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Quantum percolation in a two-dimensional finite binary alloy: Interplay between the strength
of disorder and alloy composition
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We address the rather controversial issue of wave propagation in two-dimensional disordered systems. We
have followed the time evolution of wave packets in a binary alloy in a two-dimensional finite square lattice
where the on-site energies«a and «b are randomly distributed. The parameter that measures the degree of
disorder ish5u(«b2«a) /Wu, whereW is the hopping term. We were able to construct a phase diagram in the
(h,x) plane characterizing the different kind of wave propagation,x being the concentration of type-a atoms.
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In this work we address the controversial and very imp
tant issue of wave propagation in two-dimensional~2D! dis-
ordered systems by solving the time-dependent Schro¨dinger
equation, with the aim of contributing elements to elucid
this crucial question. For more than two decades the prev
ing view has been that, based on results of scaling the
there can be no metal-insulator transition in two dimensi
for zero magnetic field.1 This view was contradicted by ex
perimental results reported in the last several years2–4 done
on dilute two-dimensional electron and hole systems, wh
a metallic behavior was observed down to the lowest ac
sible temperatures at electron or hole densities above s
critical densitync . It is worthwhile to state that experimen
done with samples of Si metal-organic semiconductor fie
effect transistors and with GaAs/AlxGa12xAs heterostruc-
tures gave similar results.2 On the other hand, previous the
oretical work5,6 predicted, among other results, for quantu
percolation threshold in the case of diagonal disorder,
value 0.867 well above the classical one 0.5928, and dif
ent from unity as expected from scaling theory. All this m
tivates a renewed interest in the problem of the nature of
states in 2D disordered systems and consequently in
transport properties. While preparing this paper we ca
upon a recent review which presented the state of the ar
the subject.7 The conclusions of Ref. 7 can be summariz
by saying that in the absence of magnetic field and in cl
dilute 2D systems, a strong metallic temperature depende
(dr/dt.0) is observed at carrier densities above some c
cal value, while an insulating behavior (dr/dt,0) is seen at
densities below the critical one,r being the resistivity. In
other words, a good ideal of experimental work pointed
the existence of a metal-insulator transition for sufficie
clean samples in 2D systems. The results presented in
work concerning a binary alloy show conclusively th
propagationis possible even in the presence of random d
order, while the electrons are in 2D mesoscopic systems s
as the ones realized in devices. This is close agreement
the theoretical founding by Odagaki and Chang5,6 and the
experimental results of Kravchenkoet al.2

Contrary to the fact that in a crystalline solid the electr
states~Bloch states! are extended through the system, t
0163-1829/2002/66~1!/012205~4!/$20.00 66 0122
-

e
il-
ry,
s

re
s-

e

-

e
r-
-
e

eir
e

on

n
ce
i-

o
t
his

-
ch
ith

inclusion of disorder produces localized wave functions a
depending on the strength of the disorder, can inhibit pro
gation of wave packets. The pioneering work by Anderso8

clarified the role disorder plays. He then concluded that fo
sufficient degree of disorder all states should be localize

In a classical entity the existence of a system-spann
cluster is a sufficient condition to percolate across
sample.9 But simple classical connectivity does not assur
nonzero quantum transmittance. It could be that for la
enough disorder carriers are localized in a definite region
the lattice even on connected spanning clusters. In the
of a binary alloy along a tight-binding model,large diagonal
disorder means that on-site energies«a and«b are very dif-
ferent, thus any time the carrier is on sitea, for example, it
will find hopping to a neighboringb atom strongly inhibited
and backscattering takes place.

Clearly it is not only the strength of the disorder but al
the dimensionality of the system that contributes to the k
of propagation~localization! of wave packets. In 1D disor
dered random systems the picture was definitively es
lished: it is impossible for a carrier to propagate throu
them. The exceptions belong to the class ofdeterministic
aperiodic structures such as Fibonacci, Thue-Morse,
Harper10–12 models, where one can even obtain superdif
sive propagation. But in a 2D system, such as the one we
analyzing in this work, due to the greater connectivity of t
lattice we expect a different behavior from the 1D case.

Let us now briefly discuss the nature of the stationa
solutions of the Schro¨dinger equation in disordered system
The one-parameter scaling theory put forward by Abraha
et al.1 implied that there are almost no extended states
carriers in a disordered layer. From works based on sca
theory it was widely believed that states are almost all ex
nentially localized with a localization length which varie
with the energy of the state considered. Five years after
scaling theory prediction, Odagaki and Chang obtained t
oretical evidence that such a prediction could be wrong
spite of this, the prevailing view was that disorder in tw
dimensions implies localization.

A review work13 analyzed in detail the nature of station
ary states in systems such as the object of the present s
©2002 The American Physical Society05-1
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They found the existence of transparent resonant states
give a transmittance near unity, though such states come
very few among several thousand.

We treated the problem of carrier percolation in a bina
alloy axb12x with diagonal disorder in a 2D underlyin
square lattice with on-site energies («n,m5«a or «b) ran-
domly distributed. We solved the Schro¨dinger wave equation
in the Wannier representation

i
d fn,m

dt
5~ f n11,m1 f n21,m1 f n,m111 f n,m21!1zn,mf n,m ,

~1!

where we introduced the dimensionless variables:

t5
Wt

\
; zn,m5

«n,m

W
~2!

W is the hopping term considered to beconstant, and a well-
localized particle is taken as the initial condition:

f n,m~ t50!5dn,odm,o ~3!

We have considered lattices ofNx3Ny5N sites and
avoided boundary effects. The maximum lattice size con
ered was one of 77377 sites. In a previous work14 we intro-
duced a method to solve Eq.~1! based on a diagonalizatio
of the dynamic matrix.

We have to deal with alloys of different concentrations,
us callx the concentration of type-a atoms. A crucial param-
eter that classifies the strength of disorder is the differen

h5U«b2«a

W U ~4!

It must be pointed out that this one-particle description
mains valid for sufficiently long times such that the deph
ing of the wave function due to interactions with phonons
instance is not appreciable.

A two-dimensional layer of electrons is obtained, for e
ample, in experiments with metal-oxide-semiconductor
vices where the carriers are trapped between the oxide
the semiconductor.15 Also, at the interface between two pe
fectly matched crystals, as is the case of the semiconduc
GaAs and GaxAl12xAs, electrons donated by remote imp
rities are trapped there by the different chemical natures
the semiconductors.

A series of works was devoted to the problem of quant
percolation in 2D systems. Most of them dealt with t
Kirkpatrick-Eggarter16 model Hamiltonian, in which the site
energies are constants independent of the site, while the
ping terms took the values 0 and 1 randomly distributed
the lattice.

While doing numerical calculations one is faced with t
problem of the size of the sample. Thus it could happen
a particular state gives a transmittance close to 1 for a g
lattice size, but when increasing the lattice size the trans
tance falls to zero, which means that the localization len
is larger than the former system size. In this case we are
in the presence of a true resonant state. The time limit ta
in our calculations was 10211 sec, much longer than an
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reasonable collision time in a sample. In order to avoid
problem associated with the finite size of samples which
mask the results, in the course of the calculations we
creased the size until the outcome became size indepen
The results reported here follow this criterion.

We proceed as follows. We start the calculations with
electron localized at a certaina site in the lattice when the
concentration of a atoms isx. As stated above one importan
parameter that controls the type of propagation~localization!
is h. Clearly whenh is very small hopping is favoredeven
between sitesa andb. In these cases and independent of t
concentrations of both types of atoms, we have aballistic
propagation of the initially localized wave packet: the me
square displacement toC t2. Increasingh makes hopping
between different species more difficult, so we reach sev
kinds of pictures which can be characterized as superdi
sive, diffusive, or subdiffusive propagations. Eventually f
sufficient largeh, the wave packet remains localized in
definite region of the lattice. But now all of this depends
the concentrationx as opposed to the case of very smallh.

The plotted curves are the results of an average done
several simulations performed for each alloy concentratiox.
In order to check our results we have done a number of te
In particular, we have calculated for the crystalline monom
the mean-square displacement~MSD! obtaining the exact
result,14 a MSD of 4t2, while for the orderedab dimer and
for h51 we obtained a MSD of 2.9t2. This is again ballistic,
but with a smaller coefficient.

To analyze the different regimes of propagation~localiza-
tion! we follow the temporal behavior of several function
Following Anderson8 we look at the amplitude of the wav
function at the initial site, and assume that diffusion occur
if at t→` the amplitude goes to zero. Conversely, if t
amplitude remains finite, decreasing rapidly with distan
we have a localized state. However, this is not so conclus
so we also resort to an analysis of the following functions:~i!
the Shannon~information! entropy17 ~which varies from 0
for a wave function confined to a single site, to lnN for a
wave uniformly extended over the sites!, ~ii ! the participation
function18 P(t)5$(n,mu f n,m(t)u4%21 ~which varies from 1 to
N on both limits!, and~iii ! the mean-square displacement.
the same time we look at the three-dimensional plots of
wave function at different times. It is also illustrative to loo
at the site distribution for every configuration, since throu
this we can understand the way the wave packet tra
through the structure.

Our results can be summarized in a phase diagram sh
in Fig. 1, where the ballistic propagating regime is shown
the dotted region. In the white region lay the states that re
in the propagation of different characteristics: superdiffusi
diffusive, and subdiffusive. In the dark area we show t
region of localized regime.

The time evolution of the wave packet could be explain
as follows: we start with a strongly localized packet on
given a site. It can therefore easily propagate through a
of degenerate sites~a connected region with nob sites in it!.
This indicates the ‘‘easy’’ route to the packet. It could happ
that this sea is surrounded byb sites which cause back
scattering; if the strength of disorder is sufficiently large,
5-2
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will prevent the wave for entering this unfavorable region
the lattice. In this situation we are in the presence of a loc
ized state.

We can infer from our calculations that in the limit of ver
strong tunneling, that is, when the difference of the on-s
energies is small as compared with the bandwidth (h!1),
the initially localized wave packet tends to propagate bal
tically through the lattice independent of the alloy compo
tion, because hopping is favorable even between differ
atomic species. When increasingh, the alloy composition
begins to determine the kind of propagation, which we e
plain as follows: if we start with a smallh, such that for
every concentration ballistic propagation takes place, w
h increases hopping becomes more difficult between atoma
andb, in this way, the concentration plays important role, t
more so the larger the disorder. This explains the asymm
of the upper curve in the phase diagram by remembering
the packet is initially localized on ana site.

Note that for very low concentrations ofa atoms (x!1)
we still have a ballistic behavior, even for largeh. The rea-
son for this is that the wave, which is initially on ana site,

FIG. 1. The dotted area corresponds to the ballistic behavio
the wave packet. The superdiffusive, diffusive, and subdiffusive
gimes are shown in white, and in the dark region we show
localized states.

FIG. 2. Case A (x50.6,h512) shows the localized regime.~a!
MSD. ~b! Amplitude probability at the origin.~c! and ~d! Wave
function for different times.
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once it diffuses to a neighboringb site, will find a great
facility to propagate to the otherb sites that are the large
majority. At the other extreme (x.1) it is clear that the
wave will propagate ballistically independent of the intens
of disorder, since there exist a very fewb sites that could
prevent hopping.
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FIG. 3. Case B (x50.6,h54) shows the diffusive propagation
regime. ~a! MSD. ~b! Amplitude probability at the origin.~c!–~f!
Wave functions for different times.

FIG. 4. Case C (x50.1,h51) shows the ballistic propagation
of the wave packet.~a! MSD. ~b! Participation function.~c! Ampli-
tude probability at the origin.~d!–~f! Wave functions for different
times.
5-3
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In order to exemplify three different types of behavior
the wave packet, we show the averaged values of the M
the participation function, and the probability amplitude
the origin as function of time for three indicated points. A,
and C in the phase diagram. We also show the evolution
the wave packet for different times in these three cases.

In case A (x50.6,h512), in Fig. 2 we show the MSD~a!
and the amplitude probability~b! at the origin as function of
time. Note that in this casex.xc , which would imply a
classical percolation. In Figs. 2~c! and 2~d! we show the
wave function for different times, making it evident that th
confinement of the wave in a finite region is thelocalization
regime.

In case B (x50.6,h54) the MSD grows linearly in time
clearly, indicating adiffusivebehavior; see Fig. 3~a!. In Fig.
3~b! the probability amplitude at the origin as a function
time is reported. We also show the time evolution of t
wave packet at four different times, where we can step
spread of the wave.

In case C (x50.1,h51) the ballistic regime is evident. In
fact in Fig. 4~a! we plot the MSD in curve 1, and a quadrat
function for comparison in curve 2. The decrease in the M
is because at that time the wave have reached the boun
In Fig. 4~b! we also show the participation function, whic
on average grows linearly in time until the wave reaches
boundary. In Fig. 4~c! we show the amplitude probability a
the origin which decreases very rapidly in time. Note t
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rapidly spreading of the wave function as shown in Fig
4~d!–4~f!.

We have estimated the quantum percolation threshold
be 0.76, by considering the limiting caseh@1, which can be
compared with the value 0.867 obtained by Odagaki a
Chang.5 As can be seen, both estimates are well above
classical value and below the scaling prediction theory
unity. Another conclusion drawn from our calculations is th
for h,4 localization does not take place~see Fig. 1!. This
should be compared with the estimate of 5.17 by Chang
Odagaki,6 who used the coherent potential approximation
their work.

In this report we have presented results that show the t
evolution of wave packets in two-dimensional disorder
systems for different degrees of disorder strength as we
for different compositions of a binary alloy. Our main co
clusion is that in a mesoscopic system such as that produ
in devices, it is possible for a carrier to propagate, provid
that a compromising situation is reached between the a
composition and disorder strength. This is shown in a co
pact form in the phase diagram, which makes the differ
regimes of propagation evident. Finally, a metal-insula
transition for B50 is expected to exist in 2D
systems.
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