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Thermodynamic properties of weakly anisotropic disordered magnetic chains in the large-S limit
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We investigate the thermodynamic properties of weakly anisotropic disordered magnetic chains where the
nearest-neighbor Heisenberg exchange coupling is the dominant spin-spin interaction. In addition to the ex-
change interaction, there is single-ion anisotropy with the direction of the easy axis being the same for all
spins. The analysis is carried out in the limitS@1, whereSdenotes the ionic spin, and in the temperature range
T!JaveS, whereJave is the average magnitude of the exchange interaction. It is assumed that the independent
boson picture is appropriate so that the thermodynamic properties of the chain are those of a gas of weakly
interacting magnons whose frequencies are obtained from linearized equations of motion for the spins. The6J
model is studied in detail with both random and nonrandom anisotropy. Particular emphasis is placed on the
existence and magnitude of the anisotropy gap and its effect on the specific heat and the magnetic suscepti-
bility.
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I. INTRODUCTION

The low-temperature properties of disordered magn
systems has been a subject of interest for some time.
series of recent publications, particular attention was pai
the dynamical properties of one-dimensional disorde
magnets.1–9 The analyses reported in these references w
based on linearizing the equations of motion of the sp
about a classical ground state. The eigenfrequencies o
equations of motion were identified as magnon energies\
51) so that the resulting thermodynamic properties w
those of an ideal boson gas. In the boson picture, the
energy and thus all of the thermodynamic properties can
expressed as integrals over the magnon density of states
density of states was obtained by mode counting techniq
and transfer-matrix scaling arguments and compared with
predictions of approximate analytical calculations based
the coherent exchange approximation. For quantum spin
tems, the description in terms of linearized excitations
generally valid only in the limitS@1. Complementary to this
work are theoretical studies of disordered quantum s
chains withS5 1

2 utilizing various approaches such as ser
expansion, transfer-matrix, and real-space renormalizat
group techniques.10–13In Refs. 1–9, work was carried out o
a variety of systems including the Heisenberg andXYmodels
in zero and finite applied fields, while in Refs. 10–13, t
analysis of the quantum systems was limited to the sp1

2

and spin-1~Ref. 11! Heisenberg models in zero field. Als
relevant are the studies of disorderedclassical spin chains
with the6J model Hamiltonian that are reported in Ref. 1
However, none of the references cited have addressed
thermodynamic properties of weaklyanisotropic systems,
where there is a small anisotropy term in the Hamiltonian
addition to the dominant isotropic Heisenberg interaction
this paper, we will investigate the effects of anisotropy in t
large-S limit for a system with the Hamiltonian
0163-1829/2002/66~1!/012405~4!/$20.00 66 0124
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DnSnz
2 2H(

n
Snz ~1!

Here, in addition to the Heisenberg interaction, there is
anisotropic single-ion term and a uniform applied field. W
consider only the case of uniaxial anisotropy with the anis
ropy ~z! axis the same for all of the ions, which are assum
to have the same value ofS. In the most general case, bo
the exchange integrals and the anisotropy constants are
dom functions of position. We assume that the mean val
obey the inequalitŷ uJu&@^D&.0 consistent with the pic-
ture of weak, easy-axis anisotropy. The applied field is p
allel to the anisotropy axis and satisfies the conditionH
!^D&.

In three-dimensional ferromagnetic and antiferromagne
systems with long-range order, easy axis anisotropy produ
a gap in the density of states of the magnons that ha
pronounced effect on the behavior of the specific heat
the susceptibility at low temperatures. In this paper, we
dress the question of whether a similar effect occurs in o
dimensional disordered systems. As a specific example,
study the6J model, where the sign of the exchange inte
action is a random variable, as is the value of the anisotr
constant. Our approach is to use negative eigenvalue co
ing techniques3,4,6–8 to determine the magnon density o
states in the low-energy regionE!^uJu&S. From the behav-
ior of the density of states, we infer the limiting behavior
the specific heat and the longitudinal susceptibility for t
case where the uniform field is along the anisotropy axis

The rest of the paper is organized as follows. The line
ized equations of motion for the transverse components
the spin are developed in Sec. II. In Sec. III we report d
tailed results for the densities of states of the anisotropic6J
model and comment on their effect on the thermodynam
properties. The broader implications of our findings are d
cussed in Sec. IV.
©2002 The American Physical Society05-1
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II. EQUATIONS OF MOTION AND THERMODYNAMIC
FUNCTIONS

With the Hamiltonian displayed in Eq.~1!, the Fourier
transforms of the linearized equations of motion for t
transverse spin operatorsSn1 take the form

~v2H22Dn^Snz&02Jn,n11^Sn11z&0

2Jn21,n^Sn21z&0!Sn1

52Jn,n11^Snz&Sn1112Jn21,n^Snz&Sn211 ~2!

Here the angular brackets^¯&0 refer to the expectation val
ues of thez component of the spin in the classical~Néel!
ground state where the orientation of the spin is determi
by the sign of the nearest-neighbor interaction:

^Snz&05sgn~Jn,n21!^Sn21z&0 . ~3!

Broadly speaking, we can divide the ground states i
two categories: if there are equal numbers of ‘‘up’’ a
‘‘down’’ spins in the presence of an infinitesimal applie
field, we designate the system as ‘‘antiferromagn
ic,’’whereas if there is a macroscopic@O(N)# difference in
the numbers of up and down spins, we refer to the system
‘‘ferrimagnetic’’ for which complete ~or ferromagnetic!
alignment is a limiting case.

For future reference, we note that when there is no dis
der and a ferromagnetic interaction between the spinsJ
.0), the characteristic frequencies, or magnon energ
have the simple form

vk5H12DS12JS@12cos~k!#, 2p<k<p. ~4!

In the case where there is an antiferromagnetic interac
between the spins (J,0), the characteristic frequencie
come in pairs:

H62S@~J1D !22J2 cos2~k/2!#1/2.

In the standard interpretation, the states with negative
quency are identified with magnon modes having energ
equal to the magnitude of the frequency. As a result, one
two bands of magnons with energies differing by 2H:

vk
652S@~J1D !22J2 cos2~k/2!#1/26H,

2p<k<p. ~5!

In the presence of disorder, the solution to the equati
of motion will yield both positive and negative frequenci
~except in the limit of complete ferromagnetic alignment!. As
in the case of the ideal antiferromagnet, we identify the ne
tive frequencies with magnon modes with energies equa
the magnitude of the characteristic frequencies so that
can write

v j
1~H !5v j 0

1 1H, ~6!

v j
2~H !5v j 0

2 2H, ~7!
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where thev j 0
6 denote the magnon energies in the absence

an applied field. Note that it is assumed that theH is smaller
than any of thev j 0

2 so that all of magnon energies are po
tive, as required for stability.

In the consideration of the thermodynamic functions, it
useful to introduce the densities of states associated with
v j 0

1 and v j 0
2 , which we denote byr1(v) and r2(v), re-

spectively. In the zero-field limit, the specific heat has t
form

C~T!5T22E
0

`

v2@r1~v!1r2~v!#ev/T~ev/T21!22dv.

~8!

The analysis of the magnetic properties depends
whether the system is ferromagnetic or antiferromagnetic
the former case, we assume an infinitesimal applied field
consider the change in the magnetic moment with temp
ture, denoted byDM (T). In the limit asH→0, we obtain

DM ~T!52E
0

`

@r1~v!2r2~v!#~ev/T21!21dv. ~9!

For an antiferromagnet, one hasr1(v)5r2(v) with the
result thatDM (T)50, and there is no magnetization in a
infinitesimal field. However, the longitudinal zero-field su
ceptibility, x(T), is finite and is given by the expression

x~T!5T21E
0

`

@r1~v!1r2~v!#ev/T~ev/T21!22dv.

~10!

Equations~7!–~9! show that at low temperatures, the sp
cific heat, the change in magnetization, and the susceptib
depend critically on the behavior of the density of states
zero applied field asv→0. If there is a gap, as happens
the absence of disorder whenDÞ0, all of these functions
will vary exponentially asT→0. The question then is what i
the effect of disorder on the density of states and is ther
gap in the presence of disorder? We will take this up in
next section using the6J model to simulate the effects o
disorder in an antiferromagnetic system.

III. ÁJ MODEL

In this section we present results for the6J model with
random anisotropy. The sign of the exchange interaction
the distribution

P@sgn~Jn11,n!#5~12c!d@sgn~Jn11,n!21#

1cd@sgn~Jn11,n!11#. ~11!

Thus whenc50, all of the interactions are ferromagnetic an
whenc51, the array is a perfect antiferromagnet. For 0,c
,1 one also has an antiferromagnet with properties such
whenc'0 there are large regions of parallel spins and wh
c'1 there are large regions of alternating antiparallel sp
We also take into account the effects of disorder in the
isotropy parameters by assuming thatDn is uniformly dis-
tributed between 0 and 0.01J.
5-2
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FIG. 1. Integrated density of states~IDOS!
versus energy for the6J model. From top to
bottom, the curves correspond toc50.25, 0.50,
and 0.75. Energy is in units ofJS, andD is uni-
formly distributed between 0 and 0.01J.
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The density of states of the6J model in the absence o
anisotropy has been investigated previously with exact
numerical results obtained forc5 1

2 ,3 and numerical results
and an accurate analytical approximation forcÞ 1

2 .8 For all
values ofcÞ0,1, the density of states varied asv21/3 in the
limit v→0. The21

3 power law contrasts with constant de
sity of states for the isotropic antiferromagnet and thev21/2

variation characteristic of the isotropic ferromagnetic cha
We have used negative eigenvalue counting techniqu3,8

to determine theintegrated density of states~IDOS! for
chains of 107 spins withc50.25, 0.50, and 0.75. The onl
change required in the formalism is that Eq.~1.6! of Ref. 8 is
modified to read

@21~2D j /J!2zjv#Vj5Vj 111Vj 21 ,

where the symbolszj and Vj are defined in that reference
The results for the IDOS are shown in Fig. 1. Note that
IDOS~v! is the number of modes per spin with frequenc
in the interval between 0 andv and thus corresponds t
N21*0

vr1(v8)dv8 when v.0 and toN21*v
0 r2(v8)dv8

when v,0, so that in general, one has IDOS(`)
1IDOS(2`)51.

It is evident from the figure that the integrated density
states is symmetric, as expected for an antiferromagnet,
shows a gap that depends onc. Because of the presence of
few modes with energies very close to zero~i.e., band tail-
ing!, it is impossible to give a precise definition of the ga
As a consequence, we take an ‘‘operational’’ point of vie
and define the band gap as the energy~in units of JS! where
IDOS50.0005. Using this definition, our results for the g
as a function ofc are shown in Fig. 2. Also shown are th
limiting values of the gap for the ferromagnetic chainc
50) and the antiferromagnetic chain (c51). Here the effect
of the random anisotropy is to reduce the values of the g
relative to those of the ideal ferromagnetic and antiferrom
netic chains with the common, site-independent valueD
5^D&50.005J, where the gaps are equal to 2DS50.01JS
and 23/2S(JD)1/250.20JS (D!J), respectively. With a dis-
tribution of anisotropy parameters, the gaps are .077JS (c
01240
d
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50) and 0.17JS (c51). In the intermediate case wherec
5 1

2 , the gap withD50.005J is 0.017JS, whereas with ran-
domD it falls to 0.015JS. Thus the disorder inD reduces the
gap by a factor;0.8–0.9.

We have also studied the variation of the gap with t
strength of the anisotropy. With a common value for t
anisotropy constant, we find that the gap varies asD3/4. Such
behavior is to be expected from scaling arguments that
ploit the similarity with theXY ferromagnetic chain in a ran
dom transverse field.2,9 The D3/4 variation falls between the
linear variation of the gap in ideal ferromagnetic chains a
the square-root behavior for the ideal antiferromagne
chain (D!J).

In the analysis of the behavior of the specific heat and
susceptibility of weakly anisotropic magnets at low tempe
tures, there are two limiting regimes to consider:D!T
!JS andT!D, whereD denotes the anisotropy gap. Whe
T!D, both the susceptibility and the specific heat vary

FIG. 2. Gap versus fraction of antiferromagnetic interaction
The gap is in units ofJS, andD is uniformly distributed between 0
and 0.01J. Results obtained with a fixed value ofD[^D&
50.005J are larger by a factor of 1.15–1.30.
5-3
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exp@2D/T#. In the rangeD!T!JS, the gap has a negligible
effect on the specific heat and one hasC(T);T2/3.7 In con-
trast, even whenD!T!JS, the susceptibility integral, Eq
~8!, is strongly influenced by the gap. One finds thatx is a
linear function of the temperature, i.e.,

x~T!'TE
0

`

@r1~v!1r2~v!#v22dv. ~12!

IV. DISCUSSION

The principal result emerging from this work is that the
can be an easy-axis anisotropy gap even in strongly di
dered magnetic chains. Although the disorder renormal
the gap~cf. Fig. 2! and introduces midgap states, it does n
do away with the gap altogether. The effect of introduci
‘‘wrong sign’’ exchange interactions in an otherwise perfe
array is to shift the gap towards the value it would have if
of the interactions were of the opposite sign. At least for
model we studied, the effect of disorder in the strength of
anisotropy is rather small~gap renormalization;0.8–0.9!. It
is also important to note that our analysis pertains only
situations where theDn are greater or equal to zero. Negati
values ofDn , which correspond to local easy-plane anis
ropy, give rise to modes with imaginary frequencies, indic
ing an instability in our hypothesized easy-axis ground st

The effect of the anisotropy gap on the thermodynam
properties is pronounced at low temperatures where it g
rise to exponential behavior. At temperatures well above
gap, the specific heat is not significantly affected by the
isotropy. This does not happen, however, in the case of
susceptibility. Here the anisotropy is needed to stabilize
array in the presence of an applied field. Without anisotro
the susceptibility diverges in the large-S limit.

The divergence of the susceptibility of the isotropic sy
tem is a shortcoming of the ideal boson approximation. T
divergence reflects the relatively large effect of the appl
field on the low-frequency modes which are all shifted by
amountDv5H independent of the value ofv. What is miss-
ing in the approximation is the influence of the thermal flu
tuations, which are strong in one dimension. The role of
01240
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fluctuations is to reduce the long-range coherence betw
the spins that is implicit in the ideal boson approximation
the low-frequency modes. The destruction of the cohere
gives rise to the Curie-like (x}T21) behavior of the suscep
tibility in the limit T→0 that was found for quantum an
classical disordered chains in the analyses reported in R
10–13. It should be noted that objections to the use of
boson approximation for isotropic systems appear to ap
primarily to the calculation of the longitudinal susceptibilit
The results for the specific heat are expected to be m
reliable since the contribution from the very low-frequen
modes is suppressed by the factor ofv2 appearing in the
integrand in Eq.~8!. When these modes are suppressed,
integral converges and one obtains power-law behavior
the specific heat similar to that found in Ref. 12.8

Concerning the anisotropic systems, it is our expectat
that the anisotropy reduces the role of the fluctuations so
the analysis of the susceptibility in the ideal boson appro
mation is more realistic. To test such a hypothesis one wo
need to apply real-space renormalization-group and rela
techniques to anisotropic disordered chains. It is particula
important to determine whether the susceptibility and
specific heat vary as exp@2D/T# when T!D. When D!T
!JS, we predict a linear temperature dependence for
susceptibility and aT3/2 variation for the specific heat. As
noted, the power-law behavior of the specific heat tha
characteristic of the isotropic system in the large-S limit is
also found for the isotropic spin-1

2 random chain,12 where the
corresponding exponent'0.44. Whether the susceptibility o
the weakly anisotropic spin-1

2 random chain varies linearly
with T over an appreciable part of the rangeD!T!JS is yet
to be determined.

Finally we note that while our conclusions were draw
from a study of a somewhat artificial model, the lineariz
equation of motion together with eigenvalue counting te
niques can be used to study the densities of states in m
realistic models formulated for materials of interest.
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