Kawakami, but significantly below the6 2 0'0222 18 ' o4 0.0148
values from the Schwmgef boson, aB@(2N) theory. From 12 13 0'0209 N ’14 0'0175
finite-size analysis of the N-order parameter, we estimate _“° ' ’ '
a upper bound for the ordered phase &/() ,,<1.4, con- 8,28 0.0140 28,15 0.0239
sistent with the series-expansion valueJd'/Q)max 14,15 0.0144 29,31 0.0274
=1.2+0.122 More interestingly, for the largest cluster we 21+ 22 0.0140 9,30 0.0152
, 27 0.0153 4,10 0.0239

find a characteristic change in the curvature of the ground

state energy, well before entering the dimer VBS. Hence, wé  © 0.0138 5,11 0.0175
conclude that characteristic features of the intermediatd0 11 0.0160 6,12 0.0148
phase could be retrieved from clusters witk=32 sites ina 17,18 0.0140 7,13 0.0180
range 1.425J'/J<1.475. In this regime we find the spin- 23,24 0.0214 19,25 0.0140
spin, or two-point correlation function to decrease rapidly19 , 20 0.0223 13,20 —0.0124
with distance, indicating the absence of antiferromagneti@4 , 25 —0.0107 14,21 —0.0143
order. 28,29 —0.0104 15, 22 —0.0207
In order to test against the various proposed ground states$5 , 31 —0.0007 10, 17 —0.0019
we measure the dimer-dimer or four-point correlation func-1 , 2 —0.0007 11,18 —0.0135
tions, 5,6 —0.0137 27,4 —0.0177
11,12 —0.0107 1,5 —-0.0177
CYi,jkD=(S-SSS)—(S-S){&S), (1) 30,4 —0.0104 2,6 -0.0019
9,10 —0.0292 3,7 —0.0207
on theN=232 lattice in the above interaction range. In par-3 , 23 —0.0292 23,8 —0.0103
ticular, we fix (,j)=(0,16) and extendkl) over all in- 7 g ~0.0137 24,28 —0.0164
equivalent] bonds. The values obtained in the ground state;3 | 14 —0.0163 25, 29 —0.0142
for J'/J=1.45 are displayed in Table I, and illustrated in Fig. oo | 21 —0.0125 26, 30 —~0.0135
5, which also shows the labeling of the sites. 26 27 —0.0163 12 .19 —0.0138
We obtain a clear signal in the dimer-dimer correlations;g 19 —0.0125

that extends throughout the whole cluster, with a finite
asymptotic value approximately reached for the larger dimer-
dimer distances on the cluster. In the spatial distribution webout either diagonal dimer axis, but are invariant under the
furthermore observe periodic oscillations, which reflect ans/2 rotations and lattice translations. Namely, they both re-
underlying order of quadrumer singlets, formed predomi-side already inside a single unit cell of the Shastry-
nately on void square§.e., those squares not containing a Sutherland lattice.
diagonal bong Hence, a low-lyings-wave symmetric singlet state with
For the SSM there are two equivalent configurations withmomentum (0,0) is expected to be included in the spectrum
quadrumer-singlet coverings residing on the two differentof the 32 site cluster in the regime of the plaquette VBS
subsets of void squaréformed by thed or K bonds in Fig. phase. This state should furthermore show similar dimer-
1, respectively. Hence, if the plaquettelike order in the four- dimer correlations as the absolute ground state.
spin correlation function survives quantum fluctuations, in- In Fig. 6 we plot the ground-state energy along with those
dicative of a plaquette VBC, a twofold-degenerate groundof the lowest excited singlet and triplet states for the 32 site
state manifold will emerge in the thermodynamic limit. On acluster in the zero-momentum sector. We specify the trans-
finite lattice this degeneracy is lifted, but a low-lying singlet formation properties of the various states under 42 ro-
state well inside the triplet gap and only slightly above thetation by the eigenvaluR,,,=1 (s wave, —1 (d wave, or
ground-state energy is expected. We can obtain the quantumi (twofold degenerate See the caption of Fig. 6 for a
numbers of this singlet state from the following symmetry detailed account on the various symbols used. In the regime
considerations: The Shastry-Sutherland lattice h@glmam  where we expect evidence for an intermediate state we in-
space-group symmetfy,and the ground state of the 32 site deed find various low-lying singlet states well inside the
cluster has momenturk=(0,0), and is invariant under the rather large triplet gap. Moreover, there are two singlet states
m/2 rotations about the center of any void squéite., s  with energies rather close to the ground-state energy, one
wavelike. Furthermore, the two equivalent configurations ofbeing ans-wave, and the other @wave state with respect to
quadrumer-singlet coverings are related by the reflectionthe 7/2 rotations. We furthermore calculated the dimer-dimer
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FIG. 7. Pictorial illustration of the variational ground-state
manifold of the Shastry-Sutherland model in the plaquette VBC
phase. Thick lines indicate four spins involved in a quadrumer
singlet.

dimer correlation, will become degenerate with the ground
state upon increasing the cluster size to the infinite lattice.
Both states then form the twofold-degenerate ground-state
manifold of a plaquette VBC in the thermodynamic limit. In
Fig. 7 a pictorial description of this ground-state manifold is
given. Furthermore, this ground-state manifold is invariant
FIG. 5. Dimer-dimer correlations in the ground state of thewith respect to lattice translations and th& rotations about
Shastry-Sutherland model on the 32 site clustel’al=1.45. The  the centers of the void squares, but each state spontaneously
reference bond is the bond (0,16). Positinegative correlations  breaks the reflection symmetry about the diagonal axes along
are drawn as fulldashedl lines. The thickness of a line is propor- the dimer directions. From our numerical results we can also
tional to the strength of the correlation. Short diagonal lines indicateexclude a columnar dimer state, which would be fourfold
the position of the)’-dimer bonds. degenerate and furthermore show a different pattern in the
dimer-dimer correlations than depicted in Fig?®5.

cprr_elatlc_ms for both states and find for thevave state a Further evidence for the relevance of the plaquette VBC
similar signal as for the absolute ground state. On the otheiF1

hand. thed tate d t sh it in th the intermediate regime of the SSM can be drawn from
and, thea-wave stale does not snow any patern in eatnalogous results of recent studies on the spin-1/2 Heisen-

dimer-dimer correlations. This state does not seem reIevarE)erg model on the checkerboard latt®é&® In this model
f_or_the ground state of the system n the ther.mOdynam'Cdiagonal bonds are again organized on a square lattice in a
I|m|t. Presumablyé;tzgs related to low-lying excitations in the pattern that leaves half of the squares void. Namely, the un-
d|n'1:er VBtﬁ phr;s a lude that the low-Ivi derlying lattice is obtained by adding in an additional diag-
rom the above we conclude that the Iow-lyIsgvave 51 hond on each square on which a dimer bond is located

singlet state, having the right quantum numbers and d|merih Fig. 1. Also in the checkerboard lattice quadrumer singlets

-16.8 ~ : : form on the void squares, resulting in a two fold-degenerate
. v plaguette VBC ground-state manifold with broken space-
170° ‘\\ v Y group symmetry. The structure leading to fru_stration i_s _rat_her
' \.\g v v o similar in both models, and the system tries to minimize
g v o frustration by forming plaquette valence bonds on the void
- -17.2 S . : 8 squares. Due to the homogeneous axial couplings, this can be
i . o s 4 . - accomplished only upon spontaneously breaking the symme-
~-17.4 ‘\9\ 2 : try inherited from the underlying lattice.
o ~ \:1
IPTS a— — KB V. CONCLUSIONS
In conclusion, we have studied the phase diagram of the
-17.8 : : guadrumerized Shastry-Sutherland model. Using bond-
1.40 1.42 1.44 1.46 1.48 operator methods and exact numerical diagonalization its

i phase diagram was established, which links the various re-
FIG. 6. Ground-state energy, and low-lying singlet and tripletSUIt_S available f_or special limiting cases of the model. The

excitations in thek=(0,0) sector of the Shastry-Sutherland model @ntiferromagnetically ordered phase of the 1/5th depleted
on the 32 site cluster. Open symbols represent singlet states, fuiduare lattice model is destroyed by modest frustration,
symbols triplet states. Circles denote states with eigenvatyes Whereas the Nal-ordered phase extends up to rather large
=1 (s wave, squares denot®,,=—1 (d wave, and triangles frustration. There is a first-order transition line Separating the
R, ;= *i (two fold degenerate The solid line is a guide to the eye different spin liquid phases, PRVB and DRVB, beyond the
for the ground state, the dotted line to the lowest exciteshve  ordered phase. Furthermore, the DRVB is adiabatically con-
state, and the dashed line the lowdstave state. The dash-dotted nected to the dimer VBS phase of the SSM.
line is the exact dimer VBS state energy. For the standard SSM there exists a finite region around
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J'/J=1.45 where the system becomes a plaquette VBC witlthe checkerboard lattice model the range of the VBC phase is
spontaneously broken space-group symmetry, and a twofoldstill unknown, and remains for further studies.
degenerate ground-state manifold. Perturbing away from the Note addedAfter completion of this work Akihisa Koga
Shastry-Sutherland line, i.e., fdr=K, the symmetry is bro- and Norio Kawakami pointed us to Ref. 27, where the phase
ken explicitly, and the system favors a unique ground stategiagram of the Hamiltonian in Eql) was studied using
namely, the PRVB fod<K, and the PRVB for J>K. Fur-  series-expansion methods. Their results are in perfect agree-
thermore, upon varying’ along the Shastry-Sutherland line, ment with our calculations in Secs. Il and IIl. However in
a first-order transition leads to the dimer VBS and a secondref. 27 the VBC nature of the intermediate phase in the
order transition to the Ns-ordered phase. Within our ana- Shastry-Sutherland model was not noticed.
lytical and numerical studies we did not find indications for
further phases in thegquadrumerizedSSM.

Stabilization of a plaquette VBC phase in both the
Shastry-Sutherland and the checkerboard lattice model ACKNOWLEDGMENTS
agrees with the generic structure of the underlying frustrated We acknowledge fruitful discussions with Stephan Haas,
lattice. However, in the SSM the VBC is unstable towardsAndreas Honecker, and Bruce Normand. This work has been
the dimer VBS upon increasing the diagonal coupling. Forfinancially supported by the Swiss National Fonds.
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