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Generalized method of image and the tunneling spectroscopy in highz superconductors
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A generalized method of image is developed to investigate the tunneling spectrum from the metal into a class
of states, with the tight-binding dispersion fully included. The broken reflection symmetry is shown to be the
necessary condition for the appearance of the zero-bias conductand@B&a. Applying this method to the
d-wave superconductor yields results in agreement with experiments regarding the splitting of ZBCP’s in
magnetic fields. Furthermore, a ZBCP is predicted for tunneling int¢1h@ direction of thed-density-wave
state, providing a signature to look for in experiments.
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The current transport through a heterojunction consistingand only briefly mention the applications to other systems.
of a normal metal and another different mate()l has been The effects of interactions and fluctuations will be addressed
a subject of interest for many years. In this setup, the normaglsewhere.
metal with known spectral properties is used as a probe to Our results indicate broken reflection symmetry is neces-
analyze the electronic states of the matedal Although  sary for the emergence of ZBCP's. For ND junctions our
such measurements have provided useful insights into th@ethod can reproduce earlier results on the ZBCP in the
bulk spectral properties of, it has been also realized that the continuous-wave approximatiéri. In a full tight-binding
presence of the interface matters. The zero-bias conductang@lculation for(110 and(210 directions, we obtain the dop-
peak(ZBCP) observed in the tunneling spectra whris a ing dependence of ZBCP’s which exhibits its sensitivity to

d-wave superconductdND junction) in the (110) directiorf tzhéaCFF()ar_m|t;urface t(?[pology. In pt)aLtrt|quIaIr, the Tpl'ltt'tn% of tge.
is a well-known example of interface effects. However, the In the current-carrying state IS aiso caicuated and IS

issue of exactly how the tunneling measurements are relateschown to be in agreement with experiments. At the end, we

. . .analyze the case whefis the d-density-wave(DDW) state
to the bulk properties has never been answered satlsfactorl% (110 direction and the semi-infinite graphene sheet with a
Conventionally, the ND junction is analyzed in the mean-_. ;
X ) ) zigzag-type interface. The former state was recently pro-
field level, using the Bogoliubov—de Genné8dG) equa- gzag-yp y P

. . : . . i e osed as a possible normal state for higheuprates. Con-
tions in which continuum and quasiclassical apprommaﬂon%uctance peaks are found for both states.

are often invoked. While these approximations are valid for \ye start by considering a junction consisting of a two-
conventional superconductors, they are certainly not justifiegjimensional(2D) normal metal on the leffL) hand side
for high-T; cuprates where proximity to the Mott insulators (— o <x< —d, whered is the lattice constant of the metal
entails fully consideration of the tight-binding nature. side and ad-wave superconductor €x<c) on the right
Previously® this was done by numerically solving the dis- (R) hand sidgsee Fig. 1, governed by the Hamiltoniaris$,
crete BdG equation for each interface orientation individu-andHg, respectively. At the mean-field level, we have

ally without elucidating their relations to the bulk properties.

This technical inconvenience makes it difficult to include

fluctuations systematically in this approach. Hr=— > trCl,Cjfo— > thCHCis
In this work, we shall adopt a different approach based on (ii)o (i)' o
the nonequilibrium Keldysh-Green’'s function formalism
which enables one to construct systematically higher-order + 2, Ajj(cicy —¢cicip)+H.c,, (1)
corrections from the mean-field lattice Green’s functibrfs. {n

In this approach, becausé extends over a semi-infinite = ) o
space, one shall need the half-space Green's functions. F¥fere(ij) denotes the nearest-neighb®N) bond, (ij)

simple configurations such as tH&00 orientation of a the next-NN bond, and; possessed-wave symmetry. The
d-wave superconductor, it turns out that these ha|f_spacgmnellng Hamiltonian connects the interface pointsxat
Green's functions only differ from the bulk ones by sinu- =—d andx=0, and is given byH=3t(ly, —ygl)(c/cr
soidal factors. This relation certainly does not hold for other+ckc,), where the summation is over lattice points along
orientations as it predicts no ZBCP in ttie10) direction. We  the interface, chosen to be in tielirection. We shall assume
shall develop a generalized method of image which enablethat both sides are square lattices and characterize the orien-
us to construct half-space Green's functions from the bulkation of right-hand sid¢RHS) by the Miller indices (ik0).
ones.We emphasize the generality of this method and ithe total grand Hamiltonian is then given by=(H_
ability to account for the low-energy features in the tunneling— x N ) + (Hr— ugrNR) + Hr=Ko+Ht. Here u and ug
spectrum for a whole class of statés a demonstration, in are the chemical potentials and their difference— ug is
this paper we will focus mostly on the study of ND junctions fixed to be the voltage dropV across the junction.
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(110) tr=0. In this case, we are looking for the Green’s function
""""""""""""""""""""""""" Go(w,k,x,x") (which is a 2<2 matrix in Nambu's nota-
‘ ‘ ‘ I " b tion), which satisfies the boundary conditidB,=0 at x
qQ =—d/2. We shall suppress the dependencecomnd k.
‘ ‘ l I ‘ Here, sincex’ is the location of the point source and its

image point is at—d—x’,° the method of image can be
employed by constructing

é‘ '
N|Q-+
| 1

>

Go(X,X')=Gg(Xx—X")—Go(x+d+x)a(x'), (3

whereG is the bulk bare Green’s function amdis a matrix
to be determined. The first term is the direct propagation
from x’ to x, while the second term will reduce to the propa-
gation from the image point ta in special situationgsee

: below). In fact, sinceGg has to vanish ax=—d/2, we ob-
a tain a(x')=Gg }(d/2+x')Go(—d/2—x"). Therefore, the
5 second term describes the propagation fronto x via the
reflection of the hard wall. The matrix, apart from fitting
. . ® oco0esesesesesseseses > X the boundary condition, carries important information about
-d ABO the gap structure along the reflected path fromto x. Note
FIG. 1. Schematic plot of the ND junction in tf&10) and(210) that in cqlculatlng the tunnellng current, siridg only con- ,
directions. Here two hard walls for thé€10) case are atA nects poEts along_the interface, only the surface Green's

=—2d/\5 andB=—2d/\/5. The dots on the axis are the re- function go(w,ky)=Go(x=0x"=0) is needed:™® Writing
duced 1D lattice points. G, in the Fourierk, space, we find

o

L ot

— =@ _\‘_,/_ _\’.t‘T
=3

— 4
ce————
Py
TR

7 o

In the nonequilibrium Keldysh-Green's function formal- o EJZ”"’ %G ko 1— exefik.d
ism, Hy is adiabatically turned ofi®> As a result, the bare Golw.ky) Comd 27T ol @Ky KoLL = explikyd) ao),
Green’s function is defined only on a half-plane. Since the (4)

nearest-neighboring bonds to the interface sites are cut, ther 1 _
is effectively a hard wall located at say, for thELO inter- wehere the factoky=G, "(d/2)Go( —d/2) is independent of

face,x=—d/2. This hard-wall boundary condition prompts k, . If the reflection symmetry holds for the state such as

the application of the method of image. However, becausdWave superconductors {100 direction (in this cased/2

lattice points in the half-plane usually do not form a simple'S réplaced b3d)"‘ one hasyo=1 agd/dhence it reduces to the
Bravais lattice and thé-wave gap changes sign under reflec-familiar ~ form™  go(w,ky)=J2%7/4dkc/ 7 Go(w,ky Ky)

tion, the implementation of the conventional method of im-sinf(k,d/2). Therefore, apart from modifications due to the
age appears problematic. To overcome these difficulties, sinusoidal factors, the density of state almost has the same
Fourier transform in thg direction is performed first. Con- feature as the bulk one. However, for other orientations such
sider the case 0f110 orientations; the Hamiltonian with as the(110) direction, reflection symmetry with respect to
only NN hopping becomes the interface is broken. As a result, is not the identity
matrix and as we shall see, this will give rise to the ZBCP.
kyd) | The advantage of Ed4) is that it is purely based on the
Her= > —ZtRCOS< 7) Cio(Ky)Cit1(Ky) bulk Green’s functions. The interface orientation is encoded
hoky in ky andk, . In other wordsGy(w,k, ,k,), which appears in

[k Eqg. (4) and g is simply the usual bulk BCS Green'’s func-
+2 ZIAOSIn( 7) [Cit(Ky)Cir1 (—ky) tion but withk being rotated by 45°. This technical merit is
MKy retained for other interface orientations but wittbeing ro-
+¢i (—ky)ciygq(ky)]+H.c., 2) tated by an angle in accordance with the interface orienta-

tion. More importantly, this also offers a scheme for studying
where —/d<k,<mw/d and 2\, is the gap value. The fluctuations and interactions. Essentially one can take into
whole problem is now one dimensional, and the hard wallaccount these effects through the bulk Green's functign
becomes a point. Note that the suppression of the gap nea@his will be explained in more detail in a separate publica-
the interface can be taken into account by adding selftion.
consistentdA (i) to Eq(2) and can be treated perturbatively ~ When evaluating,(x—x’), the dominant contributions
later. In the presence ofy, additional terms Ei,g,ky come from the poles determined byw¢iz)?—EZ=0,
— 2tfcosk,d)c) (K)Cio(k) +the! (K))Cisoo(k)+H.C.  appear. whereE,= Jez+AZ. In the continuum limit, the dispersion
Since at the boundary, boti andtf, are cut and become becomes e,=#%2(ki—kZ)/2m and A, =A.Cc0s 20— ),
dangling bonds, one needs to introduce two hard walls at where ki, =kZ—kZ, 6=sin"*(k/ks), and 6, is the angle
= —d/2 andx= —d. For clear presentation, we shall first set between the crystah axis andx direction. At the same
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FIG. 2. The total differential conductance of several dopings for  F|G. 3. The field dependence of the splitting for an underdoped
the (110 interface with »=0.01 andt, =1.0. The weak link is  case =0.12). Inset: doping dependence of the splitting for a fixed
modeled by the interface hoppintw)=exd—/(we—|w|)/T] magnetic field.
with wy=11A, andI"'=A. Inset:dl/dV curve for the(210) inter-
face with 5=0.08. ZBCP arises from the existence of zero-energy states, it must

appear as poles at zero energy in the Green’s function. For

time, the integration range ok, is extended tox=.  ha(110) direction withoutty, this is entirely determined by
There are four poles located attk. with k. zeros of the denominator ia:

E\/kﬁXth\/(eri77)2—|Ai|2/h2, representing particles
and holes along different directions. Hefe. are gaps in Blw,ky)=de{Go(d/2)]. ©6)
directions + . By contour integration, one obtainSy(x  In the continuum limit —0), 8 can be evaluated analyti-
—x') and thusa(x'). After some algebra and assuming thatcgly: g~ —[w2/A%+ (A, /|A,|+A_/|A_|)?2] with A

ke is Iarge}l_ indeed Eq.(3) reproduc_es results o_btained in =|AL[|A_|/(|A,|+|A_|). Therefore, poles OE) at w=0

Ref. 7 by directly _solvmg the equau_ons_of motion. In our_rdepend crucially on whether there is a sign change of the gap
?‘ppro?“:h’ the continuum approximation Is not necessary. 8n the Fermi surface. This criterion, however, does not hold
|nvest|ggte any effect t.hat |s_due o the tlght—blndlng natur'eas one goes to the tight-binding limit because pairing no
the full tight-binding dispersion has to be retained. In th'slonger only occurs on the Fermi surface. As a result, a nu-

fr?j:’ ggs'n;?griit'g%gyeﬁ Cs?rnur(]:?ltjrzeaixée;ii%st?aﬁii:dngiﬁermerical computation of3 is necessary. Our results indicate
P : L that ZBCP’s are sensitive to the Fermi surface topology. In
ence from the continuum approximation could result.

_ ey o fact, for the(110 surface, the height of the peak depends on
we now mclut_je t_he hoppng for the (110 direction. the volume of the Fermi surface. It reaches a maximum when
The main complication is to add a second hard walkat

. . . ) =0 and decreases wheng#0. For other orientations,
=—d. This is a simple gener&hzaﬂon of the single hard-wallf:f]f,fJ ZBCP's could even diszn;pear.

problem. One simply requireS, to vanish on all these hard  For general orientations, there could be more than one

walls simultaneously. Therefore, we write hard wall. As a demonstration, we consider the (210) inter-
_ ) ) , ) face. In this case, whet=0, two hard walls are located at
Go(x,x")=Go(X—=X") = Go(x—X1) as(X") x=—d/\/5 and —2d/+/5, in analogy to the(110) surface

(5) with t;. A typical result for the small scale @fis shown in

the inset of Fig. 2. A increases, the zero-energy states are
wherex;=—x'—d andx,=—x'—2d are images ok’. The  able to leak out, and thus the ZBCP’s get broadened. Note
boundary conditions at=—d and x=—2d determinea;  that lattice points with dangling bonds form a pair-breaking
and a,. The surface Green’s function thus obtained is theregion near the interface, resulting in the peaks aroukgl 2
bare one and will get renormalized bl , giving rise to four  They are due to quasiparticle bound states with nonzero
different components in the differential conductafi¢tThe  energy‘?
strength ofH+, characterized by, determines the relative The ZBCP’s split in the presence of magnetic fields
weight among each component. In Fig. 2, we show our reessentially due to the Doppler shift caused by the supercur-
sults for the spectrum of the total differential conductance forent near the interface. In the tight-binding modelA;; is
various dopings based on E@). The parameters adopted shifted toA;; exdiq-(r;+r;)], whereq=eH\/2c with \
are determined self-consistently from the mean-field slavebeing the penetration depth. By redefining,=c;, exp(q
boson theory for thet’-J model? It is clear that the ZBCP’s  -r;), the dependence ancan be absorbed intg, . Figure 3
are the most important features at low enerdi&nce the shows the field dependence of the splitting for th&0) in-

—Go(X—Xz) a(X"),
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0-10 H is, the ZBCP does not split at all, in consistent with naive
expectationg?

Finally, our approach is easily modified to deal with other
states. WherX is the DDW, the two-component indices are
associated with the two sublattices in this state. The formu-
lation presented for the ND case can then be applied with
minor modificationt* At (110 orientation, the DDW state
does not possess reflection symmetry; one thus expects ZB-
CP’s in this case. Figure 4 shows a typical result for tunnel-
ing into a DDW state in th€110 direction whenug=0.
Invariably, the ZBCP is present, consistent with a recent
report®® For finite ug, unlike thed-wave superconductor,
one simply addsuy to the quasiparticle enerdy, ,® result-
ing in a shifting of the ZBCP to the bias at;. The exis-

20 S0 0.0 10 20 tence of this conductance peak thus provides a signature of
vizh, the DDW state. A similar analysis can be done for the semi-

infinite graphene sheet. When projected onto 1D lattices it is

then obvious that reflection symmetry is preserved in the

case of the armchair interface while not in the zigzag case.

This results in for the latter a ZBCP in tli#/dV curve(see

the inset of Fig. 4 (Ref. 1)—consistent with previous nu-

) . , merical work!® These two typical examples simply show

terface, in agreement to recent experimental dfalbis seen ot how easily our formulation can tell whether there should

that for largeH, the splitting deviates from linear dependenceye 78cp's or not. Further applications to other systems will
on H due to the lattice effect in our approach. The insetpq reported elsewhere.

shows the doping dependence of splitting, reflecting its sen-

sitive dependence on the Fermi surface topology. In fact, in It is our pleasure to thank Professor Sungkit Yip, Profes-
the special case when particle-hole symmetry h@ldsex-  sor Hsiu-Hau Lin, and Professor T. K. Lee for useful discus-
ample,ug=0 andty=0), we find that no matter how large sions. This research was supported by NSC of Taiwan.
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FIG. 4. A typicaldl/dV curve for tunneling into thé110) di-
rection of ad-density-wave state. Hegeg=0 andA,=0.1. Inset: a
similar plot for tunneling from a wideband metal into the graphene
sheet with zigzag interface. Here the hopping amplityge 0.1.
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