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Angular dependence of upper critical field for high-temperature superconductors
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Including Fermi surface anisotropy in addition to the anisotropy of pairing states, we recalculate the angular
dependence of the upper critical field.,(#) intending to explain its in-plane anisotropy for the high-
temperature superconductors. The results show that two anisotropies arising from different origins compete and
the angular dependence of the fourfold symmetry i, (6) is not unique for all the high-temperature

superconductors.
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Recently, Akagawaet all measured the upper critical * d3p A
field H., of Caydlay »:Bay ,«Cu;0, and found its angular K(g)=|g|T >, f 3¢2(p)8(p,q,wn), (5)
dependence with fourfold symmetry for the direction of the n=-x=J (27h)

magnetic field in theab plane. It is, however, different by \\here
w/4 from that of LagsSrn1.Lu0, (Ref. 2 and
Pb,Sr,Cay 3Cu05 (Ref. 3. The angular dependence of the S(p,q,w,)=G(p+d2,0,)G(—p+0/2,— w,). (6)
latter materials is qualitatively in agreement with the theoret- , . . .
ical results, which are derived from the assumption that th(;rhe Green's functio(p, ) is defined by
anisotropy arises only from the pairing state \M'[i,b,yz.“
So the theory does not include the anisotropy of the Fermi Gp,w,)=———F—, W)
surface and also does not take the fact into consideration that ton—£(p)
the transition temperaturg, and the upper critical field for where w,=(2n+1)#T is the Matubara frequency and
the high-temperature superconductdidTS’s) are much  &(p)=e(p)— u with the chemical potentigik.
larger than those of conventional superconductors such as Nb For the energy dispersion for the anisotropic Fermi sur-
and V. Then, in this paper we recalculdig,(6) including face, we assume the simplist form of the tight binding ap-
the above two effects in addition to the pairing-state anisotproximation:
2—c0< &) —cos{ &)
Pox Pox

ropy.
1- cos( &)
Poz

In the following, we adopt one pairing-state approxima-
tion for the anisotropic BCS pairing interaction:

wherepox="n/a andpyz=n/a’ with the lattice constanta
anda’ in the ab plane and between the planes.

Vop=9b(P)$(P') (1)
Transforming

8(p):80+ g|

+ € [ (8)
whereg(<0) is a constantg(p) expresses the symmetry of
the interaction, ang andp’ are the unit vectors of momen-

tum p andp’. For ¢(p), we consider three cases of the pair-
ing statess, dy2_y2, anddyy:

d3
1 for s, f P —fdmme(pF)fdf(p), ©

~ ~ ~ 2ah 3
S(P)=1 V2(P2-p2)=\2cosy for de yo, (2) (2mh)
na . whereN(pg) is the density of states of the directipp at the
2\2pxpy=V2sin 2y for dy. Fermi surface and performing the integration ovgrwe

where the coordinate systerX (Y,Z) is defined with respect have
to the crystalline axes. In this approximation, the order pa-
rameterA (r) is expressed by

Ay(N=d(P)A(r). (3)

The upper critical fieldH., is the maximum field for
which the linearized Ginzburg-Landau equation of the order

parameterA (r) has a nontrivial solution

271 sgn @)

2iwn—y<pp,q>>' (0

K(@)=[gINO)T > <

Here

1 N
<B>=WJdQ(PF)sﬁz(p)N(IOF)B(IOF), (113

AN =K(q)A(r), 4 .
(N=K(DA() “@ NO) - [ doeogi PN, a1
whereq=#V/i—2eA/c and A is the vector potential. The
kernelK(q) is given by and
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Ox ( Ay )
2pox VySin +2poxVySin
Y(Pr . Q) =2PoxVx <2po PoxVy 2Pox

: 12

.| 9z
+2po7VLSin =—
PozVz (Zpoz

where the velocityV is introduced by

V= (8 sm( px> isin(&) ,S—Lsin(ﬁ)). (13
Pox Pox/ Pox Pox/ Poz Poz

Expanding Eq(10) in the power ofy(pg,q), we obtain

K(g)= |g|N<0>n§0 Aol Y (PE,0)),

(14
where
2h
Inﬂ for n=0,
’7TkBT
A=

2(-1)"
1_
(2’7TkBT)2n 22n+1

)§(2n+1) for n=1.

(19
Here, wp is the Debye cutoff frequencyy(=0.577) is Eul-

er's constant, ang(p) is Riemann’s zeta function. The sym-

metry properties such a&/2)=(V?2) in the ab plane give
the explicit expression fofy*(pg,q)) as
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_ 3+cosd (VRax  (VHa;
24~ o :
4 12p5,  12pg,

The fourth-order term ofy*(pg,q) in Eq. (14) is approxi-
mated as

(19b

<74(pF aQ)>:<(qux+VZQZ)4>1 (20)

where
V,=Vxcosh+Vysing, V,=V;,. (21

Collecting the terms, we obtain the kerie(q) of Eq. (4):

=[gIN(0)[Ko(a) +Ka(a)], (22

where
Ko(@=Ag+Al; 5, (238
K4(Q) = Aol 5 4+ Ag((Vilx+V20,) 7). (23b

In the termK4(q) with g, the first term has been usually
neglected because the ratio of the first term to the second is

[KeT/(PeVe) 1%
Substituting Eqs(23) into Eq. (4), we have the equation
to determine the upper critical field. To solve it, we use the

perturbation method and we treat the teg(q) as the un-
perturbed part and the terid,(q) as a perturbation. The
eigenfunction ofKy(q) is

(Y2(Pe )= (2pox) X(VR) sz( +sir 2pOX) Ao(r):e’(eH/Cﬁ”)xz, (24)
a where
+(2poz) XV)sir?| 5 (16
v o5
In this paper, we restrict ourselves to the temperature re- n= <V2>' (25)
gion nearT. and keep up to the fourth order terigpg which g
the fourfold angular dependence of the upper critical fieldincluding K,(q), we have the upper critical field
Ho(0) first appears. Then, expanding Ef6) in the power
C.6 C,6
of g, we have Hy(T) = 12 (1+A_22)’ 26
(2P, @) =T+ T4, (17)
where 6=In(T/T,),
where
Iy = (VR (ak+a9) + (Va2 (183 Com_ & 27)
1 ’
and 2eh\(VEX(V2)
o 4 and
oo (V) (ax+ay) <VZ>qZ (18
2,4 12p0x 12pgz ' c _i 3+ COS4(9 1
16| 2p3(VE) | pAVD)
It is convenient to use the coordinate systeny(z), where X 0z "2
the x and y axes rotate by the anglé@ along theZ axis 3A v2 v2 \?
relative to theX andY axes. Further, we assume the direction — _4< ; + _ﬁ > . (29
of the applied magnetic field parallel to tlyeaxis and we A2\ \ (V) (VD)

choose the gauge (0;0HX). Since there is no spatial varia-

tion of the order parameter along the magnetic field, we have The anisotropic part is contained in the term with

d,=0 and the above expressions reduce to

I'y=(VRai+(Vo)az, (193

C,=By+ B,COS 49, (29

where
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FIG. 1. The dependence ¢¥s—3V2V2)/(V2)? on ¢ for the

M : VXV FIG. 2. The relative magnitude of anisotropyH.,/H., as a
pairing states (dotted ling, d,2_,2 (solid ling), andd,, (dot-dashed

function of e¢ for the d,2_2 pairing state forT=65, 70, and 75 K

line). with T,=75.5 K with the full expressiottsolid line) and without
the first term( dotted ling for B, term of Eq.(30) . Hereg| is taken
5 1 3A4L(Vy—3ViV4) 0 as 0.05 eV.
4= - :
Bapox(VR)  16Ax(VR)?

ing state becomes positive at low /. As increasing an-

isotropy, two anisotropic effects for thig2 2 pairing state

compete and it becomes negative.

AH B.5 In Fig. 2, the ratio of the anisotrop{H.,/H., is shown
2 4T (31)  as a function ok for the d,2_,2 pairing state for the tem-
Heo Az peraturesT=65, 70, and 75 K withT;=75.5 K andg|

=0.05 eV. To find the relative value of the first term of Eq.

where H, is the term independent of the angle In (30 the full expression of\H,/H, and that without the
the previous papérthe first term of Eq(30) for By, which  first'term of Eq.(30) are shown by the solid lines and the

is always positive, has been neglected and the average ghited lines. Thus, we see that the term is important at
(---) has been evaluated using the isotropic energy diSpe%'mallersF and lower temperatures.
sion in t_heab plane. The upper critical_ f_ields for HTSsare |, conclusion, we have shown that the anisotropy of the
much higher and the average velocities are smaller thapser critical field arises from two effects: one is the sym-
those for conventional superconductors such as Nb and Ynetry of the pairing state and the other is the anisotropy of
Then, the first term of Eq30) is important for HTS's. the Fermi surface. Although we assumed the simple disper-
Using the ratio of the upper critical fieldSlc;, /Hczj, W& sjon for the latter anisotropy, they compete in general and
can estimate the ratio af, /| ase, /e|~aHc, /(a'Hcz))  different angular dependences are expected as observed by
<1.Then, in evaluation df- - - ) at the Fermi surface, the, experiments, depending on the Fermi energy. The ®sm
dependence can be safely neglected. which has usually been neglected is important for HTS's in
In Fig. 1, we show the dependence (3, —3V{V{) on which the critical temperature is much higher and the upper
er normalized by(V)? for the pairing states, dy2_y2, and  critical field is much greater than those of conventional su-
dyy. The divergence atg/e=2 for thesandd,z 2 states  perconductors. In the present approximation, the results are
is due to the contributions from the poinps= (= mpgx,0) valid only near the transition temperature. If we extend the
and p=(0,=mppx) to the density of statedl(0) for Eq.  study to the lower-temperature region and make similar cal-
(11b). For thed,, state, this divergence is canceled by theculations as beforewe will find the competition effect on
pairing functioné,,(p). For the dispersioit8), the limiting  the flux line lattice about its structure and its correlation
casep/pox<1 corresponds to the isotropic Fermi surfacebetween the crystal lattice.
considered in the previous woflErom the figure, we see the We thank H. Akagawa for showing us their experimental
fact that only the quantityV'y—3V4V4) for thed,2_,2 pair-  data before publication.

Thus, the anisotropy of the upper critcal field is roughly es-
timated by
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