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Determination of alloy interatomic potentials from liquid-state diffraction data
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This paper presents a general method for fitting interatomic potentials to partial pair correlation functions
that can be obtained from diffraction experiments on pure materials or alloys. We apply this new approach to
the specific case of embedded atom method-type interatomic potentials and demonstrate that it can be used to
accurately fit this potential from partial pair correlation function data. The new method, presented above, can
easily be extended to any type of interatomic potential. In addition, this method can be used in conjunction
with standard approaches that fit crystal structure and properties.
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[. INTRODUCTION with the experimental diffraction data. The main disadvan-
tage of this approach is that they are limited to pairwise

Atomistic computer simulations are widely used to inves-descriptions of atomic interaction6.e., pair potentials
tigate a broad range of material properties. While atomidWhile this is adequate for some materigdsg., liquid argoi
interactions can be described using both quantunPhysically based models of interatomic interactions in many
mechanical and empirical descriptions of atomic interac- Systems are intrinsically nonpairwise.
tions, most large scale simulations are still performed using AS an example, consider the case of metallic alloys, for
empirical descriptions of these interactions. Empirical potenWhich bonding is dominated by the electron gas contribution
tials are Common|y determined by f|tt|ng a proposed func.Wh|Ch cannot be deSCI‘Ibed W|th|n the framework Of a palr
tional form to available dataThese data may be obtained Potential. A commonly used class of potentials for metallic
either from experimental measurements or first-principle calSystems is the Embedded Atom Metho®AM)? or
culations. Commonly, the input data include such quantitie§innis—Sinclaif potential. In this method, the potential en-
for crystals as lattice parameter, cohesive energy, elastic coggY is divided into two contributions—a pairwise part and a
stants, and vacancy formation energy. Potentials determind@cal density part:
in this way have found widespread use for both simulating No1
crystals and liquids. Fitting potentials to data obtained only B E
from perfect crystals has the disadvantage that the resultant U= =8
fits are only guaranteed to be accurate at those discrete sets
of interatomic spacings that are represented by the perfegtherei(j) labels atoms of elemental typg;), N is the
crystal. This is a potential problem for applications that focusnumber of atoms in the system,; is the separation between
on crystal defects, competing crystal structures, and liquidsatomsi andj, and
Another approach is to fit the potentials to data obtained
from diffraction experiments on noncrystalline materials, _ .
which reflects a continuous distribution of atomic separations Pi= EJ: gi(riy). 2
above some minimum.

The problem of determining pair potentials from the pairF, ¢, and ¢ are functions that must be determined. Another
correlation function from single-component liquids was pro-example is covalently bonded materials, such as Si, which
posed in the framework of the classical theory of liquidsare often described using three-body potenti@sg., the
more than half a century ago. While this approach was sucstillinger—Weber potentil. In both examples, the inter-
cessful for low density fluids, it is less satisfactory for de-atomic interactions are not pairwise and, hence, the above-
scribing dense liquids. Fortunately, several predictor-described computer algorithms for fitting potentials to dif-
corrector algorithms have been proposed that can bé&action data are inapplicable. Nonetheless, there is a large
employed to find pair potentials that lead to good agreemenrtiody of experimentally determined diffraction data available
between pair correlation functions obtained using moleculafor materials with nonpairwise interactions.
dynamics (MD) simulations and those measured The goal of the present work is to develop a procedure for
experimentally’—® In such algorithms, a trial pair potential is fitting arbitrary classes of interatomic potential using diffrac-
to obtain the atomic structure of the liqufdia MD simula-  tion data from liquids(partial pair correlation functions,
tion). Comparison of this structure and the experimental paiPPCF$. We first describe a procedure to determine inter-
correlation function is used to propose a new potential thaatomic potentials using atomic coordinates from a liquid.
leads to improved agreement. This procedure is repeated uihen, we apply this approach to determine a set of EAM
til the discrepancy between the predicted and measurepotentials for an alloy using partial pair correlation functions.
structure is within acceptable limits. These algorithms lead tdVe show that it is possible to reproduce the partial pair cor-
a description of the atomic interactions which are consistentelation functions using only pairwise potentials. Therefore,
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this liquid structure data must be supplemented with addi- din[g(r)] 1 .

tional information in order to completely determine the full ar N2 f [ViUn(rg,.crn)f]

EAM potentials. Since the goal of this paper is to show that

diffraction data can be used to fit EAM potentials, we as- Fn(ry,....rn)

sume that the embedding part of the EAM potential is deter- defsmm- (7)

mined from other means and we simply fit the pairwise part

of the EAM potential. While this particular procedure is not The left-hand side of Eq(7) is called the “mean force,”
unique, it does demonstrate that liquid phase structural dathich we label henceforth a$. The mean force can be
can be used to fit nontrivial interatomic potentials. The geninterpreted in the following manner. If the system is a low
erality of this approach is discussed at the end of this papedensity gas, the pair correlation function @r)=exp
[—o(r)/KT] or ¢(r)=—KTIn[g(r)], wheree(r) is a pairwise
interaction(at low densities, higher order interactions do not
occup. In this case, the mean force is simpRp(r)

In the method described in the following, we make use of= —de/dr. In a liquid or high density fluid, correlations
the concept of a “mean force,” originally suggested in Ref. 9beyond pair are present and therefore, the true pairwise in-
for the analysis of the classical Born—Green—Bogoliubovteraction must be replaced with an effective pairwise inter-
(BGB) equation:>* While the analytical solution of the actionY(r), which includes the effects of all higher order
BGB equation requires some simplifying approximationsinteractions. In this case, the mean force d&(r)=
(e.g., superposition approximatiprihe concept of the mean —dY(r)/dr=kT dIn[g(r)}/dr, which is the left-hand side of
force is general. As will be shown in the following, the meanEq. (7). Equation(7) shows that the mean force is the pro-
force follows directly from Gibbs statistics and is indepen-jection of the total forcé®; acting on atom 1 along the vector
dent of the form of the description of the atomic interactions.from atom 2 to atom 1, averaged over all atoms which have

We start by considering a single-component system conat least one neighbor at distange
sisting of N particles with potential energW(rq,...,r'n),

Il. THEORETICAL BACKGROUND

wherer,r,,...ry represent the positions of atoms 1,2\.., _,-dinfg(r)] 1 .
The N-patrticle correlation function for this system is ®(r)=kT dr - §<(Pi PJ)5FijfriJ>iJ ' ®
N wheredis the Kronecker deltd,; is the unit vector pointing
Fa(Pi,efn) = Q—e‘““l ''''' /KT, (3)  from atom;j toi, and the average is over all pairs of atoifs
N

This equation can be extended to the case of a multicompo-
wherek is the Boltzmann constarif, is the temperature, and "€Nt system:

Qy is the configuration integral , dIn[g*#(r)]
P (r)szT, (9a)
QN=fe-U<f1 ----- "WKTdr---dry. (4)
q)aﬁ(r):%((Pi_Pj)grijl’gati&ﬁtjini,j . (9b)

The two-particle correlation function can be obtained froml\IO approximations were involved in deriving E@) and it
the N-particle correlation function by integrating over the . PP 9

coordinates of all particles except particles 1 and 2: is equally valid for all systems, regardiess of the types of
atomic interactions that are present.

V2 Given any parametric form of an interatomic potential
Fo(ry,ro)= _J e VLK. dry, . (5) (EAM, three-bodyZ four-ppdy, etg.we can determin@ for
Qn the set of all atomic positions as a function of the parameters
) ~_in the potential. Equatio®) shows howP is related to the
We now apply the same approach used in the derivatiopartial pair correlation functions. The goal is to determine the
of the BGB equatiort” namely, we differentiate both sides of yajues of the parameters in the potential, such that the
Eq. (5) with respect to the coordlnates of partl_cle 1 anc_i subgaﬂ(r) calculated with Eq(9) agrees with the experimen-
stitute the expression for thé-particle correlation function tally determinedg®®(r). This is now an optimization prob-
[Eq. (3)]. This yields lem over the parameters in the potential. As with most non-
L trivial optimization problems, this procedure does not ensure
_ that the set of parameters found is unique. In Sec. Ill, we
KTVLIN[F2(r1,r2)]= = Gz f ViU(rg, - ry) apply this method to the special case of EAM potentials.
Fa(ra, ..oy

Fa(ry,ra) ) ) ) )
In this section, we investigate the accuracy of the pro-
In a homogeneous system, the two-particle correlation funcposed method for fitting interatomic potentials in the follow-
tion reduces to the pair correlation functiof,(rq,r,) ing way: (1) choose an interatomic potentidB) perform a
=g(|ri—r5|)=g(|r|)=g(r). Multiplying both sides of Eq. MD simulation of the liquid and find the resultant atomic
(6) by r/r yields: coordinates,(3) apply the above-described procedyifsy.

dry--dry. (6) Ill. SELF-CONSISTENCY CHECK
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TABLE |. List of all of the models and their properties.

Source of

interatomic D; (Au) D, (Cu)
ModeF potential Ry U (eV/atom P (GPa (10° cné/s) (10° cné/s)
MO Ref. 12 0.000 —3.414 -0.02 2.8 3.6
PO LF 0.220 —-0.203 4.42 0.8 1.1
P1 PO 0.045 —1.145 -0.23 2.4 3.1
P2 P1 0.040 —0.942 0.77 2.4 3.6
P3 P2 0.015 —0.966 0.19 2.6 34
P4 P3 0.014 —0.958 0.20 2.6 3.4
P5 P4 0.015 —0.955 0.20 2.7 35
M1 P5 0.016 —3.446 —-0.34 2.9 3.8
M2 M1 0.003 —3.406 0.16 2.8 3.8
M3 M2 0.003 —3.407 0.03 2.8 3.7
M4 M3 0.002 —3.406 0.06 2.8 3.6
N1 NO 0.006 —3.421 -0.08 2.9 3.8

8A model consists of a set of liquid atomic coordinates and the potentials used to generate them. Model MO
is the target mode{generated from the target interatomic potential from Rej. Models PO—P5 were
produced using only pair potentials, and models M1-M4 and N1 were determined using EAM potentials, as
described in the text.

®The source of the interatomic potential used in the MD simulations to generate the current set of interatomic
coordinates. For example, P3 in this column indicates that the interatomic potentials used to generate the
atomic coordinates of model P4 were determined using the coordinates from model P3.

CInitial Lennard-Jones potentifEq. (18)].

9EAM potentials were calculated in the same way as for series M1—M4 but with different set of basis
functions.

(9)] to fit a new interatomic potential of the same generalthis is unnecessary for our purposes here. Using this set of
form as that used to perform the MD simulations, &48l  interatomic potentials, we performed a constant volume, con-
compare the resultant potential with the original potential.stant temperatureNVT) MD simulation with 1000 Au and
This approach allows us to reconstruct the original potential 000 Cu atoms aT = 1400 K with the density chosen such
given only the atomic coordinates of the liquid generatedthat the average pressure in the system was close to zero. The
from the original potential. _ _ . partial pair correlation functions were calculated from the
We begin by cho_osmg a set of interatomic potentials fromyagitant atomic coordinates with a histogram step size of
the class of pote_ntlals routinely used_for metals, k_nown 4% =0.005 nm. Several of the liquid state properties ob-
EAM-type potentials. The EAM pmg"‘“a's were designed t0yaina from this model, averaged over 150 000 MD steps, are
represent Au-Cucrystalling alloys™ These potentials are shown in Table I. In order to compare this case with others to
of the following functional form: follow, we label ihis model as MO.
As a first test, we compare the results of calculating the
o By b \31oaB mean forced®*A(r) directly from the PPCF of model MO
¢ (r)_kzl a"(ric—r)*H(rge—r), (100 [Eq. (98] and by calculatingb“#(r) from the total forceP
[Eqg. (9b)]. The latter calculatiohEq. (9b)] was performed as
follows. We identify all of the atomic pairisandj of type a8
a8 wByoaB_ \3LireaB that contribute to a particular bin in the PPCF histogram
¥ (r)=k§=:l bi"(rak —r)"H(rzi—r), (1D [m=round(/Ar)]. Calculate the total force on atoinrom
all of the atoms in the system, project this force along the
direction from atom to atomi, and average this force over
F(p)=—\p, (12)  all such pairs of atoms separated by a distahceém— 1/2)
<r=<Ar(m+1/2). The forces on the atoms were all deter-
whereH(x) is the Heaviside functiork®? is the number of mined using the same EAM potentials as used in the MD
basis functionsg and B represent the individual elements simulation(for M0). The result is shown as the open squares
(we arbitrarily assigrx(B) =1 to represent Au and 2 for §u in Fig. 1, where the data were averaged over 400 indepen-
andag?, bg?, r{f, andrsf are the potential parameters. dent MD configurations. Since we have replaced the true
The values of the potential parameters are given in the origieontinuous PPCF with a discrete histogram of finite this
nal papef? While we have not investigated the degree tocalculation of the mean force is an approximation that can be
which this potential yields realistic results for Au—Cu alloys, improved by choosing smallexr (which also requires aver-
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FIG. 1. Partial mean forces as a function of distance. The solid lines were determined fr¢@®Eand the squares were determined
from Eqg. (9b) based on the data from model MO.

aging over many more system configuratiprisxamination dIn[g®A(r,,)] 1 NN
of Fig. 1 shows that there is excellent agreement between thé&T ar =7 aﬁz Z Sat, 5Bt,- 5mmj(Pie— PHF;
two approaches to calculate [Eqgs.(9a) and (9b)] and that Mm =1 S
the simulation conditions provide sufficient accuracy for its 1 NN
determination(2000 atoms, 400 independent MD configura- ~2 aﬁz E Oat, 5ﬁtj 5mmjfij
tions,Ar =5 pm). Therefore Eq(9) can be used to determine Mm i=1 JJZ,l
the parameters in interatomic potentials, as described pres- N ke d<p“t'(r-|)
ently. x| alft'#?“

We have demonstrated that if a specific potential yields a ';} k=1 dr
specific set of PPCFs, then the potential and PPCFs together N KB q ﬁt'(r )
must satisfy Eq(9). We now investigate whether this is suf- Y st P : (14)
ficient to actually determine the parameters of an interatomic s1kc1 K dr e

j

potential, given a set of PPCFs. In particular, we apply this
approach to determine some of the parameters in a set Wheren%ﬁ is the number of pairs of atoms of typesand 8
alloy EAM potentials. To keep the analysis presented her¢he distance between which lies in the PPCF histogram bin
simple, we focus on the parameters within the pairwise termwith r,=mAr, m;;=round(;;/Ar), and P? is the part of

in Eq. (1), keeping the embedding energy part fixed. In orderthe total force acting on atomassociated with the embed-
to evaluate how well this procedure works, we will useding functions of the EAM potentials. Changing the order of
atomic coordinates, obtained with a particular set of alloySUmmation, we can rewrite this equation in the following
EAM potentials(and MD), then throw out the potential and O

see how well we can reproduce the original potential only ne ke N N
using the atomic coordinates. In Sec. IV, we will discuss how a®” S S S T
to do this if we only have the PPCFs, which is the main point 721 IZI K i;l 121 i A Tmm, T
of this paper. N . at) n, kBY N N
We assume that we can describe the pairwise contribution » 2 de, '(ri) K 2 ‘”E E
to the EAM energy via e T A
| #i j#i
N Bt
dQDk (rjl)
Kb X 8at, 8t Omm:Fij 2 S —gr i
B wB ap j [ ] r
e (=2, alfei’, (13 1]
- dIn[g*"(rmy)]
= 4AnPkT —-
4nZPkT ar
where ¢# are basis functions of some specified form, with NN
coefficientsag® which must be determined. Using this pos- +i71 21 Sat; Opt, 5mmj(P$_ POF (15
tulated form ofe(r), we can rewrite Eq(9) as P
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FIG. 2. Partial pair force functions vs atomic separation. The solid lines represent the original force fufRdibrid and the squares
represent the force functions calculated from model MO using(E5).

wheren, is the number of alloy components. However, in this case, the resultant equations are not linear
The derivatives,d In[g*4(r)]/dr, can be reliably deter- and, hence, more care must be exercised to avoid problems

mined only if g>g.,,, Where g, is determined by the associated with multiple minima and more computer time

accuracy to which the PPCFs are known. In the presenwill be required.

work, the error in our calculation of the averaged PPCFs was

less than 0.005 and we used a valuagygf, which is twenty IV. CALCULATION OF THE PAIRWISE PART OF EAM

times larger ¢,in=0.1). We definen® to be the number of POTENTIALS FROM PPCFs

the first bin in the histograrg®#(r) for whichg*?> g, and

Mpax 10 be the number of the last bin for which we deter-

mined the mean force. Using this notation, ELp) yields

In Sec. lll, we fit the potential using a full set of liquid
state atomic coordinates. However, the coordinates of all of
the atoms in a liquid cannot be obtained experimentally.
ne N Rather, diffraction experiments only yield total pair correla-
DD (Mupa—MB) tion functions. If the number of independent diffraction ex-
a=1 p=a periments is greater or equal t@(n,+1)/2 we can extract
the partial pair correlation functions. In the present work, we

linear equations to obtain the focus on two-component alloys for which all three PPCFs
e Ny are known.
E 2 KB To use the above-described schema we must first obtain
a=1 f=a the atomic coordinates. However, these are not available

from MD since the interatomic potentials are unknown. Thus
unknown coefficientsag”. We solve this system using the e shall use a predictor-corrector procedure which will allow
least-squares method. Once #f¢ are determined, the pair- us to simultaneously obtain a set of atomic coordinates and
wise parts of the EAM potentials are known. EAM potentials consistent with the PPCFs. Such a procedure
The results of the application of the above-describedor strictly pairwise potentials was described in Ref. 5. This
schema to the original set of atomic coordinates obtainegrocedures starts from an initial guess for the atomic coordi-
from MD simulations using the EAM potentials of Ref. 12 nates. We then use E(L5) with the target(e.g., those from
are shown in Fig. 2. The choice of basis functions in@4)  diffraction experimenysPPCFs and this set of atomic coor-
is arbitrary, however, in the present case, we assume thginates to obtain a set of EAM potentials. These EAM po-
same form of basis functions as used in the original set ofentials are then used in a MD simulation of the liquid to
EAM potentials[Eq. (10), i.e., off=(r§f—r)3H(r{f—r)].  obtain a new set of atomic coordinates. This new set of
Figure 2 shows that we can exactly reconstruct the pairwisatomic coordinates and the target PPCFs are then used to find
parts of the EAM potentials given the atomic coordinates ané new set of EAM potentials using E(L5). This procedure
the embedding energy parts of the EAM potentials. is repeated until further iterations no longer improve the
While the application of the method described here was t@agreement between the PPCFs obtained from the MD simu-
determine only the pairwise parts of the potential, thelations and the target PPCFs. As a quantitative measure of
method relating the potential to the total force is general andhe discrepancy between the model and target PPCFs we use
could be applied to all of the functions in an EAM potential. the rms error
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FIG. 3. Partial pair force functions vs atomic separation. The solid lines represent the original force fu(iibri®, the dashed lines
represent the initial Lennard-Jones force functions used to create model P0O. The dash-dot lines are the force functions associated with
interatomic potentials that are purely pairwise and were derived from model P4. The dotted lines are the force functions derived associated
with interatomic potentials that include both pairwise and embedding energy terms and were derived from medstiPSself was
created only using pairwise potential$he force functions associated with M4 are plotted, but are indistinguishable from the original force

functions(solid lines.
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We can augment the total force equatidtg. (15)] em-
ployed to fit the potentials by also making use of the condi

spheric pressure, which is approximately zero. If we assum

tion that average pressure in the system is fixed at atmo%-
that the pairwise part of the EAM potentials is described by

Eq. (13), this condition yields an additional equation which
is linear in the unknown coefficients” :

" depf(rij)

dr

Nk Nk kHB N
2 2 2 A
a=1 f=a k=1 i=1

—3NKT-3Vpt,

5y OO

17

the parameters*? and rg’ﬂ of which were obtained by a
least-squares fit of kT In[g*4(r)]=¢*4(r). The dependence

of the interatomic force with atomic separatidn.e.,
—de®P(r)/dr] obtained from these pair potentials are
shown in Fig. 3. Molecular dynamics simulations performed
with this potential give the initial set of atomic coordinates,
which we label as model PO. Figure 4 shows a comparison
between the PPCFs of model PO and the target PPCFs. The

agreement between the two is very poor, as expected given
he nature of the initial description of the atomic interactions
i.e., Lennard-Jones Nonetheless, we can use the atomic
coordinates from model PO to obtain an improved potential.
In order to make the computation as efficient as possible,
it is advantageous to use the best initial structure we can
obtain before using the full potentiéle., pairwise plus em-
bedding termps To this end, we first optimize the atomic
structure using just a pair potential, i.e., we assume that the
embedding energy is exactly zero for now. Of course, we do
not expect that this approach will yield a potential that is able
to fully describe the experimental PPCFs, but rather it will
provide a better starting structure for use in fitting the real

wherep® is the contribution to the pressure from the embed-gap potential (i.e., with a real embedding tejm

ding energy. To solve Eq$15) and(17) simultaneously, we
multiplied Eg. (15) by (1—«) and Eq.(17) by a. If =0,
we fully neglect the pressure condition, E¢7). We vary «

Table | shows the results of the iteratiofthe P1-P5
serie$ between the pair potentials and atomic models to ob-
tain improved agreement between the model and target

in the range 0.02 @<0.05, when we expressed the force in ppcFs, |n particular, Table | shows the rms error between the

eV/A and the pressure in GPa.

model and target PPCHR,,. Clearly, the agreement between

We begin the potential fitting procedure by creating a setne two initially improves rapidly with iteration until further
of atomic coordinates using a crude pairwise potential, i.€.ieration no longer improveR, . These results suggest that it

the Lennard-Jones potentials

s rgﬁ 12 rgﬁ 6
) (r)—S T -2 T s (18)

is not possible to achieve excellent agreement between the
model and target PPCFs without including the embedding
energy(i.e., only including the pairwise termst should be
noted, however, that the remaining discrepate.015 is
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FIG. 4. Partial pair correlation functions vs interatomic separations. The line types are the same as in Fig. 3.

already smaller than current experimental error in determinfor quantitatively describing thermodynamic properties,
ing the PPCFs for liquid metallic alloys. The pair potentialssome kinetic properties can be well described purely on the
obtained to this point were based on the assumption that thgasis of pairwise interactions.

system can be described on the basis of pairwise interaction In the above-examined examples, we chose to use the

alone. Therefore, it is not surprising that the resultant paikame set of basis functions as in the original EAM potentials
potentials are quite different from the pairwise part of theyhich was used to create the model Moe., o#= (rf

orl?\:nal EAM potentials, as shovv_n in Fig. 3. —1)3H(r¢f—r). In most real cases where we are trying to
_ Now we return fto the main focus of the presentfit potentials, we do not have the luxury of knowiagoriori
investigation—that is, the question of whether we can recony - borooriate form of the basis functions. In fact. we will
struct the pairwise part of the EAM potentials from the target. ppropria IS Tuhctions. » We Wi,
PPCFs(We assume that the embedding energy contributior#n ge.neral, simply have to assume a particular set of t.)aS'S
to the potential is knowi.To this end, we reconstruct the unctions and use the above-described procedure to simply
pairwise part of the EAM potentials based upon the final Segetermmg th? g:oeff|C|.er.1t.s of each. This same ISSue arises in
of atomic coordinates obtained from the pair potentials, i.e.?‘,”. potenﬂal fitting activities. In order to det'ermlne.the sen-
model P5 and the target PPCF=., where now thé®® and sitivity of our results to the form of the basis functions em-
p¢ terms in Eqgs(15) and (17), respectively, are includéd ployed, we repeated the whole procedure where we use
Figure 3 shows that the pair forces, obtained in this way, arei”=(r{f—r)PH(r{f—r) andp=4 or 5. In particular, we
nearly indistinguishable from the original ones. We per-used 10 basis functions and the sarfi (uniformly distrib-
formed molecular dynamics simulations using these newted between 0.32 and 0.50 jhifor all three pair potentials.
pairwise potentials and the original embedding energy part tdhe result of refitting the potentials from the PPCFs using
obtain the atomic coordinates of model M1. The abovethese new basis functions is shown in Fig. 5. Clearly, the
described iterative procedure is applied until the rms erroagreement is excellent, but not perfect. Therefore, the results
between the model and target PPCFs no longer improveare not very sensitive to the exact nature of the basis func-
The results of this iterative procedure are shown in Table | atons used to fit the potentials. Some of the discrepancy be-
M1-M4. The errors initially decrease rapidly and then satutween the original pairwise potentials and the refit potentials
rate atRy=0.002. The resultant and target PPCFs are com¢using the new basis functionsomes from the fact that it is
pletely indistinguishablésee Fig. 4, as are the resultant and not possible to exactly reproduce one curve by fitting a set of
original pairwise pars of the EAM potentiéFig. 3). functions of different form to it. This is demonstrated in Fig.

In addition to examining the discrepancies between thé&, where we have performed a least-squares fit of the new
model and target PPCFs, we monitored two properties of thbasis functions to the original potential. As expected, this
system—the potential energy and the diffusivities of the twoprocedure does not exactly reproduce the original functions.
alloy components. While the agreement between the poterFherefore, we can conclude that the discrepancy between the
tial energies of the model described purely on the basis opair potentials obtained using different basis functions is in-
pair potentials and the original model is poor, the potentialrinsic to the choice of the functional forms of the potentials
energy obtained from model Md.e., the fitted EAM poten- assumed. As a final check, we calculated the energy and
tial) agrees very well with the original valuge., to within  diffusivities associated with the atomic structures obtained
0.23%). The diffusivity data in Table | demonstrate that the by refitting the EAM potentials with the new basis functions
diffusivities are equally well reproduced by models P5 and(labeled NJ. Like the properties obtained from the fitting
M4. This shows that while the embedding term is necessarysing the original basis functions, M4, the properties ob-
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FIG. 5. Partial pair force functions vs interatomic separations. The solid lines represent the original force functions and the dotted lines
represent the force function used to create modeld¢e the tejt The dashed lines represent the best fitting of the original pairwise force
functions by linear combination of the new basis functions used to create pairwise force functions for mdseé e text

tained from fitting to the new basis functions are in excellentabove-suggested iteration procedure for fitting potentials can

agreement with the original model, MO. incorporate the same types of crystal diataddition tothe
liquid state data PPCFs and densityIndeed, each crystal
V. CONCLUSIONS property available simply provides one new equation to de-

termine the potential parameters. We can solve all of these

In this paper, we presented a general method for fittingaquations simultaneously, together with E¢k5) and (17)
interatomic potentials to partial pair correlation functionsfor the liquid state data. In this case, however, the potentials
that can be obtained from diffraction experiments on pureshould be able to describe both the crystalline and liquid
materials or alloys. We applied this new approach to theyhase structure and properties. The ability to accurately and
specific case of embedded atom method-type interatomic p&jmultaneously describe both liquids and solids can be very
tentials, which have both pairwise and embedding energymportant, for example, for the simulation of solidification
terms. To make the method more transparent, we limit CONprocesses.
sideration herein to the special case in which the embedding The main equation used in this new procedure for fitting
energy part of the potential is known. Using this approachpotentials is derived from Gibbs statistics and, therefore, is
we have demonstrated that this method can accurately recofipplicable to equilibrium systems. However, in Ref. 5, it was
struct the pairwise part of this potential from PPCF datashown that the Born—Green—Bogoliubov equatiderived
While the present example was limited, more commonlyfrom Gibbs statistigscan be used to determine pair poten-
both the pairwise and embedding terms in the energy must bgals from (metastablemetallic glass PPCFs. Therefore, we
determined. The new method, presented previously, can eaggpect that the procedure suggested here is also applicable to
ily be extended to fit both parts of the EAM potential. More- metallic glasses. This is noteworthy since considerably more

over, this same procedure can be applied to any other type @fiffraction data are available for glasses than for liquids.
interatomic potential. For example, it is a simple matter to

derive equations analogous to E@$5) and (17) for inter-
atomic potentials that contain both two-body and three-body ACKNOWLEDGMENTS
terms.
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