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Angular dependence of upper critical field for high-temperature superconductors
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Including Fermi surface anisotropy in addition to the anisotropy of pairing states, we recalculate the angular
dependence of the upper critical fieldHc2(u) intending to explain its in-plane anisotropy for the high-
temperature superconductors. The results show that two anisotropies arising from different origins compete and
the angular dependence of the fourfold symmetry forHc2(u) is not unique for all the high-temperature
superconductors.

DOI: 10.1103/PhysRevB.66.012514 PACS number~s!: 74.60.Ec, 74.72.2h
l

he

e
e
th

rm
th

s

o

a

f
-
ir-

t
pa

de

d

ur-
p-
Recently, Akagawaet al.1 measured the upper critica
field Hc2 of Ca0.5La1.25Ba1.25Cu3Ox and found its angular
dependence with fourfold symmetry for the direction of t
magnetic field in theab plane. It is, however, different by
p/4 from that of La1.86Sr0.14CuO4 ~Ref. 2! and
Pb2Sr2Ca0.38Cu3O8 ~Ref. 3!. The angular dependence of th
latter materials is qualitatively in agreement with the theor
ical results, which are derived from the assumption that
anisotropy arises only from the pairing state withdx22y2.4

So the theory does not include the anisotropy of the Fe
surface and also does not take the fact into consideration
the transition temperatureTc and the upper critical field for
the high-temperature superconductors~HTS’s! are much
larger than those of conventional superconductors such a
and V. Then, in this paper we recalculateHc2(u) including
the above two effects in addition to the pairing-state anis
ropy.

In the following, we adopt one pairing-state approxim
tion for the anisotropic BCS pairing interaction:

Vp,p85gf~ p̂!f~ p̂8! ~1!

whereg(,0) is a constant,f(p̂) expresses the symmetry o
the interaction, andp̂ and p̂8 are the unit vectors of momen
tum p andp8. For f(p̂), we consider three cases of the pa
ing statess, dx22y2, anddxy :

f~ p̂!5H 1 for s,

A2~ p̂X
22 p̂Y

2 !5A2cos 2c for dx22y2,

2A2p̂Xp̂Y5A2sin 2c for dxy ,

~2!

where the coordinate system (X,Y,Z) is defined with respec
to the crystalline axes. In this approximation, the order
rameterDp(r) is expressed by

Dp~r!5f~ p̂!D̃~r!. ~3!

The upper critical fieldHc2 is the maximum field for
which the linearized Ginzburg-Landau equation of the or
parameterD̃(r) has a nontrivial solution

D̃~r!5K~q!D̃~r!, ~4!

whereq5\“/ i 22eA/c and A is the vector potential. The
kernelK(q) is given by
0163-1829/2002/66~1!/012514~3!/$20.00 66 0125
t-
e

i
at

Nb

t-

-

-

r

K~q!5uguT (
n52`

` E d3p

~2p\!3
f2~ p̂!S~p,q,vn!, ~5!

where

S~p,q,vn!5G~p1q/2,vn!G~2p1q/2,2vn!. ~6!

The Green’s functionG(p,vn) is defined by

G~p,vn!5
1

ivn2j~p!
, ~7!

where vn5(2n11)pT is the Matubara frequency an
j(p)5«(p)2m with the chemical potentialm.

For the energy dispersion for the anisotropic Fermi s
face, we assume the simplist form of the tight binding a
proximation:

«~p!5«01« iF22cosS pX

p0X
D2cosS pY

p0X
D G

1«'F12cosS pZ

p0Z
D G , ~8!

wherep0X5\/a andp0Z5\/a8 with the lattice constantsa
anda8 in the ab plane and between the planes.

Transforming

E d3p

~2p\!3
5E dV~pF!N~pF!E dj~p!, ~9!

whereN(pF) is the density of states of the directionpF at the
Fermi surface and performing the integration overj, we
have

K~q!5uguN~0!T (
n52`

` K 2p i sgn~vn!

2ivn2g~pF ,q!L . ~10!

Here

^B&5
1

N~0!
E dV~pF!f2~ p̂!N~pF!B~pF!, ~11a!

N~0!5E dV~pF!f2~ p̂!N~pF!, ~11b!

and
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g~pF ,q!52p0XVXsinS qX

2p0X
D12p0XVYsinS qY

2p0X
D

12p0ZVZsinS qZ

2p0Z
D , ~12!

where the velocityV is introduced by

V5X « i

p0X
sinS pX

p0X
D ,

« i

p0X
sinS pY

p0X
D ,

«'

p0Z
sinS pZ

p0Z
D C. ~13!

Expanding Eq.~10! in the power ofg(pF ,q), we obtain

K~q!5uguN~0! (
n50

`

A2n^g
2n~pF ,q!&, ~14!

where

A2n55 ln
2\vDg

pkBT
for n50,

2~21!n

~2pkBT!2n S 12
1

22n11D z~2n11! for n>1.

~15!

Here,vD is the Debye cutoff frequency,g(50.577) is Eul-
er’s constant, andz(p) is Riemann’s zeta function. The sym
metry properties such aŝVX

2&5^VY
2& in the ab plane give

the explicit expression for̂g2(pF ,q)& as

^g2~pF ,q!&5~2p0X!2^VX
2&Fsin2S qX

2p0X
D1sin2S qY

2p0X
D G

1~2p0Z!2^VZ
2&sin2S qZ

2p0Z
D . ~16!

In this paper, we restrict ourselves to the temperature
gion nearTc and keep up to the fourth order termsq in which
the fourfold angular dependence of the upper critical fi
Hc2(u) first appears. Then, expanding Eq.~16! in the power
of q, we have

^g2~pF ,q!&5G2,21G2,4, ~17!

where

G2,25^VX
2&~qX

21qY
2 !1^VZ

2&qZ
2 ~18a!

and

G2,452
^VX

2&~qX
41qY

4 !

12p0x
2

2
^VZ

2&qZ
4

12p0z
2

. ~18b!

It is convenient to use the coordinate system (x,y,z), where
the x and y axes rotate by the angleu along theZ axis
relative to theX andY axes. Further, we assume the directi
of the applied magnetic field parallel to they axis and we
choose the gauge (0,0,2Hx). Since there is no spatial varia
tion of the order parameter along the magnetic field, we h
qy50 and the above expressions reduce to

G2,25^VX
2&qx

21^VZ
2&qz

2 , ~19a!
01251
e-

d

e

G2,452
31cos 4u

4

^VX
2&qx

4

12p0x
2

2
^VZ

2&qz
4

12p0z
2

. ~19b!

The fourth-order term ofg4(pF ,q) in Eq. ~14! is approxi-
mated as

^g4~pF ,q!&5^~Vxqx1Vzqz!
4&, ~20!

where

Vx5VXcosu1VYsinu, Vz5VZ . ~21!

Collecting the terms, we obtain the kernelK(q) of Eq. ~4!:

K~q!5uguN~0!@K̃0~q!1K̃4~q!#, ~22!

where

K̃0~q!5A01A2G2,2, ~23a!

K̃4~q!5A2G2,41A4^~Vxqx1Vzqz!
4&. ~23b!

In the termK̃4(q) with qi
4 , the first term has been usuall

neglected because the ratio of the first term to the secon
@kBT/(pFVF)#2.

Substituting Eqs.~23! into Eq. ~4!, we have the equation
to determine the upper critical field. To solve it, we use t
perturbation method and we treat the termK̃0(q) as the un-
perturbed part and the termK̃4(q) as a perturbation. The
eigenfunction ofK̃0(q) is

D0~r!5e2(eH/c\h)x2
, ~24!

where

h5A^VX
2&

^VZ
2&

. ~25!

Including K̃4(q), we have the upper critical field

Hc2~T!5
C1d

A2
S 11

C2d

A2
D , ~26!

whered5 ln(T/Tc),

C15
c

2e\A^VX
2&^VZ

2&
, ~27!

and

C25
1

16S 31cos 4u

4p0X
2 ^VX

2&
1

1

p0Z
2 ^VZ

2&
D

2
3A4

4A2
K S Vx

2

^VX
2&

1
VZ

2

^VZ
2&
D 2L . ~28!

The anisotropic part is contained in the term withC2

C25B01B4cos 4u, ~29!

where
4-2
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B45
1

64p0X
2 ^VX

2&
2

3A4^VX
423VX

2VY
2&

16A2^VX
2&2

. ~30!

Thus, the anisotropy of the upper critcal field is roughly e
timated by

DHc2

H̄c2

;
B4d

A2
, ~31!

where H̄c2 is the term independent of the angleu. In
the previous paper,4 the first term of Eq.~30! for B4, which
is always positive, has been neglected and the averag
^•••& has been evaluated using the isotropic energy dis
sion in theab plane. The upper critical fields for HTS’s ar
much higher and the average velocities are smaller t
those for conventional superconductors such as Nb an
Then, the first term of Eq.~30! is important for HTS’s.

Using the ratio of the upper critical fields,Hc2' /Hc2i , we
can estimate the ratio of«' /« i as«' /« i;aHc2' /(a8Hc2i)
!1. Then, in evaluation of̂•••& at the Fermi surface, thepZ
dependence can be safely neglected.

In Fig. 1, we show the dependence of^VX
423VX

2VY
2& on

«F normalized bŷ VX
2&2 for the pairing statess, dx22y2, and

dxy . The divergence at«F /« i52 for thes anddx22y2 states
is due to the contributions from the pointsp5(6pp0X,0)
and p5(0,6pp0X) to the density of statesN(0) for Eq.
~11b!. For thedxy state, this divergence is canceled by t
pairing functionfxy(p). For the dispersion~8!, the limiting
casep/p0X!1 corresponds to the isotropic Fermi surfa
considered in the previous work.4 From the figure, we see th
fact that only the quantitŷVX

423VX
2VY

2& for thedx22y2 pair-

FIG. 1. The dependence of^VX
423VX

2VY
2&/^VX

2&2 on «F for the
pairing statess ~dotted line!, dx22y2 ~solid line!, anddxy ~dot-dashed
line!.
,
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ing state becomes positive at low«F /« i . As increasing an-
isotropy, two anisotropic effects for thedx22y2 pairing state
compete and it becomes negative.

In Fig. 2, the ratio of the anisotropyDHc2 /Hc2 is shown
as a function of«F for the dx22y2 pairing state for the tem
peraturesT565, 70, and 75 K withTc575.5 K and « i
50.05 eV. To find the relative value of the first term of E
~30!, the full expression ofDHc2 /Hc2 and that without the
first term of Eq.~30! are shown by the solid lines and th
dotted lines. Thus, we see that the term is important
smaller«F and lower temperatures.

In conclusion, we have shown that the anisotropy of
upper critical field arises from two effects: one is the sy
metry of the pairing state and the other is the anisotropy
the Fermi surface. Although we assumed the simple dis
sion for the latter anisotropy, they compete in general a
different angular dependences are expected as observe
experiments, depending on the Fermi energy. The termG2,4
which has usually been neglected is important for HTS’s
which the critical temperature is much higher and the up
critical field is much greater than those of conventional
perconductors. In the present approximation, the results
valid only near the transition temperature. If we extend
study to the lower-temperature region and make similar
culations as before,5 we will find the competition effect on
the flux line lattice about its structure and its correlati
between the crystal lattice.6

We thank H. Akagawa for showing us their experimen
data before publication.

FIG. 2. The relative magnitude of anisotropyDHc2 /Hc2 as a
function of «F for the dx22y2 pairing state forT565, 70, and 75 K
with Tc575.5 K with the full expression~solid line! and without
the first term~ dotted line! for B4 term of Eq.~30! . Here« i is taken
as 0.05 eV.
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