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Determination of alloy interatomic potentials from liquid-state diffraction data

M. I. Mendelev and D. J. Srolovitz*
Princeton Materials Institute and Department of Mechanical & Aerospace Engineering, Princeton University,
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~Received 26 February 2002; published 16 July 2002!

This paper presents a general method for fitting interatomic potentials to partial pair correlation functions
that can be obtained from diffraction experiments on pure materials or alloys. We apply this new approach to
the specific case of embedded atom method-type interatomic potentials and demonstrate that it can be used to
accurately fit this potential from partial pair correlation function data. The new method, presented above, can
easily be extended to any type of interatomic potential. In addition, this method can be used in conjunction
with standard approaches that fit crystal structure and properties.
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I. INTRODUCTION

Atomistic computer simulations are widely used to inve
tigate a broad range of material properties. While atom
interactions can be described using both quant
mechanical1 and empirical descriptions of atomic intera
tions, most large scale simulations are still performed us
empirical descriptions of these interactions. Empirical pot
tials are commonly determined by fitting a proposed fu
tional form to available data.2 These data may be obtaine
either from experimental measurements or first-principle c
culations. Commonly, the input data include such quanti
for crystals as lattice parameter, cohesive energy, elastic
stants, and vacancy formation energy. Potentials determ
in this way have found widespread use for both simulat
crystals and liquids. Fitting potentials to data obtained o
from perfect crystals has the disadvantage that the resu
fits are only guaranteed to be accurate at those discrete
of interatomic spacings that are represented by the pe
crystal. This is a potential problem for applications that foc
on crystal defects, competing crystal structures, and liqu
Another approach is to fit the potentials to data obtain
from diffraction experiments on noncrystalline materia
which reflects a continuous distribution of atomic separati
above some minimum.

The problem of determining pair potentials from the p
correlation function from single-component liquids was p
posed in the framework of the classical theory of liqui
more than half a century ago. While this approach was s
cessful for low density fluids, it is less satisfactory for d
scribing dense liquids. Fortunately, several predict
corrector algorithms have been proposed that can
employed to find pair potentials that lead to good agreem
between pair correlation functions obtained using molecu
dynamics ~MD! simulations and those measure
experimentally.3–6 In such algorithms, a trial pair potential i
to obtain the atomic structure of the liquid~via MD simula-
tion!. Comparison of this structure and the experimental p
correlation function is used to propose a new potential t
leads to improved agreement. This procedure is repeated
til the discrepancy between the predicted and measu
structure is within acceptable limits. These algorithms lead
a description of the atomic interactions which are consis
0163-1829/2002/66~1!/014205~9!/$20.00 66 0142
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with the experimental diffraction data. The main disadva
tage of this approach is that they are limited to pairw
descriptions of atomic interactions~i.e., pair potentials!.
While this is adequate for some materials~e.g., liquid argon!,
physically based models of interatomic interactions in ma
systems are intrinsically nonpairwise.

As an example, consider the case of metallic alloys,
which bonding is dominated by the electron gas contribut
which cannot be described within the framework of a p
potential. A commonly used class of potentials for meta
systems is the Embedded Atom Method~EAM!2 or
Finnis–Sinclair7 potential. In this method, the potential en
ergy is divided into two contributions—a pairwise part and
local density part:

U5 (
i 51

N21

(
j 5 i 11

N

w t i t j~r i j !1(
i 51

N

F~r i !, ~1!

where i ( j ) labels atoms of elemental typet i ( j ) , N is the
number of atoms in the system,r i , j is the separation betwee
atomsi and j, and

r i5(
j

c t i t j~r i j !. ~2!

F, w, andc are functions that must be determined. Anoth
example is covalently bonded materials, such as Si, wh
are often described using three-body potentials~e.g., the
Stillinger–Weber potential8!. In both examples, the inter
atomic interactions are not pairwise and, hence, the abo
described computer algorithms for fitting potentials to d
fraction data are inapplicable. Nonetheless, there is a la
body of experimentally determined diffraction data availab
for materials with nonpairwise interactions.

The goal of the present work is to develop a procedure
fitting arbitrary classes of interatomic potential using diffra
tion data from liquids~partial pair correlation functions
PPCFs!. We first describe a procedure to determine int
atomic potentials using atomic coordinates from a liqu
Then, we apply this approach to determine a set of EA
potentials for an alloy using partial pair correlation function
We show that it is possible to reproduce the partial pair c
relation functions using only pairwise potentials. Therefo
©2002 The American Physical Society05-1
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M. I. MENDELEV AND D. J. SROLOVITZ PHYSICAL REVIEW B66, 014205 ~2002!
this liquid structure data must be supplemented with ad
tional information in order to completely determine the fu
EAM potentials. Since the goal of this paper is to show t
diffraction data can be used to fit EAM potentials, we a
sume that the embedding part of the EAM potential is de
mined from other means and we simply fit the pairwise p
of the EAM potential. While this particular procedure is n
unique, it does demonstrate that liquid phase structural
can be used to fit nontrivial interatomic potentials. The g
erality of this approach is discussed at the end of this pa

II. THEORETICAL BACKGROUND

In the method described in the following, we make use
the concept of a ‘‘mean force,’’ originally suggested in Ref
for the analysis of the classical Born–Green–Bogoliub
~BGB! equation.10,11 While the analytical solution of the
BGB equation requires some simplifying approximatio
~e.g., superposition approximation!, the concept of the mea
force is general. As will be shown in the following, the me
force follows directly from Gibbs statistics and is indepe
dent of the form of the description of the atomic interactio

We start by considering a single-component system c
sisting of N particles with potential energyU(r1 ,...,rN),
wherer1 ,r2 ,...,rN represent the positions of atoms 1,2,...,N.
The N-particle correlation function for this system is

FN~r1 ,...,rN!5
VN

QN
e2U~r1 ,...,rN!/kT, ~3!

wherek is the Boltzmann constant,T is the temperature, an
QN is the configuration integral

QN5E e2U~r1 ,...,rN!/kTdr1¯drN . ~4!

The two-particle correlation function can be obtained fro
the N-particle correlation function by integrating over th
coordinates of all particles except particles 1 and 2:

F2~r1 ,r2!5
V2

QN
E e2U~r1 ,...,rN!/kTdr3¯drN . ~5!

We now apply the same approach used in the deriva
of the BGB equation:10 namely, we differentiate both sides o
Eq. ~5! with respect to the coordinates of particle 1 and s
stitute the expression for theN-particle correlation function
@Eq. ~3!#. This yields

kT¹1 ln@F2~r1 ,r2!#52
1

VN22 E ¹1U~r1 ,...,rN!

3
FN~r1 ,...,rN!

F2~r1 ,r2!
dr3¯drN . ~6!

In a homogeneous system, the two-particle correlation fu
tion reduces to the pair correlation function:F2(r1 ,r2)
5g(ur12r2u)5g(ur u)5g(r ). Multiplying both sides of Eq.
~6! by r /r yields:
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d ln@g~r !#

dr
52

1

VN22 E @¹1UN~r1 ,...,rN! r̂ #

3
FN~r1 ,...,rN!

F2~r1 ,r2!
dr3¯rN . ~7!

The left-hand side of Eq.~7! is called the ‘‘mean force,’’
which we label henceforth asF. The mean force can be
interpreted in the following manner. If the system is a lo
density gas, the pair correlation function isg(r )5exp
@2w(r)/kT# or w(r )52kT ln@g(r)#, wherew(r ) is a pairwise
interaction~at low densities, higher order interactions do n
occur!. In this case, the mean force is simplyF(r )
52dw/dr. In a liquid or high density fluid, correlation
beyond pair are present and therefore, the true pairwise
teraction must be replaced with an effective pairwise int
action Y(r ), which includes the effects of all higher orde
interactions. In this case, the mean force isF(r )5
2dY(r )/dr5kT d ln@g(r)#/dr, which is the left-hand side o
Eq. ~7!. Equation~7! shows that the mean force is the pr
jection of the total forceP1 acting on atom 1 along the vecto
from atom 2 to atom 1, averaged over all atoms which ha
at least one neighbor at distancer,

F~r !5kT
d ln@g~r !#

dr
5

1

2
^~Pi2Pj !d r i j r

r̂ i j & i , j . ~8!

whered is the Kronecker delta,r̂ i j is the unit vector pointing
from atomj to i, and the average is over all pairs of atomsi,j .
This equation can be extended to the case of a multicom
nent system:

Fab~r !5kT
d ln@gab~r !#

dr
, ~9a!

Fab~r !5 1
2 ^~Pi2Pj !d r i j r

dat i
dbt j

r̂ i j & i , j . ~9b!

No approximations were involved in deriving Eq.~9! and it
is equally valid for all systems, regardless of the types
atomic interactions that are present.

Given any parametric form of an interatomic potent
~EAM, three-body, four-body, etc.!, we can determineP for
the set of all atomic positions as a function of the parame
in the potential. Equation~9! shows howP is related to the
partial pair correlation functions. The goal is to determine
values of the parameters in the potential, such that
gab(r ) calculated with Eq.~9! agrees with the experimen
tally determinedgab(r ). This is now an optimization prob
lem over the parameters in the potential. As with most n
trivial optimization problems, this procedure does not ens
that the set of parameters found is unique. In Sec. III,
apply this method to the special case of EAM potentials.

III. SELF-CONSISTENCY CHECK

In this section, we investigate the accuracy of the p
posed method for fitting interatomic potentials in the follow
ing way: ~1! choose an interatomic potential,~2! perform a
MD simulation of the liquid and find the resultant atom
coordinates,~3! apply the above-described procedure@Eq.
5-2
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TABLE I. List of all of the models and their properties.

Modela

Source of
interatomic
potentialb Rg U ~eV/atom! P ~GPa!

D1 ~Au!
(105 cm2/s)

D2 ~Cu!
(105 cm2/s)

M0 Ref. 12 0.000 23.414 20.02 2.8 3.6
P0 LJc 0.220 20.203 4.42 0.8 1.1
P1 P0 0.045 21.145 20.23 2.4 3.1
P2 P1 0.040 20.942 0.77 2.4 3.6
P3 P2 0.015 20.966 0.19 2.6 3.4
P4 P3 0.014 20.958 0.20 2.6 3.4
P5 P4 0.015 20.955 0.20 2.7 3.5
M1 P5 0.016 23.446 20.34 2.9 3.8
M2 M1 0.003 23.406 0.16 2.8 3.8
M3 M2 0.003 23.407 0.03 2.8 3.7
M4 M3 0.002 23.406 0.06 2.8 3.6
N1 N0d 0.006 23.421 20.08 2.9 3.8

aA model consists of a set of liquid atomic coordinates and the potentials used to generate them. Mo
is the target model~generated from the target interatomic potential from Ref. 12!. Models P0–P5 were
produced using only pair potentials, and models M1–M4 and N1 were determined using EAM potenti
described in the text.

bThe source of the interatomic potential used in the MD simulations to generate the current set of inter
coordinates. For example, P3 in this column indicates that the interatomic potentials used to gene
atomic coordinates of model P4 were determined using the coordinates from model P3.

cInitial Lennard-Jones potential@Eq. ~18!#.
dEAM potentials were calculated in the same way as for series M1–M4 but with different set of
functions.
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~9!# to fit a new interatomic potential of the same gene
form as that used to perform the MD simulations, and~4!
compare the resultant potential with the original potent
This approach allows us to reconstruct the original poten
given only the atomic coordinates of the liquid genera
from the original potential.

We begin by choosing a set of interatomic potentials fr
the class of potentials routinely used for metals, known
EAM-type potentials. The EAM potentials were designed
represent Au–Cu~crystalline! alloys.12 These potentials are
of the following functional form:

wab~r !5 (
k51

kab

ak
ab~r 1k

ab2r !3H~r 1k
ab2r !, ~10!

cab~r !5 (
k51

kab

bk
ab~r 2k

ab2r !3H~r 2k
ab2r !, ~11!

F~r!52Ar, ~12!

whereH(x) is the Heaviside function,kab is the number of
basis functions,a and b represent the individual elemen
~we arbitrarily assigna(b)51 to represent Au and 2 for Cu!
and ak

ab , bk
ab , r 1k

ab , and r 2k
ab are the potential parameter

The values of the potential parameters are given in the o
nal paper.12 While we have not investigated the degree
which this potential yields realistic results for Au–Cu alloy
01420
l
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,

this is unnecessary for our purposes here. Using this se
interatomic potentials, we performed a constant volume, c
stant temperature (NVT) MD simulation with 1000 Au and
1000 Cu atoms atT51400 K with the density chosen suc
that the average pressure in the system was close to zero
partial pair correlation functions were calculated from t
resultant atomic coordinates with a histogram step size
Dr 50.005 nm. Several of the liquid state properties o
tained from this model, averaged over 150 000 MD steps,
shown in Table I. In order to compare this case with others
follow, we label this model as M0.

As a first test, we compare the results of calculating
mean forceFab(r ) directly from the PPCF of model M0
@Eq. ~9a!# and by calculatingFab(r ) from the total forceP
@Eq. ~9b!#. The latter calculation@Eq. ~9b!# was performed as
follows. We identify all of the atomic pairsi andj of typeab
that contribute to a particular bin in the PPCF histogra
@m5round(r /Dr )#. Calculate the total force on atomi from
all of the atoms in the system, project this force along
direction from atomj to atomi, and average this force ove
all such pairs of atoms separated by a distanceDr (m21/2)
<r<Dr (m11/2). The forces on the atoms were all dete
mined using the same EAM potentials as used in the M
simulation~for M0!. The result is shown as the open squa
in Fig. 1, where the data were averaged over 400 indep
dent MD configurations. Since we have replaced the t
continuous PPCF with a discrete histogram of finiteDr , this
calculation of the mean force is an approximation that can
improved by choosing smallerDr ~which also requires aver
5-3
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FIG. 1. Partial mean forces as a function of distance. The solid lines were determined from Eq.~9a! and the squares were determine
from Eq. ~9b! based on the data from model M0.
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aging over many more system configurations!. Examination
of Fig. 1 shows that there is excellent agreement between
two approaches to calculateF @Eqs.~9a! and ~9b!# and that
the simulation conditions provide sufficient accuracy for
determination~2000 atoms, 400 independent MD configur
tions,Dr 55 pm!. Therefore Eq.~9! can be used to determin
the parameters in interatomic potentials, as described p
ently.

We have demonstrated that if a specific potential yield
specific set of PPCFs, then the potential and PPCFs toge
must satisfy Eq.~9!. We now investigate whether this is su
ficient to actually determine the parameters of an interato
potential, given a set of PPCFs. In particular, we apply t
approach to determine some of the parameters in a se
alloy EAM potentials. To keep the analysis presented h
simple, we focus on the parameters within the pairwise te
in Eq. ~1!, keeping the embedding energy part fixed. In ord
to evaluate how well this procedure works, we will u
atomic coordinates, obtained with a particular set of al
EAM potentials~and MD!, then throw out the potential an
see how well we can reproduce the original potential o
using the atomic coordinates. In Sec. IV, we will discuss h
to do this if we only have the PPCFs, which is the main po
of this paper.

We assume that we can describe the pairwise contribu
to the EAM energy via

wab~r !5 (
k51

kab

ak
abwk

ab , ~13!

wherewk
ab are basis functions of some specified form, w

coefficientsak
ab which must be determined. Using this po

tulated form ofw(r ), we can rewrite Eq.~9! as
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d ln@gab~r m!#
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5

1

4nm
ab (

i 51

N

(
j 51
j Þ i

N

dat i
dbt j

dmmi j
~Pi

e2Pj
e! r̂ i j

2
1

4nm
ab (

i 51

N

(
j 51
j Þ i

N

dat i
dbt j

dmmi j
r̂ i j

3H (
l 51
lÞ i

N

(
k51

kat l

ak
at l

dwk
at l~r il !

dr
r̂ il

2(
l 51
lÞ j

N

(
k51

kbt l

ak
bt l

dwk
bt l~r j l !

dr
r̂ j l J , ~14!

wherenm
ab is the number of pairs of atoms of typesa andb

the distance between which lies in the PPCF histogram
with r m5mDr , mi j 5round(r i j /Dr ), and Pi

e is the part of
the total force acting on atomi associated with the embed
ding functions of the EAM potentials. Changing the order
summation, we can rewrite this equation in the followin
form:

(
g51

nk

(
k51

kag

ak
ag(

i 51

N

(
j 51,
j Þ i

N

dat i
dbt j

dmmi j
r̂ i j

3(
l 51
lÞ i

N

dgt l

dwk
at l~r il !

dr
r̂ il 2 (

g51

nk

(
k51

kbg

ak
bg(

i 51

N

(
j 51,
j Þ i

N

3dat i
dbt j

dmmi j
r̂ i j (

l 51
lÞ j

N

dgt l

dwk
bt l~r j l !

dr
r̂ j l

524nm
abkT

d ln@gab~r m!#

dr

1(
i 51

N

(
j 51,
j Þ i

N

dat i
dbt j

dmmi j
~Pi

e2Pj
e! r̂ i j , ~15!
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FIG. 2. Partial pair force functions vs atomic separation. The solid lines represent the original force functions~Ref. 12! and the squares
represent the force functions calculated from model M0 using Eq.~15!.
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wherenk is the number of alloy components.
The derivatives,d ln@gab(r)#/dr, can be reliably deter-

mined only if g.gmin , where gmin is determined by the
accuracy to which the PPCFs are known. In the pres
work, the error in our calculation of the averaged PPCFs w
less than 0.005 and we used a value ofgmin which is twenty
times larger (gmin50.1). We definemmin

ab to be the number of
the first bin in the histogramgab(r ) for whichgab.gmin and
mmax to be the number of the last bin for which we dete
mined the mean force. Using this notation, Eq.~15! yields

(
a51

nk

(
b5a

nk

~mmax2mmin
ab !

linear equations to obtain the

(
a51

nk

(
b5a

nk

kab

unknown coefficientsak
ab . We solve this system using th

least-squares method. Once theak
ab are determined, the pair

wise parts of the EAM potentials are known.
The results of the application of the above-describ

schema to the original set of atomic coordinates obtai
from MD simulations using the EAM potentials of Ref. 1
are shown in Fig. 2. The choice of basis functions in Eq.~13!
is arbitrary, however, in the present case, we assume
same form of basis functions as used in the original se
EAM potentials@Eq. ~10!, i.e., wk

ab5(r 1k
ab2r )3H(r 1k

ab2r )#.
Figure 2 shows that we can exactly reconstruct the pairw
parts of the EAM potentials given the atomic coordinates a
the embedding energy parts of the EAM potentials.

While the application of the method described here wa
determine only the pairwise parts of the potential, t
method relating the potential to the total force is general
could be applied to all of the functions in an EAM potentia
01420
nt
s

d
d

he
f

e
d

o
e
d

However, in this case, the resultant equations are not lin
and, hence, more care must be exercised to avoid prob
associated with multiple minima and more computer tim
will be required.

IV. CALCULATION OF THE PAIRWISE PART OF EAM
POTENTIALS FROM PPCFs

In Sec. III, we fit the potential using a full set of liqui
state atomic coordinates. However, the coordinates of al
the atoms in a liquid cannot be obtained experimenta
Rather, diffraction experiments only yield total pair correl
tion functions. If the number of independent diffraction e
periments is greater or equal tonk(nk11)/2 we can extract
the partial pair correlation functions. In the present work,
focus on two-component alloys for which all three PPC
are known.

To use the above-described schema we must first ob
the atomic coordinates. However, these are not availa
from MD since the interatomic potentials are unknown. Th
we shall use a predictor-corrector procedure which will allo
us to simultaneously obtain a set of atomic coordinates
EAM potentials consistent with the PPCFs. Such a proced
for strictly pairwise potentials was described in Ref. 5. Th
procedures starts from an initial guess for the atomic coo
nates. We then use Eq.~15! with the target~e.g., those from
diffraction experiments! PPCFs and this set of atomic coo
dinates to obtain a set of EAM potentials. These EAM p
tentials are then used in a MD simulation of the liquid
obtain a new set of atomic coordinates. This new set
atomic coordinates and the target PPCFs are then used to
a new set of EAM potentials using Eq.~15!. This procedure
is repeated until further iterations no longer improve t
agreement between the PPCFs obtained from the MD si
lations and the target PPCFs. As a quantitative measur
the discrepancy between the model and target PPCFs we
the rms error
5-5
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FIG. 3. Partial pair force functions vs atomic separation. The solid lines represent the original force functions~Ref. 12!, the dashed lines
represent the initial Lennard-Jones force functions used to create model P0. The dash-dot lines are the force functions assoc
interatomic potentials that are purely pairwise and were derived from model P4. The dotted lines are the force functions derived a
with interatomic potentials that include both pairwise and embedding energy terms and were derived from model P5~which itself was
created only using pairwise potentials!. The force functions associated with M4 are plotted, but are indistinguishable from the original
functions~solid lines!.
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Rg5H 2

nk~nk11!mmax
(
a51

nk

(
b5a

nk

(
m51

mmax

~gab~r m!

2g0
ab~r m!!2J 1/2

. ~16!

We can augment the total force equation@Eq. ~15!# em-
ployed to fit the potentials by also making use of the con
tion that average pressure in the system is fixed at at
spheric pressure, which is approximately zero. If we assu
that the pairwise part of the EAM potentials is described
Eq. ~13!, this condition yields an additional equation whic
is linear in the unknown coefficientsak

ab :

(
a51

nk

(
b5a

nk

(
k51

kab

ak
ab(

i 51

N

(
j 5 i 11

N

dat i
dbt j

r i j

dwk
ab~r i j !

dr

523NkT23Vpe, ~17!

wherepe is the contribution to the pressure from the embe
ding energy. To solve Eqs.~15! and~17! simultaneously, we
multiplied Eq. ~15! by (12a) and Eq.~17! by a. If a50,
we fully neglect the pressure condition, Eq.~17!. We varya
in the range 0.02<a<0.05, when we expressed the force
eV/Å and the pressure in GPa.

We begin the potential fitting procedure by creating a
of atomic coordinates using a crude pairwise potential,
the Lennard-Jones potentials

wab~r !5«abF S r 0
ab

r D 12

22S r 0
ab

r D 6G , ~18!
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the parameters«ab and r 0
ab of which were obtained by a

least-squares fit of2kT ln@gab(r)#5wab(r). The dependence
of the interatomic force with atomic separation@i.e.,
2dwab(r )/dr# obtained from these pair potentials a
shown in Fig. 3. Molecular dynamics simulations perform
with this potential give the initial set of atomic coordinate
which we label as model P0. Figure 4 shows a compari
between the PPCFs of model P0 and the target PPCFs.
agreement between the two is very poor, as expected g
the nature of the initial description of the atomic interactio
~i.e., Lennard-Jones!. Nonetheless, we can use the atom
coordinates from model P0 to obtain an improved potent

In order to make the computation as efficient as possi
it is advantageous to use the best initial structure we
obtain before using the full potential~i.e., pairwise plus em-
bedding terms!. To this end, we first optimize the atomi
structure using just a pair potential, i.e., we assume that
embedding energy is exactly zero for now. Of course, we
not expect that this approach will yield a potential that is a
to fully describe the experimental PPCFs, but rather it w
provide a better starting structure for use in fitting the r
EAM potential ~i.e., with a real embedding term!.

Table I shows the results of the iterations~the P1–P5
series! between the pair potentials and atomic models to
tain improved agreement between the model and ta
PPCFs. In particular, Table I shows the rms error between
model and target PPCFs,Rg . Clearly, the agreement betwee
the two initially improves rapidly with iteration until furthe
iteration no longer improvesRg . These results suggest that
is not possible to achieve excellent agreement between
model and target PPCFs without including the embedd
energy~i.e., only including the pairwise terms!. It should be
noted, however, that the remaining discrepancy~;0.015! is
5-6
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FIG. 4. Partial pair correlation functions vs interatomic separations. The line types are the same as in Fig. 3.
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already smaller than current experimental error in determ
ing the PPCFs for liquid metallic alloys. The pair potentia
obtained to this point were based on the assumption tha
system can be described on the basis of pairwise interac
alone. Therefore, it is not surprising that the resultant p
potentials are quite different from the pairwise part of t
original EAM potentials, as shown in Fig. 3.

Now we return to the main focus of the prese
investigation—that is, the question of whether we can rec
struct the pairwise part of the EAM potentials from the targ
PPCFs.~We assume that the embedding energy contribu
to the potential is known.! To this end, we reconstruct th
pairwise part of the EAM potentials based upon the final
of atomic coordinates obtained from the pair potentials, i
model P5 and the target PPCFs@i.e., where now thePe and
pe terms in Eqs.~15! and ~17!, respectively, are included#.
Figure 3 shows that the pair forces, obtained in this way,
nearly indistinguishable from the original ones. We p
formed molecular dynamics simulations using these n
pairwise potentials and the original embedding energy pa
obtain the atomic coordinates of model M1. The abo
described iterative procedure is applied until the rms e
between the model and target PPCFs no longer impro
The results of this iterative procedure are shown in Table
M1–M4. The errors initially decrease rapidly and then sa
rate atRg50.002. The resultant and target PPCFs are co
pletely indistinguishable~see Fig. 4!, as are the resultant an
original pairwise pars of the EAM potential~Fig. 3!.

In addition to examining the discrepancies between
model and target PPCFs, we monitored two properties of
system—the potential energy and the diffusivities of the t
alloy components. While the agreement between the po
tial energies of the model described purely on the basis
pair potentials and the original model is poor, the poten
energy obtained from model M4~i.e., the fitted EAM poten-
tial! agrees very well with the original value~i.e., to within
0.23%!. The diffusivity data in Table I demonstrate that th
diffusivities are equally well reproduced by models P5 a
M4. This shows that while the embedding term is necess
01420
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for quantitatively describing thermodynamic propertie
some kinetic properties can be well described purely on
basis of pairwise interactions.

In the above-examined examples, we chose to use
same set of basis functions as in the original EAM potent
~which was used to create the model M0!, i.e., wk

ab5(r 1k
ab

2r )3H(r 1k
ab2r ). In most real cases where we are trying

fit potentials, we do not have the luxury of knowinga priori
the appropriate form of the basis functions. In fact, we w
in general, simply have to assume a particular set of b
functions and use the above-described procedure to sim
determine the coefficients of each. This same issue arise
all potential fitting activities. In order to determine the se
sitivity of our results to the form of the basis functions em
ployed, we repeated the whole procedure where we
wk

ab5(r 1k
ab2r )pH(r 1k

ab2r ) andp54 or 5. In particular, we
used 10 basis functions and the samer 1k

ab ~uniformly distrib-
uted between 0.32 and 0.50 nm! for all three pair potentials.
The result of refitting the potentials from the PPCFs us
these new basis functions is shown in Fig. 5. Clearly,
agreement is excellent, but not perfect. Therefore, the res
are not very sensitive to the exact nature of the basis fu
tions used to fit the potentials. Some of the discrepancy
tween the original pairwise potentials and the refit potent
~using the new basis functions! comes from the fact that it is
not possible to exactly reproduce one curve by fitting a se
functions of different form to it. This is demonstrated in Fi
5, where we have performed a least-squares fit of the n
basis functions to the original potential. As expected, t
procedure does not exactly reproduce the original functio
Therefore, we can conclude that the discrepancy between
pair potentials obtained using different basis functions is
trinsic to the choice of the functional forms of the potentia
assumed. As a final check, we calculated the energy
diffusivities associated with the atomic structures obtain
by refitting the EAM potentials with the new basis functio
~labeled N1!. Like the properties obtained from the fittin
using the original basis functions, M4, the properties o
5-7
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FIG. 5. Partial pair force functions vs interatomic separations. The solid lines represent the original force functions and the do
represent the force function used to create model N1~see the text!. The dashed lines represent the best fitting of the original pairwise f
functions by linear combination of the new basis functions used to create pairwise force functions for model N1~see the text!.
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tained from fitting to the new basis functions are in excell
agreement with the original model, M0.

V. CONCLUSIONS

In this paper, we presented a general method for fitt
interatomic potentials to partial pair correlation functio
that can be obtained from diffraction experiments on p
materials or alloys. We applied this new approach to
specific case of embedded atom method-type interatomic
tentials, which have both pairwise and embedding ene
terms. To make the method more transparent, we limit c
sideration herein to the special case in which the embed
energy part of the potential is known. Using this approa
we have demonstrated that this method can accurately re
struct the pairwise part of this potential from PPCF da
While the present example was limited, more commo
both the pairwise and embedding terms in the energy mus
determined. The new method, presented previously, can
ily be extended to fit both parts of the EAM potential. Mor
over, this same procedure can be applied to any other typ
interatomic potential. For example, it is a simple matter
derive equations analogous to Eqs.~15! and ~17! for inter-
atomic potentials that contain both two-body and three-b
terms.

Most of the EAM-type potentials in the literature we
determined by fitting the constituent functions of the EA
potentials to experimental and/or first-principles data
crystals~e.g., cohesive energy, lattice parameter, elastic c
stants, vacancy formation energy, surface energies!. The
01420
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y
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above-suggested iteration procedure for fitting potentials
incorporate the same types of crystal datain addition to the
liquid state data~PPCFs and density!. Indeed, each crysta
property available simply provides one new equation to
termine the potential parameters. We can solve all of th
equations simultaneously, together with Eqs.~15! and ~17!
for the liquid state data. In this case, however, the potent
should be able to describe both the crystalline and liq
phase structure and properties. The ability to accurately
simultaneously describe both liquids and solids can be v
important, for example, for the simulation of solidificatio
processes.

The main equation used in this new procedure for fitti
potentials is derived from Gibbs statistics and, therefore
applicable to equilibrium systems. However, in Ref. 5, it w
shown that the Born–Green–Bogoliubov equation~derived
from Gibbs statistics! can be used to determine pair pote
tials from ~metastable! metallic glass PPCFs. Therefore, w
expect that the procedure suggested here is also applicab
metallic glasses. This is noteworthy since considerably m
diffraction data are available for glasses than for liquids.
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