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Phase dynamics in SQUID’s: Anomalous diffusion and irregular energy dependence
of diffusion coefficients
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Deterministic diffusions of superconducting phases in extremely underdamped SQUID’s are studied. It is
found that, by controlling the total energy, two types of diffusion, i.e., anomalous and normal ones, appear. In
the anomalous diffusion, the orbit in the phase space is trapped mainly into the jump-related hierarchy structure
so that the mean-square displacement behave’aith 1< y<2. This enhanced diffusion is analyzed from
a viewpoint of the Lgy walk. Even in the normal diffusion, it is revealed that the diffusion coefficient has the
amazing irregular energy dependence, which reflects an extreme sensitivity of the phase-space structure to a
small change of the energy.
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Deterministic diffusion phenomena and their statisticaldecades®!®Because of the macroscopic nature of its phase,
properties have received a wide attention for more than twehe SQUID system is more robust to microscopic impurities
decadedIn many deterministic systems, the nature of dif- or/and inhomogeneities than ones proposed previddsly.
fusions shows an anomalous feature, which is characterizedoreover, the SQUID system has a great advantage in con-
by anomalous exponents of time in mean square displacerolling the total energyE and other model parameters by
ments. This anomalous diffusid®D) has been studied in changing initial conditions and external magnetic field in one
dissipative systems including low-dimensional mapsyer-
damped Josephson junctiof$and two-dimensional flow. 20 :
AD in Hamiltonian systems has also been studied in, for (a) f
example, two-dimensional Hamiltonian systetfist We, e
however, have as yet little knowledge on AD in experimen- *
tally realizable Hamiltonian systems which are free from dis-
orders such as impurities. 5 20

Recently, Klages and Dorfman have pointed out that even
in deterministic normal diffusion$ND), the diffusion con-
stant may show an irregular fractal structure as a function of
a model parametért? They have analyzed a chaotic map H ‘
with one-dimensional piecewise linear chains with a uniform R |
slope, and have shown that the diffusion coefficient has a S HEH
fractal structure as a function of the slope of a map. The AEamEsms | 4
fractal-like structure of diffusion constants in Hamiltonian ) —=
systems has also been studied in systems where a point par-
ticle is subject to constant gravity and is bouncing on a one- 40 ‘ : : : :
dimensional periodically corrugated hard flddtt, however, (b)
is also highly desirable to reveal this novel feature in more
experimentally accessible systems.

In this paper, we propose an extremely underdamped
SQUID as a promising candidate in which both the AD and
ND of Hamiltonian systems can be studied. The basic nature X
of this dynamical system has been studied for a few 20+
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FIG. 1. () SQUID with two Josephson junctions. Black and L . . . .
white regions are insulator and superconductor, respectively. The F!G- 2. Phase dynamics in the two-dimensional potential. Hori-

dynamics is described by phase differenggsand ¢,. (b) Equiva- zontal and vertical axes correspond to relative and center-of-mass
lent molecule model with a cosine potential coordinates, respectively@) The shape of two-dimensional poten-

tial and(b) an example of a trajectory.
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FIG. 4. Mean square displacemeii$SD): (a) atE=0.61,(b)
atE=1.26,(c) atE=3.01,(d) atE=6.21.

L= 31"+ 30,°+VoC0Se1+VoC0Se,— 5 (9~ ¢1- )%
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This model turns out to be equivalent to that of two coupled
particles in a cosine potentiggee Fig. 1b)]. Below, we ne-
glect quantum effects on the phase dynamics by assuming
that the normalized Plank constaht=#Aw/E, is small
enough. We also assume the damping effect is so weak that
b 5 X 4 the system behaves as a Hamiltonian system in the relevant
time scale.

FIG. 3. (a) Time series of the center-of-mass coordinateEat To simplify the analysis, we employ the center-of-mass
=0.61 for three types of orbitgi) drift orbit, (i) trapped-periodic ~ and relative coordinates= (@1‘!’ 902)/_2 andx= 27 @1, T€-
orbit, (jii) chaotic orbit.(b) Underlying Poincaresection withp ~ spectively. With use oP = aZ/9X=2X,p=dL/Ix=x/2, the

=0 andE=0.61. resultant Hamiltonian becomes
sample*® Therefore we can see the nature of both AD and H= P2+ p2+U(X,x), (43
ND simply by tuning the energy and model parameter.

Let us introduce a SQUID model consisting of two Jo- U(X,x)= -2V cog X)cogx/2)+ L (x—a)2.  (4b)

sephson junctions shown in Fig(al. The dynamics of this

SQUID is described by superconducting phase differenceshm t_h|s Sﬁ/stem, the total ehnergi can_beﬂ contro}!leild by
and ¢,. The Lagrangian is given ds=K—U, where changing the parameter by the magnetic fiux as Toflows.
#1 2 ' When the particle is relaxed to the potential minimumaat

) 5 =a,, and whena is changed to another valwe immedi-
ket Do |7 Lo Lo, (1) &ely, the particle begins to move in the two-dimensional
27\ 27%1 2\ 27%2) potential with a constant enerdy, until the damping effect

appears. Thugk is controlled bya, anda, experimentally.
1 ()2 Below, we treat t_he total energ§/ as a con_trol parameter.
U= —E,Ccos¢; — E,cosp,+ _(_(’) (eo—p1—a)2.  (2) The Hamiltonian(4a) describes a nonintegrable system
2L\ 2 which exhibits dynamical chaos. We numerically analyze the
equations of motion derived from E@ta by the fourth sim-
The kinetic energyK corresponds to the charging energy, plectic integration method with a typical time slickt
while the potential energy corresponds to the sum of the =0.001-0.01. To see anomalous features of diffusions most
Josephson energy and inductance energy. H&rg;, andL  easily, a is chosen asr corresponding to one half of the
are the capacitance, the Josephson energy of each junctigseriodicity of the potential. In these circumstances, the po-
and the inductance of the superconducting loop, respectivelyantial U has minima alX=n, while the saddle points lie
The external fluxb, penetrating the loop changes the param-,, y (2n+1)7/2, wheren is an integer. Below, we discuss
etera in Eq. (2) througha=2m®,/®o, where®o=h/2eis  ap py taking V, as 1, while ND by takingV, as 2. The
a unit flux. By defining dimensionless parameters\as  gaddle-point energy measured from the potential minima is
=E,/Ey and L=L/E, via Eq=(Po/2m)?/L, and by nor-  given asEqygqe 0.456 forVo=1, and asEgugqe 1.60 for
malizing the time ag = wt via w=LC, the Lagrangian is V,=2, respectively. In both cases, the diffusion occurs only
reduced to for E>Egaqdie
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FIG. 5. (a) Poincaresection withp=0 at E=6.21. (b) Partial
magnification of(a). (c) Partial magnification ofb).

First, we discuss the cad4 =1, where the AD appears
clearly. A landscape of the two-dimensional potential is
given in Fig. Za), and an example of phase dynamics is
depicted in Fig. &), showing both a smooth motion over
barriers and a trapped motion in a potential valley. Our po-
tential is periodic in theX direction but parabolic in the
direction. Thus the diffusive motion occurs in th¥
direction® The time evolution of the center-of-mass for
three initial conditions aE=0.61 is shown in Fig. &). For
this energy, three types of motion are observeddrift, (ii)
trapped-periodic, andii ) diffusive motions, according to the
initial conditions. The underlying Poincarsection with p
=0 for E=0.61 is shown in Fig. &), and is found to be
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FIG. 6. (a) Jump-time distribution an¢b) residence-time distri-

bution atE=1.26.

the trajectories in the chaotic séa). Therefore we have to
choose the appropriate initial condition with constant total
energy.

In order to quantify the diffusion property, we evaluate

(a)

the mean square displacemélmSD) defined by

a?()=([X(t) = X(0)]*)~t*,
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composed of tori and chaotic sea. The central torus presents FiG. 7. Energy dependence of diffusion coefficiéax for 3.6
the trapped orbit, while the triplet of upper small tori corre- <E<5.3 and(b) for the narrower region 4.40E<4.56. The ex-
sponds to drift orbits. To investigate the diffusion phenom-ponenta is also shown in(@). The error bar in(b) is a typical

ena, we hereafter focus on diffusive motions represented bstatistical error oD.
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where the exponent characterizes the nature of diffusions.

Figures 4a), 4(b), 4(c), and 4d) show MSD’s which corre-
spond to diffusions folE=0.61, 1.26, 3.01, and 6.21, re-
spectively. The cas&=0.61 shows normal diffusiona(

=1), while the latter three cases show the anomalous expo-
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When the value ot in Eq. (5) is guaranteed to be unity, the
diffusion coefficient can be determined as

. 1 2
im s (XD =X(0) ).

—

D=1 (7)
t

nent «~1.5. This enhanced diffusion is expected to beFigure 7a) shows the numerical results for the diffusion co-
caused by a sequence of long-time jumps and long-time reskfficient and the exponent in the range 1.68 E<5.5. In

dencegtrappings as discussed beloft" 18

this energy domain, only ND witle=1 occurs within the

To figure out details of AD, the corresponding Poincarestatistical error. Figure (B) is a magnification of a narrow

sections is shown in Fig.(§ for E=6.21. Figure ) is a
magnification of small island in Fig.(8 and Fig. %c) is a
magnification of small island in Fig.(B) exhibiting the pres-

ence of a self-similar or hierarchy island structures. AD is
expected to occur when an orbit enters into the hierarch

structure related to long-time jumps in the phase spate.

region in Fig. Ta), where the typical statistical error &f is
also shown by an error bar. One can see clearlyEhhas a
complicated fractal-like structure. This structure is numeri-
cally reproducible and is not due to statistical fluctuations in
the numerical calculation. This amazing fractal-like feature is

¥)roper to the deterministic chaotic dynamics and is attributed

to a sensitivity of the phase-space structure to the system'’s

The property of AD is characterized by the jump-time andenergy@
residence-time distributions. Figure 6 shows these distribu- Finally, we note that dynamics of SQUID’s can be de-

tions obtained numerically foE=1.26. The long-time tails
obey approximately the power lav(t) ~t~?~1 and P(t)

~t~ 771, for the jump-time and residence-time distributions,

respectively. From Fig. 6 we fing~1.5 andy~1.3. Ac-

tected directly by an induced voltageacross the junction,
which is related to the momentum of the center of mass
throughV=P%/2ew. The correlation function of the center-
of-mass momentur@(t—t')=(P(t)P(t’)), can thus be ob-
tained experimentally. The AD is characterized by the low-

cording to the theory of the vy walk,2® the exponent of the frequency part of the power spectri@{w) = [dt &“'C(t)

MSD is related to that of the jump-time and residence-tim

distributions as

2+min{y,1}—min{2,y}, for y>1,

a= o~ (6)
2+min{vy,y}— 7, 0<y<l1.

for

With use of the present conventioy£1.5,y=1.3), Eq.(6)
yields «= 1.5 which is consistent with our observed value.
Next, we study the cas€é,=2, which results in ND in a

wide energy region. The normal diffusion in deterministic

€

throughC(w)~ w*~ ¢, while the ND is characterized by the

diffusion constanD=C(0).

In summary, we have studied the diffusion of supercon-
ducting phases in SQUID systems. Two kind of deterministic
diffusions, anomalous diffusiofAD) and normal diffusion
(ND) are investigated. For AD, the numerically-evaluated
exponent of time in the mean square displacement is larger
than 1, and is consistent with one derived by means of the
jump-time and residence-time distributions. For ND, the dif-
fusion coefficienD is shown to have a fractal-like feature as
a function of the total energy. We hope future experiments on
SQUID’s to verify these novel features of deterministic dif-
fusion predicted here.

chaotic systems is not normal at all, and we show below that We thank Dr. T. Harayama for a stimulating discussion on
the diffusion constant has an irregular energy dependencéhe irregular diffusion coefficients.
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