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Thermodynamic properties of weakly anisotropic disordered magnetic chains in the largé& limit
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We investigate the thermodynamic properties of weakly anisotropic disordered magnetic chains where the
nearest-neighbor Heisenberg exchange coupling is the dominant spin-spin interaction. In addition to the ex-
change interaction, there is single-ion anisotropy with the direction of the easy axis being the same for all
spins. The analysis is carried out in the lir§i#- 1, whereS denotes the ionic spin, and in the temperature range
T<J,eS, whered,is the average magnitude of the exchange interaction. It is assumed that the independent
boson picture is appropriate so that the thermodynamic properties of the chain are those of a gas of weakly
interacting magnons whose frequencies are obtained from linearized equations of motion for the spin¥. The
model is studied in detail with both random and nonrandom anisotropy. Particular emphasis is placed on the
existence and magnitude of the anisotropy gap and its effect on the specific heat and the magnetic suscepti-
bility.
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I. INTRODUCTION
H==2 Jnne1Sh S 2 DonSh-HY Sz ()
The low-temperature properties of disordered magnetic g " "

systems has been a subject of interest for some time. In a
series of recent publications, particular attention was paid télere, in addition to the Heisenberg interaction, there is an
the dynamical properties of one-dimensional disorderednisotropic single-ion term and a uniform applied field. We
magnets-® The analyses reported in these references wereonsider only the case of uniaxial anisotropy with the anisot-
based on linearizing the equations of motion of the spingopy (2) axis the same for all of the ions, which are assumed
about a classical ground state. The eigenfrequencies of tHe have the same value & In the most general case, both
equations of motion were identified as magnon energtes (the excha_nge integra_ls_ and the anisotropy constants are ran-
=1) so that the resulting thermodynamic properties werdélom funct.|ons of.posmon. We assume that thg mean yalues
those of an ideal boson gas. In the boson picture, the fre@0ey the inequality|J|)>(D)>0 consistent with the pic-
energy and thus all of the thermodynamic properties can bire of weak, easy-axis anisotropy. The applied field is par-
expressed as integrals over the magnon density of states. TALE! 10 the anisotropy axis and satisfies the conditién
density of states was obtained by mode counting technique§< )- . . . . .
and transfer-matrix scaling arguments and compared with the In three?d|men3|onal ferromagnetic a_md a_ntlferromagnetlc

- . . . Systems with long-range order, easy axis anisotropy produces
predictions of approximate analytical calculations based o

th herent exchan roximation. For ntum Spin gap in the density of states of the magnons that has a
€ conérent excnange approximation. For quantum Spin SYsiqn6nced effect on the behavior of the specific heat and
tems, the description in terms of linearized excitations i

- X . > “he susceptibility at low temperatures. In this paper, we ad-
generally valid only in the limit>1. Complementary to this yress the question of whether a similar effect occurs in one-

work are theoretical studies of disordered quantum spijjimensional disordered systems. As a specific example, we
chains withS= 3 utilizing various approaches such as seriesstudy the+J model, where the sign of the exchange inter-
expansion, transfer-matrix, and real-space renormalizatiorgction is a random variable, as is the value of the anisotropy
group technique)~**In Refs. 1-9, work was carried out on constant. Our approach is to use negative eigenvalue count-
a variety of systems including the Heisenberg &todels  ing technique$*®~® to determine the magnon density of
in zero and finite applied fields, while in Refs. 10-13, thestates in the low-energy regid£1<<|J|>S_ From the behav-
analysis of the quantum systems was limited to the gpin-ior of the density of states, we infer the limiting behavior of
and spin-1(Ref. 11 Heisenberg models in zero field. Also the specific heat and the longitudinal susceptibility for the
relevant are the studies of disordereldssical spin chains case where the uniform field is along the anisotropy axis.
with the =J model Hamiltonian that are reported in Ref. 10.  The rest of the paper is organized as follows. The linear-
However, none of the references cited have addressed tlized equations of motion for the transverse components of
thermodynamic properties of weaklgnisotropic systems, the spin are developed in Sec. Il. In Sec. Il we report de-
where there is a small anisotropy term in the Hamiltonian intailed results for the densities of states of the anisotrapic
addition to the dominant isotropic Heisenberg interaction. Inmodel and comment on their effect on the thermodynamic
this paper, we will investigate the effects of anisotropy in theproperties. The broader implications of our findings are dis-
largesS limit for a system with the Hamiltonian cussed in Sec. IV.
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Il. EQUATIONS OF MOTION AND THERMODYNAMIC where thewjio denote the magnon energies in the absence of
FUNCTIONS an applied field. Note that it is assumed that ithes smaller
With the Hamiltonian displayed in Eq1), the Fourier than any of thew;, so that all of magnon energies are posi-

transforms of the linearized equations of motion for theliVe, s required for stability. . o
transverse spin operatoss., take the form In the consideration of the thermodynamic functions, it is

useful to introduce the densities of states associated with the

(@=H=2D1(Sn20—Inns1(Sns 1200 ]y and w;y, which we denote by ™ (w) andp™(w), re-
' spectively. In the zero-field limit, the specific heat has the
—JIn-1n(Sh-1200)Sn+ form

:_Jn,n+1<snz>sn+l+_\]nfl,n<snz>snfl+ (2)

Here the angular brackets:-), refer to the expectation val-
ues of thez component of the spin in the classiag®eel) (8)
ground state where the orientation of the spin is determined
by the sign of the nearest-neighbor interaction:

C(T)=T—2rw2[p+(w)+p—(w)]ew”(ew”—1)—2dw.
0

The analysis of the magnetic properties depends on
whether the system is ferromagnetic or antiferromagnetic. In
_ the former case, we assume an infinitesimal applied field and
Sh20=59MJpn n- _ . 3 ; ’ . . .
(Sh200=59MIn n-1){Sh-12)0 @ consider the change in the magnetic moment with tempera-

Broadly speaking, we can divide the ground states intdUre, denoted bAM(T). In the limit asH—0, we obtain
two categories: if there are equal numbers of “up” and -
“down” spins in the presence of an infinitesimal applied AM(T)z—f [pH(w)—p (0)](e’T—1) *dw. (9
field, we designate the system as “antiferromagnet- 0
ic,"whereas if there is a macroscopi©(N)] difference in  rqor an antiferromagnet, one has (w)=p (w) with the
the numbers of up and down spins, we refer to the system ggsit thatAM(T)=0, and there is no magnetization in an
“ferrimagnetic” for which complete (or ferromagnetit jnfinitesimal field. However, the longitudinal zero-field sus-

alignment is a limiting case. , _ ceptibility, x(T), is finite and is given by the expression
For future reference, we note that when there is no disor-

der and a ferromagnetic interaction between the spihs ( (. B o/ Tr ol T ,
>0), the characteristic frequencies, or magnon energies, X(T)=T . [p"(w)+p (w)]e” (" —1) “dow.
have the simple form (10)

o=H+2DS+2J§1-cogk)], —wmsksw. (4 Equations(7)—(9) show that at low temperatures, the spe-
cific heat, the change in magnetization, and the susceptibility
Bepend critically on the behavior of the density of states in
zero applied field aw— 0. If there is a gap, as happens in
the absence of disorder whéh+0, all of these functions
2 12 12 will vary exponentially ad — 0. The question then is what is
H=25[(3+D)*~J cos(k/2)]™ the effect of disorder on the density of states and is there a
In the standard interpretation, the states with negative fregap in the presence of disorder? We will take this up in the
guency are identified with magnon modes ha\/ing energiegext section using the-J model to simulate the effects of
equal to the magnitude of the frequency. As a result, one hadisorder in an antiferromagnetic system.
two bands of magnons with energies differing biyl :2

In the case where there is an antiferromagnetic interactio
between the spinsJ&O0), the characteristic frequencies
come in pairs:

. =J MODEL

*_ 2_ 12 124
wi =25[(J+D)*~ I cos(ki2) P H, In this section we present results for the]l model with

random anisotropy. The sign of the exchange interaction has

—ms<ksm. ) the distribution
In the presence of disordgr_, the solution _to the equat_ions P[sgn(Jn+10)]=(1—¢)8[sgNMIns 1) — 1]
of motion will yield both positive and negative frequencies
(except in the limit of complete ferromagnetic alignmeAs +colsgnJn 1) +1]. (11)

in the case of the ideal antiferromagnet, we identify the negary g \wherc=0, all of the interactions are ferromagnetic and
tive frequencies with magnon modes with energies equal tQhenc=1, the array is a perfect antiferromagnet. Fer ®

the magnitude of the characteristic frequencies so that We 1 4 5150 has an antiferromagnet with properties such that
can write whenc~0 there are large regions of parallel spins and when
c~1 there are large regions of alternating antiparallel spins.

o] (H)=wj+H, (6) : : ;

i j We also take into account the effects of disorder in the an-
B B isotropy parameters by assuming tiag is uniformly dis-

wj (H)=wjo—H, (7)) tributed between 0 and 0.01
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0.01 - Ay . and 0.75. Energy is in units &S andD is uni-
formly distributed between 0 and 0.D1
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The density of states of the J model in the absence of =0) and 0.13S (c=1). In the intermediate case whece
anisotropy has been investigated previously with exact ane- %, the gap withD =0.005) is 0.017S, whereas with ran-
numerical results obtained far=%,® and numerical results domD it falls to 0.015S. Thus the disorder i® reduces the
and an accurate analytical approximation éat .8 For all  gap by a factor~0.8—0.9.
values ofc+0,1, the density of states varied @s ' in the We have also studied the variation of the gap with the
limit w—0. The —3 power law contrasts with constant den- strength of the anisotropy. With a common value for the
sity of states for the isotropic antiferromagnet and éhe”?  anisotropy constant, we find that the gap varieB#4 Such
variation characteristic of the isotropic ferromagnetic chain.behavior is to be expected from scaling arguments that ex-

We have used negative eigenvalue counting technidues ploit the similarity with theXY ferromagnetic chain in a ran-
to determine theintegrated density of statedDOS) for  dom transverse fiel? The D% variation falls between the
chains of 10 spins withc=0.25, 0.50, and 0.75. The only linear variation of the gap in ideal ferromagnetic chains and
change required in the formalism is that E.6) of Ref. 8is  the square-root behavior for the ideal antiferromagnetic

modified to read chain D<J).
In the analysis of the behavior of the specific heat and the
[2+(2D;/J) —zjw]Vj=Vji1+Vj_1, susceptibility of weakly anisotropic magnets at low tempera-

where the symbolg; andV, are defined in that reference. tUr€s, there are two limiting regimes to considev:<T
The results for the IDOS are shown in Fig. 1. Note that the<JSandT<A, whereA denotes the anisotropy gap. When
IDOS(w) is the number of modes per spin with frequenciesT<A, both the susceptibility and the specific heat vary as
in the interval between 0 ana and thus corresponds to

N1f¢p"(w')dow’ when >0 and toN"1[%p (w')de’ 1 - . . .
when <0, so that in general, one has IDOY(
+IDOS(—x)=1.

It is evident from the figure that the integrated density of
states is symmetric, as expected for an antiferromagnet, ar
shows a gap that depends arBecause of the presence of a
few modes with energies very close to zére., band tail-
ing), it is impossible to give a precise definition of the gap.& L.t
As a consequence, we take an “operational” point of view oot
and define the band gap as the endigyunits of J§ where 0ot | Lot 1
IDOS=0.0005. Using this definition, our results for the gap
as a function ofc are shown in Fig. 2. Also shown are the
limiting values of the gap for the ferromagnetic chain (
=0) and the antiferromagnetic chaio=<1). Here the effect

0.001 L L L L

of the random anisotropy is to reduce the values of the gap 0 02 04 06 08 1
relative to those of the ideal ferromagnetic and antiferromag- ¢
netic chains with the common, site-independent valie FIG. 2. Gap versus fraction of antiferromagnetic interactions.

=(D)=0.008], where the gaps are equal t3=0.01JS  The gap is in units 08S andD is uniformly distributed between 0
and 2°S(JD)Y?=0.20JS (D <J), respectively. With a dis- and 0.03. Results obtained with a fixed value d=(D)
tribution of anisotropy parameters, the gaps are J&/{c =0.003) are larger by a factor of 1.15-1.30.
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exd —A/T]. In the rangeA < T<<JS, the gap has a negligible fluctuations is to reduce the long-range coherence between
effect on the specific heat and one I@&&T)~T%37 In con-  the spins that is implicit in the ideal boson approximation for
trast, even whem <T<JS, the susceptibility integral, Eq. the low-frequency modes. The destruction of the coherence
(8), is strongly influenced by the gap. One finds thas a  9ives rise to the Curie-likex(>T" ") behavior of the suscep-
linear function of the temperature, i.e., tibility in the limit T—0 that was found for quantum and
classical disordered chains in the analyses reported in Refs.
o 10-13. It should be noted that objections to the use of the
X(T)*Tf [p" (@) +p (0)]o *do. (12)  boson approximation for isotropic systems appear to apply
0 primarily to the calculation of the longitudinal susceptibility.
The results for the specific heat are expected to be more
IV. DISCUSSION reliable since the contribution from the very low-frequency
modes is suppressed by the factorwt appearing in the

The principal result emerging from this work is that there. ;
can be an easy-axis anisotropy gap even in strongly diso}ptegrand in Eq(8). When these r_nodes are suppresse_d, the
tegral converges and one obtains power-law behavior for

dered magnetic chains. Although the disorder renormalize fic heat similar o that found in Ref. 82
the gap(cf. Fig. 2 and introduces midgap states, it does not € specilic heat simifar 1o that found in Ret. 12. .
Concerning the anisotropic systems, it is our expectation

do away with the gap altogether. The effect of introducing . .
“wrong sign” exchange interactions in an otherwise perfectthat the anisotropy reduces the role of the fluctuations so that

array is to shift the gap towards the value it would have if allthe analysis of the susceptibility in the ideal boson approxi-

of the interactions were of the opposite sign. At least for thghation is more realistic. To test such a hypothesis one would

model we studied, the effect of disorder in the strength of th eed o apply re_al-spa(_:e r.enormalizatio.n-grou.p and_ related
anisotropy is rathér smalap renormalization-0.8—0.9. It echniques to anisotropic disordered chains. It is particularly

is also important to note that our analysis pertains only tdmpo_rft_anrt] tot determine WZ(;:‘_It_herhtheTs;JsAce\p/)\t/lrt])llltyAin_lc_i the
situations where thB,, are greater or equal to zero. Negative Specific heat vary as ekpA/T] when : en

values ofD,,, which correspond to local easy-plane anisot-<‘ls we predict a linear temperature dependence for the

il 312\ ariafi i
ropy, give rise to modes with imaginary frequencies, indicat—suf’cgptt'r?'“ty and laT bv:;nat_lon f]?rtr;[he spe$_|f|chhe?t£hAf .
ing an instability in our hypothesized easy-axis ground state0ted, theé power-law behavior of the specilic heat that 1S

The effect of the anisotropy gap on the thermodynamicCharaCte“St'C of the isotropic system in the lagémit is

properties is pronounced at low temperatures where it give§ISO found dfor the |sotr;)'f6c43p|\%1\;rsntcri10mtﬁhalrjr, wh(ta.rbell'the f
rise to exponential behavior. At temperatures well above th orresponding exponent0.44. Whether the susceptibility o

o ; e kly anisotropic spig-random chain varies linearly
gap, the specific heat is not significantly affected by the an- € wea . .
isotropy. This does not happen, however, in the case of th@"tg T dovter an agpremable part of the rangeT<JSis yet
susceptibility. Here the anisotropy is needed to stabilize thd0 be determined.

; g . : Finally we note that while our conclusions were drawn
array in the presence of an applied fIEI-d'-WIthOUt anlsotropyfrom a s){ud of a somewhat artificial model, the linearized
the susceptibility diverges in the largelimit. y '

The divergence of the susceptibility of the isotropic Sys_equation of motion together with eigenvalue counting tech-

tem is a shortcoming of the ideal boson approximation. Thié"q?ets. can dbel ufsed tcl) ftgdfy the ?ef.‘sl'“e? .Oft stat(tes in more
divergence reflects the relatively large effect of the applieJea ISic models formulated for materials ot interest.
field on the low-frequency modes which are all shifted by an
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