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Exact time autocorrelation function of the N-spin classical Heisenberg equivalent neighbor model
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We reduce the autocorrelation functiGp(t) of the equivalent neighbor model df classical spins exhib-
iting Heisenberg dynamics and exchange coupling quadrature. As the temperatuFe-,C;(t)ot N for
Jt>1. At low T, the antiferromagneti€;(t) is a simple function of {T)¥%, exhibiting strong frustration, but
the ferromagneti@,,(t) oscillates in a single mode, the frequency of which approathéss T—0. We
conjecture that a§ —«, the near-neighbor correlation functions Nfspin classical Heisenberg rings are
simply obtained from these results.
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Recently, there has been a considerable interest in th@su[icosst*)—)?sin(st*)] where t* = Jt §=§<><§/ S|
physics of magnetic moleculésThese consist of small clus- =(s2+1—x2)/(2s), x=|s—s,|, and SiH"—SiL:l' Lettirig

ters of magnetic ions imbedded within a nonmagnetic liganda=J/(2kBT) wherekg is Boltzmann's constant, the auto-

group, which may crystallize into large, well-ordered single .o relation functionCyy(t) = (sy(t) - 5,(0)) may be written
crystals of sufficient quality for neutron-scattering studies.

Each molecule is characterized by the num¥af spins and N—1 X+1 )

by their spatial configuration. Many examples of rings Cll(t)=z—f dXDy-1(X) se*ds
exist?® but there are also examples of denser clustérs. NJO x=1]

Usually, the spins interact mainly via the Heisenberg ex- X[SiH'FCOS(St*)SiL], (1)

change interaction. Although interest in the dynamics of

Heisenberg spin rings has been strong for many years, mogihere the partition functionZN=fQZsDN(s)e“Sst and

of the work involved numerical simulation of the two-spin Dn(x) is the N-spin density of states. To obtaiy(x), we

correlation functions. Recently, however, exact results for thevrite Z,, in terms of integrals oves, s—s;, and eacls , with

Heisenberg dimer, isosceles and equilateral triangle, angivo constraints, written as integrals oyek.® Inverting the

four-spin ring were presentéd! but larger rings cannot be integration order, we obtain the integral representation,

solved using this technique. Dn(X) = J52p* Ndpsin¥psinpx/ 7. We expand sifp for N
The equivalent neighbor, or Kittel-Shore model, is theeven[odd] in terms of cos(thp) [sin(2m+1)p],** and inte-

simplest model for the dynamics of a nanomagdhlt. this grate by parts, usinggsin(pX)dp/p=sgn()/2. After rear-
model, every spin interacts equally with all of the others. Theranging, Dy (x) is piecewise continuous,
Heisenberg dynamics were obtained previously in bhe

— oo limit at infinite temperaturd,® but have not been found E[(N-1)/2]

for 5=<N <. Although most molecules witN=5 are more Dy(X)=0(x) >  O(N—2p—x)
complicated, there are few exactly solvable models of arbi- p=0

trary N interacting spins with nonlinear dynamics in statisti- X O (x— N+ 2p+2)dy_5(X), )

cal mechanics. Hence its solution should be a benchmark for
future theoretical and experimental studies. 0 . N2

In this paper, we present an exact single integral represen- 4y =S (=1)*(N—=2k—=x) N
tation of the autocorrelation functiafy,(t) for the equiva- N-2p &0 2N"I(IN=2)! k
lent neighbor model with arbitrarid and T, both for ferro-
magnetic (FM) and antiferromagneticAFM) exchange where®(x) is the Heaviside step function ari{x) is the
couplings. AsT—«, an accurate asymptoticNl/expansion largest integer inx. Further details will be presented
is found. AsT—0, the AFMCy(t) reduces to an exact scal- elsewheré? Cr(t)=(s1(t) - 5,(0)) is then found from the
ing function of OT)¥% for arbitrary N. As T—0, the FM  sum rule(s?)/N=(N—1)Cy5(t) + C14(t).
Cy4(t) oscillates in a single mode with a frequenay Itis useful to writedCyy(t) =Cyy(t) —lim,_ _Cyy(t). Since

—NJ, and a shape that fits a new scaling form. From studieg, (g)=1, it suffices to obtainsCy(t) for all t. We first

of three- and four-spin rings with additional bridging spins jnyert the integration order in Eql). The integration region
that interact only with the ring spins, we conjecture that asg the interior of the irregular quadrangle formed by the lines
T—oo, the near-neighbor correlation functiofig,(t) in the  g—1_x s=x+1, andx=N—1. We break this up into the
N-spin equivalent neighbor and ring models are identical. nteriors of the triangle formed by—1=*s ands=1, the

In the integrable Hamiltoniai = —Js?/2 of the N-spin parallelogram formed bg=1, s=N—2, andx=s+1, and

classical Heisenberg equivalent neighbor mdfiehe total o triangle formed bys=N—2, x=N—1, andx=s—1.

el N : : - ) . . o A
spins=ZXi_;5(t) is a constant. The dynamics are given by Making extensive use of symbolic manipulation software to

ds(t)/dt=Js Xxs, wheres;=|g|=1. Fori=1, s(t) =sly‘|§ integrate these regions with respecixfave reducedSCq,(t)

) . 9
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to a sum of single integrals, giving an exact expression for 1

the piecewise continuous Fourier transform,

EIIN-D2] 9y
SCiy()= > dscogst*)fy_p(s), (4)

p=0 N-2p—2

easz p
fn-2p(8)=0(5) (N=2k—=s)N"1gy(s), (5

N k=0

(N=21)a(s)

go(S)=my (6)
a(s)=N(s+1)3—N?(s+1)+N+s°—2s, (7)

(Db _x(s) (N
IS~ 3NN +2)1 | k

,  k#0, 8

b(s)=s’N(N—1)[3m+s(N+1)]+[s(N—1)+m]
X[6m?—N(N+1)(N+2)]. 9)
To obtain the long-time asymptotic behavior far| <1,
we integrate Eq(4) by partsN—1 times. We find

E(N/2)
0Cy(t) ~ pEO (t*)"Neog (N—2p)(t* — 7/2)]
tr>1 P=

_ 2
xeN=2P)%a[1 4 (p-1) Op.Ni2)

[(N=2p)*~N] (N
ﬁ(p) (10

ForN=M?2, one of the terms in Eq10) vanishes, as for the
four-spin ring® More important, the leading long-time be-

havior = 1/t*N. Although Eq.(10) fails for |@|>1, its behav-
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FIG. 1. Plots of lim__Ci(t) versus|J|t[(N—1)/6]"? for N

=5,6,7,8,9 from Eqd4)—(9) (solid), and forN=25,50,100» from
Eq. (11) (dashed Inset: Plot of the exactX) and asymptotic val-
ues, Eq.(13), of &y.
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where T=Jt[(N-1)/6]*2 From Eq. (11), C;;(0)=1
through order M2, as required, andy;(t) has the correct
N—oo limit.® However, Eq.(11) is highly accurate for inter-
mediate N values as well. In Fig. 1, we have plotted
lim_ Cyy(t) for N=5,6,7,8,9,25,50,109, as a function of

J{(N—1)/6]Y2 The curves folN=25,50,100¢ were ob-
tained from Eq.(11), whereas the other curves were gener-
ated from the exact solution, Eq&l)—(9). Equation(11) is
very accurate at short and long times, even NKor5. We

note that fort<1, lim_ _Ciy(t) is a universal function of

ior for «#0 is useful to illuminate the dramatic difference JtyN—1, as suggested by theNLexpansion. Although the
between the long-time asymptotic behavior for the FM and\N—« curve is exact, and the curves fdr=50,100 are quite
AFM cases. For the FM case,>0, the dominant behavior accurate, the curve fa¥=25 exhibits a small£1%) inac-
xcogN(t* —m/2)], as the spins tend to oscillate together. Incuracy for 1.2t<2.2.

the AFM case@ <0, the dominant long-time asymptotic be-

At arbitrary N,t andN>1t— o, respectively,

havior is given by the smallest possible oscillation frequency.

As shown in the following(Cy4(t) is always finite asT—0.

Liu and Muler solved forCy; asN,T— o by rescaling]
—J'/YN and lettingN—%=,J—0, keepingd’ fixed® This
procedure is not extendable to finike In the integral repre-
sentation forDy(x), we expand sitp/p" as exp—N(p%/6
+ p*/180+ pb/2835+ - - -)] to obtain a 1N asymptotic ex-
pansion forC;4(t) asT—x,

lim Cyy(t)~[1+2e~ (1 212)]/3
T

N>1
+2[1—e C(1+T2-T43-21%)]/(5N)

12

157, 50
+ J—
175N?

T2_ V%4, T 06
1+t 36t +27t

_72

1-e

lim Cyy(t) = LN+ (N—1)[ S+ Fr(D)],

Tow

(12

5 175N%— 315N+ 36
N1 B52N*(N—-1)

(13

where the asymptotic E¢13) is obtained from Eq(12) and
lim . Ci~3+2/5N+12/175N% for N>1. In the inset of

Fig. 1, we compare the exact values &f with those ob-
tained from Eq(13) for 3<N=<65. AsN increases from 5 to
65, the relative difference decreases rapidly from 0.14% to
0.2 ppm. Since the exact formula fog with N odd (even
contains nontrivial contributions of logarithms of all prime
numbers from 3 tdN (2 to N/2), respectively, this extremely
good numerical agreement is remarkable.
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FIG. 2. Plots of lim__Cy(t) versus|e| for N=5,7,10 and for FIG. 3. Plots of the lowF |a| ™ “?6C1y(w) versus a|*“w/|J| for

the antiferromagnetic cases with=4,7,10 ata= —5,—10. Also

both ferromagnetic and antiferromagnetic couplings. shown is the exacT— 0 limit, Eq. (14).

In Fig. 2, we plot IianCll(t) for both the FM and AFM

cases, forN=5,7,10, as functions ofe|. The FM values _ _ o - ,
approach 1 a§—0, but the lowT AFM values rapidly ap- uniform fL_mct|on of JT)~'1, independent o_N. Moreover, it
proach theirT=0 limit, 1. This indicates that the spins are @S Precisely the same form as does,fim Cyy(t), Eq.
strongly frustrated, since one might expect the AFM(11), pictured in Fig. 1, except for the different scaling factor.
lim,  _Ci1(t)=0, as for the four-spin ring.In that case, the We now turn to the FM case ds—0. From Eq.(10), we
unfrustrated alternating spin configuration was possible. g xpect all of the. Spins to oscnlgte.together with freqluency
this AFM case, however, a—0 the N=3 spins are as J at T=0. At finite T, the oscillation frequency deviates
frustrated as ar,e an infini’te number of theniTas o from this value slightly. To determine the precise nature of

For the lowT AFM dynamics, the dominant contributions thednjo;e, \t/)ve r?ote that fof]> E tgipefﬁs 12 tq_e m(;egrand
to the numerator of;; and toZy, arise froms<1. They have M9 1N Zn oth occur withinN—2=s<N. As T—0, we

2 a2 2 |als? . evaluateZy by integration by parts, leading to the exact low-

the formsPys“e™'**" and Qys“e™'“I*, respectively, where T limit
Py andQy are complicated functions &, but for arbitrary '
N=3,P\/Quy=3%. Thus, asT—O0, the Fourier transform

where t=t*/(2|a|¥?). Hence the AFM lim_ Ciy(t) is a

* *
8C14(w) of 8Cy4(t) attains the exact uniform asymptotic 5cll(w)T:0ANfN(w Vn(on), (16)
scaling form,
whereAy=2¢e[(N—1)/e]N/N!, w*=w/J, andw},, the po-
8 _. -, sition of the exact maximum ifiy(w*), is an eigenvalue of
la| Y%6C 1 (w) ~ —=w’e™ ", (14 2as—(N-2)/(N—s)+dIn[gy(s))/ds=0. fy and g, are
T0 3\ given by Egs.(5) and (6), respectively. Thenw~N—(N
~ ] —1)/(2Na), and fy(w*) has a width characterized by a
where =|a|~*?w/|J|. For N=5, corrections to Eq(14)  normal  Gaussian  distribution  parameter oy
are of O(|a| 1), whereas foN=4, they are of0(|a| *?). _ N=1/(2Na). Thus

In Fig. 3, we plot|a| Y26C;,(w) vs |a|Y?w/|J] of the low-

T AFM mode ata= —5,— 10 for N=4,7,10, from our exact - ok k2 2

solution, Egs(4)—(9). The exact asymptotic form, E¢L4), 5Cll(w)a;lANqu (@7~ 0n) 7 (203)]. 7

is also plotted for comparison. Thé=4 curves nearly co-

incide with the others, but do show some small dependence this approximationwy,, o, andAy are correctly given
uponT. However, theN=7 and 10 curves are nearly identi- to their respective leading orders inl/but the skewness of
cal and independent of, and are nearly indistinguishable the peak is not accurately represented. Thus in Fig. 4 we

from the asymptotic curve fdi| = 10. plotted the lowT  &Cy(w)/Ay  versus  (*
Inverting the Fourier transform, the I0W-AFM Cy(t) —wf)Na/YN—1, for N=8 ata=5,10, and folN=5 ata
asymptotically approaches =5,10,28, using our exact formulas, Edd)—(9). The N

=5 curves nearly coincide, as do thie=8 curves, and the

Cyq(t) ~ [1+ 2e‘?(1—2t_2)]/3, (15) scaled height approaches 1 B&s-0. The asymmetry of the

T—0 curves decreases with increasihg Nevertheless this new

012403-3



BRIEF REPORTS

1 =
FM
< /
205 4 \ .
= 4 —— N=5, 0=28 \
Q /J— N=5, 0:=10 \
4 ---- N=5, 0=5 \
/4 ——~ N28 4=
v/ N=8, 0=10 \
s —-— N=8, a=5
27 ’ \
S \
0 Il Il Il Il
15 - 0.5 0 0.5 1

(/—* )No/(N-1)"

FIG. 4. Plots of the lowkF 6&Cii(w)/Ay versus (/J
—wy)Na/JN=1, where oj=N—(N—1)/(2Na) and Ay
=2e[(N—1)/e]"/N!, for the FM cases wittN=8,a=5,10, and
N=5,¢=5,10,28.

scaling procedure works remarkably well, ader5 is close
to the largeN limit, even for the FM case.
Inverting the lowT FM Fourier transform, Eq17),

B *
Cu() ~ 1-—{1-e " *Voogwith)], (19
T—0

where By=AnyV7m(N—1)/2/N. As N—oo, By—1/N. The
deviation of the long-time limit of Eq(18) agrees to within
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rings®’ In further support of this conjecture, we have studied
the N-spin systems consisting o spinss{ coupled toN
—M spinss on a ring. Lettings=={"Ms ands' =35/,
the integrable Hamiltonian is—J=) Ms-s,,—-J's¢,
where sy_y+1=5..2° For (M,N)=(2,6), the square dia-
mond or four-spin ring witls=s;3+ S,, and two apical spins
with §'=s/+s,, we let S=s+s'. At T—x, the integrals
over s;3 and s,, can be combined. Setting’(t)=(s'(t)
-§'(0)), we found

. 112 4 s+s’
I|mC’(t)=Zf ds’f Dzl(s)dsJ|
0

Too 0 s—s'|

SdS

X [s{*+cogSt)s|?], (20)

wheret’=J't, s|=(S?~s?+s'?)/(2S) ands|*+s/°=s'?,
andZ at T—oo is given by the first line of Eq.20). Perform-
ing the integrals exactly, we find

lim ¢’ (t)= §+8[56+f6(t’)],

T—o

(21)

where 6 and fg(t) are precisely the same as for tNe=6
equivalent neighbor model &< in Eq. (12). Altogether,
we found forN—M=3, M=1,23, and foN-M=4, M
=1,2, that

lim ¢’ (t)=M2/N+M(N—M)[ 8+ fn(t")].

T—o

(22

In summary, we have solved exactly for the time autocor-
relation functionCq4(t) of a spin in theN-spin equivalent

1% with our results presented in Fig. 2. The decay in time oheighbor model. AF — o, C;4(t)ct N for Jt=>1, curves for
the mode in this approximation is Gaussian, with a lifetimedifferentN exhibit very similar shapes when plotted as func-
= 1loy. Thus, asT—0, the oscillations are characterized tions of |J|t[ (N—1)]*? and an accurate l/asymptotic ex-

by a frequency that approachis] linearly in T, a lifetime
that diverges as T/ and an amplitude that vanishesgs

Finally, we conjecture that, as for thé-spin equivalent
neighbor model,

lim Cyo(t) = N — Sy— fiy(t)

T—oo

(19

for the classicaN-spin ring with near-neighbor coupling. We
first note that Eq.(19) is valid for four- and three-spin

pansion is found. At lowT, the antiferromagnetiC,4(t) fits

an exact, universal scaling function of"?, independent of

N, and exhibits strong frustration. For the ferromagnetic case
at low T, there is a single mode with a peak position at

~NJ—kgT(N—1)/N, and a shape that fits an accurate, new

scaling relation. We conjecture that tie—co limit of the

near-neighbor correlation functiong;,(t) for the N-spin

equivalent neighbor model and for tispin ring may be

identical.
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