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Equation of state and the Hugoniot of laser shock-compressed deuterium:
Demonstration of a basis-function-free method for quantum calculations

M. W. C. Dharma-wardana* and Franc¸ois Perrot†

National Research Council, Ottawa, Canada K1A 0R6
~Received 17 December 2001; published 24 July 2002!

In most density functionals the energy is a functional of the electron densityn(rW) and afunction of the

nuclear positionsRW i . We consider, a functional ofboth n(rW) and the nuclear densityr(rW)5(d(rW2RW i). In
reducing the two Kohn–Sham equations, a classical mapping valid for interacting electrons is invoked. The
exchange-correlation is nonlocal and free of self-interaction errors. As a challenging application, we calculate
the equation of state and the shock Hugoniot of deuterium relevant to topical shock experiments. The calcu-
lated Hugoniot is quite close to the SESAME and path-integral Monte Carlo Hugoniots. We also treat the
nonequilibriumcase, which is extremely difficult for standard methods. Here the D1 are assumed to be hotter
than the electrons, and lead to the soft Hugoniots similar to those seen in the laser-shock data. The softening
arises from hot D1 –e pairs occurring close to the zero of the electron chemical potential.
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Hydrogen isotopes have been extensively studied;
laser-shock experiments of Da Silvaet al.,1 Collins et al.,2

and Mostovychet al.3 produced unexpected disagreeme
with the equation of state~EOS! of the SESAME database.4

The disagreement occurs for temperaturesT with
;0.8 eV ,T,;10 eV, and for densities 1.8,r s,;2,

where the electron-sphere radius~in a.u.!, r s5(3/4pn̄)1/3.

Heren̄ is the electron-number density. The coupling const
G5~potential energy!/~kinetic energy! ranges from 1 to;30.

The degenerate electrons begin to change to a clas
system in the anomaly regime~AR!, while thee–D1 inter-
action is close to bound-state formation. Thus the AR pos
difficult, strongly correlated many-body problem of wid
interest—from astrophysics and fusion to materials scien
Hence a flurry of activity has focused on the deuterium E
and its Hugoniot.5 These involve intuitive approaches~called
‘‘chemical models’’!,6 assuming the existence of molecule
D,D1, etc., and first-principles approaches like the pa
integral Monte Carlo~PIMC!, a finite-T quantum Monte
Carlo approach.7 Unlike PIMC, density-functional theory
~DFT! as embodied in standard codes~e.g.,VASP!,8 and stan-
dard quantum Monte Carlo~QMC! methods become inappli
cable at finite-T and partial degeneracies. Configuratio
interaction~CI! type calculations with a basis ofN functions
grows exponentially withN, while even theT50 ground-
state problem increases asN.4 Even simplified tight-binding
approaches~using one or two functions per nucleus! which
may be useful in some regimes, can become numeric
prohibitive.9 One of the objectives of this paper is to demo
strate an ‘‘order-zero’’~basis-set independent! approach to
equilibrium and nonequilibrium quantum calculations.

PIMC at higherT, and DFT at lowT ~full degeneracy!,
can be joined to yield a deuterium EOS close to SESAM
and disagreeing with the laser-shock data in showing
strong softening.7,11 Recent magnetic-shock experimen
from Sandia are also close to the SESAME Hugonio10

However a high degree of agreement exists in the indep
dent laser-shock results.11
0163-1829/2002/66~1!/014110~4!/$20.00 66 0141
et

t

t

cal

a

e.
S

,
-

-

lly
-

,
o

n-

We present first-principles results for the EOS and
Hugoniot of deuterium, using novel theoretical methods. O
method is computationally simple and uses simple integ
equations and a basis-set free classical mapping of quan
systems using DFT ideas. We calculate all the pa
distribution functions~PDFs!, gi j , with i 51,2,3;~or e↑ , e↓ ,
and D1 nuclei! of a three-component system. Being based
the PDFs, it is manifestly nonlocal~i.e., gradient corrections
are not needed!, and it has no self-interaction errors. Th
method can be used for the quasiequilibrium tw
temperature case withTDÞTe as well. Consider the fluid
with a D1 at the origin, and let the one-body densities of t
electrons and D1 be n(r ) and r(r ). Then n(r ) is really
nDe(r )5n̄gDe(r ). Similarly, the r(r ) is really the mean
nuclear desnity multiplied by the deuteron-deuteron PD
The free energyF is a functional of the formF@n(r ),r(r )#.
Taking functional derivatives, we havetwo coupled Kohn–
Sham–Mermin equations:

dF@n~r !,r~r !#/dn~r !50, ~1!

dF@n~r !,r~r !#/dr~r !50. ~2!

As shown in Refs. 12 and 13, Eq.~1! leads to a~quantum!
Kohn–Sham~KS! equation for the electrons, while Eq.~2!, a
classical KS equation, becomes the hyper-netted-ch
~HNC!14 equation for a specific choice of the correlation p
tential ~there being no exchange potential in the classi
system!. Thus the KS eigenfunctions, as well as t
n(r ), r(r ), in the hydrogen fluid were calculated by solvin
Eqs.~1! and~2!.12 In Car-Parrinello approaches the N ions
sitesRW i are explicitly treated. By treatingboth electrons and
ions via their distributions, we achieved a major simplific
tion. Our hydrogen calculations were later confirmed
lengthy QMC.15 However, while Eqs.~1! and~2! provide the
gie(r ), gii (r ), i 5 ion, thegee(r ) was available only in LDA.

Recently, we showed how the electrons at the phys
temperatureTe could be replaced by an equivalent classic
system atTee5(Te

21Tq
2)1/2, such that the quantum effect

are correctly incorporated.16 A simple expression for the
electron ‘‘quantum temperature’’Tq as a function ofr s was
©2002 The American Physical Society10-1
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given. Application of the method, denoted the ‘‘Classic
Mapping of Quantum Systems using the hyper-netted-ch
equation~CHNC!,’’ to three- and two-dimensional uniform
electron liquids atT50 and finite-T, showed excellent
agreement of thegi j , energies, etc., with QMC results, fo
even very strongly coupled situations.16–18 Here we present
an application going beyond pure uniform electron fluid
Electrons in a uniform neutralizing background are ma
ematically identical to a D1 system, except for changes o
scale @e.g, for D1, r sD5r s(MD /me), etc., MD is the deu-
teron mass andme51]. Hence the D1-quantum temperature
TDq is also available, and is negligible in the regime of i
terest; thus D1 are treated as classical particles.

The densitiesr̄ and n̄ are equal since the nuclear char
Z51. Consider a fluid of total densityntot , with three spe-
cies. Letxi5ni /ntot ,ntot5 r̄1n̄. The physical temperatur
is T, while the inverse temperature of the electrons is 1/bee,
with 1/bee5A(T21Tq

2). For D1, no quantum correction is
needed andTDD51/bDD is T. Theb i j between electrons an
D1 is actually not needed since theproduct, beDfeD(r ) is
completely determined by quantum mechanics~see the fol-
lowing!. However, here it is just the mean kinetic energy
the D1 –e pair, i.e.,TeD5(Tee1TDD)/2.

The classical equations for the PDFs and the Ornste
Zernike ~OZ! relations are

gi j ~r !5exp@2b i j f i j ~r !1hi j ~r !2ci j ~r !1Bi j ~r !#, ~3!

hi j ~r !5ci j ~r !1SsnsE dr 8hi ,s~ ur2r 8u!cs, j~r 8!. ~4!

Here f i j (r ) is the pair potential between speciesi , j . For
e–e ~or D1 –D1) this is just the Coulomb potentialVcou(r ).
For parallel-spin electrons, the Pauli principle prevents oc
pation of the same orbital. As before,16 we introduce a ‘‘Pauli
exclusion potential,’’P(r ). Thus f i j (r ) becomesP(r )d i j
1Vcou(r ), when i , j denote electrons. The functionh(r )
5g(r )21. The c(r ) is the ‘‘direct correlation function
~DCF!’’ of the OZ equations. TheBi j (r ) is the ‘‘bridge’’ term
due to certain cluster interactions. If this is neglected, E
~3! and ~4! form a closed set defining the HNC approxim
tion. ~In effect, the KS equations become HNC equations
the correlation potentials are evaluated as a sum of hy
netted-chain diagrams.! The HNC is sufficient for the uni-
form 3D electron~3DEG! for a range ofr s , up tor s550, as
shown previously.17 Hence we neglect the bridge correctio
in this study of deuterium.

The P(r ) is defined as in Ref. 16 from the zeroth-ord
PDFs of the parallel-spin electrons. Thus:

bP~r !5h11
0 ~r !2c11

0 ~r !2 ln@g11
0 ~r !#, ~5!

where, e.g.,c11
0 (r ) is the spin-i DCF of the OZ equation.

Only the productbP(r ) is needed.
The Coulomb potentialVcou(r ) for two point-charge elec-

trons is 1/r . However, an electron at the temperatureT is
localized to within a thermal de Broglie length~dBL!. Thus,
for the 3DEG we used a ‘‘diffraction corrected’’ form,19

Vcou
ee (r )5(1/r )@12e2rkee#; here kee5(2pm* Tee)

1/2 as
01411
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shown by Minooet al., andm* 51/2 is the reduced mass o
the electronpair. Minoo et al. usedTee5T, and holds only
at high T. The use ofTee5(T21Teq

2 )1/2 instead ofT vali-
dates it down toT50 as well.16

Since the D1 are classical particles, the D1 –D1 interac-
tion is the Coulomb interactionf33(r )51/r . The e–D1 in-
teraction is more tricky. TheVcou

ee with the dBL correction is
based on the quantum mechanics of two electrons. Simil
we determine thee–D1 interaction,feD(r ), from the den-
sity profile nDe(r ) given by the KS equation for electron
interacting witha singleD1 at the origin. We have discusse
this in the context of the ‘‘neutral pseudo-atom’’ DFT mod
~NPA-DFT! for solving the KS equations.13,20This gives the
deuteron-electron PDF, i.e.,gDe(r )5nDe(r )/n̄. This nDe(r )
includesboth bound-state and continuum-statedensities. Ap-
plying the CHNC and the OZ equation to this system co
taining asingleD1, we have

2bDefDe~r !5 log@gDe~r !#2hDe~r !1cDe~r !, ~6!

hDe~r !5cDe~r !1n̄E drW8 cDe~rW2rW8!hee~r 8!. ~7!

The D1 –D1 DCF does not appear as there is only a sin
D1. Hence, knowing thegDe(r ) from the solution of the KS
equation for the single deuteron problem, we can obt
cDe(r ) in terms ofhDe(r ). Hence thee–D potential can be
extracted. This determines the product,bDefDe(r ), while
bDe andfDe are not needed individually. However, on sol
ing the KS equation for the regime of interest,no atomic
bound statesare found; the effective ionic chargeZ2nb
51, i.e, nb , the number of bound electrons per nucleus,
zero. This does not contradicttransientbound states found in
PIMC.21 Hence, at least in this regime ofn̄ and T, Kohn–
Sham NPA-DFT is not needed; we set:

fDe~r !52~1/r !@12e2rkDe#, ~8!

kDe5~2pmeTee!
1/2, ~9!

1/bDe5~TDD1Tee!/2. ~10!

The first equation is just theVcou with the r 50 value set to
an inverse dBL for the D1 –e pair, kDe , as in thee–e inter-
action. The dBL 1/kDe contains only the electron contributio
since the D1 is a classical particle. Thus only theTee appears
in kDe ~the effective mass of the D1 –e pair isme , since the
deuteron massMD@me).

Finally, we solve the coupled set of CHNC equations
determine the six PDFs of thee,D1 system. The excess free
energyFexc(r s ,T) is determined via a coupling-constant in
tegration, as in Ref. 17, for a range ofr s andT. The total free
energyF(r s ,T) is obtained by adding on the ideal electro
and D1 contributionsF0

e ,F0
D . The total pressureP and the

total internal energyE are obtained as usual byP
5]F(r s ,T)/]V, where V is the volume, and E
5]bF(r s ,T)/]b, whereb51/T. In the regime of interest
i.e., 1.8,r s,2.1, and 0.8 eV,T,15, we find that
Fexc(r s ,T) is approximately linear, i.e., Fexc(r s ,T)
0-2



r

-

,

hi
n-

a

o

on
ci
a
ze

te

i
i-

nt

on
ry
ler
re-

lax-
lts,
n

ium

.

il-

ess-
ion
ter
. 2

in
ept
he

iot
the
also
for
he
ry
iety
u-

-
y

0
0
0

th

nt
wn

EQUATION OF STATE AND THE HUGONIOT OF LASER . . . PHYSICAL REVIEW B66, 014110 ~2002!
5M(T)rs1C(T). The T dependence ofM (T),C(T) is quite
nonlinear. Figure 1 shows thatM (T) changes character nea
T56 eV, close to the zero ofme .

Our P,E are compared with the PIMC data~MC! in Table
I, showing good agreement forT.2.75 eV. For lowerT,
our pressures are somewhat smaller.

The free energyF(r s ,T) is used to calculate the deute
rium Hugoniot for the initial state, (E0 ,V0 ,P0), with T
519.6 K and an initial densityr050.171 g/cm3. The initial
stateE05215.886 eV per atom, andP050. The results are
shown in Fig. 2. The CHNC Hugoniot, similar to PIMC
approaches SESAME at highT. A softening of the Hugoniot
around 2 Mbar, not seen in the PIMC, is also noted. T
appears nearn̄ andT where the interacting chemical pote
tial me(r s ,T) passes through zero.

We can use the CHNC equations even when electrons
D1 are at two different temperatures,Te andTD . The shock
is launched from an aluminum pusher; the shock acts
molecules initially around;20 K. Consider a scenario
where the shock energy transfers preferentially to the i
which become much hotter than the electrons. The velo
measurements begin after about 3 ns in the laser work,
after a longer time delay in the Sandia work. Landau–Spit
theory would indicate that the D1 –e equilibriation occurs
well within the experimental time scales. Simple estima
might give ;104 collisions within the time window of the
experiments. However, the formation of coupled modes
plasmas withG.1 strongly reduces the ion–electron equ
libriation rate.22 Experimental evidence exists for this poi

TABLE I. The total pressureP ~Mbar! and total energyE ~eV!,
from the classical-map HNC~CHNC! approach, and the path
integral Monte Carlo~PIMC! approach of Militzer and Ceperle
~MC! at r s52.0, i.e., at a deuterium density of 0.6691 g/cm3.

T(K) Fexc P~CHNC! P~MC! E~CHNC! E~MC!

500000 25.35310 26.278 25.980 113.30 113.2
250000 22.14960 12.244 12.120 47.57 45.7
125000 20.99712 5.374 5.290 13.60 11.5
65000 20.64405 2.143 2.280 23.21 23.80
31250 20.57058 0.754 1.110 210.74 29.90
15625 20.57119 0.213 0.540 213.97 212.90
10000 20.57890 0.058 0.470 214.91 213.60

FIG. 1. The excess free energy in the regime of interest fits
linear form Fexc(r s ,T)5M (T)r s1C(T); the slopeM (T) and the
interceptC(T) are shown as a function ofT. Note the change of
character inM (T) whenme passes through zero.
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of view.23 A compactly held screening charge at each i
would act like a neutral object which, while having a ve
hot deuteron at the center, would screen it from the coo
outer electrons. The effect could lower the electron–ion
laxation by an order of magnitude.22,23 If laser shock data
were gathered at several time delays, the details of the re
ation would be available. In lieu of such relaxation resu
here we assume that the D1 nuclei are about 5 eV hotter tha
the nominal electron temperature~i.e., TD5Te15 eV), ex-
cept at the lowest temperatures. UsingTe ,TD in the HNC
equations as before, we have calculated a quasiequilibr
Fexc(r s ,Te ,TD) and a shock Hugoniot~quasiequilibrium
concepts are discussed in Ref. 22!. The resulting nonequilib-
rium Hugoniot is given in Fig. 2.

The higherTD makes the D1-e fluid more compressible
This appears counterintuitive if one considers only the D1

contribution. The quasifree energyF(r s ,Te ,TD) consists of
Fe , FD , and FDe . On settingTD.Te , the FD term taken
alonereducesthe compressibility, but the total compressib
ity is increased by the major role of the pair-termFDe . As
seen in Fig. 1, the fluid is in a regime close to theme50
transition. Thus a higherTD increasesTDe and reduces the
electron degeneracy even more, making it more compr
ible. When this effect is strong enough to offset the reduct
of the compressibility from the ideal gas term of the hot
deuterons, a softening of the Hugoniot could result. In Fig
we show a Hugoniot labeled NEQ0 where the ideal termP0
was computed just as in the equilibrium Hugoniot, while
NEQ the full effect was included. Thus we see that exc
for the lowest temperatures, the contribution of t
deuteron–electron pairs dominate.

Our explanation of the observed laser-shock Hugon
emphasizes the equilibriation issue. Other factors like
planarity, constancy, and duration of the shock wave are
relevant. However, the present discussion strongly calls
experimental and theoretical equilibriation studies. T
CHNC approach is numerically and computationally ve
simple and should be a handy tool in such studies in a var
of disciplines. This simplicity enabled us to tackle the calc

e

FIG. 2. Comparison of the CHNC Hugoniot with experime
and other theories. Two nonequilibrium Hugoniots are also sho
~see the text!. Experiments 1, 2, and 3 refer to Da Silvaet al.,
Collins et al., and Knudsonet al., respectively.
0-3



o
o
n

se

m
k

e

ons
le

ys-
ith

sult
an
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lation of a quasiequilibrium Hugoniot—a problem so far n
addressed by other quantum calculations. All the calculati
presented here used only very modest computatio
facilities.24 Our computer codes may be remotely acces
by interested researchers by visiting our website.25

In conclusion, we present a parameter-free calculation
the EOS of deuterium in the regime of densities and te
peratures addressed by recent laser and magnetic shoc
periments. Kohn–Sham calculations show the absence
atomic bound states in this regime. The analysis of the
0141
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ergy as a functional of the electron densityand the nuclear
density, together with the classical mapping of the electr
produced a very powerful but computationally simp
method, applicable to equilibrium and quasiequilibrium s
tems. The equilibrium Hugoniot is in good agreement w
other first-principles calculations. Calculations with the D1

ions hotter than the electrons by;5 eV suggest that the
anomalous Hugoniots of the laser experiments may re
from hitherto unsuspected nonequilibrium effects which c
be addressed via new time-delay experiments.
a

tt.

Ge
u-
ith
ys.

n

*Electronic mail address: chandre@cm1.phy.nrc.ca
† NRC visiting scientist.
1L. B. Da Silvaet al., Phys. Rev. Lett.78, 483 ~1997!.
2G. W. Collinset al., Science281, 1178~1998!.
3A. N. Mostovychet al., Phys. Rev. Lett.85, 3870~2000!.
4G. I. Kerley,Molecular Based Study of Fluids~ACS, Washington,

DC, 1983!, p 107.
5Hugoniot is the locus of states (P,r,T) generated by shock com-

pression from a given initial state.
6M. Ross, Phys. Rev. B58, 669~1998!; D. Beuleet al., Phys. Rev.

E 63, 060202~2001!; D. Saumonet al., High Press. Res.16, 331
~2000!.

7B. Militzer et al., Phys. Rev. Lett.85, 1890~2000!.
8G. Kresseet al., http://cms.mpi.univie.ac.at/vasp
9T. J. Lenoskyet al., Phys. Rev. B61, 1 ~2000!; G. Galli et al.,

ibid. 61, 909 ~2000!.
10M. D. Knudsonet al., Phys. Rev. Lett.87, 225501~2001!.
11B. Militzer et al., Phys. Rev. Lett.87, 275502~2001!.
12M. W. C. Dharma-wardana and F. Perrot, Phys. Rev. A26, 2096

~1982!.
13M. W. C. Dharma-wardana and Franc¸ois Perrot, inDensity Func-

tional Theory, edited E. K. U. Gross and R. M. Dreizler~Ple-
num, New York, 1995!, p. 625.
14J. M. J. van Leeuwen, J. Gro¨neveld, and J. de Boer, Physic
~Amsterdam! 25, 792 ~1959!.

15I. Kwon et al., Phys. Rev. E54, 2844~1996!.
16M. W. C. Dharma-wardana and F. Perrot, Phys. Rev. Lett.84, 959

~2000!.
17François Perrot and M. W. C. Dharma-wardana, Phys. Rev. B62,

16 536~2000!.
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