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F center in BaF2: Diffuse excited state

J. M. Vail, W. A. Coish,* H. He,† and A. Yang
Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada R3T 2N2

~Received 7 September 2001; revised manuscript received 22 January 2002; published 19 July 2002!

The optical properties of the F center in BaF2 are of importance because the F center is a product of radiation
damage when the material is used as a luminescent radiation detector. Its optical excitation energy is 2.03 eV,
experimentally. We have applied computational modeling to study this process. Our method is based on a
quantum molecular cluster containing the defect, embedded in a shell-model crystal. When the excess electron
of the F center is kept localized in the molecular cluster, an excitation energy of 3.33 eV is found. When the
F-center electron is allowed to become much more diffuse, the ground state remains within the vacancy, but the
excited state delocalizes, and the excitation energy drops to about 2.56 eV, but the model is inaccurate because
quantum-mechanical features of distant ions are omitted. A polaronic representation of the single diffuse
electron is then carefully incorporated with the embedded quantum cluster treatment of the system. The
polaron in BaF2 is found to be beyond the intermediate-coupling regime. Feynman’s path-integral results for
Fröhlich’s polaron model give an effective mass of 3.12, in units of band mass. The resultant estimate of
F-center excitation energy is 2.04 eV. The successful combination of a quantum molecular cluster modeling
element with bulk crystal modeling elements~band mass and polaron correction! warrants further study along
these lines. Quantitative and physical limitations of the method and results are discussed.

DOI: 10.1103/PhysRevB.66.014109 PACS number~s!: 76.30.Mi
a
a

nc
ro
u
d

ro

ica

es
d

n-
th
ita
re
e
n
lin
lo

ta
tu
ul
le

Th

ntal
dis-

ed
u-

n a
ical
elf-
ion
n.
in-

ns
ui-
g
si-
tal
te,
e
ults
ory

ion

the
ion
nic
d,
oci-
ing
t is

on.
tron
ot
the
I. INTRODUCTION

Barium fluoride is a luminescent gamma-ray detector m
terial, with intrinsic luminescence at 6.36 and 5.64 eV. R
diation damage degrades the crystal’s luminescent efficie
Thus it is important to understand the optical excitation p
cesses of radiation damaged products. One set of prod
of interest consists of O2 ions and F centers, produce
by gamma rays in the dissociation of O22-vacancy defect
complexes:

$g1~O22
•vF!%→$O21Fc%.

In this equation,vF is a fluoride vacancy, and Fc is an F
center, an electron bound in a fluoride vacancy.

We have previously studied the above dissociation p
cess, and the optical excitation of O2, obtaining excitation
energies of 9.74 and 8.95 eV.1 Radiation damage of BaF2 by
gamma irradiation causes the emergence of an opt
absorption band centered at 2.18 eV, ranging from;1.9 to
;3.0 eV.2 The band probably arises from overlapping lin
from a variety of color centers and their aggregates. In ad
tively colored BaF2 , this is certainly the case, where Cave
ett, Hayes, and Hunter3 have combined Faraday rotation wi
optical absorption to resolve the F center, finding an exc
tion energy of 2.03 eV. None of these defects, therefo
appears to strongly overlap the intrinsic luminescent frequ
cies. In this work we study F-center excitation computatio
ally, in order to test agreement between theoretical mode
and experiment in such a system. We find an atomically
calized ground state and a substantially diffuse excited s
This requires that the modeling method combines quan
molecular cluster features for the localized state with b
crystal features for the diffuse state. The latter are imp
mented in terms of band-mass and polaronic effects.
0163-1829/2002/66~1!/014109~8!/$20.00 66 0141
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excellent agreement of the computed with the experime
excitation energy encourages future work along the lines
cussed herein.

Electronic features of point defects that are localiz
within a few ionic diameters can be computationally sim
lated by theICECAP methodology,4,5 in which the ions af-
fected by the defect are treated along with the defect i
quantum molecular cluster which is embedded in a class
shell-model crystal. The molecular cluster is treated in a s
consistent field unrestricted Hartree-Fock approximat
with many-body perturbation-theory correlation correctio
Calculations can include core pseudopotentials, or can
clude all the cluster electrons explicitly. Nuclear positio
and electronic structure in the molecular cluster are in eq
librium with polarization and distortion in the embeddin
shell-model crystal, for stationary states. For optical tran
tions, polarization and distortion of the embedding crys
taken from the initial state may be applied in the final sta
in conformity with the Franck-Condon principle. In a wid
range of point defect properties where experimental res
are available, this method has provided satisfact
agreement.6,7

When we begin to examine, herein, the optical excitat
of the F center in BaF2 by the ICECAP method, we find that
the excess electron in the ground state is well localized in
vacancy, but in the excited state it is not. When the excitat
largely removes the electron from the vacancy, the electro
structure of near-neighboring ions is significantly affecte
and so is the total energy. Indeed, electronic density ass
ated with nearby ions should be thought of as participat
in, rather than reacting to, the excitation. Since this effec
well represented in theICECAP method, we want to retain the
quantum molecular cluster in the excited-state calculati
However, in the excited state, as we have said, one elec
is quite diffuse, though still bound to the vacancy. It is n
practical, in terms of computational constraints, to extend
©2002 The American Physical Society09-1
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quantum cluster to include all ions that are significantly ov
lapped by this diffuse electron.

In the past, diffuse states in crystals have been descr
in terms of a semicontinuum model, with a single quantu
mechanical electron, where polarization effects, both st
and dynamic, due to both the binding center and a sin
quantum-mechanical electron, are treated by describing
crystal as a dielectric continuum. For such a model to
realistic, the electron’s effective mass must contain the ef
of the crystal’s periodic atomistic structure: the band m
must be introduced. In addition, the effect of crystal vib
tion on the electron’s dynamics must be included: this int
duces a polaron factor to further modify the electron’s eff
tive mass. The physical features involved in such
description are complicated, and many forms of theoret
analysis have been discussed, notably by Fowler8–10 and by
Stoneham.11 In both of the latter works10,11also will be found
extensive discussions of the optical transition process.

Theories of the polaron factor for the effective mass f
into four categories: weak coupling,12 intermediate
coupling,13 strong coupling,14 and the Feynman method,15,16

the latter valid, in principle, for all values of coupling. Fo
computational simulation, it is essential to apply the vers
of polaron theory that is appropriate for the material in qu
tion, BaF2 in the present case. In Sec. V we shall see that
coupling constant for BaF2 falls outside the ranges of appl
cability for weak-, intermediate-, and strong-coupling the
ries, leaving us to rely on the Feynman method. Fowle
discussion of diffuse F-center states10 includes polaronic ef-
fects only in the effective dielectric constant and Stoneha
discussion extends over the whole range of coupl
strengths. We shall return to a comment of Stoneham’s
Sec. V.

In the semicontinuum theory of F-center excitation, the
is one quantum-mechanical electron, and the entire cryst
modeled as a continuum, with the vacancy represented
simple effective potential. Discrete ion methods also ex
ranging from point-ion17 to the present embedded quantu
cluster models. One method, that includes quantu
mechanical ionic features for a substantial number of io
and that has been applied,inter alia, to the F center in BaF2 ,
is the method of Bartram and Stoneham.18 In that work,
systematic approximations are made to atomic pseu
potentials.19 These pseudopotentials are applied in deriv
the F-center excitation energy in the 17 rocksalt-type alk
halides, and in CaF2 , SrF2 , and BaF2 . In comparison with
experiment, the results are not very good. However, in
duction of a single scaling factor (‘ ‘a50.53’’) into all of
the pseudopotentials produces remarkable agreement
experiment across the whole range of crystals. Near
neighbor ionic displacements and ionic polarizations are
cluded in the model. The success of this semiempirical i
size effect in collating such a range of data was a signific
achievement in showing that the quantum-mechanical st
ture of the nearby ions, along with distortion and polarizat
of the nearby crystal, is essential for quantitative modeli
The calculated excitation energy for the F center in Ba2
with this method was 2.08 eV. The authors were unable
identify the physical source of the scaling effect, and la
01410
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applications of the method20–25 showed that it could not be
extended consistently and uniformly to F-center emission
to the absorption by impurity-related FA and FB centers, in
the alkali halides.

In Sec. II, we describe our computational model for loc
ized electronic states in BaF2 . In Sec. III we give our results
for vacancy-localized ground and excited states of the F c
ter. In Sec. IV we consider diffuse F-center states. We fi
the ground state to be localized in the vacancy, but the
cited state to be diffuse, largely outside the vacancy. In S
IV also, we discuss a polaronic correction for the diffu
excited state. In Sec. V the evaluation of the effective mas
carried out in terms of band theory and Feynman’s pa
integral polaron theory. In Sec. VI the results are summ
rized, and our conclusions are stated.

II. COMPUTATIONAL MODEL

We approach the simulation of a point defect, the F cen
in BaF2 , in terms of a quantum molecular cluster embedd
in a classical crystal. The BaF2 crystal in the fluorite struc-
ture consists of a simple cubic fluoride sublattice of F2 ions,
with a Ba21 ion at the center of every other cube. The qua
tum cluster is centered on a fluoride site, and is treated in
unrestricted Hartree-Fock approximation. It consists of
four Ba21 nearest-neighbor ions described in terms of eff
tive potentials of the Kunz-Klein type,26 and the six second
neighbor F2 ions with an all-electron treatment. The embe
ding is in terms of the shell model of Catlow, Norgett, a
Ross.27 The ICECAP method4,5 is applied, in which polariza-
tion and distortion of the embedding crystal are consist
with ionic and F-center charges in the cluster region. T
quantum cluster basis set has three parts. On the Ba21 ions
are 6s orbitals consisting of two Gaussian components i
tially fitted to the tail of a WTBS orbital,28 and then opti-
mized in the F-center ground state. The fluoride ions h
~43/4! orbital sets originally from Huzinaga,29 optimized it-
eratively between perfect-crystal embedded cluste
fluoride-centered (Ba21)4 (F2)7 and Ba21-centered
(Ba21)1 (F2)8 . Specifically, for a given perfect-crystal clus
ter, say fluorine centered, the atomic-orbital basis functi
of the central ion are optimized, keeping all other orbita
fixed. The optimized fluorine basis set is then transferred
the other cluster, in this case barium centered. The b
functions of the central barium ion only are then optimize
keeping all others fixed. The optimized barium basis se
then transferred to the fluorine-centered cluster, where
previously optimized fluorine basis functions are also
stalled. The process is then iterated to convergence. Opt
zation of a given atomic orbital proceeds as follows. T
most diffuse primitive atomic orbital~Gaussian localized!
has its longest-range exponential coefficient fixed, to av
spurious delocalization into the surrounding classical sh
model embedding region. Contraction coefficients and ex
nential coefficients are then successively optimized, go
from the contraction coefficient of the second most diffu
primitive to its exponential coefficient, then to the next mo
diffuse primitive, and so on. The process is iterated to c
vergence for a given atomic-orbital basis function, befo
9-2
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proceeding to another. The process is further iterated to c
vergence within the basis set for a given ion. Optimization
all cases is in terms of total-energy minimization. Conv
gence in all cases is to an accuracy of approximately 0.01
In addition, fluoride 3s, 3p, and 3d orbitals are initially
concocted by scaling from Kr, with tails of limited range
avoid basis-set superposition, and then optimized in
F-center ground state.

The F-center basis consists of vacancy-centereds- and
p-type orbitals for ground and excited states, respectiv
optimized in the embedded cluster. In BaF2 , the ionic sites
are not centers of symmetry. Thus, the stationary states o
F center will not be of definite parity. However, in a calc
lation that includes boths- and p-type orbitals, the ground
state is dominated by thes-type (l 50) component, since the
p-type (l 51) components have zero amplitude in the Fo
eigenvector that corresponds to the excess electron. Ou
of an even-parity pures-type ground state dictates a pu
odd-parityp-type excited state, at the same level of appro
mation. It is then consistent to neglect the distortion of
ground-state embedded molecular cluster. In the exc
state, as we have mentioned, the electronic distribution
changed from that of the ground state, although the io
basis sets are unchanged. This corresponds to the situati
which the electronic structure of these ions responds ins
taneously as part of the electronic excitation. On the ot
hand, the shell positions~as well as core positions!, in these
calculations, are held fixed through the excitation. This is
extreme form of the Franck-Condon principle. If one thin
of core-shell displacement as literally representing, appro
mately, distortion of the ion’s electronic structure, then to
consistent with what happens in the quantum cluster in
excitation, one might allow the shells of shell-model ions
relax to equilibrium also, in the excited state. In fact, ho
ever, it is not clear just how to handle shell-model polariz
tion in an optical transition. The reasons are twofold. First
is well known that the shell model is a parametrized mod
and that in particular there is no obvious relationship
tween the shells and the more malleable part of the io
electronic structure. This is clear when one realizes that
fectly good shell models exist with positively charged she
The other feature of the shell model that gives pause whe
comes to too literal physical interpretation is the identica
zero mass assigned to the shells. In any case, the appr
that we use here, with frozen shells for the excitation,
been used successfully in other problems where deta
comparison with experiment is available.30

The perfect-crystal (Ba21)4 (F2)7 cluster with an opti-
mized basis set is found to equilibrate with the embedd
shell-model crystal with about 10% inward relaxations
both Ba21 and F2. This represents a mismatch of the mo
eling between the quantum cluster and its shell-model
bedding. It should be taken into account when evaluat
distortion due to the F center. The ground-state F-center c
ter is found to equilibrate with the same relaxation, to tw
significant figures in the atomic displacements. We theref
proceed by assuming that distortion due to the F cente
negligible in this system.

The computational model and method employed here
01410
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capable of evaluating a variety of experimental properties
F centers and other point defects. In general, spin dens
can be evaluated at neighboring nuclei. They are prop
tional to isotropic hyperfine constants that can be measu
in some cases, by theENDOR method,31,32 for both ground
and relaxed excited states. Such a comparison between
putation and experiment has been carried out, for exam
for the F-center ground state in NaF.7 In the present case
BaF2 , such experimental data are unavailable, either for
F-center ground state or relaxed excited state. The fact
the barium nearest neighbors of the F center are treated
in terms of a rigid effective core potential means that s
polarization of these ions is not included in our model. Th
effect, of course, contributes to the spin density. While s
densities and spin-density plots can be generated, the lac
relevant experimental data renders such work uninterest
Atomic positions adjacent to point defects may in some ca
be directly obtainable experimentally from the extend
x-ray absorption fine-structure method.33 None are available
experimentally for the F center in BaF2 , nor are we able to
confidently predict them due to the mismatch that we m
tioned between cluster and shell-model interionic forces. T
relaxed excited state, and the optical emission to the u
laxed ground state for F centers, can be determined f
ICECAP studies, but experimental data are unavailable for
F center in BaF2 . The present work is an initial study of
diffuse electronic state in the context of a small embedd
quantum cluster computation. Accordingly, other compu
tional details of the F center in BaF2 are not included.

III. RESULTS: VACANCY-LOCALIZED STATES

The ground and excited states for the F center h
vacancy-centered orbitals with radial dependencies of
form exp(2ar2), with exponential coefficientsas and ap ,
respectively. The radial dependence of the vacancy-cent
orbital amplitude squared is represented in terms of rangR:

R5~2a!21/2. ~1!

R is the distance at which the square of thes-type orbital
with as has a valuee2150.368 of its maximum, while the
square of thep-type orbital withap has its maximum atR,
with over 60% of the electron’s charge lying beyond th
distance. The nearest-neighbor spacing of the fluoride sub
tice, 3.100 05 A, is here referred to as the unit of SCAL
Thus the four nearest neighbors of the F center are Ba21 ions
at a distance of12)50.8660 SCALE, and the six second
neighbor F2 ions are at 1.0 SCALE.

For values ofa such thatR,1, there are minima of the
total energy with respect to variations ofas and ap for
ground and unrelaxed excited states, respectively. Th
minima can be seen in Fig. 1. The respective ranges areRs
50.4183 andRp50.4459 SCALE. When these are compar
with the nearest-neighbor distance of 0.8660 SCALE, we
that they both represent wave functions that are well loc
ized within the vacancy. They correspond to a calcula
excitation energy of 3.33 eV, which compares badly with t
experimental value of 2.03 eV.3 However, from Fig. 1 we see
that the excited state has a second minimum at a much la
9-3
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value of R. This leads us to question the vacancy-localiz
picture of the F-center excited state.

IV. DIFFUSE STATES: A POLARONIC MODEL

Diffuse states, particularly excited states, are common
color centers. However, the model described in Sec. II is
suitable for such states because it does not contain quan
mechanical features of the ions beyond the quantum clu
These quantum-mechanical effects, at the Hartree-F
level, are first, the spatial extent of the electronic distribut
of the ions, and second, the Pauli repulsion or exchange
fect. The first contributes to a potential that alternates
tween attractive and repulsive as the electron passes
cation to anion over a distance of the order of SCALE. T
second is consistently repulsive.

We begin by considering total energyE vs rangeR for
both ground and unrelaxed excited states: See Fig. 1. We
E rising monotonically withR for R&1 for the ground state
suggesting that this state is indeed vacancy localized. Fo
excited state, however, a second, lower minimum occur
R51.4709 SCALE, corresponding to an excitation of 2.
eV, a drop of 0.77 eV from the vacancy-localized excite
state result.

We now undertake to correct in some approximate w
for the inadequacy of the model for diffuse states. We p
pose to do this by removing the contribution« (1) to the total
energy from the excited-state electron, and replacing it by
energy of a polaron in a dielectric continuum, based on
effective band mass of the crystal.

Thus, if Eexc is the excited-state energy calculated w
the original model and«̃ is the polaron energy, then th
corrected excited-state energyẼexc is

Ẽexc~R!5$Eexc~R!2«~1!~R!1 «̃~R!%. ~2!

The original total energyEexc(R) includes the Fock eigen
value for the excited-state electron, which turns out to be
highest occupied spin-up eigenvalue: we denote it as«31,↑ . It
corresponds to the only occupied Fock eigenstate tha
dominated by the vacancy-centeredp-type orbitalcp . This
eigenstate, however, is a true molecular orbital, contain
small but significant contributions from both Ba21 6s orbit-

FIG. 1. F center in BaF2 : total energyE ~eV! of ground and
unrelaxed excited states as a function of rangeR ~SCALE!, relative
to the ground-state minimum, without polaronic correction.
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als, and from some F2 orbitals. Correspondingly,cp contrib-
utes a small amount to many molecular orbitals that p
dominantly describe the fluoride ions. It is therefore n
justified to identify« (1) as«31,↑ .

What should be done, ideally, is to identify« (1) as the
energy of an electron in the orbitalcp , interacting with the
shell-model ions of the embedding region, and with t
quantum-mechanical ions of the quantum cluster. The la
interaction is dominated by the Coulomb field of the ion
charges in the quantum cluster. Several facts tend to sup
the approach that neglects the non-point-charge parts of
self-consistent field~scf!. A p-type orbitalcp , oriented along
the z axis, say, is zero at four of the six second-neighbor2

ion sites. The contribution of these ions to the scf seen by
excess electron is therefore very small. The four near
neighbor Ba21 ions are modeled by the KKLP effectiv
potentials,26 which are spherically symmetric, quite compa
and include exchange only intraionically. The two F2 ions
that are most strongly overlapped by the orbitalcp are lo-
cated well within the distance at which this orbital achiev
its maximum value, and they span a small spatial reg
compared to that spanned by the excess electron.

On the basis of the preceding considerations, we h
evaluated the energy of an orbitalcp in the presence of a
crystal with a vacancy where all of the ions are represen
by the shell model. This energy as a function ofR, as with
«31,↑(R), has a finite, positive-energy asymptote asR→`
~with different asymptotes for one-electron and man
electron cases!. The polaronic correction, which we shall in
troduce shortly, gives an energy«̃(R), Eq. ~2!, with a zero-
energy asymptote. The asymptotic energy from the discr
shell-model-based calculation must therefore be added
«̃(R), or alternatively subtracted from the one-electron e
ergy « (1) in a shell-model crystal with a vacancy. The res
of the latter procedure is an estimate of« (1)(R), with a zero-
energy asymptote, which has been fitted as follows:

«~1!~R!5~2BR2N1CRM !, ~3!

with energy in eV andR in SCALE, where

B51.499 18, N53.482 33,

C51.168 82, M53.804 55.

The x2 value of the fit is 0.0126~see any textbook on dat
analysis, for example, Bevington and Robinson34!.

Following the approach of Fro¨hlich,12 we now represent
the excess electron’s energy«̃ in terms of a polaronic single
particle Hamiltonianh, as follows:

«̃5^cuhuc&, ~4!

where c is the normalized single-particle excited-sta
orbital,

^r uc&[c~r !531/2~2a/p!3/4e2ar 2
cosu, ~5!

and
9-4
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h5H p2

2m*
2

e2

4p«0Kr J ~SI!. ~6!

In Eq. ~6! m* is the effective mass andK is the effective
dielectric constant. This model assumes that the diffuse e
tron sees the crystal essentially as a dielectric continuum
Hartree-Bohr atomic units, Eq.~6! becomes

h5H 2
m

m*
3

¹2

2
2

1

Kr J . ~7!

Now from Eq.~5!,

m

m* ^cu2
¹2

2
uc&5

9

2
3

m

m*
3a ~Hy!, ~8!

and

2
1

K
^cu

1

r
uc&52

2

K S 2a

p D 1/2

. ~9!

We must convert Eqs.~8! and~9! from Hartree-Bohr units to
eV-SCALE units. Now

1~SCALE!5S 3.100 05 A

0.529 A/a0
D55.8602a0 , ~10!

where a0 is the Bohr radius. From Eq.~1!, let R8 be
(2a)21/2, where a is in a0

22 and thusR8 is in units a0 .
Equations~4! and ~7!–~9! now become

«̃52.72H m

m*
3

9

2
3

1

2R822
2

K S 2

p D 1/2

3
1

21/2R8J eV.

~11!

Now from Eq.~10!,

R8~a0!

5.8602
5R ~SCALE!. ~12!

Thus Eq.~11! becomes

«̃527.2H ~0.065 52!
m

m*
3

1

R22~0.1925!3
1

KRJ eV,

~13!

with R in units of~SCALE!. Equations~3!, ~2!, and~13! give
us our corrected excited-state energyẼexc(R).

In Fröhlich’s formulation of polaron theory,12 he con-
cludes that the appropriate value of the dielectric constanK
is

K5~K`
212K0

21!21, ~14!

where K` and K0 are high- and low-frequency dielectri
constants, respectively. Values calculated from our s
model27 are given in Table I, along with experiment
values.35 The values ofK are not significantly different in the
two cases: we use the shell-model value. The question
effective mass will be discussed in the next section. Wh
ever value we adopt, we must then find the value ofR which
minimizesẼexc(R), Eq. ~2!, with Eqs.~3! and ~13!.
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V. DIFFUSE EXCITED STATE: RESULTS

The difference between effective massm* in the con-
tinuum model single-particle Hamiltonian, Eq.~6!, and free-
electron massmhas two sources. First it must account for t
fact that the particle moves in the periodic potential of t
crystal, outside the defect region. This requires the fr
electron kinetic energy to be replaced by an expression
volving the band massmb :

p2

2m
→ p2

2mb
. ~15!

The band massmb is discussed in all textbooks of solid-sta
theory: see, for example, Grosso and Pastori Parravicin36

The band mass represents the effect of fully quantu
mechanical ions on the excess electron’s dynamics, in p
of the classical point-ion effects of the shell model rep
sented in Fig. 1 forR.1. From Eq.~15!, we see that, for
given momentum, the kinetic energy is reduced if the eff
tive mass is increased. We prefer to think in terms of giv
velocity. From Eq.~6!, with m* replaced bymb , we see that

p

mb
5vW, ~16!

so that the kinetic energy is

p2

2mb
5

1

2
mbv2, ~17!

which increases withmb for given velocity. Experimental
band masses for common semiconductors range from
1022: see, for example, Marder.37 The band mass of BaF2
has been calculated using our basis set along with theCRYS-

TAL program38 for band structures, by Jiang and Franco,39 to
be 0.5552, in units ofm. This is similar to calculated or
inferred values for alkali halides: see, for example, Knox a
Teegarden.40

The second property affecting the effective massm*
arises from electron-phonon interaction. This is the pola
effect. It is analyzed in terms of a dimensionless coupl
constanta @not to be confused with the exponential coef
cient in Eq.~1!# defined as

a5
e2

4p«0
3

1

21/2K
3S mb

v\3D 1/2

. ~18!

In Eq. ~18!, Syste`me Internationalunits are to be used, andv
is a frequency characteristic of the phonon spectrum, wh
according to Fro¨hlich,12 is approximately determined by

TABLE I. Experimental and calculated values of dielectric co
stants~Eq. 14! of BaF2 .

Calculation Experiment

K0 6.76 7.19
K` 2.18 2.16
K 3.22 3.09
9-5
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v5S K0

K`
D 1/2

v t , ~19!

where v t is the reststrahl frequency. From the phono
dispersion relation for BaF2 , based on a shell model by Hu
rell and Minkiewicz,41 we deduce

v t52.93531013 s21, ~20!

whence

v55.18631013 s21. ~21!

We therefore estimate that for BaF2

a54.627. ~22!

The polaron coupling strengtha54.63, Eq.~22!, is be-
yond the range (a&3) appropriate to intermediate-couplin
theory,13 and falls in the range that requires numerical in
gration of an effective-mass formula by Feynman.15 The for-
mula is

m*

mb
5H 11 1

3 p21/2av3E
0

`

dx@F~x!#23/23e2x3x2J ,

~23!

where, neara55, to an accuracy&3%,

v5H 111.14S a

10D11.35S a

10D
2

11.88S a

10D
3J , ~24!

and

F~x!5H x1
~v221!

v
~12e2vx!J . ~25!

With a54.627,v is equal to 2.0027, and numerical integr
tion in Eq. ~23! yields

m*

mb
53.1161. ~26!

We conclude that

m

m*
5S m

mb
D3S mb

m* D
5~0.555233.1161!2150.5780. ~27!

When this is applied in Eq.~2! with Eqs. ~3! and ~13! we
obtain a minimum excited-state energyẼexc(R) for R
51.5024 ~SCALE!. This produces an estimated excitatio
energyDE, including polaron correction:

DE52.04 eV. ~28!

The almost exact agreement of our calculated result,
~28!, with the experimental value of 2.03 eV, cannot be tak
seriously. Earlier, we have discussed the physical approxi
tions upon which our modeling is based, and these appr
mations will be reflected in the total energies calculated
the F-center ground and excited states, and presumab
some extent in the resultant excitation energy. Our appl
01410
-

-

q.
n
a-
i-
r
to

a-

tion of Feynman’s polaron theory requires further explan
tion, which may cast some light on the accuracy of the m
eling for the excited state. Since it is not involved in o
treatment of the ground state, it is directly reflected in t
excitation energy.

Feynman’s theory is a variational procedure that app
to a polaron in a Gaussian-localizeds-type ground state. We
have applied it to ap-type Gaussian-localized excited stat
The uncertainty in so doing is not known. We note pare
thetically Stoneham’s statement~Ref. 11, p. 239! that the
Gaussian-localized wave function is never favored for
bound polaron ground state. This is plausible for a truly d
fuse F center, which at a large distance sees the vacanc
be much like a point charge, because we are familiar with
fact that electronic states of the hydrogen atom have Sla
type exponential tails;e2lr . We have mentioned the
intermediate-coupling polaron theory of Pines.13 It is accu-
rate fora!6, and is formulated perturbatively in relation t
polaron momentum rather than localization: it applies
low momentum, and presumably for low kinetic energ
Now for BaF2 we have determined a value ofa54.63&6.
Pines points out that, fora&3, the method can be used wit
confidence in an accuracy;5%, and he presents a perturb
tive correction for larger values ofa. Referring to Eq.~13!,
we see that the effective massm* affects only the polaron’s
kinetic energy~ke!, as follows:

~ke!51.782
m

m*
3

1

R2 , ~29!

where from Eq.~27!,

m

m*
5

m

mb
3~polaron factor!, ~30!

where mb50.5552m. So far, we have determined the p
laron factor, (mb /m* ), only from the Feynman theory, as i
Eqs.~23!–~25!. Pines’ intermediate-coupling theory gives,
first order,

mb

m*
5

1

S 11
a

6 D , ~31!

and to second order,

mb

m*
5H 1

S 11
a

6 D 1
0.02a2

S 11
a

6 D 2J . ~32!

Note that ‘‘orders’’ in Eqs.~31! and~32! are defined in terms
of the parameter (11a/6)21. From Eq.~26!, we have, from
Feynman theory,

mb

m*
50.3209. ~33!

From Eq.~32!, we have, from intermediate-coupling theor

mb

m*
5~0.564610.1365!. ~34!
9-6
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In Eq. ~34!, we see that witha54.627, the second-orde
term, 0.1365, is;24% of the first-order term. We therefor
conclude that intermediate-coupling theory is inappropri
for the polaron in BaF2 . With a polaron factor of unity,
m* 5mb , the effective mass is the band mass, with phon
effects neglected. In that case, from Eq.~29! we get a kinetic
energy of 1.43 eV. As the polaron factor varies from;0.3,
the Feynman-based value, to unity, the optimal energy r
as the optimal value ofR decreases, meaning that the excit
state becomes less diffuse, to the point that at unity i
largely overlapping the first and second neighbors of the
cancy. In that case, the continuum and band-mass app
mations of Sec. IV become inappropriate.

The applicability of a continuum dielectric model for th
polaronic correction may be questioned for an excited-s
wave function as compact as the one that we have used,
though it is diffuse in relation to the size of the vacancy. T
p-type orbital’s rangeR is 1.5024~SCALE!, and more than
60% of its probability density lies outside this range. Let
say that it spans a radiusr;4 ~SCALE!. This corresponds to
a volume; 4

3 pr 3;270 (SCALE)3. Thus the orbital’s dif-
fuseness spans;130 primitive unit cells.

The combination of band mass and Feynman’s pola
correction brings the calculated excitation down by 0.52
from the value ~2.56 eV! given by point-charge ions
outside the quantum cluster, and the correction is in
right direction, in comparison with experiment~2.03 eV!.
Inclusion of the polaron correction with the band mass gi
an optimal polaronic wave function whose diffuseness
compatible with the corrections. From all of the abo
we conclude that while the calculated agreement w
experiment to an accuracy of 0.01 eV must be in part for
itous, the corrections implemented here are physically r
sonable, of the correct order of magnitude, and in the ri
direction.

VI. SUMMARY AND CONCLUSIONS

We have studied the unrelaxed excited state of the F c
ter in BaF2 . The experimental optical excitation energy
2.03 eV. Our basic model consists of a second-neigh
quantum molecular cluster embedded in a classical s
model of point charges. In calculating the optical excitati
energy of the F center in BaF2 , we have found the exces
electron to be stable within the vacancy in the ground st
and metastable within the vacancy in the excited state.
estimated excitation energy from these two states is 3.33
The stable unrelaxed excited state has a diffuse excess
tron, overlapping*100 primitive unit cells. Even this mode
unsatisfactory as it is for a quantum-mechanical electron
side the cluster, gives a predicted excitation energy of 2
eV, within 30% of the experimental value. Corrections a
made to the excess electron’s energy, both for b
~periodic-crystal! and polaron ~electron-phonon! effects,
treating the crystal as a dielectric continuum. The effect
band massmb has been calculated using the basis set of
present work, givingmb50.5552m. The effective dielectric
constant was evaluated from data derived from our s
model, in agreement with experimental data. The dimens
01410
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less polaron coupling constanta has been evaluated, givin
a54.63, outside the ranges of weak-, intermediate-, a
strong-coupling theories. In evaluatinga, the reststrahl fre-
quency has been taken from the BaF2 phonon-dispersion re
lation derived from a shell model~not the same as the on
used herein!. The valuea54.63 gives a polaron effective
mass, including band-mass correction ofm* 51.7301m,
based on Feynman’s path-integral theory for Fro¨hlich’s po-
laron model, applicable to all coupling strengths. When t
polaron correction is applied to the embedded quantum c
ter result, a predicted excitation energy of 2.04 eV is o
tained. Since the Feynman theory, which we have used, is
an s-type Gaussian wave function, and is therefore n
strictly applicable to ourp-type excited state, the degree
agreement with experiment is not to be relied upon. What
can say is that application of the band-mass approxima
alone, without polaron correction, is inconsistent with t
assumption of diffuseness. When the polaron correction
included, the calculated results change from those base
point-ion embedding, in the right direction, and in the rig
order of magnitude.

The results are sufficiently promising that the meth
should be further developed and applied to other syste
Principal features of the present work, not represented
earlier works, include~i! Fröhlich polaron theory with the
Feynman results for the region beyond intermediate-coup
theory, and~ii ! accurate treatment of many-electron effec
adjacent to the vacancy, in both ground and excited state
major improvement in the method, conceptually if not qua
titatively, would be the development of Feynman polar
theory for other thans-type Gaussian orbitals, especially fo
p-type Slater-type orbitals, whose radial dependence can
represented as a linear combination of Gaussians. An im
tant test of the method would be to see whether the g
agreement with experiment obtained here is repeated for
tems that are known experimentally to have diffuse exci
states. We intend to apply it to the relaxed excited state of
F center in one of the alkali halides for which resonan
experiments that determine spin densities at nuclear s
have shown quantitatively the diffuseness of the state. S
cific cases are KI~Ref. 42! and KBr.43 In order to accurately
simulate a relaxed excited state, the quantum cluster and
shell model need to be compatible. We propose that this
included as one of the criteria in developing a shell mod
along with agreement with bulk and phonon characteris
of the crystals.
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