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Phase dynamics in SQUID’s: Anomalous diffusion and irregular energy dependence
of diffusion coefficients
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Deterministic diffusions of superconducting phases in extremely underdamped SQUID’s are studied. It is
found that, by controlling the total energy, two types of diffusion, i.e., anomalous and normal ones, appear. In
the anomalous diffusion, the orbit in the phase space is trapped mainly into the jump-related hierarchy structure
so that the mean-square displacement behaves astg with 1,g,2. This enhanced diffusion is analyzed from
a viewpoint of the Le´vy walk. Even in the normal diffusion, it is revealed that the diffusion coefficient has the
amazing irregular energy dependence, which reflects an extreme sensitivity of the phase-space structure to a
small change of the energy.
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Deterministic diffusion phenomena and their statisti
properties have received a wide attention for more than
decades.1–4 In many deterministic systems, the nature of d
fusions shows an anomalous feature, which is character
by anomalous exponents of time in mean square displ
ments. This anomalous diffusion~AD! has been studied in
dissipative systems including low-dimensional maps,5,6 over-
damped Josephson junctions,7,8 and two-dimensional flow.9

AD in Hamiltonian systems has also been studied in,
example, two-dimensional Hamiltonian systems.10,11 We,
however, have as yet little knowledge on AD in experime
tally realizable Hamiltonian systems which are free from d
orders such as impurities.

Recently, Klages and Dorfman have pointed out that e
in deterministic normal diffusions~ND!, the diffusion con-
stant may show an irregular fractal structure as a function
a model parameter.3,12 They have analyzed a chaotic ma
with one-dimensional piecewise linear chains with a unifo
slope, and have shown that the diffusion coefficient ha
fractal structure as a function of the slope of a map. T
fractal-like structure of diffusion constants in Hamiltonia
systems has also been studied in systems where a point
ticle is subject to constant gravity and is bouncing on a o
dimensional periodically corrugated hard floor.13 It, however,
is also highly desirable to reveal this novel feature in m
experimentally accessible systems.

In this paper, we propose an extremely underdam
SQUID as a promising candidate in which both the AD a
ND of Hamiltonian systems can be studied. The basic na
of this dynamical system has been studied for a f

FIG. 1. ~a! SQUID with two Josephson junctions. Black an
white regions are insulator and superconductor, respectively.
dynamics is described by phase differencesw1 andw2. ~b! Equiva-
lent molecule model with a cosine potential.
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decades.14,15 Because of the macroscopic nature of its pha
the SQUID system is more robust to microscopic impurit
or/and inhomogeneities than ones proposed previously2,13

Moreover, the SQUID system has a great advantage in c
trolling the total energyE and other model parameters b
changing initial conditions and external magnetic field in o

he FIG. 2. Phase dynamics in the two-dimensional potential. Ho
zontal and vertical axes correspond to relative and center-of-m
coordinates, respectively.~a! The shape of two-dimensional poten
tial and ~b! an example of a trajectory.
©2002 The American Physical Society07-1
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sample.14,15Therefore we can see the nature of both AD a
ND simply by tuning the energy and model parameter.

Let us introduce a SQUID model consisting of two J
sephson junctions shown in Fig. 1~a!. The dynamics of this
SQUID is described by superconducting phase differen
w1 andw2. The Lagrangian is given asL5K2U, where

K5
1

2
CS F0

2p
ẇ1D 2

1
1

2
CS F0

2p
ẇ2D 2

, ~1!

U52EJcosw12EJcosw21
1

2L S F0

2p D 2

~w22w12a!2. ~2!

The kinetic energyK corresponds to the charging energ
while the potential energyU corresponds to the sum of th
Josephson energy and inductance energy. Here,C, EJ , andL
are the capacitance, the Josephson energy of each junc
and the inductance of the superconducting loop, respectiv
The external fluxFe penetrating the loop changes the para
etera in Eq. ~2! througha52pFe /F0, whereF05h/2e is
a unit flux. By defining dimensionless parameters asV0

5EJ /E0 and L̃5L/E0 via E05(F0/2p)2/L, and by nor-
malizing the time ast̃ 5vt via v5ALC, the Lagrangian is
reduced to

FIG. 3. ~a! Time series of the center-of-mass coordinate aE
50.61 for three types of orbits:~i! drift orbit, ~ii ! trapped-periodic
orbit, ~iii ! chaotic orbit. ~b! Underlying Poincare´ section with p
50 andE50.61.
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L̃5 1
2 w 1̇

21 1
2 w 2̇

21V0cosw11V0cosw22 1
2 ~w22w12a!2.

~3!

This model turns out to be equivalent to that of two coup
particles in a cosine potential@see Fig. 1~b!#. Below, we ne-
glect quantum effects on the phase dynamics by assum
that the normalized Plank constant\̄5\v/E0 is small
enough. We also assume the damping effect is so weak
the system behaves as a Hamiltonian system in the rele
time scale.

To simplify the analysis, we employ the center-of-ma
and relative coordinatesX5(w11w2)/2 andx5w22w1, re-
spectively. With use ofP5]L̃/]Ẋ52Ẋ,p5]L̃/] ẋ5 ẋ/2, the
resultant Hamiltonian becomes

H5 1
4 Ṗ21 ṗ21Ũ~X,x!, ~4a!

Ũ~X,x!522V0cos~X!cos~x/2!1 1
2 ~x2a!2. ~4b!

In this system, the total energyE can be controlled by
changing the parametera by the magnetic flux as follows
When the particle is relaxed to the potential minimum aa
5a1, and whena is changed to another valuea2 immedi-
ately, the particle begins to move in the two-dimension
potential with a constant energyE, until the damping effect
appears. Thus,E is controlled bya1 anda2 experimentally.
Below, we treat the total energyE as a control parameter.

The Hamiltonian~4a! describes a nonintegrable syste
which exhibits dynamical chaos. We numerically analyze
equations of motion derived from Eq.~4a! by the fourth sim-
plectic integration method with a typical time sliceDt
50.001–0.01. To see anomalous features of diffusions m
easily, a is chosen asp corresponding to one half of th
periodicity of the potential. In these circumstances, the
tential Ũ has minima atX5np, while the saddle points lie
on X5(2n11)p/2, wheren is an integer. Below, we discus
AD by taking V0 as 1, while ND by takingV0 as 2. The
saddle-point energy measured from the potential minima
given asEsaddle50.456 for V051, and asEsaddle51.60 for
V052, respectively. In both cases, the diffusion occurs o
for E.Esaddle.

FIG. 4. Mean square displacements~MSD!: ~a! at E50.61, ~b!
at E51.26, ~c! at E53.01, ~d! at E56.21.
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First, we discuss the caseV051, where the AD appear
clearly. A landscape of the two-dimensional potential
given in Fig. 2~a!, and an example of phase dynamics
depicted in Fig. 2~b!, showing both a smooth motion ove
barriers and a trapped motion in a potential valley. Our
tential is periodic in theX direction but parabolic in thex
direction. Thus the diffusive motion occurs in theX
direction.16 The time evolution of the center-of-mass f
three initial conditions atE50.61 is shown in Fig. 3~a!. For
this energy, three types of motion are observed,~i! drift, ~ii !
trapped-periodic, and~iii ! diffusive motions, according to the
initial conditions. The underlying Poincare´ section with p
50 for E50.61 is shown in Fig. 3~b!, and is found to be
composed of tori and chaotic sea. The central torus pres
the trapped orbit, while the triplet of upper small tori corr
sponds to drift orbits. To investigate the diffusion pheno
ena, we hereafter focus on diffusive motions represented

FIG. 5. ~a! Poincare´ section withp50 at E56.21. ~b! Partial
magnification of~a!. ~c! Partial magnification of~b!.
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the trajectories in the chaotic sea~iii !. Therefore we have to
choose the appropriate initial condition with constant to
energy.

In order to quantify the diffusion property, we evalua
the mean square displacement~MSD! defined by

s2~ t !5^@X~ t !2X~0!#2&;ta, ~5!

FIG. 6. ~a! Jump-time distribution and~b! residence-time distri-
bution atE51.26.

FIG. 7. Energy dependence of diffusion coefficient~a! for 3.6
<E<5.3 and~b! for the narrower region 4.40<E<4.56. The ex-
ponenta is also shown in~a!. The error bar in~b! is a typical
statistical error ofD.
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where the exponenta characterizes the nature of diffusion
Figures 4~a!, 4~b!, 4~c!, and 4~d! show MSD’s which corre-
spond to diffusions forE50.61, 1.26, 3.01, and 6.21, re
spectively. The caseE50.61 shows normal diffusion (a
51), while the latter three cases show the anomalous ex
nent a;1.5. This enhanced diffusion is expected to
caused by a sequence of long-time jumps and long-time r
dences~trappings! as discussed below.6,17,18

To figure out details of AD, the corresponding Poinca´
sections is shown in Fig. 5~a! for E56.21. Figure 5~b! is a
magnification of small island in Fig. 5~a! and Fig. 5~c! is a
magnification of small island in Fig. 5~b! exhibiting the pres-
ence of a self-similar or hierarchy island structures. AD
expected to occur when an orbit enters into the hierar
structure related to long-time jumps in the phase space.2,10

The property of AD is characterized by the jump-time a
residence-time distributions. Figure 6 shows these distri
tions obtained numerically forE51.26. The long-time tails

obey approximately the power lawsP(t);t2g21 and P̃(t)

;t2g̃21, for the jump-time and residence-time distribution

respectively. From Fig. 6 we findg;1.5 andg̃;1.3. Ac-
cording to the theory of the Le´vy walk,2,6 the exponent of the
MSD is related to that of the jump-time and residence-ti
distributions as

a5H 21min$g̃,1%2min$2,g%, for g.1,

21min$g̃,g%2g, for 0,g,1.
~6!

With use of the present convention (g51.5,g̃51.3), Eq.~6!
yields a51.5 which is consistent with our observed value

Next, we study the caseV052, which results in ND in a
wide energy region. The normal diffusion in determinis
chaotic systems is not normal at all, and we show below t
the diffusion constant has an irregular energy depende
-
e,
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When the value ofa in Eq. ~5! is guaranteed to be unity, th
diffusion coefficient can be determined as

D5 lim
t→`

1

2t
^@X~ t !2X~0!#2&. ~7!

Figure 7~a! shows the numerical results for the diffusion c
efficient and the exponenta in the range 1.60,E,5.5. In
this energy domain, only ND witha51 occurs within the
statistical error. Figure 7~b! is a magnification of a narrow
region in Fig. 7~a!, where the typical statistical error ofD is
also shown by an error bar. One can see clearly thatD has a
complicated fractal-like structure. This structure is nume
cally reproducible and is not due to statistical fluctuations
the numerical calculation. This amazing fractal-like feature
proper to the deterministic chaotic dynamics and is attribu
to a sensitivity of the phase-space structure to the syste
energy.13

Finally, we note that dynamics of SQUID’s can be d
tected directly by an induced voltageV across the junction,
which is related to the momentum of the center of ma
throughV5P\/2ev. The correlation function of the center
of-mass momentumC(t2t8)5^P(t)P(t8)&, can thus be ob-
tained experimentally. The AD is characterized by the lo
frequency part of the power spectrumC̃(v)5*dt eivtC(t)
throughC̃(v);v12a, while the ND is characterized by th
diffusion constantD}C̃(0).

In summary, we have studied the diffusion of superco
ducting phases in SQUID systems. Two kind of determinis
diffusions, anomalous diffusion~AD! and normal diffusion
~ND! are investigated. For AD, the numerically-evaluat
exponent of time in the mean square displacement is la
than 1, and is consistent with one derived by means of
jump-time and residence-time distributions. For ND, the d
fusion coefficientD is shown to have a fractal-like feature a
a function of the total energy. We hope future experiments
SQUID’s to verify these novel features of deterministic d
fusion predicted here.

We thank Dr. T. Harayama for a stimulating discussion
the irregular diffusion coefficients.
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