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Phase diagram of the quadrumerized Shastry-Sutherland model
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We determine the phase diagram of a generalized Shastry-Sutherland model, using a combination of dimer-
and quadrumer-boson methods and numerical exact diagonalization techniques. Along special lines in the
parameter space the model reduces to the standard Shastry-Sutherland model, the 1/5th depleted square lattice
and the two-dimensional plaquette square lattice model. We study the evolution of the ordered phases found in
the latter two unfrustrated models under the effect of frustration. Furthermore we present exact diagonalization
results for the Shastry-Sutherland model on clusters with up to 32 sites, supporting the existence of an
intermediate gapped valence bond crystal phase with plaquette long-range order.
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There has been considerable interest in recent years in
study of low-dimensional quantum spin systems, both
perimentally and theoretically. Special attention has been
voted to two-dimensional antiferromagnetic systems, wh
quantum fluctuations and frustration allow for various exo
quantum phases to compete with quasiclassical long-ra
magnetic order.1

Already in the unfrustrated regime such spin liquid pha
occur in certain regions of the parameter space, a promi
example being the spin-1/2 Heisenberg model on the 1
depleted square lattice.2 In this model two distinct spin liquid
phases, well described by resonating valence bond~RVB!
-like states, are found along with an intermediate long-ra
antiferromagnetically ordered phase.2,3 The location of the
quantum critical points separating these phases is know
rather high precision.4

When considering frustrated systems, ground-state p
erties are less well established. A prominent example of
cent interest, due to its relevance for the spin gap sys
SrCu2(BO3)2,5,6 is the Shastry-Sutherland model~SSM!.7 In
this model the nearest-neighbor square lattice antiferrom
net is frustrated by additional diagonal interactions, arran
in a staggered pattern on alternate squares. This mode
tains long-range Ne´el order for small diagonal coupling. Fu
thermore, it becomes an exact dimer valence bond s
~VBS! with singlets forming on the diagonal bonds for sm
axial coupling. Concerning the existence and nature of in
mediate phases, despite numerous investigations,8–12 a defi-
nite picture has not yet emerged.

I. THE MODEL

In this paper, we present exact diagonalization studies
the SSM that indicate the occurrence of a valence bond c
tal ~VBC! in the intermediate regime, with plaquette lon
range order. Furthermore, we are able to link this phase
consistent phase diagram of an extension of the SSM. Th
fore, we introduce the quadrumerized SSM, defined on
square lattice by the following spin-1/2 Heisenberg Ham
tonian:

H5K (
^ i , j &h

Si•Sj1J (
^ i , j &h8

Si•Sj1J8 (
^^ i , j &&

Si•Sj . ~1!
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HereK andJ are the two inequivalent nearest-neighbor e
change couplings, whereasJ8 denotes the next-neares
neighbor alternating dimer coupling. The various couplin
are displayed in Fig. 1.

Note that the lattice is self-dual under the exchan
(J↔K), hence only the caseJ<K will be considered. Fur-
thermore, the standard Shastry-Sutherland model is re
ered alongJ5K, and has a larger space-group symme
Other lines of enhanced symmetry correspond to the 1
depleted square lattice (J50), and the plaquette square la
tice (J850), respectively.

The paper is organized as follows: In the next section
present the phase diagram of the quadrumerized SSM as
tained from boson operator mean-field theory. Then in
third section we use exact numerical diagonalization to st
the effects of frustration in the model and relate the num
cal results to the mean-field phase diagram. We concen
on the standard SSM in the fourth section and provide e
dence for a VBC intermediate phase. A summary and c
clusions are given in the final section.

FIG. 1. The quadrumerized Shastry-Sutherland lattice. A sp
1/2 degree of freedom is located on each vertex. The various
plings, represented by different line styles, are denoted byK ~solid!,
J ~dashed!, and J8 ~dotted!. The lattice is self-dual under the ex
change (J↔K). Arrows illustrate the ordered phase found forJ
50 in the regionJ8'K.
©2002 The American Physical Society01-1
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II. BOSON OPERATOR APPROACH

We first review the numerical results obtained along
unfrustrated lines in the parameter space of the Hamilton
~1!. For the 1/5th depleted square lattice (J50) there exists
a plaquette RVB-like phase~PRVB! at small J8/K,0.94,
and a dimer RVB-like phase~DRVB! at largeJ8/K.1.67,
with an intermediate long-range-order antiferromagne
phase.4 The classical configuration corresponding to this
der is depicted by the arrows in Fig. 1.

The plaquette square lattice (J850) is unfrustrated as
well. Using stochastic series-expansion quantum Mo
Carlo simulations a quantum critical point is found
(J/K)c'0.55, separating a PRVB spin liquid forJ/K
,(J/K)c from a gapless Ne´el-ordered phase.13 This value
agrees well with results from perturbation expansions.14

While quantum Monte Carlo proves powerful for stud
ing the unfrustrated limits of the Hamiltonian~1!, due to the
sign problem other methods are needed, once frustratio
present. In order to study possible instabilities of the s
liquid phases, we use standard boson operator mean-
theory, which is known to work on a qualitative level eve
for large frustration. Our analytical results will also be su
stantiated by the numerical approach of the followi
sections.

A. Dimer-boson approach

Consider first the DRVB regimeJ8@J,K where the
dimer-boson technique can be applied.15 In this representa-
tion, the spin-1/2 degrees of freedom on eachJ8 dimer are
expressed by bosonic bond operators,

us&5s†u0&5u0,0&,

ut1&5t1
† u0&5u1,21&,

ut0&5t0
†u0&5u1,0&,

ut2&5t2
† u0&5u1,11&, ~2!

where theuS,Sz& denote the states on a given dimer. Fro
the action of the spin operatorsSi , i 51,2 ~denoting the two
sites of a dimer! on these states the representation of the s
operators can be deduced as

Si
z5

1

2
~ t1

† t12t2
† t2!2

~21! i

2
~ t0

†s1s†t0!,

Si
65

1

A2
~ t6

† t01t0
†t7!6

~21! i

A2
~ t6

† s2s†t7!. ~3!

The spin commutation relations forSi , i 51,2 are obtained
when the bond operators obey bosonic statistics. Furt
more, the number of physical states available on each di
specifies a hard-core constraint for the bosons on each d
m,

sm
† sm1tm,1

† tm,11tm,0
† tm,01tm,2

† tm,251. ~4!
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Taking the interdimer couplingsJ and K into account and
using Eq.~3!, the Hamiltonian~1! is mapped onto an equiva
lent bosonic Hamiltonian,HD5H0

D1HI
D , containing qua-

dratic, diagonal terms

H0
D5J8(

m
2

3

4
sm

† sm1
1

4
~ tm1

† tm,11tm,0
† tm,01tm,2

† tm,2!,

and quartic termsHI
D describing the interdimer scattering

The square lattice of dimers, with two dimers per unit cell,
found to reduce to a square lattice with a single site per u
cell in the bosonic representation. Here, we first imagine
tating half of theJ8 dimers clockwise, so that all dimer
align along the (1,21) direction~cf. Fig. 1!. Then we take
the centers of the dimers as the sites and use a coord
system wherexD is along the original (1,21) direction and
yD along ~1,1!. To proceed, we need to implement the co
straint ~4! by means of a Holstein-Primakof
representation,16

s†5s5A12t1
† t12t0

†t02t2
† t2,

and then decouple the quarticHI
D via a linear approximation,

similar to linear spin-wave theory. The resulting total qu
dratic Hamiltonian,H̄D, is then diagonalized in momentum
space using a generalized Bogoliubov transformation.17 This
approach is expected to work well inside the DRVB phase
threefold-degenerate spectrum of triplet excitations is
tained, consistent with unbroken SU~2! symmetry,

v~kD!5AJ8@J81~K2J!~coskx2cosky!#. ~5!

Here, the wave vectorkD5(kx ,ky)D is defined with respec
to the dimer coordinate system (xD ,yD). The phase bound
aries of the DRVB phase are obtained from the instabilit
of the triplet excitation spectrum, i.e., by a vanishing sp
gap atkD5(p,0)D , signaling the condensation of the corr
sponding bosons at this wave vector.15 Mapping back onto
the original square lattice, the corresponding magnetic or
is obtained, characterizing the phase beyond the instab
line 2(K2J)>J8. In fact, this magnetic order correspond
to the long-range order found for the 1/5th depleted squ
lattice, cf. Fig. 1.

B. Quadrumer-boson approach

When the parameters in the Hamiltonian of Eq.~1! are
close to another limiting case,J,J8!K, a similar approach,
the quadrumer-boson technique, can be applied.18 The
Hamiltonian of a single quadrumer,H5K@S1•S21S2•S3
1S3•S41S4•S1#, can be expressed in terms of the total sp
S5S11S21S31S4, and the total subspin on each diagon
SA5S11S3, and SB5S21S4. The spectrum is given by
E(uS,Sz,SA ,SB&)5K/2(S22SA

22SB
2). The lowest-lying trip-

let $u1,Sz,1,1&,Sz50,61% has a gap,D5K, to the ground
state u0,0,1,1&. Since there is a further gap,D85K, to the
higher excitations, we attempt to obtain the instabilities
the PRVB phase by using a restricted quadrumer-bo
method, omitting all the higher excitations on the quadru
1-2
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ers. Hence, the spin-1/2 degrees of freedom on each qua
mer are expressed by bosonic operators on the restricted
bert space,

us&5s†u0&5u0,0,1,1&,

ut1&5t1
† u0&5u1,21,1,1&,

ut0&5t0
†u0&5u1,0,1,1&,

ut2&5t2
† u0&5u1,11,1,1&. ~6!

From the action of the spin operatorsSi , i 51, . . . ,4 in the
restricted Hilbert space, the following representation can
deduced:19

Si
z5

1

4
~ t1

† t12t2
† t2!2

~21! i

A6
~ t0

†s1s†t0!,

Si
65

1

2A2
~ t6

† t01t0
†t7!6

~21! i

A3
~ t6

† s2s†t7!. ~7!

In the restricted Hilbert space, the hard-core constraint~4! is
now obeyed on each quadrumer. Expressing the Hamilto
~1! in terms of the quadrumer-boson operators, a boso
Hamiltonian,HP5H0

P1HI
P , is obtained with a noninteract

ing diagonal part

H0
P5K(

m
22sm

† sm2~ tm1
† tm,11tm,0

† tm,01tm,2
† tm,2!

and a quartic scattering partHI
P . Here the sum extends ove

the square lattice of quadrumers formed by theK bonds in
Fig. 1. Following the decoupling procedure already used
the dimer-boson approach, the following threefo
degenerate triplet excitation spectrum is obtained in
PRVB regime,

v~kP!5AKFK2
2

3
~2J2J8!~coskx1cosky!G . ~8!

The minimum of this spectrum is located atkP5(p,p)P
when J8.2J, and the gap vanishes forJ8.3/4(K12J),
corresponding again to the order depicted in Fig. 1. Furth
more, forJ8,2J the minimum is located atkP8 5(0,0)P , and
the gap is again closed forJ8,2J23/4K. In this regime the
model becomes long-range Ne´el ordered.

Upon comparing the ground-state energies from
dimer- and the quadrumer-boson approaches inside the c
mon range of stability, we can obtain the direct first-ord
transition line between the DRVB and PRVB spin liqu
phases.18

The overall phase diagram is shown in Fig. 2. The s
liquid phases are characterized by the corresponding R
like state, while we label the long-range ordered phases
the ordering wave vectors in the boson operator approac
Furthermore, solid lines represent second-order phase tr
tions, whereas the dashed line indicates the first-order t
sition line.

The Néel-ordered phase (0,0)P extends up to rather larg
frustration, with the largest extent of (J8/J)max'1.2 along
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the Shastry-Sutherland line (J5K). On the other hand, the
largest extent of the (p,p)P phase, forJ8/K'1.3, is bound
by (J/K)max,0.55 from exact diagonalization. This differ
ence can be traced back to the ratio of the number of fr
trating couplings to the number the initial couplings, whi
is 1:4 when starting atJ850, but 2:3 upon starting atJ
50.

Furthermore, from the phase diagram in Fig. 2, we fi
that the DRVB phase of the 1/5th depleted square lattic
adiabatically connected to the exact dimer VBS phase of
standard Shastry-Sutherland model~the dimer VBS state
fails to be an exact eigenstate forJÞK). On the other hand
the DRVB phase is not adiabatically connected to the PRV
as expected on topological grounds.21 Hence, we find a first-
order phase transition separating the two spin liquid pha
beyond the regime of the (p,p)P phase.

When turning to the caseJ.K, the phase diagram show
in Fig. 2 is obtained upon interchangingJ andK, due to the
invariance of the Hamiltonian in Eq.~1! under the exchange
(J↔K). Furthermore, we label the plaquette RVB-like pha
for J.K by PRVB8, since now singlets are predominant
formed on a different set of quadrumers than in the PR
phase.

III. EXACT DIAGONALIZATION STUDIES

We include in Fig. 2 the positions of quantum critic
points along the unfrustrated lines, obtained by quant
Monte Carlo simulations.4,13 These compare rather well wit
the above mean-field theory. To extend the numerical an
sis into the frustrated regime we have performed exact
agonalization studies on clusters withN58, 16, and 32
spins, using periodic boundary conditions, along vario

FIG. 2. Phase diagram of the quadrumerized Shastry-Suther
model. Ordered phases are characterized by the ordering wave
tors in the boson representations. Solid lines indicate second-o
transition lines, and the dashed line the first-order transition. A
shown are points on the phase boundaries from quantum M
Carlo ~circles!, ~Refs. 4 and 13! exact diagonalization~squares and
triangles!, and series expansion~diamonds! ~Ref. 12!. Dash-dotted
lines are guides to the eye. The increment of the parameter sc
exact diagonalization wasD(J/K)50.1 @D(J8/K)50.2# for the
(p,p)P @(0,0)P# phase boundary.
1-3
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lines in the phase diagram. We determine the finite-size
ues of the order parameter,M 8, defined by20

M 82~N!5
1

N~N12! K S (
i

e iSi D 2L . ~9!

Here e i takes on the values61 at site i, according to the
pattern in Fig. 1 for the (p,p)P phase or the standard Ne´el
order for the (0,0)P phase, respectively. Using the finite-si
data we determineM 8 from the scaling law20

M 8~N!5M 81
c1

N1/2
1

c2

N
. ~10!

For example, in Fig. 3 we show results obtained along
line J851.3, where quantum Monte Carlo simulations atJ
50 give a maximum moment ofM 8'0.23.4 Within exact
diagonalization we can reproduce this value, and furtherm
observe a smooth decrease inM 8 upon increasing the frus
tration, up to a critical point atJ/K'0.55, where we ente
into the spin liquid regime. Proceeding in a similar fashi
we obtain the critical points depicted by squares in Fig.
Moreover, along the lineJ852J no finite order paramete
was obtained after finite-size scaling.

The two spin liquid phases cannot be separated wi
exact diagonalization using space-group symmetry. Nam
upon increasingJ8/K for a constantJ/K, the representation
class of the ground state does not change. Nevertheless,
the approximate slopes of the ground-state energy vsJ8/K at
constantJ/K in the regions of small and largeJ8/K, respec-
tively, we estimated the first-order transition points indica
by triangles in Fig. 2.

Comparing these numerical results with the mean-fi
calculations in the last section, we conclude that the bo
operator approach gives a good qualitative account of
phase diagram of the quadrumerized SSM. Namely, the c
acterization of the various phases and the location of
phase-transition lines agree well with numerical results.

FIG. 3. Evolution of the order parameter of the (p,p)P phase
upon increasingJ/K for J8/K51.3. The inset shows the finite-siz
data obtained forN58, 16, and 32 atJ/K50, 0.1, . . . , 0.6~top to
bottom!.
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IV. SHASTRY-SUTHERLAND MODEL

In the quadrumer-boson approach we find a finite wind
on the Shastry-Sutherland line (J5K), where both plaquette
spin liquid phases, PRVB and PRVB8, come arbitrary close
to the J5K line. This already indicates an intermedia
phase in the standard SSM between the Ne´el-ordered phase
and the dimer VBS phase. Similar conclusions were obtai
in a field-theoretical study of a generalized SSM, which do
not break the symmetry needed by the dimer VBS state to
an exact eigenstate.11 We now focus on this intermediate re
gime in the standard SSM.

There has recently been considerable interest in the na
of the intermediate phase. In the large spin, classical limit
system retains Ne´el order for J8/J<1 and is helically or-
dered otherwise, with a twist between next-nearest-neigh
spins ofq5arccos(2J/J8). Using Schwinger boson mean
field theory, Albrecht and Mila predicted the existence o
helical phase separating the dimer VBS and the orde
phase also for the spin-1/2 case, in a range 1.1,J8/J
,1.65.8 Field-theoretical studies by Chung, Marston, a
Sachdev for a generalized spin-S model withSp(2N) sym-
metry suggest the helical order to occur in a larger ran
1.02,J8/J,2.7, at S51/2.10 Furthermore, this approac
predicts a phase with plaquette order in the extreme quan
limit, 1/S.5. Indeed, using series expansions around
plaquette limit of Eq.~1!, Koga and Kawakami found the
intermediate phase in a range 1.16,J8/J,1.48 to be adia-
batically connected to the PRVB phase.9 However, extended
series expansions by Zheng, Oitmaa, and Hamer lead to
ferent conclusions.12 They suggest the PRVB phase to b
come unstable before the Shastry-Sutherland line is reac
and found a columnar dimer phase to be a possible candi
for the intermediate phase.

Here, we perform exact diagonalization studies on cl
ters with up to 32 sites, significantly beyond the largest cl
ter sizes studied so far~24 sites in Ref. 22!. In Fig. 4 we
show the ground-state energy of the SSM close to the t

FIG. 4. Ground-state energy per site of the Shastry-Suther
model from exact diagonalization of clusters withN516 ~squares!,
20 ~triangles!, 24 ~diamonds!, and 32~circles! sites. The solid line is
a guide to the eye, and the dashed line is the exact dimer VBS
energy.
1-4
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PHASE DIAGRAM OF THE QUADRUMERIZED SHASTRY- . . . PHYSICAL REVIEW B 66, 014401 ~2002!
sition into the dimer VBS state for various cluster sizes. T
solid line shows our results for the 32 site cluster, wher
other sizes are represented by symbols. In addition, the
ergy of the dimer VBS state is shown by the dashed line. D
to the different symmetry of the various clusters, the grou
state energy per site does not show a monotonous finite
dependence. Nevertheless, independent of the cluster siz
find the system to be within the dimer VBS forJ8/J.1.5,
consistent with the upper bound for the intermediate ph
given by Koga and Kawakami, but significantly below th
values from the Schwinger boson, andSp(2N) theory. From
finite-size analysis of the Ne´el-order parameter, we estima
a upper bound for the ordered phase of (J8/J)max,1.4, con-
sistent with the series-expansion value (J8/J)max
51.260.1.12 More interestingly, for the largest cluster w
find a characteristic change in the curvature of the grou
state energy, well before entering the dimer VBS. Hence,
conclude that characteristic features of the intermed
phase could be retrieved from clusters withN532 sites in a
range 1.425,J8/J,1.475. In this regime we find the spin
spin, or two-point correlation function to decrease rapid
with distance, indicating the absence of antiferromagn
order.

In order to test against the various proposed ground sta
we measure the dimer-dimer or four-point correlation fun
tions,

C4~ i , j ,;k,l !5^Si•SjSk•Sl&2^Si•Sj&^Sk•Sl&, ~11!

on theN532 lattice in the above interaction range. In pa
ticular, we fix (i , j )5(0,16) and extend (k,l ) over all in-
equivalentJ bonds. The values obtained in the ground st
for J8/J51.45 are displayed in Table I, and illustrated in F
5, which also shows the labeling of the sites.

We obtain a clear signal in the dimer-dimer correlatio
that extends throughout the whole cluster, with a fin
asymptotic value approximately reached for the larger dim
dimer distances on the cluster. In the spatial distribution
furthermore observe periodic oscillations, which reflect
underlying order of quadrumer singlets, formed predom
nately on void squares~i.e., those squares not containing
diagonal bond!.

For the SSM there are two equivalent configurations w
quadrumer-singlet coverings residing on the two differ
subsets of void squares~formed by theJ or K bonds in Fig.
1, respectively!. Hence, if the plaquettelike order in the fou
spin correlation function survives quantum fluctuations,
dicative of a plaquette VBC, a twofold-degenerate grou
state manifold will emerge in the thermodynamic limit. On
finite lattice this degeneracy is lifted, but a low-lying singl
state well inside the triplet gap and only slightly above t
ground-state energy is expected. We can obtain the quan
numbers of this singlet state from the following symme
considerations: The Shastry-Sutherland lattice has ap4mm
space-group symmetry,23 and the ground state of the 32 si
cluster has momentumk5(0,0), and is invariant under th
p/2 rotations about the center of any void square~i.e., s
wavelike!. Furthermore, the two equivalent configurations
quadrumer-singlet coverings are related by the reflecti
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about either diagonal dimer axis, but are invariant under
p/2 rotations and lattice translations. Namely, they both
side already inside a single unit cell of the Shast
Sutherland lattice.

Hence, a low-lyings-wave symmetric singlet state wit
momentum (0,0) is expected to be included in the spectr
of the 32 site cluster in the regime of the plaquette VB
phase. This state should furthermore show similar dim
dimer correlations as the absolute ground state.

In Fig. 6 we plot the ground-state energy along with tho
of the lowest excited singlet and triplet states for the 32 s
cluster in the zero-momentum sector. We specify the tra
formation properties of the various states under thep/2 ro-
tation by the eigenvalueRp/251 (s wave!, 21 (d wave!, or
6 i ~twofold degenerate!. See the caption of Fig. 6 for a
detailed account on the various symbols used. In the reg
where we expect evidence for an intermediate state we
deed find various low-lying singlet states well inside t
rather large triplet gap. Moreover, there are two singlet sta
with energies rather close to the ground-state energy,
being ans-wave, and the other ad-wave state with respect to
thep/2 rotations. We furthermore calculated the dimer-dim

TABLE I. Dimer-dimer correlationsC4(1,2;k,l ) in the ground
state of the Shastry-Sutherland model on the 32 site cluste
J8/J51.45. The labeling of the sites is shown in Fig. 5.

(k,l ) C4(0,16;k,l ) (k,l ) C4(0,16;k,l )

25 , 26 0.0213 20 , 26 0.0140
29 , 30 0.0222 21 , 27 0.0180
31 , 9 0.0788 22 , 1 0.0274
2 , 3 0.0825 17 , 23 0.0152
6 , 7 0.0222 18 , 24 0.0148
12 , 13 0.0209 8 , 14 0.0175
8 , 28 0.0140 28 , 15 0.0239
14 , 15 0.0144 29 , 31 0.0274
21 , 22 0.0140 9 , 30 0.0152
1 , 27 0.0153 4 , 10 0.0239
4 , 5 0.0138 5 , 11 0.0175
10 , 11 0.0160 6 , 12 0.0148
17 , 18 0.0140 7 , 13 0.0180
23 , 24 0.0214 19 , 25 0.0140
19 , 20 0.0223 13 , 20 20.0124
24 , 25 20.0107 14 , 21 20.0143
28 , 29 20.0104 15 , 22 20.0207
15 , 31 20.0007 10 , 17 20.0019
1 , 2 20.0007 11 , 18 20.0135
5 , 6 20.0137 27 , 4 20.0177
11 , 12 20.0107 1 , 5 20.0177
30 , 4 20.0104 2 , 6 20.0019
9 , 10 20.0292 3 , 7 20.0207
3 , 23 20.0292 23 , 8 20.0103
7 , 8 20.0137 24 , 28 20.0164
13 , 14 20.0163 25 , 29 20.0142
20 , 21 20.0125 26 , 30 20.0135
26 , 27 20.0163 12 , 19 20.0138
18 , 19 20.0125
1-5
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correlations for both states and find for thes-wave state a
similar signal as for the absolute ground state. On the o
hand, thed-wave state does not show any pattern in
dimer-dimer correlations. This state does not seem rele
for the ground state of the system in the thermodyna
limit. Presumably it is related to low-lying excitations in th
dimer VBS phase.22,23

From the above we conclude that the low-lyings-wave
singlet state, having the right quantum numbers and dim

FIG. 5. Dimer-dimer correlations in the ground state of t
Shastry-Sutherland model on the 32 site cluster atJ8/J51.45. The
reference bond is the bond (0,16). Positive~negative! correlations
are drawn as full~dashed! lines. The thickness of a line is propo
tional to the strength of the correlation. Short diagonal lines indic
the position of theJ8-dimer bonds.

FIG. 6. Ground-state energy, and low-lying singlet and trip
excitations in thek5(0,0) sector of the Shastry-Sutherland mod
on the 32 site cluster. Open symbols represent singlet states
symbols triplet states. Circles denote states with eigenvaluesRp/2

51 (s wave!, squares denoteRp/2521 (d wave!, and triangles
Rp/256 i ~two fold degenerate!. The solid line is a guide to the ey
for the ground state, the dotted line to the lowest exciteds-wave
state, and the dashed line the lowestd-wave state. The dash-dotte
line is the exact dimer VBS state energy.
01440
er
e
nt
ic

r-

dimer correlation, will become degenerate with the grou
state upon increasing the cluster size to the infinite latt
Both states then form the twofold-degenerate ground-s
manifold of a plaquette VBC in the thermodynamic limit. I
Fig. 7 a pictorial description of this ground-state manifold
given. Furthermore, this ground-state manifold is invaria
with respect to lattice translations and thep/2 rotations about
the centers of the void squares, but each state spontane
breaks the reflection symmetry about the diagonal axes a
the dimer directions. From our numerical results we can a
exclude a columnar dimer state, which would be fourfo
degenerate and furthermore show a different pattern in
dimer-dimer correlations than depicted in Fig. 5.26

Further evidence for the relevance of the plaquette V
in the intermediate regime of the SSM can be drawn fr
analogous results of recent studies on the spin-1/2 Hei
berg model on the checkerboard lattice.24,25 In this model,
diagonal bonds are again organized on a square lattice
pattern that leaves half of the squares void. Namely, the
derlying lattice is obtained by adding in an additional dia
onal bond on each square on which a dimer bond is loca
in Fig. 1. Also in the checkerboard lattice quadrumer singl
form on the void squares, resulting in a two fold-degener
plaquette VBC ground-state manifold with broken spa
group symmetry. The structure leading to frustration is rat
similar in both models, and the system tries to minimi
frustration by forming plaquette valence bonds on the v
squares. Due to the homogeneous axial couplings, this ca
accomplished only upon spontaneously breaking the sym
try inherited from the underlying lattice.

V. CONCLUSIONS

In conclusion, we have studied the phase diagram of
quadrumerized Shastry-Sutherland model. Using bo
operator methods and exact numerical diagonalization
phase diagram was established, which links the various
sults available for special limiting cases of the model. T
antiferromagnetically ordered phase of the 1/5th deple
square lattice model is destroyed by modest frustrati
whereas the Ne´el-ordered phase extends up to rather la
frustration. There is a first-order transition line separating
different spin liquid phases, PRVB and DRVB, beyond t
ordered phase. Furthermore, the DRVB is adiabatically c
nected to the dimer VBS phase of the SSM.

For the standard SSM there exists a finite region aro

e

t
l
ull

FIG. 7. Pictorial illustration of the variational ground-sta
manifold of the Shastry-Sutherland model in the plaquette V
phase. Thick lines indicate four spins involved in a quadrum
singlet.
1-6
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J8/J51.45 where the system becomes a plaquette VBC w
spontaneously broken space-group symmetry, and a twof
degenerate ground-state manifold. Perturbing away from
Shastry-Sutherland line, i.e., forJÞK, the symmetry is bro-
ken explicitly, and the system favors a unique ground st
namely, the PRVB forJ,K, and the PRVB8 for J.K. Fur-
thermore, upon varyingJ8 along the Shastry-Sutherland lin
a first-order transition leads to the dimer VBS and a seco
order transition to the Ne´el-ordered phase. Within our ana
lytical and numerical studies we did not find indications f
further phases in the~quadrumerized! SSM.

Stabilization of a plaquette VBC phase in both t
Shastry-Sutherland and the checkerboard lattice mo
agrees with the generic structure of the underlying frustra
lattice. However, in the SSM the VBC is unstable towar
the dimer VBS upon increasing the diagonal coupling. F
ch

tt

n

i-
a

01440
th
ld-
e

e,

d-

el
d

s
r

the checkerboard lattice model the range of the VBC phas
still unknown, and remains for further studies.

Note added.After completion of this work Akihisa Koga
and Norio Kawakami pointed us to Ref. 27, where the ph
diagram of the Hamiltonian in Eq.~1! was studied using
series-expansion methods. Their results are in perfect ag
ment with our calculations in Secs. II and III. However
Ref. 27 the VBC nature of the intermediate phase in
Shastry-Sutherland model was not noticed.
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