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Zero modes in the random hopping model
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If the number of lattice sites is odd, a quantum particle hopping on a bipartite lattice with random hopping
between the two sublattices only is guaranteed to have an eigenstate at zero energy. We show that the local-
ization length of this eigenstate depends strongly on the boundaries of the lattice, and can take values anywhere
between the mean free path and infinity. The same dependence on boundary conditions is seen in the conduc-
tance of such a lattice if it is connected to electron reservoirs via narrow leads. For any nonzero energy, the
dependence on boundary conditions is removed for sufficiently large system sizes.
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. INTRODUCTION limit, the density of statéd and the localization lengff®
are singular at zero energy, whereas correlation functions of
Zero modes, wave functions at zero energy, often arise ithe local density of staté®’ are algebraic functions. This
problems when a quantum particle moves in a backgroun@nomalous behavior is an example of a strongly random
with a nontrivial topological structurk:** Quantum fluctua- critical point28 Its origin is rooted in the stochastic properties
tions associated to these zero modes have dramatic physic the zero modes supported by the Dirac equation in one-
consequences. They appear both in field theories, related gace dimension in the background of a white-noise corre-
chiral and parity anomaliésand in lattice regularization of lated random mas¥: ~““More recently, a two-dimensional
field theorie€ and have applications to a wide range of areag@ndom Dirac Hamiltonian with white-noise correlated
in physics: Chiral symmetry breaking ifi+1)-space-time U(1)<SU(N) random vector potential was shown to be
quantum electrodynamiéedge states along the boundary of critical at_zerq_energﬁ‘}?' As with the stochastic model of
a disk threaded by a magnetic flfik singular contributions Dyson,_thls critical behavior can be ascrlbed_ to the sto_chast_|c
to the Hall conductance from electrons hopping on a squarBroPerties of zero modes supported by Dirac equations in
lattice in the presence of a uniform magnetic fidlsliper- two-space dimensions in the background of white-noise cor-

Y
conductivity of a cosmic stringJocalization of a fractional élated random vector potentidfs.

charge at a domain wall in a charge-density w&véjnduc- While the critical behavior of thécontinuum) Dirac equa-
tion of a persistent mass current fiHe-A, 14~ antiphase tion is related to zero modes in the infinite system, the exis-

boundaries in narrow-gap semiconducttrs surfacd® tence of zero modes for Dyson’s stochastic model of a quan-
(edgé®?) states in a superconductor with ;(+id ) tum particle hopping on a bipartite lattice with link disorder
-y Xy

; oy 1 can also occur for a finite system size. In terms of fermionic
;ymmetry o a_chwa;b_wavgz superc_:qnductor, edge states creation C-‘L) and annihilation ¢;) operators, the Hamil-
in nanographite ribbon junctiorfé and itinerant-electron fer- [ j '

romagnetism in the repulsive Hubbard motfel. tonian for this system is
Related nontrivial topological structures can also exist in
random matrix theoryf and in the problem of Anderson lo-
a; P H:E tijCiTCj ) (11)
i

calization when the disorder possesses a special symmetry.

In this context, an almost half a century old example is that

of a one-dimensional chain with link disord&rHere, zero  wherei andj label the lattice sites on a cartesian griddin
energy corresponds to the center of the energy band, and aimensions, say, and the hopping matrix elemegtsare
eigenfunction with zero energy is guaranteed to exist if thenonzero for nearest neighbors only. Examples of bipartite
number of sites in the chain is oddIn the thermodynamic lattices are depicted in Fig. 1. In general, thewill have a
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(a) N=3 Addition or removal of a single site changes the number
of zero modes, as it changes the differefiig —Ng| be-
2 tween the numbers of sites in the two sublattices. At the
1 same time, the singular behavior of the density of states and
1 2 3 4 L

the localization length in the random hopping model in the
thermodynamic limit are considered “intrinsic” properties,
i.e., they are derived from continuum models and should not

(b) depend on boundary conditions of the lattice. Hence, while
both the existence of zero modes for lattices with boundaries

and the singular behavior of the localization length are mani-

festations of the same sublattice symmetry, they are so in

very different ways. One might even ask to what extent the
localization length of zero modes is representative for the
“intrinsic” localization length of the random hopping prob-

() lem or random flux problem on a lattice without boundaries.
This is the question addressed in this paper.

Our answer is that the localization length of the zero

modes for lattices with boundaries is not an “intrinsic” prop-

erty of the random hopping model. After a brief review of

FIG. 1. Three examples of a lattice with different boundarythe tran_sfer_-matrix formalism in _Sec. A, we s_upport th|s
conditions. The sublattices and B correspond to the white and COnclusion in Sec. Il B by analytical and numerical solution
black sites, respectively. In all three examples, the numheof  Of the problem in the case of a wire geometry: Depending on
sites on sublatticé\ is one more than the numbaly of sites on  the boundary conditions, zero modes exhibit a range of lo-
sublatticeB. (a) Conventional rectangular shaped wire with=3 calization lengths, the smallest one being of the order of the
and oddL>N. (b) Boundary conditions with respect t@ have  mean free path. In Sec. Il C we then show that this extreme
been changed by adding a white site to the left and adding a blacgensitivity to boundary conditions is an anomaly correspond-
site to the right(c) Boundary conditions with respect ta) have  ing to the special case=0. Forany energys # 0 there is a
been changed by adding a pair of white and black sites to the lefunique localization length if the system size is sufficiently

large. For sufficiently smakl, this unique localization length
small random component in addition to an averagehich  coincides with the largest of the possible localization lengths
sets the width of the spectrum ®f. In this paper we refer to ate=0. We discuss higher dimensional examples in Sec. Il
Eg. (1.1) with the randomt;; as the “random hopping and conclude in Sec. IV.
model.” The special case when it is only the phase of the
hopping amplitude;; that is random is also known as the
random flux problem.

For the Hamiltoniar{1.1), the existence of the zero modes In this section we consider a two-dimensional lattibe,
follows from the existence of a “sublattice(or “chiral”)  sites wide and. sites long withL>N. Examples folN=3
symmetry. This symmetry follows when the lattice is divided are given in Fig. 1 whereby sites on sublatti¢eandB are
into two sublatticesA andB such that the hopping matrix colored in white and black, respectively. The number of zero
only connects sites from the two sublattices, but not sites omodes equal$§N,—Ng|. For definiteness, we assunié,
the same sublattice. For the example of Fig. 1, the sublattices Ny, so that all zero modes have support on sublatice
A andB correspond to the white and black sites, respectively. In this section, we will compare zero modes in wire ge-
In a matrix form and after a relabeling of indices, the eigen-ometries with different boundary conditions at the two ends

II. QUASI-ONE-DIMENSIONAL GEOMETRY

value problentH|¢)=¢|) can be rewritten as of the wire, as is shown, e.g., in Fig. 1. We will establish that
the localization length of these zero modes cannot be thought
W 0 tag|(Wa of as being intrinsic, i.e., independent of the boundary con-
8( ) :( N ( ) (1.2 ditions even as the thermodynamic linit-oo is taken. We
s/ \tag 0 /\¢p will then turn our attention to finite energies and, supported

by a numerical solution of the problem, argue that an intrin-
where ¢, and g denote the wave function on the lattice sic localization length at arbitrarily small but finite energies
sites of the sublattice& and B, respectively, and the matrix does indeed exist. The order in which the limits-c and
tag has the matrix elements; with ie A andjeB. Then, ¢—0 are taken is thus essential for the extraction of an in-
denoting the number of sites in the sublattiéemndB by N, trinsic localization length at zero energy.
and Ng, counting dimensions in Eq(l.2) immediately The sublattice symmetry singles out the band center in
yields that the number of linearly independent zero modes ithat, under an appropriate choice of boundary conditions, an
INAo—Ng|.2” To see this, note that il,>Ng, ¥, obeys an exact energy eigenfunction at that energy can be constructed
underdetermined set of linear equations, whilg obeys an for any realization of the disorder. This is not true of any
overdetermined set of equation&or all lattices shown in finite energye in a closed and finite system. Therefore we
Fig. 1, there is one zero mode with support on sublatige will proceed in two steps. We first compare the localization
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zero energy has been studied in Ref. 45 for the case of a wire
with random hopping only. In terms of the mean free path
of the wire, it was found that

Xn=7=—, n=1...N, (2.3
FIG. 2. Disordered quantum wire of even lendtHdotted re-
gion) coupled to left and right reservoirs through leads of the same

width as the wire. We have chosen leads without transverse hopping L>NI, up to fluctuations of relative ordem(/L) ",

for technical convenience. where the Lyapunov exponentstl/{the inverse localization
lengthg are given by(to leading and subleading order i

length of zero modes in a closed system with the exponentisiee Ref. 4y

decay lengths for transmission probability of plane waves in

an open system and establish that they are equal. Then we 1 B(N+1-2n)
study how the transmission probability of plane waves is —=——————~ n=1,...N. (2.9
changed when the energy becomes finite. In both steps we & (BN+2-p)l
use the transfer-matrix formalism, which can deal with open
and closed systems in a unified way. For an infinite wire, the conductance is given by
A. Transfer-matrix formalism in an unbounded wire N
2¢? L, 2€
1. Plane-wave representation G:T 21 cosh “x,= Tg. (2.5
A=

In the absence of disorder, the eigenfunctions of the
Schralinger equatiorf1.1) in a wire geometry as depicted in
Fig. 2 are plane waves. At zero energy, thereMiiadepen-
dent wave functions for plane waves traveling to the right
and N independent wave functions traveling to the left. An
arbitrary wave function can be expanded in the basis of plan
waves. In the presence of disorder, the plane-wave expansion
coefficientsa,, n=1, ..., acquire a dependence on the (BN+2—-p)I/B for N even,
positiony along the wire. The relation between thg(y) at &= (2.6)
different positions along the wire can be expressed through 0 for N odd.
the transfer matrix\,

N As we will find below that all localization lengthg, can
_ , , serve as localization lengths for zero modes in a finite-sized
an(y)‘m% Mam(y.y")am(y"). 2.1 wire, we will refer to their maximumé as the localization

) . ) length for an infinite wire.
Current conservation and the sublattice symmetry imply that

M can be parametrized &s

Hence, for an infinite wire it is only the smallest in magni-
tude of the Lyapunov exponents that governs the exponential
'decay of the conductance. Its inverse is thus identified with
t6he localization lengtl¥ of the system,

2. Site representation

U 0\ /coshX sinhXx\/V 0 An alternative representation for the transfer matrix is ob-
M= . (2.2 tained using a site representation for the wave function in-
0 U/ \sinhX coshx/\0 V stead of an expansion in plane waves. The sublattice symme-

try becomes manifest in the site representation if the wave-
The 2x2 grading displayed here is that of right and left function elements are arranged Nicomponent vectors),
moving plane waves. ThBX N matricesU andV are uni-  containing elements of one sublattice only. In that notation,
tary (8=2), symplectic $=4), and orthogonal £=1) the Schrdinger equatior(1.1) reads
when the hopping amplitudes are complex, real quaternions,
and real valued, respectively. Th&XN matrix X _ "
=diag(Xq, . .. Xy) Is real valued and diagonal. In the ab- ey=Tydyr1 T Ty-1by-1. 2.7
sence of the sublattice symmetry, the transfer matrix has a
similar parametrizatioi® The main difference between the The indexy labels the coordinate along the wire and the
cases with and without sublattice symmetry is that withoutN-component vectorg, contain wave-function elements on
sublattice symmetry the, can always be chosen positive, sites of sublatticé\ if yis odd and of sublatticB if y is even.
while with sublattice symmetry both positive and negatiye A possible choice for the vectoig, is shown in Fig. 3. The
appear. NXN matricesT, contain the hopping amplitudes between

The localization properties of the disordered wire are enadjacent sites.

coded in the transfer matri¢1. They are dominated by the The solution of Eq(2.7) can be represented in terms of a
diagonal matrixX in Eq. (2.2). The distribution of thex,, at  transfer matrix as well,
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black sites that have a white site to its right, we can construct
a wave function supported on all white sites. For it to be a
zero mode, the Schdinger equation must also be satisfied
on the two rightmost black sites that were not used to propa-
gate the wave function on the white sites. For Figp) these

are the two rightmost black sites. Application of Safirger
equation on each of those sites yields two linear constraints
for the wave function elements on the rightmost white sites.
Both constraints can be satisfied since they are implemented
linearly on the three seeds of the wave function on the left
end.

This example suggests a three-step recursive method to
obtain zero modes. First, the zero mode has support on one
sublattice only. Second\ independent numbers that make
up the N-component vectoi/,, are assigned to the values
taken by the wave function on the leftmost sites of each row

Y that belong to sublatticA. Solution of the Schidinger equa-
tion on all sites of sublattic® except for those without a
white nearest neighbor to their left or rigtite., except for

FIG. 3. Choice of the vectorg, of Eq. (2.7).

sites of sublattic® that are at the left or right ends of a rpw
( y )=M(y,y’)( Py ) allows to propagate recursively the wave function to the right

Yy-1 by - column by column. The rightmodi values of the wave

function thus constructed build the vectggr. The relation
y-1 Tr;1 0\le —T;rn_l between the vectorg,, andag that is thus obtained can be

M(y,y')= H o 1\1 0 - (28 expressed as
m=y
We note that, ify—y’>0 is even, the transfer matrix Yar=Mha| . (2.10

M(y,y') is block diagonal at zero energy. In that case,

M(y,y') can be parametrized as The NXN matrix M is nothing but the counterpart to the

upper left block of the transfer matrix in site representation.

ueXv 0 Hence, by Eq(2.9), it has the polar decomposition

Myy)=| roue v, ) (2.9

M=UeXV, (2.1

HereU andV are orthogonalunitary, symplectit matrices  \yhereU andV are orthogonalunitary, symplectic matrices

for B=1 (8=2,4) andX is a diagonal matrix. The grading for g=1 (8=2,4), andX is a diagonal matrix with eigen-
used in Eq{(2.9) corresponds to the division into sublattices valuesx, whose statistics are given by Eq&.3) and (2.4)

A andB. As the transfer matrices of EgR.8) and(2.1) are bove.

related by a simple basis transformation, the distribution of Third, in order to have a true zero mode, the Sdimger

the eigenvalues,, of the matrixX is also given_by Eqs(2.3)_ equation must be obeyed on the remainNg, and Ngg
and(2.4) above. Hence, as long as we are interested in thg|,cy sites that do not have white nearest neighbors to their
Lyapunov exponents only, we can choose freely between thg ang right, respectively. This givédg, independent con-
site representatioi2.8) and the plane-wave representation g aints to be satisfied by the elementsjaf andNgg inde-

(2.2). pendent constraints to be satisfied by the elementg,af
As Eg.(2.10 allows for N independent solutions, the num-
B. Bounded wires: Zero energy ber of independent zero modes is equal to
1. Wave functions
. . . Na—Ng=N-—(Np_+Ngg). (2.12
Zero modes are solutions to ScHimger equatior{1.2) at

zero energy. To see how they are constructed, let us firskhe equalityN,—Ng=N—(Ng_+Ngg) followed since the
inspect the case of Fig.(d) in detail. In this case, the zero lattice topology is such that the only black sites without left
mode is a wave function with support on the white sites only.or right white nearest neighbors are located at the far left and
To construct it, we start with three initial valuéseeds for  far right ends of the wire, respectively. We emphasize that
wave function on the three leftmost white sites. We nowthe criterion(2.12) for the existenceof zero modes does not
construct the wave function on all other sites in the sameely on the quasi-one-dimensional assumptfdkL or on
way as one finds the transfer matrix in site representatiothe assumption that there be only one “transverse” direction.
(2.9: By applying Schrdinger equation to the leftmost The only ingredients needed for E(®.12 to hold are the
black site of the middle row one obtains the value of theboundary conditions at the end of the disordered region, i.e.,
wave function on the penultimate leftmost white site of thethe topology of the “wire.” The simplifying feature brought
middle row. Repeating this process column by column for allby the quasi-one-dimensional limiM/L<1, is that the sta-
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tistical properties of the transfer matiw in Eq. (2.10 are
known. We will exploit this knowledge below.

How do the wave-function elements at the left and right
ends of the wire compare? To answer this question, we first
look at the geometric mead of a; and YR, I

X2 o X2yt
p=e" "Ny =e "U Yar. (213 FIG. 4. Example of a disordered quantum wire of even lehgth

In terms of this geometric mean, thi, constraints oy, (dotted regioin coupled to left and right reservoirs via point con-

and theNww constraints o can be written in the form  tacts. In this example the number of left end points on sublaftice
BR VAR is Ny =2 and the number of right end points on sublattizés

CBLe—X/z Ngr=2. The number of right end pointd,g on sublatticeA van-
( ) =0, (2.19 ishes as does the number of left end pols on sublatticeB. If
L is chosen to be oddN,, = Nag=2 whereadNg, =Ngr=0. When
L is odd, a zero mode can only be supported on sublattiaed the
conductance must vanish identically.

CBRe+ X2

whereCg, andCggr are (Ng. X N) and (NgrxX N) matrices
with coefficients of order unity, respectively. In the localized

regime L>NI, the x, are spaced by an amount of order pjay a role once the width of the leadssmaller than the

L/NI>1, so that the coefficients in ECQ14) differ consid- width of the Samp|e lattice, as is shown, e.g., in F|gs 4,5,
erably in magnitude. To see what simplifications this bringsgnd 6.

about, we look at the first row of E¢2.14), With ideal leads attached to the left and right ends, zero
o e modes with support on sublattio® can coexist with zero
(CeL)u® ™yt +(CpL)ine N hy=0. modes with support on sublatti@ In fact, since a traveling

(2.19 wave at zero energy has support on both sublattices, conduc-
According to Egs. (2.3 and (2.4, the coefficient tance through the sample is only possible if both types of
(Cg)1ne 2 is a random number that fluctuates aroundZem modes exis Using the same arguments as for the zero
e L2 Since by Eq(2.4) xy is smaller than all othex, ~ Modes in a closed system, the possible localization lengths
by an amount of at leadt/NI>1, we thus find that the for zero modes in the presence of leads can be found from
left-hand side of Eq(2.15 is dominated by the last term, so counting the number of end points belonging to each sublat-

that we concludeby =0, with exponential accuracy. Extend- {ice. More precisely, leNg_ andNgg be the number of sites
ing this argument to the firdlg, and the lasNgg rows of of sublatticeB without a white nearest neighbor to their left

Eq. (2.14 we infer that and right, respectively. For all geometries under consider-
ation,Ng, (Ngr) match the number of end points on the left
#,=0, Nn=N—Ng, +1,...N, (right) end of the wire that belong to sublattiB(sites con-
nected to leads are excluded her&low, the quasi-one-
$,=0, n=1,... Ngg, (2.16 dimensional localization lengths of the zero modes with sup-
port on sublatticeA are &y 1, - - - En—ng - Similarly, the
respectively, again to exponential accuracy. Conversely, thgvailable quasi-one-dimensional localization lengths for zero
only nonzero elements of¢ are ¢, with n=Ngr_ modes with support on sublatti@areéy, .11, - - - én-n,
+1,... N=Np., to gxp(_)nen'ual accuracy, so that, by Eq. whereN,, (Nag) denotes the numbers of end points on the
(2.13, the only localization lengths avall?sble to the zero left (right) end of the wire that belong to sublattiée(again,
modes are,, with n=Ngr+1, ... N—Ng, ." In our nota-

. . BR sites connected to leads are here excludééhether or not
tions, a negative localization length corresponds to a wavg, o guasi-one-dimensional limit appliesN§, + Ngg=N or

function exponentially localized near the left end of the WireNAL+NAR>N there are no zero modes with support on sub-
(S”?CG _then| YaL|>[¢arl in that case while a positive 0= |attice A or B, respectively, and hence no traveling waves and
calization lengths correspond to a wave function exponen: . .onductance through the sample. If bdtg, +Ngg<N
lt'a”%.loi.a“ZTd nfhar Lhehrlght end offthe \évc';\le' A dlviargent andN,; +Nag<<N, there is a finite conductance through the
ocalization lengt (w liCh can occur for o ) signals a sample. In that case, the quasi-one-dimensional exponential
zero mode that is critical| ¢, | and[¢/r] comparable in decay length of the conductance, denog&d is the shorter

magnitude to e>'<ponen.t|al accur.acy L one of the maximum of the decay lengths for zero-modes on
We have verified this scenario by numerical implementa-

" f ab . ructi ¢ des i the two sublattices. We give in Tables | and Il the values
lon of above recursive construction ot 2ero modes in geéomg, by&* for the four geometries of Fig. 5 and the three
etries depicted in Fig. 1 for various choices NMfand of

49 i geometries of Fig. 6, respectively.
boundary condition’ The agreement found is excellent. Thus, we find that the same range of localization lengths

shows up in the exponential decay of wave functions in a
closed system and of the conductarigén an open system,

A different method to probe the effect of boundary con-when the wire is coupled to the electron reservoirs via point
ditions on the localization length of the random hoppingcontacts. This is in stark contrast to the case of an “infinite”
model is via the transmission probability of a lattice coupledquantum wirg(i.e., a wire without point contacts at both ends
to electron reservoirs via ideal leads. Boundary conditionas depicted in Fig. )2 where only the largest localization

2. Transmission probability
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()

FIG. 6. Three different bounded wirdé=6 sites wide and
sites long. In all casels is chosen even and the wire is connected to
the reservoirs by single-channel leads. The boundary conditions are
specified by(a) Ny, =Ngg=2, Ng . =Nar=3. (b) Ny . =Ngr=1,
NgL=Nar=4. (c) NaL=Ngr=0, Ng  =Nar=5.

—0<t;<<1+ 6 for hopping in the longitudinal direction and
t(1—0)<t;;<t(1+6) in the transverse direction, witly
=0.2 andt=0.6. With this choice the mean free pdths

FIG. 5. Four different bounded wirdd=5 sites wide and. ~ about 65 lattice spacings, as can be estimated from a fit to
sites long. In all caselsis chosen even and the wire is connected to(ln g> vs L for largeL and large energy (~ 10*2)_ In the
the reservoirs by single-channel leads. The boundary conditions aigerfect leads we také=0 andt=0. The numerical data are
specified by(a) Nai=Nar=Ng =Ngr=2. (b)) Na=Ngr=1,  optained after averaging over°6amples. The size of error
NgL=Nar=3. (€) Na=Ngr=0, Ng =Nar=4. (d) NaL=0,  phars for(Ing) is estimated to be less than 1%. A more de-
Nar=3, Ng =4, Ngr=1. tailed account of our implementation of the recursive Green-

. . , function method can be found in Refs. 53 and 54. The dis-
length determines the conductance. It is also in contrast to

the case of a quantum wire with standard diagonal disorder, tag|E |. Maximum localization lengthst% and & , of zero
where the boundary conditions have no effect on the expomodes on sublatticea and B, respectively, for the four different

nential decay length of the conductance. geometries depicted in Fig. 5. The minimumgif andé&;; , denoted
Aga|n, we haVe Ver|f|ed thIS scenario and fOUﬂd exce”emg*’ controls the conductance. The enﬂ’yzo for geometry(d)

agreement between numerics and theoretical expectations.indicates that no zero mode is supported on sublatic€orre-
spondingly, the conductance vanishes at zero energy in this geom-
C. Bounded wires: Nonzero energy etry as is implied by the vanishing localization length=0.

To study the importance of boundary conditions at finiteFi 5 N N N N £ £ &
energy, we have calculated numerically the conductance of 2~ A AR Bt BR__ oA 8

lattice with random hopping amplitudes and point contacts aga) &3 &3 o0
a function of energy using the recursive Green-function() & &l 6l2
method>? In our numerical simulations we chose real- () & |&  6li4
valued nearest-neighbor hopping amplitutiesn the disor-  (q) 0 & 0

dered region uniformly and independently in the intervals 1

coRr N
WA wN
A D wN
R ORN
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TABLE Il. Maximum localization lengthstx and &5, of zero  smaller one of the localization lengths in the chiral and stan-
modes on sublattice& and B, respectively, for the three different dard symmetry classpsFor our calculations we estimate
geometries depicted in Fig. 6. The minimum&if and&z , denoted  that, with the Fermi velocity given byg~2 in units of the

&*, controls the conductance. longitudinal mean hopping amplitude.~10 2 for N=5

- and N=6. The largest energy we consider in our calcula-
Fig.6  Na.  Nar  Ne  Ner & &G & tions, e =102, is well inside the standard orthogonal class,
@ 2 3 3 2 & & TN see Fig. 10. Fpr that largest energy, the four or three curves
(b) 1 4 4 1 & &l T3 of (Ing) Vs L/l in Figs. 7 and 8, re;pectlvely_, th_at _Corr_espond
© 0 5 5 0 & &l 75 to the different boundary conditions are indistinguishable.

The same conclusion can be reached from Fig. 9, from which
one can infer the Lyapunov exponents

order strength in the numerical calculations presented here is

chosen the same as in Ref. 54, so that a comparison of the 1__1d(ng)
results is possible. & 2 dL ¢

We have calculatedn g) vsLL for four different boundary o o Fig. 10, where we showed the energy dependence of
conditions for a quantum wire of widtN=>5 and three dif- |, oy 4t 5 fixed length. This agrees with the conventional
ferent boundary conditions for a quantum wire of with |, qerstanding that, in the absence of the sublattice symme-

=6. The boundary conditions are shown in Figs. 5 and 6y the |ocalization length is an intrinsic property of the wire,
Our results are shown in Figs. 7, 8, 9, and 10. and hence boundary independent.

Upon increasing the energy away from the band center tna two other energies we considered=10"° and
e=0, a crossover from the chirdbrthogonal symmetry 14-9) gre photh much smaller thas., i.e., well inside the
class to the standafdrthogonal symmetry class is expected .hiral class. For short lengths, we see the satrengdepen-

to Lake placi.' For wires without point conticts at fthﬁ left a;]n ence on boundary conditions that was predicted for the zero
right ends, this crossover was studied by three of the authorg,,qes in the preceding sections. A quantitative verification

in Ref. 54. There, we found that the crossover to the standar&lf the predictions is found from Fig. 9, where the rescaled
orthogonal class happens for-¢., where Lyapunov exponents ’

L>NI, (2.18

hue (N+1)I d{Ing)
gc=—— 2.1 -
¢ N2 (217 2 dL
is the Thouless energy for a localization volume of lineartake even integer values for otidand odd integer values for
dimension ~NI. (The relevant localization length is the evenN for shortL (but still L>NI), in agreement with Eq.

<In g>
<In g>

FIG. 7. Dependence on the
wire lengthL, L always even, of
(Ing) for a quantum wire with
random hopping only, connected
=60 o = e 50 60 - = e 750 to the _reservoirs via s_ingle-

LIl Lil channel ideal leads, and with the
boundary conditions specified in

Fig. 5. The quantum wire iN

=5 sites wide. The curves repre-
\ (© sent different values of the energy
\ ¢ and different choices for the
_20 \; boundary conditions at the left
A \\\\ A and right ends of the wire, as de-
> N > picted in Fig. 5.
v Ne el v
o} N TN
N, Teen
e=10_;s \\\
e I N
~60 s
50 100 150
L/l
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5 [
~J 4 RN N= B
S S
Agli ) * (a)e=10"
é° ! ‘.I o (a) e=10
— ]
V }
S0
: \
]
2z \
I 1
0, 50 100 150
0 e !
0 50 100 150
L/l

<In g>

0 50 100 150

]
8
~(N+1)id<In g>/ 2dL

0 5b o 100
L/l

150

FIG. 9. Lyapunov exponent¥In g)/dL for the curves shown in
Figs. 7 (upper paneland 8(lower panel.

7(b) and 7c) is found to depend linearly on length for small

. . L with a boundary-condition-dependent slope, while g)

0 50 100 150 has a curvature consistent with la/(N|)? dependence, as is
L/l appropriate for critical conductance statistics. For energy

FIG. 8. Dependence on the wire lendth L always even, of :_1076 thel_‘ dgpendence o¢|n_g> IS I|_n_ear for largeL, but

(In g) for a quantum wire with random hopping only, connected toWith ailg)cahzatlon length that is S|_gn|f_|cantly Iarger than for

the reservoirs via single-channel ideal leads, and with the boundary =10 . Such an enhanced localization length is character-

conditions specified in Fig. 6. The quantum wire\is: 6 sites wide.  IStic of the crossover between the chiral and standard classes

The curves represent different values of the energynd different ~ for a quantum wire without boundariébForN=6 (evenN)

choices for the boundary conditions at the left and right ends of th@nd energies:=10"°, 10°°, (Ing) in Figs. §a)-8(c) de-

wire as depicted in Fig. 6. creases linearly with length, but with different slopes for

small and largel. These slopes correspond to exponential
(2.4) with B=1. For larger lengths, however, the dependencdocalization controlled by a boundary-condition-dependent

on the boundary conditions is lifted, and the Lyapunov ex-zero mode and to exponential localization in the chiral or-

ponents are the same for all boundary conditions consideretthogonal clasgor, strictly speaking, the crossover between
as is illustrated in Fig. 9 at energy=10°. For a suffi-

the chiral and standard orthogonal clagsis an infinite
ciently large length of the wire and upon decreasing the enwire, respectively. (Note, however, the large energy-
ergy, —(N+21)ld{Ing)/2dL approaches 0 foN=5 and 1

dependent crossover lengths and the nonmonotonous length
for N=6, irrespective of the boundary conditions. Again, dependence of the Lyapunov exponents at intermediate

this is well illustrated by Fig. 9 at energy=10"°. Alterna-  length scales in Figs. 7—1CHence, from the numerical cal-
tively, for N=5 (oddN) and energy: =109, (Ing) in Figs.  culations we conclude that for a finite energy, the Lyapunov

-60
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0 e the wire is zerdsee Table | and the downturn of the traces
, with energiese=10°10° for sufficiently small wire
-5 - lengths in Fig. 7d)]. Equation(2.19 implies that the shorter
_____ |&,| disappear at shorter wire lengths than the lafgglt All
g l dependence on boundary conditions is removed and only the
i smallest of the Lyapunov exponents survives for lengths
=15 ¢ e g 7 larger than the second largest of thg,, i.e., beyondL,
wl e e @ | =L, -1y for N odd and beyond.,=L, -y, for N
- ~ o ®) even. This is well illustrated in Figs. 9, where the shortest
o -—=(© localization length(corresponding to the highest Lyapunov
] exponenk disappears first, to be followed by the second-
shortest localization length at a wire size that is roughly a
B (LT T P S e R e e factor 2 (N=5) or 5/3 (N=6) larger(see Tables | and I,
€ respectively.
To summarize, while the exponential decay length of the
conductance depends on the boundary conditions: fo©

<ln g>
\
N\

0 L even in the limitL — <o, the exponential decay of the conduc-
=6 tance is governed by the “intrinsic{largesj localization
-5 ¢ ] length ¢ for any finite energye different from zero. In this
W‘ sense, the remarkable dependence of the zero-mode localiza-
=10 - /,/’// 1 tion lengths and of the zero-energy conductance on boundary
A ‘_,/’ 7 conditions can be considered as an anomaly belonging to the
g 15 pommmeoomoooim et e 1 case of energy being exactly equal to zero, not as something
v //’ representative of the thermodynamic limit of the random
-20 o T Eﬁ; . hopping model.
7 -—- ()
25 b -
Il. HIGHER DIMENSIONAL EXAMPLES
0T 0% 107 10° 107 107 10° 107 10°

The examples we have discussed so far pertain to a quasi-
one-dimensional geometry. We would like to close with ex-

FIG. 10. Crossover as a function of energy for a fixed lengthamples of lattices that are extended in two or more dimen-
L=20 of the wire of (Ing) for N=5 (upper panel and N=6 sions. For the three lattices shown in Fig. 11, three different
(lower panel. All traces saturate to differeriinite values at very  scenarios apply to the zero-energy conductance between the
low energies except for tradel) of the upper panel for which the |eft and right leads.
conductance vanishes at the band center. For the lattice of Fig. 1), the conductance decays ex-

ponentially with a decay length of the order of the mean free
exponents lose their dependence on the boundary conditiofgth of the system as can be seen by direct simulation of the
if the wire is sufficiently long. The typical conductance itself, conductance or by constructing recursively zero modes on
exp(Ing)), retains astrong dependence on the boundary each sublattices. In the latter case, a seed value is assigned
conditions for sufficiently long wires through its exponential first to the leftmost(rightmos) black (white) site having a
prefactor as is illustrated by Figs. 7 and 8. However, thepair of white (black nearest-neighbor sites in the direction
slope of(Ing) as a function ofL/NI in the regimeL/NI  orthogonal to the leads. The ScHimger equation is then
>1 is independent of the boundary conditions. solved on the whitgblack sites moving to the rightleft)

The length scales where the Lyapunov exponents begin toolumn by column. The zero mode on black sites is expo-
cross over from the boundary-condition-dependent valugentially localized near the right contact and the zero mode
characteristic of the zero modes to the “intrinsimallest  on white sites is exponentially localized near the left contact
Lyapunov exponent can be estimated as the length scaledth a localization length of the order of the mean free path.
where the Thouless energyr, (L)=g(L)A(L) is equal to  The exponentially small conductance at the band center is
the energy &, with g(L)~exp(-2L/|&)) the typical found in all “diamondlike” structures of the form of Fig.
boundary-dependent dimensionless conductance of the witkl(a), irrespective of dimensionality and disorder strength.
(n=1,... N) andA(L)=%vg/NL the mean level spacing One possible generalization of the diamondlike geometry
of a wire with lengthL. Hence, of Fig. 11(a) is to couple sites on the lower left and upper

right edges of the diamond to the reservoirs. In this case, the
number of zero-modes scales with the width of the leads. To
n=1,...N. (219 each seed on one edge corresponds a zero mode exponen-
tially localized about its/is-a-vis on the opposite edge. Lin-
No useful crossover length can be defined for the boundargar superposition of these zero modes yield traveling waves
condition of Fig. %d), where the zero-energy conductance ofon the edges that are exponentially localized in the direction

fLUF
Ls,n~ |§n| In NL

1
&,n€
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Fig. 11(b) is best fitted by the conductance distribution of a
thick quantum wire with an odd numb&t of channels de-
rived in Ref. 54. He thus concludes that the critical zero
mode in the two-dimensional geometry of Fig.(l1lis
quasi-one-dimensional in nature.

IV. CONCLUSIONS

In this paper we have investigated the dependence on
boundary conditions of localization properties of the random
hopping problem at the band center and its vicinity. At finite
energies, localization properties are intrinsic, i.e., indepen-
dent of boundary conditions in the thermodynamic limit. Re-
markably, this is not true anymore precisely at the band cen-
ter where both the transmission probability of a disordered
region connected to reservoirs by single channel leads and
the spatial decay of zero modes in closed systems are highly
sensitive to the choice of boundary conditions even as the
thermodynamic limit is taken. This sensitivity to boundary
conditions was quantified analytically in quasi-one-
dimensional geometries. In particular, the conditions under
which zero modes are critical were given. In higher dimen-
sions, one must rely on numerical simulations to study local-
ization properties of zero modes. However, the task is some-
how simplified by an explicit recursive construction of zero
modes that we showed applies to a large class of geometries.
It is an interesting open problem to determine conditions for
criticality of zero-modes beyond quasi-one-dimensional ge-

FIG. 11. Three examples of two-dimensional lattices that have®Metries and whether a field-theoretical description of intrin-
different size dependencies of the Conductance’ see text. SiC Critical prOpertieS in terms Of Critical Zero mOdeS in the
spirit of Refs. 44, 36, 39, and 37 applies to the two-
dimensional random hopping problem.

(a)
(b)

il

orthogonal to the edges. This is reminiscent of the Callan
Harvey effect in field theory.

For the “square” lattice of Fig. 1(c), the conductance is
zero, as this geometry does not allow a zero mode on the We would like to thank A. Altland for discussions. This
black sites according to the arguments of Sec. [(Becall work was supported in part by the NSF under Grants No.
that the condition of quasi-one-dimensionality is not neededMR 0086509 and PHY99-07949 and by the Sloan and
to establish the conditions for the existence of zero mgdes.Packard foundationéP.W.B); by Fonds pour la Formation

Finally, the lattice of Fig. 1) has zero modes on white de Chercheur et I'Aide éa RecherchéE.R); by Grant-in-
sites and on black sites that are believed to be crifical,  Aid for Scientific Research on Priority Ared8) from the
not exponentially localized This is not surprising in a quasi- Ministry of Education, Science, Sports and Culti@rant
one-dimensional geometry for which the lattice only extendNo. 12046238 (A.F.). P.W.B. and A.F. thank the Institute for
in the longitudinal direction, as can be seen using the argufheoretical Physics in Santa Barbara for its hospitality dur-
ments of Sec. |l B. More surprising is that the critical natureing the final stages of this work. C.M. thanks the Yukawa
of the zero mode seems not to depend on the transvershistitute for Theoretical Physics in Kyoto for its hospitality
extension. Vergein Ref. 55 has studied numerically the con- during the final stages of this work. Numerical data pre-
ductance distribution in the geometry of Fig.(iLfor a  sented here were obtained at the Yukawa Institute Computing
square lattice made up of up to 79999 sites. His conclu- facility and the Supercomputing Center, ISSP, University of
sion is that the probability distribution in the geometry of Tokyo.
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