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Exact time autocorrelation function of the N-spin classical Heisenberg equivalent neighbor mode

Richard A. Klemm* and Marco Ameduri†

Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Straße 38, D-01187 Dresden, Germany
~Received 10 April 2002; published 20 June 2002!

We reduce the autocorrelation functionC11(t) of the equivalent neighbor model ofN classical spins exhib-
iting Heisenberg dynamics and exchange couplingJ to quadrature. As the temperatureT→`,C11(t)}t2N for
Jt@1. At low T, the antiferromagneticC11(t) is a simple function of (JT)1/2t, exhibiting strong frustration, but
the ferromagneticC11(t) oscillates in a single mode, the frequency of which approachesNJ as T→0. We
conjecture that asT→`, the near-neighbor correlation functions ofN-spin classical Heisenberg rings are
simply obtained from these results.
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Recently, there has been a considerable interest in
physics of magnetic molecules.1 These consist of small clus
ters of magnetic ions imbedded within a nonmagnetic liga
group, which may crystallize into large, well-ordered sing
crystals of sufficient quality for neutron-scattering studi
Each molecule is characterized by the numberN of spins and
by their spatial configuration. Many examples of rin
exist,2,3 but there are also examples of denser cluster1,4

Usually, the spins interact mainly via the Heisenberg
change interaction. Although interest in the dynamics
Heisenberg spin rings has been strong for many years, m
of the work involved numerical simulation of the two-sp
correlation functions. Recently, however, exact results for
Heisenberg dimer, isosceles and equilateral triangle,
four-spin ring were presented,5–7 but larger rings cannot be
solved using this technique.

The equivalent neighbor, or Kittel-Shore model, is t
simplest model for the dynamics of a nanomagnet.8 In this
model, every spin interacts equally with all of the others. T
Heisenberg dynamics were obtained previously in theN
→` limit at infinite temperatureT,9 but have not been found
for 5<N,`. Although most molecules withN>5 are more
complicated,1 there are few exactly solvable models of arb
trary N interacting spins with nonlinear dynamics in statis
cal mechanics. Hence its solution should be a benchmark
future theoretical and experimental studies.

In this paper, we present an exact single integral repre
tation of the autocorrelation functionC11(t) for the equiva-
lent neighbor model with arbitraryN and T, both for ferro-
magnetic ~FM! and antiferromagnetic~AFM! exchange
couplings. AsT→`, an accurate asymptotic 1/N expansion
is found. AsT→0, the AFMC11(t) reduces to an exact sca
ing function of (JT)1/2t for arbitrary N. As T→0, the FM
C11(t) oscillates in a single mode with a frequencyvN*
→NJ, and a shape that fits a new scaling form. From stud
of three- and four-spin rings with additional bridging spi
that interact only with the ring spins, we conjecture that
T→`, the near-neighbor correlation functionsC12(t) in the
N-spin equivalent neighbor and ring models are identical

In the integrable HamiltonianH52Js2/2 of the N-spin
classical Heisenberg equivalent neighbor model,10 the total
spin s5( i 51

N si(t) is a constant. The dynamics are given

dsi(t)/dt5Jsi3s, wheresi5usi u51. For i 51, s1(t)5s1,uuŝ
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1s1,'@ x̂ cos(st* )2ŷ sin(st* )#, where t* 5Jt, ŝ5 x̂3 ŷ, s1,uu
5(s2112x2)/(2s), x5us2s1u, and s1,uu

2 1s1,'
2 51. Letting

a5J/(2kBT), wherekB is Boltzmann’s constant, the auto
correlation functionC11(t)5^s1(t)•s1(0)& may be written

C11~ t !5
1

ZN
E

0

N21

dxDN21~x!E
ux21u

x11

seas2
ds

3@s1,uu
2 1cos~st* !s1,'

2 #, ~1!

where the partition functionZN5*0
N2sDN(s)eas2

ds and
DN(x) is the N-spin density of states. To obtainDN(x), we
write ZN in terms of integrals overs, s2s1, and eachsi , with
two constraints, written as integrals overp,k.6 Inverting the
integration order, we obtain the integral representati
DN(x)5*0

`2p12Ndp sinNpsinpx/p. We expand sinNp for N
even @odd# in terms of cos(2mp) @sin(2m11)p#,11 and inte-
grate by parts, using*0

`sin(px)dp/p5p sgn(x)/2. After rear-
ranging,DN(x) is piecewise continuous,

DN~x!5Q~x! (
p50

E[(N21)/2]

Q~N22p2x!

3Q~x2N12p12!dN22p~x!, ~2!

dN22p~x!5 (
k50

p
~21!k~N22k2x!N22

2N21~N22!! S N

k D , ~3!

whereQ(x) is the Heaviside step function andE(x) is the
largest integer inx. Further details will be presente
elsewhere.12 C12(t)5^s1(t)•s2(0)& is then found from the
sum rule^s2&/N5(N21)C12(t)1C11(t).

It is useful to writedC11(t)5C11(t)2 lim
t→`

C11(t). Since

C11(0)51, it suffices to obtaindC11(t) for all t. We first
invert the integration order in Eq.~1!. The integration region
is the interior of the irregular quadrangle formed by the lin
s512x, s5x61, andx5N21. We break this up into the
interiors of the triangle formed byx2156s ands51, the
parallelogram formed bys51, s5N22, andx5s61, and
the triangle formed bys5N22, x5N21, and x5s21.
Making extensive use of symbolic manipulation software
integrate these regions with respect tox, we reduceddC11(t)
©2002 The American Physical Society03-1
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to a sum of single integrals, giving an exact expression
the piecewise continuous Fourier transform,12

dC11~ t !5 (
p50

E[(N21)/2] E
N22p22

N22p

dscos~st* ! f N22p~s!, ~4!

f N22p~s!5Q~s!
eas2

ZN
(
k50

p

~N22k2s!N21gk~s!, ~5!

g0~s!5
~N21!a~s!

2N23s~N12!!
, ~6!

a~s!5N~s11!32N2~s11!1N1s322s, ~7!

gk~s!5
~21!kbN22k~s!

s2N23N~N12!! S N

k D , kÞ0, ~8!

bm~s!5s2N~N21!@3m1s~N11!#1@s~N21!1m#

3@6m22N~N11!~N12!#. ~9!

To obtain the long-time asymptotic behavior foruau!1,
we integrate Eq.~4! by partsN21 times. We find

dC11~ t ! ;
t* @1

(
p50

E(N/2)

~ t* !2Ncos@~N22p!~ t* 2p/2!#

3e(N22p)2a@11~p21!dp,N/2#

3
@~N22p!22N#

2N23NZN
S N

p D . ~10!

For N5M2, one of the terms in Eq.~10! vanishes, as for the
four-spin ring.6 More important, the leading long-time be
havior}1/t* N. Although Eq.~10! fails for uau@1, its behav-
ior for aÞ0 is useful to illuminate the dramatic differenc
between the long-time asymptotic behavior for the FM a
AFM cases. For the FM case,a.0, the dominant behavio
}cos@N(t*2p/2)#, as the spins tend to oscillate together.
the AFM case,a,0, the dominant long-time asymptotic be
havior is given by the smallest possible oscillation frequen
As shown in the following,C11(t) is always finite asT→0.

Liu and Müller solved forC11 asN,T→` by rescalingJ
→J8/AN and lettingN→`,J→0, keepingJ8 fixed.9 This
procedure is not extendable to finiteN. In the integral repre-
sentation forDN(x), we expand sinNp/pN as exp@2N(p2/6
1p4/1801p6/28351•••)# to obtain a 1/N asymptotic ex-
pansion forC11(t) asT→`,

lim
T→`
N@1

C11~ t !;@112e2 t̃ 2
~122 t̃ 2!#/3

12@12e2 t̃ 2
~11 t̃ 22 t̃ 4/322 t̃ 6!#/~5N!

1
12

175N2 F12e2 t̃ 2S 11 t̃ 22
157

36
t̃ 41

50

27
t̃ 6
01240
r

d

y.

2
97

108
t̃ 81

7

18
t̃ 10D G , ~11!

where t̃ 5Jt@(N21)/6#1/2. From Eq. ~11!, C11(0)51
through order 1/N2, as required, andC11(t) has the correct
N→` limit.9 However, Eq.~11! is highly accurate for inter-
mediate N values as well. In Fig. 1, we have plotte
lim

T→`
C11(t) for N55,6,7,8,9,25,50,100,̀ as a function of

Jt@(N21)/6#1/2. The curves forN525,50,100,̀ were ob-
tained from Eq.~11!, whereas the other curves were gen
ated from the exact solution, Eqs.~4!–~9!. Equation~11! is
very accurate at short and long times, even forN55. We
note that for t̃ &1, lim

T→`
C11(t) is a universal function of

JtAN21, as suggested by the 1/N expansion. Although the
N→` curve is exact, and the curves forN550,100 are quite
accurate, the curve forN525 exhibits a small ('1%) inac-
curacy for 1.2& t̃ &2.2.

At arbitrary N,t andN@1,t→`, respectively,

lim
T→`

C11~ t !51/N1~N21!@dN1 f N~ t !#, ~12!

dN ;
N@1

175N22315N136

525N2~N21!
, ~13!

where the asymptotic Eq.~13! is obtained from Eq.~12! and
lim

t,T→`
C11;

1
3 12/5N112/175N2 for N@1. In the inset of

Fig. 1, we compare the exact values ofdN with those ob-
tained from Eq.~13! for 3<N<65. AsN increases from 5 to
65, the relative difference decreases rapidly from 0.14%
0.2 ppm. Since the exact formula fordN with N odd ~even!
contains nontrivial contributions of logarithms of all prim
numbers from 3 toN ~2 to N/2), respectively, this extremely
good numerical agreement is remarkable.

FIG. 1. Plots of lim
T→`

C11(t) versusuJut@(N21)/6#1/2, for N

55,6,7,8,9 from Eqs.~4!–~9! ~solid!, and forN525,50,100,̀ from
Eq. ~11! ~dashed!. Inset: Plot of the exact (3) and asymptotic val-
ues, Eq.~13!, of dN .
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In Fig. 2, we plot lim
t→`

C11(t) for both the FM and AFM

cases, forN55,7,10, as functions ofuau. The FM values
approach 1 asT→0, but the low-T AFM values rapidly ap-
proach theirT50 limit, 1

3 . This indicates that the spins ar
strongly frustrated, since one might expect the AF
lim

t→`
C11(t)50, as for the four-spin ring.6 In that case, the

unfrustrated alternating spin configuration was possible
this AFM case, however, asT→0 the N>3 spins are as
frustrated as are an infinite number of them asT→`.

For the low-T AFM dynamics, the dominant contribution
to the numerator ofC11 and toZN arise froms!1. They have
the formsPNs2e2uaus2

andQNs2e2uaus2
, respectively, where

PN andQN are complicated functions ofN, but for arbitrary
N>3,PN /QN5 2

3 . Thus, asT→0, the Fourier transform
dC11(v) of dC11(t) attains the exact uniform asymptot
scaling form,

uau21/2dC11~v! ;
T→0

8

3Ap
ṽ2e2ṽ2

, ~14!

where ṽ5uau21/2v/uJu. For N>5, corrections to Eq.~14!
are ofO(uau21), whereas forN54, they are ofO(uau21/2).
In Fig. 3, we plotuau21/2dC11(v) vs uau1/2v/uJu of the low-
T AFM mode ata525,210 for N54,7,10, from our exact
solution, Eqs.~4!–~9!. The exact asymptotic form, Eq.~14!,
is also plotted for comparison. TheN54 curves nearly co-
incide with the others, but do show some small depende
uponT. However, theN57 and 10 curves are nearly ident
cal and independent ofT, and are nearly indistinguishabl
from the asymptotic curve foruau510.

Inverting the Fourier transform, the low-T AFM C11(t)
asymptotically approaches

C11~ t ! ;
T→0

@112e2 t̄ 2
~122 t̄ 2!#/3, ~15!

FIG. 2. Plots of lim
t→`

C11(t) versusuau for N55,7,10 and for

both ferromagnetic and antiferromagnetic couplings.
01240
n

ce

where t̄ 5t* /(2uau1/2). Hence the AFM lim
T→0

C11(t) is a

uniform function of (JT)1/2t, independent ofN. Moreover, it
has precisely the same form as does lim

N,T→`
C11(t), Eq.

~11!, pictured in Fig. 1, except for the different scaling facto
We now turn to the FM case asT→0. From Eq.~10!, we

expect all of the spins to oscillate together with frequen
NJ at T50. At finite T, the oscillation frequency deviate
from this value slightly. To determine the precise nature
the mode, we note that fora.1, the peaks in the integran
and in ZN both occur withinN22<s<N. As T→0, we
evaluateZN by integration by parts, leading to the exact low
T limit,

dC11~v! ;
T→0

ANf N~v* !/ f N~vN* !, ~16!

whereAN52e@(N21)/e#N/N!, v* 5v/J, andvN* , the po-
sition of the exact maximum inf N(v* ), is an eigenvalue of
2as2(N22)/(N2s)1d ln@g0(s)#/ds50. f N and g0 are
given by Eqs.~5! and ~6!, respectively. ThenvN* 'N2(N
21)/(2Na), and f N(v* ) has a width characterized by
normal Gaussian distribution parameter sN

5AN21/(2Na). Thus

dC11~v! '
a@1

ANexp@2~v* 2vN* !2/~2sN
2 !#. ~17!

In this approximation,vN* , sN , andAN are correctly given
to their respective leading orders in 1/a, but the skewness o
the peak is not accurately represented. Thus in Fig. 4
plotted the low-T dC11(v)/AN versus (v*
2vN* )Na/AN21, for N58 at a55,10, and forN55 at a
55,10,28, using our exact formulas, Eqs.~4!–~9!. The N
55 curves nearly coincide, as do theN58 curves, and the
scaled height approaches 1 asT→0. The asymmetry of the
curves decreases with increasingN. Nevertheless this new

FIG. 3. Plots of the low-T uau21/2dC11(v) versusuau1/2v/uJu for
the antiferromagnetic cases withN54,7,10 ata525,210. Also
shown is the exactT→0 limit, Eq. ~14!.
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scaling procedure works remarkably well, andN55 is close
to the largeN limit, even for the FM case.

Inverting the low-T FM Fourier transform, Eq.~17!,

C11~ t ! '
T→0

12
BN

a
@12e2t* 2sN

2 /2cos~vN* t* !#, ~18!

where BN5ANAp(N21)/2/N. As N→`, BN→1/N. The
deviation of the long-time limit of Eq.~18! agrees to within
1% with our results presented in Fig. 2. The decay in time
the mode in this approximation is Gaussian, with a lifetim
tN51/sN . Thus, asT→0, the oscillations are characterize
by a frequency that approachesNJ linearly in T, a lifetime
that diverges as 1/T, and an amplitude that vanishes asT.

Finally, we conjecture that, as for theN-spin equivalent
neighbor model,

lim
T→`

C12~ t !51/N2dN2 f N~ t ! ~19!

for the classicalN-spin ring with near-neighbor coupling. W
first note that Eq.~19! is valid for four- and three-spin

FIG. 4. Plots of the low-T dC11(v)/AN versus (v/J
2vN* )Na/AN21, where vN* 5N2(N21)/(2Na) and AN

52e@(N21)/e#N/N!, for the FM cases withN58,a55,10, and
N55,a55,10,28.
ev

,

d

01240
f

rings.6,7 In further support of this conjecture, we have studi
the N-spin systems consisting ofM spins sj8 coupled toN
2M spinssi on a ring. Lettings5( i 51

N2Msi ands85( j 51
M sj8 ,

the integrable Hamiltonian is2J( i 51
N2Msi•si 112J8s•s8,

where sN2M115s1.10 For (M ,N)5(2,6), the square dia
mond or four-spin ring withs5s131s24 and two apical spins
with s85s181s28 , we let S5s1s8. At T→`, the integrals
over s13 and s24 can be combined. SettingC8(t)5^s8(t)
•s8(0)&, we found

lim
T→`

C8~ t !5
1

ZE0

2

ds8E
0

4

D4~s!dsE
us2s8u

s1s8
SdS

3@si8
21cos~St8!s'8

2#, ~20!

where t85J8t, suu85(S22s21s82)/(2S) and s'8
21si8

25s82,
andZ at T→` is given by the first line of Eq.~20!. Perform-
ing the integrals exactly, we find

lim
T→`

C8~ t !5
2

3
18@d61 f 6~ t8!#, ~21!

whered6 and f 6(t) are precisely the same as for theN56
equivalent neighbor model asT→` in Eq. ~12!. Altogether,
we found forN2M53, M51,2,3, and forN2M54, M
51,2, that

lim
T→`

C8~ t !5M2/N1M ~N2M !@dN1 f N~ t8!#. ~22!

In summary, we have solved exactly for the time autoc
relation functionC11(t) of a spin in theN-spin equivalent
neighbor model. AsT→`, C11(t)}t2N for Jt@1, curves for
differentN exhibit very similar shapes when plotted as fun
tions of uJut@(N21)#1/2, and an accurate 1/N asymptotic ex-
pansion is found. At lowT, the antiferromagneticC11(t) fits
an exact, universal scaling function oftT1/2, independent of
N, and exhibits strong frustration. For the ferromagnetic c
at low T, there is a single mode with a peak position
'NJ2kBT(N21)/N, and a shape that fits an accurate, n
scaling relation. We conjecture that theT→` limit of the
near-neighbor correlation functionsC12(t) for the N-spin
equivalent neighbor model and for theN-spin ring may be
identical.
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