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Quantum percolation in a two-dimensional finite binary alloy: Interplay between the strength
of disorder and alloy composition
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We address the rather controversial issue of wave propagation in two-dimensional disordered systems. We
have followed the time evolution of wave packets in a binary alloy in a two-dimensional finite square lattice
where the on-site energies, and ¢, are randomly distributed. The parameter that measures the degree of
disorder isp=|(ep— &) /W|, whereW is the hopping term. We were able to construct a phase diagram in the
(n,Xx) plane characterizing the different kind of wave propagatiobeing the concentration of typeatoms.
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In this work we address the controversial and very impor-inclusion of disorder produces localized wave functions and,
tant issue of wave propagation in two-dimensiof#D) dis-  depending on the strength of the disorder, can inhibit propa-
ordered systems by solving the time-dependent Stthger  gation of wave packets. The pioneering work by Andefson
equation, with the aim of contributing elements to elucidateclarified the role disorder plays. He then concluded that for a
this crucial question. For more than two decades the prevaikufficient degree of disorder all states should be localized.
ing view has been that, based on results of scaling theory, In a classical entity the existence of a system-spanning
there can be no metal-insulator transition in two dimensiongluster is a sufficient condition to percolate across the
for zero magnetic field.This view was contradicted by ex- sample® But simple classical connectivity does not assure a
perimental results reported in the last several Yé4mone nonzero quantum transmittance. It could be that for large
on dilute two-dimensional electron and hole systems, wherenough disorder carriers are localized in a definite region of
a metallic behavior was observed down to the lowest acceghe lattice even on connected spanning clusters. In the case
sible temperatures at electron or hole densities above son@# a binary alloy along a tight-binding modéérge diagonal
critical densityn,. It is worthwhile to state that experiments disorder means that on-site energigsand e, are very dif-
done with samples of Si metal-organic semiconductor fieldferent, thus any time the carrier is on séefor example, it
effect transistors and with GaAs/&a, ,As heterostruc- will find hopping to a neighboringy atom strongly inhibited
tures gave similar resultsOn the other hand, previous the- and backscattering takes place.
oretical work® predicted, among other results, for quantum  Clearly it is not only the strength of the disorder but also
percolation threshold in the case of diagonal disorder, thé¢he dimensionality of the system that contributes to the kind
value 0.867 well above the classical one 0.5928, and differef propagation(localizatior) of wave packets. In 1D disor-
ent from unity as expected from scaling theory. All this mo-dered random systems the picture was definitively estab-
tivates a renewed interest in the problem of the nature of théshed: it is impossible for a carrier to propagate through
states in 2D disordered systems and consequently in thefhem. The exceptions belong to the classdeterministic
transport properties. While preparing this paper we cameperiodic structures such as Fibonacci, Thue-Morse, and
upon a recent review which presented the state of the art odarpet®~*2 models, where one can even obtain superdiffu-
the subject. The conclusions of Ref. 7 can be summarizedsive propagation. But in a 2D system, such as the one we are
by saying that in the absence of magnetic field and in cleamnalyzing in this work, due to the greater connectivity of the
dilute 2D systems, a strong metallic temperature dependendattice we expect a different behavior from the 1D case.
(dp/dt>0) is observed at carrier densities above some criti- Let us now briefly discuss the nature of the stationary
cal value, while an insulating behaviai4/dt<0) is seen at  solutions of the Schiinger equation in disordered systems.
densities below the critical ong, being the resistivity. In  The one-parameter scaling theory put forward by Abrahams
other words, a good ideal of experimental work pointed toet al! implied that there are almost no extended states for
the existence of a metal-insulator transition for sufficientcarriers in a disordered layer. From works based on scaling
clean samples in 2D systems. The results presented in thibeory it was widely believed that states are almost all expo-
work concerning a binary alloy show conclusively that nentially localized with a localization length which varies
propagatioris possible even in the presence of random dis-with the energy of the state considered. Five years after the
order, while the electrons are in 2D mesoscopic systems suditaling theory prediction, Odagaki and Chang obtained the-
as the ones realized in devices. This is close agreement withretical evidence that such a prediction could be wrong. In
the theoretical founding by Odagaki and Chahgnd the spite of this, the prevailing view was that disorder in two
experimental results of Kravchenla al? dimensions implies localization.

Contrary to the fact that in a crystalline solid the electron A review work!® analyzed in detail the nature of station-
states(Bloch statep are extended through the system, theary states in systems such as the object of the present study.
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They found the existence of transparent resonant states thegasonable collision time in a sample. In order to avoid the
give a transmittance near unity, though such states come apeoblem associated with the finite size of samples which can
very few among several thousand. mask the results, in the course of the calculations we in-

We treated the problem of carrier percolation in a binarycreased the size until the outcome became size independent.
alloy ayb;_, with diagonal disorder in a 2D underlying The results reported here follow this criterion.

square lattice with on-site energies,(,=&, OF &p) ran- We proceed as follows. We start the calculations with an
domly distributed. We solved the Scldinger wave equation electron localized at a certamsite in the lattice when the
in the Wannier representation concentration of a atoms is As stated above one important
df parameter that controls the type of propagatioealization
ionm_ is . Clearly wheny is very small hopping is favoredven
gy~ Tneant T fomeat fam-2)+ Lo, beZNeen sit)éa andz. In thgse cases gﬁd ?ndependent of the
(1) concentrations of both types of atoms, we havbatlistic
where we introduced the dimensionless variables: propagation of the initially localized wave packet: the mean
square displacement 16 t2. Increasingz makes hopping
Wt €nm between different species more difficult, so we reach several
=770 LTy () kinds of pictures which can be characterized as superdiffu-
sive, diffusive, or subdiffusive propagations. Eventually for
Wis the hopping term considered to benstantand a well-  syfficient larges, the wave packet remains localized in a
localized particle is taken as the initial condition: definite region of the lattice. But now all of this depends on
Fom(t=0)= 81 o0mo 3 the concentratiolx as opposed to the case of very small

The plotted curves are the results of an average done over
several simulations performed for each alloy concentration

We have considered lattices ®,XN,=N sites and In order to check it h d ber of test
avoided boundary effects. The maximum lattice size consid;" Order to check our results we have done a number of tests.

ered was one of 7777 sites. In a previous wotkwe intro- In particular, we have calculated for the crystalline monomer

. . the mean-square displacemgiSD) obtaining the exact
duced a method to solve Efl) based on a diagonalization : )
of the dynamic matrix @ g result!* a MSD of 472, while for the orderedhb dimer and
We have to deal with alloys of different concentrations, IetLOr ’7:.# we Obtlf"nEd affMSD of 2. This is again ballistic,
us callx the concentration of typa-atoms. A crucial param- ut with a smaller coetlicient.

eter that classifies the strength of disorder is the difference . To analyze the different regimes .Of propagat(mcallzz_i-
tion) we follow the temporal behavior of several functions.

Following Andersoft we look at the amplitude of the wave
(4)  function at the initial site, and assume that diffusion occurred
if at t—o the amplitude goes to zero. Conversely, if the

It must be pointed out that this one-particle description re-amplitude remains finite, decreasing rapidly with distance,
mains valid for sufficiently long times such that the dephas-we have a localized state. However, this is not so conclusive,
ing of the wave function due to interactions with phonons forso we also resort to an analysis of the following functidis:
instance is not appreciable. the Shannor(information entropyL7 (which varies from 0

A two-dimensional layer of electrons is obtained, for ex-for a wave function confined to a single site, toNrfor a
ample, in experiments with metal-oxide-semiconductor dewave uniformly extended over the siig6i) the participation
vices where the carriers are trapped between the oxide arfdnction'® P(t) ={=,, |1 m(t)|*} ! (which varies from 1 to
the semiconductdr, Also, at the interface between two per- N on both limit9, and(iii ) the mean-square displacement. At
fectly matched crystals, as is the case of the semiconductothe same time we look at the three-dimensional plots of the
GaAs and G@l,_,As, electrons donated by remote impu- wave function at different times. It is also illustrative to look
rities are trapped there by the different chemical natures ot the site distribution for every configuration, since through
the semiconductors. this we can understand the way the wave packet travels

A series of works was devoted to the problem of quantunthrough the structure.
percolation in 2D systems. Most of them dealt with the Our results can be summarized in a phase diagram shown
Kirkpatrick-Eggartet® model Hamiltonian, in which the site in Fig. 1, where the ballistic propagating regime is shown in
energies are constants independent of the site, while the hothe dotted region. In the white region lay the states that result
ping terms took the values 0 and 1 randomly distributed inin the propagation of different characteristics: superdiffusive,
the lattice. diffusive, and subdiffusive. In the dark area we show the

While doing numerical calculations one is faced with theregion of localized regime.
problem of the size of the sample. Thus it could happen that The time evolution of the wave packet could be explained
a particular state gives a transmittance close to 1 for a giveas follows: we start with a strongly localized packet on a
lattice size, but when increasing the lattice size the transmitgiven a site. It can therefore easily propagate through a sea
tance falls to zero, which means that the localization lengtiof degenerate siteg connected region with nosites in ij.
is larger than the former system size. In this case we are ndthis indicates the “easy” route to the packet. It could happen
in the presence of a true resonant state. The time limit takethat this sea is surrounded Hy sites which cause back-
in our calculations was 10 sec, much longer than any scattering; if the strength of disorder is sufficiently large, it
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FIG. 1. The dotted area corresponds to the ballistic behavior o
the wave packet. The superdiffusive, diffusive, and subdiffusive re-
gimes are shown in white, and in the dark region we show the
localized states.

will prevent the wave for entering this unfavorable region of
the lattice. In this situation we are in the presence of a local
ized state.

We can infer from our calculations that in the limit of very
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FIG. 3. Case BX=0.6,7=4) shows the diffusive propagation

strong tunneling, that is, when the difference of the on-sitgegime.(a) MSD. (b) Amplitude probability at the origin(c)—(f)

energies is small as compared with the bandwidpk<(l),

Wave functions for different times.

the initially localized wave packet tends to propagate ballis- o i _ ) o
tically through the lattice independent of the alloy composi-Once it diffuses to a neighboring site, will find a great
tion, because hopping is favorable even between differerf@Cility to propagate to the othes sites that are the large

atomic species. When increasing the alloy composition

majority. At the other extremex&1) it is clear that the

begins to determine the kind of propagation, which we ex\Wave will propagate ballistically independent of the intensity

plain as follows: if we start with a smalp, such that for

of disorder, since there exist a very fdwsites that could

every concentration ballistic propagation takes place, wheRr€vent hopping.

7 increases hopping becomes more difficult between atoms

1500

B

andb, in this way, the concentration plays important role, the @ _ ;1 2 ]
more so the larger the disorder. This explains the asymmetr
of the upper curve in the phase diagram by remembering thig
the packet is initially localized on aa site.

Note that for very low concentrations afatoms k<1) 107 % 1
we still have a ballistic behavior, even for large The rea-
son for this is that the wave, which is initially on ansite, ' ®
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FIG. 4. Case CX=0.1,=1) shows the ballistic propagation
of the wave packei{a) MSD. (b) Participation function(c) Ampli-
tude probability at the origin(d)—(f) Wave functions for different
times.

FIG. 2. Case Ax=0.6,7=12) shows the localized regiméa)
MSD. (b) Amplitude probability at the origin(c) and (d) Wave
function for different times.
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In order to exemplify three different types of behavior of rapidly spreading of the wave function as shown in Figs.
the wave packet, we show the averaged values of the MSD§(d)—4(f).
the participation function, and the probability amplitude at We have estimated the quantum percolation threshold to
the origin as function of time for three indicated points. A, B, be 0.76, by considering the limiting cage>1, which can be
and C in the phase diagram. We also show the evolution ofompared with the value 0.867 obtained by Odagaki and
the wave packet for different times in these three cases. Chang® As can be seen, both estimates are well above the
In case A §=0.6,7=12), in Fig. 2 we show the MSD®)  ¢|assical value and below the scaling prediction theory of
and the amplitude probabilitf) at the origin as function of nity Another conclusion drawn from our calculations is that
time. Note that in this casg>x., which would imply a o 5 <4 |ocalization does not take pla¢see Fig. 1 This
classical percolation. In Figs.(@ and 2d) we show the  ghould be compared with the estimate of 5.17 by Chang and
wave function for different times, making it evident that the Odagak® who used the coherent potential approximation in
confinement of the wave in a finite region is teealization  tyeir work.
regime. . o In this report we have presented results that show the time
In case B k=0.6,7=4) the MSD grows linearly in time  gyolution of wave packets in two-dimensional disordered
clearly, indicating adiffusivebehavior; see Fig.(@). In Fig.  systems for different degrees of disorder strength as well as
3(b) the probability amplitude at the origin as a function of ¢5 gtferent compositions of a binary alloy. Our main con-
time is reported. We also show the time evolution of the|ysjon is that in a mesoscopic system such as that produced
wave packet at four different times, where we can step thg, gevices, it is possible for a carrier to propagate, provided
spread of the wave. o S that a compromising situation is reached between the alloy
In case C x=0.1,7=1) the ballistic regime is evident. In  composition and disorder strength. This is shown in a com-
fact in Fig. 4a) we plot the MSD in curve 1, and a quadratic nact form in the phase diagram, which makes the different
funcnon for comparison in curve 2. The decrease in the MS egimes of propagation evident. Finally, a metal-insulator
is because at that time the wave have reached the boundagyansition for B=0 is expected to exist in 2D
In Fig. 4b) we also show the participation function, which systems.
on average grows linearly in time until the wave reaches the
boundary. In Fig. &) we show the amplitude probability at H.N.N. acknowledges financial support from the Brazilian
the origin which decreases very rapidly in time. Note thefunding agency CNPq.
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