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Hall conductivity of a two-dimensional graphite system
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Within a self-consistent Born approximation, the Hall conductivity of a two-dimensional graphite system in
the presence of a magnetic field is studied by quantum transport theory. The Hall conductivity is calculated for
short- and long-range scatterers. It is calculated analytically in the limit of strong magnetic fields and in the
Boltzmann limit in weak magnetic fields. The numerical calculation shows that the Hall conductivity displays
the quantum Hall effect when the Fermi energy is in low-lying Landau levels and the scattering is weak. When
the Fermi energy becomes away frem 0, it tends to the Boltzmann result.
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. INTRODUCTION given by K=(2=/a)(1/3,14/3) and K'=(2x/a)(2/3,0),
_ _ with a being the lattice constant. The effective-mass Hamil-
Since the discovery of carbon nanotubekie transport tonian in the absence of scatterers in a magnetic field applied

property of a carbpn network of nanometer scale has alperpendicular to the systefthe xy plane is given by
tracted much attention. There have been a lot of experimental

works focusing on the transport measurement in various 0 ';Tx_i%'y 0 0
nanotube structurés® Meanwhile, the conductance of car- A A

bon nanotubes has been calculated using different | Ty 0 0 0
approache8.*°It is well known that a carbon nanotube con- g 0 0 0 iy |
sists of coaxially rolled two-dimensional2D) graphite R R Y
sheets. Therefore, the theoretical investigation on the trans- 0 0 m—limy 0

port property of the 2D graphite system is instructive for a 1)
comprehensive understanding of the transport property of the . ~ A .
nan(?tubes. g port property wherey is a band parametetr=p+eA/c with p being the

¢ €lectron momentum operator, aidis the vector potential
given byA=(0,Bx) in the Landau gauge. The corresponding
chralinger equation

In a previous worK? the density of states and the condu
tivity oy, were calculated by quantum transport theory, in
which short- and long-range scatterers were taken into ac
count. It was found that quantum theory provides results
quite different from those of Boltzmann transport theory. In
high magnetic fields, in particular, the conductivity exhibits acan be solved exactly.
series of peaks, the values of which depend only on the natu- In the absence of a magnetic field, the eigenfunction of
ral constants and the Landau level index. In order to give &¢, is given by
complete picture of the electronic transport property of this

HoF=¢F 2

system, we elucidate the Hall conductivity in the present S
paper. As in the previous work, we will consider two cases in 1 gl ¢(k)
which the electron is scattered by short- and long-range scat- FR.(r) = ——exp(ik-r) 3)
terers and we will also employ a self-consistent Born V2 0
approximatioR° (SCBA) in the quantum transport theory. 0,
The paper is organized as follows: In Sec. Il the effective
Hamiltonian in the framework of the effective mass approxi-and
mation is introduced and the eigenstates in the absence of
scatterers are summarized. In Sec. Il the Hall conductivity is 0
calculated by using center migration theory. In Sec. IV nu- ) 1
merical results are shown and discussed. In Appendixes A F& (= —=—expik-0)| .| 4
and B analytical demonstrations of the weak-magnetic-field V2L €
limit and the Boltzmann limit are given. Last, there is a brief S

summary in Sec. V. wherel? is the area of the systenp(k) is the angle of the

wave vectok, ands denotes the bands€ + 1 for the con-
Il. HAMILTONIAN duction band and= —1 for the valence bandThe corre-

In a 2D graphite system, a unit cell contains two carbonSpondlng energy is given by

atoms denoted a8 and B. Two = bands having approxi- g =SYK (5)
mately a linear dispersion cross the Fermi leveKandK'’ S
points of the first Brillouin zone, whose wave vectors arewith k= k|.
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In the presence of a magnetic field, the eigenfuncEpp
is specified by a set of quantum numbers (j,n,k) where
j=K and K’, the Landau level index=0,+1,+2, ...,
and k is the electron wave vector in the direction. The
complete expression of eigenfunction is as follG#&2

sgr(n)il™ =ty 4

C, i
P =~ exi—iky) o ©®
0
and
0
F ()= ik ° 7
nk(r)—\/_EeXF(_| y) ||n\¢‘n| ) ( )
sgr(n)il™ ey 4
with
1 (n=0),
Cn= 12 (n#0), ®
1 (n>1),
sgnn)={ 0  (n=0), 9
-1 (n<0),
and
B 1 1(x—|2k>2 (x—l2k>
¢‘ﬂ|_ /2|n‘|n||\/;| ex _E | H\n‘ | !
(10

where | =/cfi/eB and H,(x) is the Hermite polynomial.
The eigenenergy is dependent on the quantum number
only,

snzsgr(n)ﬁw\/m,
_ 2y

(11)

how (12

It should be noted thdtw has the dimension of energy but is

not equivalent to the cyclotron frequency. According to On-

sager’s quantization scherfiean energy spectrum similar to
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A

1 0 €4 O
0 0 0 0
UA(r) = urs(r—r?, (13
P(r) eidt 0 1 ofY (r—rp), (13
0 0 0 0

with ¢*= (K’ —K)-r® andu® being the strength. Similarly,
for a scatterer located at a carbBrsiter?,

0O 0 0 O
] 0 1 0 & : :
0 e iof 0 1

where p?= (K’ —K)-rg.

Next, the range is larger than the lattice constant but much
smaller than the typical electron wavelengtthich is infi-
nite ate =0). In this case matrix elements betwd€andK’
points can be neglected and the potential is given by a diag-
onal matrix, i.e.,

10 0 O
0100

Ui(r)= 00 1 0 uio(r—ry), (15
0 00 1

wherer; is the impurity position. This type of scatterer is
called a long-range one.

In the effective-mass approximation, the potential range
of either scattererdong or short rangeis much smaller than
the varying range of the wave functions which is scaled by
the electron wave length. Therefore, we assume the same
form of 6 function for both long- and short-range potentials.
This argument was examined in a previous wbrkyhich
showed that a Gaussian-type potential can be well approxi-
mated as a long-range potential as described by the above
equation when the potential range is larger than the lattice
constant; on the other hand, it can be regarded as a short-
range potential when the range is smaller than half of the
lattice constant. The classification of the scatterers into those
of long and short range is made by the presence and absence
of scattering betweeK andK’ points.

Some actual point defects can be sorted into short- or
long-range scatterers explicitly. For example, the fluorination
of the graphite surface causes a kind of loeaklectron
defect, which is demonstrated to be a short-range scatterer by
some calculation&® Adsorption induced by exposure of the
graphite to ozone and ultraviolet radiation gives rise to a

the above can be obtained semiclassically. However, thing-range scattering potentfdiin addition, we can expect

Landau level withn=0 is absent in the semiclassical spec-

that a Coulomb impurity, the center of which is located in the

trum, which indicates that the occurrence of such a level isubstrate near the graphite sheet, will obviously be a long-

totally a quantum effect.

range scatterer.

We consider two different kinds of scatterers. First, the  Some point defects have short- and long-range character-
range of the scattering p_otentlal is smaller than the latticgstics simultaneously. A recent experim&nteported that a
constant of the 2D graphite. When such a short-range scaboron atom in a boron-doped graphite surface brings about a

terer is present at a carbon A sitg, the effective Hamil-
tonian has been calculated‘hs

notable correction on the electron density only in the range
of one unit cell around it, which can be regarded as a short-
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range scatterer. However, the boron atom slightly deforms

the flatness of the graphite surface in a much larger range, o= gyy:_(ro S Oy= Oy WcTy0p .
which will cause a weak long-range scattering on the elec- 1+ (weTy) 1+ (weTy)
tron motion?’ (2

The relaxation time in the absence of a magnetic field isyith
defined as

e Ay 24
00=_23 41 -
1TSS GskIUL S Ko, 4
T h Ik v

(16 In weak magnetic fields 7,<<1, we have the relation

whereU is the effective Hamiltonian for scatterers gfisk ) Txy™ 7 @eTuT0, (25

refers to the eigenfunction df, in the absence of magnetic and in high magnetic fielde 7> 1,
field. In the case of short-range scatterers it is given by

A L ! 26
_|8|2 (17 TT Py TE W Ty T (9
hy wheren, is the electron density measured frems0. In a
wheren’ andn® are the concentration of scatterers in a unitWeak magnetic field, the Hall conductivity divergeseas’ at
area and(- - -) means the average. The relaxation time for® :91' becausazg is independent of energy and both,
long-range scatterers is given by «g”~andr,xe” - diverge. The above discussion holds even

for <0, if we set

L ) ()

N| =

1 le| 2 2
Z=n{(u)%—s eBv eB
-=n((W)2g5 2. a8 wo="g, - =sare) - @7

2__ A2\ By2\ _ 2
When we assumei”=((u)%)=((U))=((u)%) and n 1t \we hute=¢ | we havehw.=sgn() (i w/2\[n).

=nf+nf and n®=n?, the relaxation time becomes the

same between short- and long-range cases and Ill. HALL CONDUCTIVITY
1 2m|e] The Kubo formula concerning the conductivity as a linear
—-= , (19 functi | field is writteR®
r AA response function to an external field is writtefi®as

where we have introduced a dimensionless parameter to [ P sty .
characterize the scattering strength given by Tuv™ fo dtfo dre (], (—ifiN)j (1)  (s—+0),
(28)

41ry? ) .

nul (20 wherej, is the uth component of the current ex, with x
' the velocity and— e the electronic chargg,,(t) the Heisen-
With the use of the Boltzmann transport equation, theP€rd representation of the current opergpr (- - -) means

transport relaxation time is given by the average over the canonical ensemble, @nd /kgT with

T being the temperature.

1 27 In the presence of a magnetic field perpendicular to the
= > > l(jsk|ulj’s'k")|*(1—cosb) 2D surface, the electron coordinate operatorandy are
Tir J'=KK’" s’k decomposed into two parts as follows:

X S(eg—€srir), (21 x=&+X, y=ntY, (29

where cog=k-k’/k’. In the case of short-range scatterers,whereX andY are called the guiding center coordinates, and

mw= 7, While 7,= 27 in the case of long-range scatterers be-¢ and 5 are called the relative coordinates of the cyclotron
cause of the absence of backward scattering. Consider thfiotion, defined by

cases >0 first. The classical equation of motion is given by

Ty

ar EV , (22

In a magnetic field, X,Y) and (&, ») constitute a set of
in the presence of a magnetic fiddd wherev is the velocity.  canonical variables for the dynamics of the electron. Substi-
This gives the cyclotron frequeney,=eBv?/ce, wherev is  tuting Eq.(29) into the original Kubo formula, Eq28), a set
the electron velocity given by =|v|=y/%. Note thatw,  of new formulas for the Hall conductivity in the framework
diverges ate=0. The conductivity tensowr,, is calculated  of sog—g:azlglaed center migration theory can be obtained, which
as reads’™
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_ Neec " W B
Ty=" g +Aoy, (31 Aoy = 12 2

e’ (=
Ao-xy:iﬂT_szo f(8)d8

and

[0
><<TrX(—ReG(s+i0)
de

YImG(s+iO)—(X<—>Y)>,
(b)

(32

wheref(e) is the Fermi distribution function and the Green  FIG. 1. Diagrams 0(%% in the self-consistent g?rn approxi-
function G(¢) is defined as mation (SCBA). (a) Aoy (b) Some examples di o/ .

xy

the so-called proper vertex part a new quantty, (e,e’)
has been introduced in Fig(ld), which may be called thé
part®° It is obtained graphically from a self-energy diagram
and by replacing one of matrix elements of the potentidt) by

J the correspondinggU (r)/dy or 19U(r)/ox as shown more
| = clearly in Fig. 2. It can be justified thato';) vanishes iden-
1 ay u(r) (34 ticallyin the SCBA and onlyA o{3) has a contribution to the
h d ' Hall conductivity.

- —
X

1
G(S)Zm (33

The center migration theory is equivalent to the original A. Case of short-range scatterers

Kubo formula when dealing with the conductivity in a mag-  In the case of short-range scatterers, the averaged Green
netic field* It has an advantage in the study of the high-fieldfunction and self-energy over scatterer configurations are di-
transport because it gives clear physical pictures in that thggonal. They are

electron transport may be viewed as a diffusionlike process

of the electron orbital which has a localized charatfer.

The 7 bands of 2D graphite where the Fermi level lies is (Gaar())= baaGnle),
symmetric about =0 in the effective-mass approximation. (37)
If being combined with the usual fact that the Hall conduc- S (8)= 8,3 (8).

tivity vanishes when a band is completely occupied, this

leads to the reasonable assumption that the Hall conductivit

vanishes in undoped 2D graphite with the Fermi levet at I the SCBA the self-
=0. In the above expressions, therefore, the lower limit o
the integral has been chosen to be 0 and the electron
density n, should also be regarded as the electron number (hw)? Ne 1
abovee =0 (n,<0 for £<0). d(e)= oA > pp— o

With a little trick Eq. (32) can be formally changed into n=Ne "

energ¥ (e) can be determined by the
tself-consistency equation

(38

&% P _ In the above equation, a cutoff numbidg is necessary to
Aoyy=— mzf f(e)de lim —,(TrX[G(s’+i0) tfuncaFe the summation be_cau;e the infinite summation in the
P right side leads to a logarithmic divergence. The cuboff
should be chosen such that the corresponding cutoff energy

+G(e'—I0)]Y[G(e+i0)=G(e=10)]=(X=Y)). ¢ — INiw should be of the order of the bandwidth.

(35 The ¢ part can be calculated as follows:
From the above equation it can be seen that it is essential to
treat the quantity (@) (b)
J=([TrXG(')YG(e)]), (36)
which is equivalent to the diagrams shown in Fig. 1 in the //x\\
SCBA. Now, Aoy, is divided into two parts named o)) N *- +

and Ac{3) corresponding to the diagrams shown by Figs.
1(a) and Xb). In Fig. 1 all Green functions refer to the av-
erage ones over all configurations of scatterers. In addition to FIG. 2. The self-energy and correspondigigart in the SCBA.
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CnCr/ Alm3 2 2 s—ey|2]Y?
y 4 = — oy ,g = — N
(087 = =038 = LN D(e) == 5 = 312 wr[l ( - ) . (45
+sgr{n)sgr{n’)\/|n’|]5‘n,|’|n|,1—[\/|n’| with
+sgn(n)sgn(n’)V[n[ 18}y 7| -1} - V2h s
X[2(e)—2(s")], (39 VA
c.C Accordingly, an approximate expression &#r,,(e) correct
§Za/(8’8'): —i8, 11 By rl/zn {[\/W up to the orded’ /A w becomes
2 4|N|¥T e—ey| 2]
+sgr(n)sgr(n’)V|n'[18)n/| jnj-1 Aoyy(e) =z sriN)—~—11-| —F '
! ’ 4
+ LN+ sgr(m)sgrtn ) VIT18 o, -1} “n
, which vanishes for the Landau levid=0. The correspond-
X[Z(e)=2(e")]. (40 ing expression of conductivity, is given by*®
From Egs.(39) and (40) it can be readily found that the o2 2
. g . . . 8—8N
following conditions are satisfied: ol8)= Tﬁ(2|N|+ 5NO)[1_( . ) ' (48)
y ' — &Y '
Caral8’18)=Epar(E:87), The above shows that there is the relation betwegnand
. « Aoyy as
Epglele)=—§&,,(e"). (41)
2ImY
All diagrams involving the vertex parts in Fig(d) in- Aoyy(e)=~— fiwe oxx(&), (49

clude such a factor a8 ,(g,6"){(U,o'Uq o), Which re- _ _ o _ _
_ “1%1 L2 with . given by Eq.(27) ate=¢y. This is equivalent with

sults in a product of two delta functiongy; | jn,|=19n;[In,| - Eq. (26) when#/r,=#/r is replaced by-2Im3.(&).

Because of their incompatibility, the vertex corrections van-  In Appendix A, the Hall conductivityr,, is demonstrated

ish in the case of short-range scatterers. By using 8-  to vanish identically in the limit of zero magnetic field. It is

(41), Aoyy in the SCBA can be obtained for the case of quite tedious to obtain an explicit expressionay, in the

short-range scatterers as weak-field limit and therefore we shall consider only the

Boltzmann limit where the broadeniny = is much smaller

of than energyle|. Explicit calculations are performed in Ap-
Aaxy:f ds( - %)Aaxy(s)' (42) pendix B and give
with Oxy=—WcT0Og, (50
& 2(Im3)? i?] perfect agreement with the result of Boltzmann transport
S e - 2 theory.
Aowle)= Tz s m2, [2]z-3(e)]
+(2n+1)(hw)2]gn(s+i0)gn+1(s—i0), B. Case of long-range scatterers
(43) In the case of long-range scatterdfsandK’ are decou-
pled and have the same contributions to the Hall conductiv-
where ity. Therefore, at first we shall focus on tikepoint only to
deal with the Hall conductivity and then multiply the final
1 e—3(s) results by a factor of 2. Unlike the case of short-range scat-
On(e)=5(G,+G_,)= 5 5. (44)  terers, the averaged Green function and the self-energy are
2 [e—=3(e)]*~[n|(hw) not diagonal with respect to the Landau level index and have

_ . o ~ off-diagonal elements betweeAn and —n. They are ex-
We consider a particular situation as the magnetic field igressed as

very strong, the scattering is relatively weak, and the energy

e is in the vicinity of theNth Landau level, i.e.g~¢y, S e (8)= 08,0 2%e)+ 8, 013%e),
which is called hereafter the strong magnetic field limit. Un-
der this situation the self-energy can be solved by retaining (Gou(8))=8,,,Gle)+ 68, Ge), (51)

only a term withn=N in the summation of the self-
consistency equation. In this case the density of states ishere =a=(%n,k). By defining3*=39+3° the self-
calculated as consistency equation to determine the self-energy is given by

245420-5
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E+:(fm)z S e—3"
A Sh(e-3T)(e—3")—e2
2 N¢ 5+
zfz(h:) n_1(8—2+§(j2—)—8§' 2
The ¢ parts take the following forms:
& (ee)=¢ (e,e)+E (e,), (53)
with
&)
= S 0 TaTsgrin)sgrn')[E(e)—3 ()]
2
—sgnn")[Z(s)~Z(c")]
NS (&) =2 F ()} v jnj+1 (54)
and
& (8.8

%{ngr(n)sgrtn')[z<s>—2<s'>]

—sgnn)[Z(e)—Z(&")]

= - 5kk’

+VNIE*(8) =" (&) 1} Sjnp 414 (55)
where a new quantity
Z(g)=(hw) 27 (s)[s—2 ()] (56)

has been defined. Furthefza,(s,e’) is associated with
¢ .(e,e') through the relation

(57)

£ (ee)=¢" (s, )+E (8,8,

£ (e,8)=FiE (s,e).

(58

With the above results the Hall conductivity can be de-

rived by dealing with the diagrams illustrated by Figb)l

PHYSICAL REVIEW B65 245420

e? s(e)
T 2 ™ T (6 =106 +10) (61
where
5 ®
o= 20D gl (e)gra(s), (62
07 ()= ) (63
T a2 (e)le -2 (e)] -]
and
2A
s(s)=—W[E_*ImE_+gImE+
ST ImIt—-Im(E T3 7)]% (64)
It should be noted that the contribution & has been

added.

In the strong-magnetic-field limit, when the energy is
close to theNth Landau level, i.e.e ~gy, approximate ex-
pressions can be obtained. We have

1 2 [ e—&y 21172
Dle)=omz ar 1 Ty (65
and
o2 INJ32T, e—ey)|2]%2
Any(S): ﬂ_ZﬁSgr(N) ho 1- Ty )

(66)

with Ty=T for N+#0 andl'y,= \2I'. The above vanishes for
N=0. The diagonal conductivity has been calculated as

(67)

62 ETEN 2
Uxx(s)zﬁ(|N|+5NO) 1- Ty .

The above shows that there is the relation betwegnand
Aoy, as

mx
AO-xy("e): - _Uxx(s)y

hw (68)

Unlike in the case of short-range scatterers, the vertex coMith ¢ given by Eq.(27) ate=ey. The deviationA oy, is
rections have contributions to the Hall conductivity. There-Proportional too, and ImX, but the coefficient is a half of
fore, all diagrams in Fig. (b) have to be taken into account. that in the short-range case. This difference corresponds to

After a tedious derivation an expression/ofr,, is obtained
as follows:

Aoyy(e)=0at 0y, (59
with
e’ 2A ~ _
0= 25 GRS IME (M )2+ (Im37)?)
+e[(IM3 )3 (Im3 7))
—ReX " ImE[(Im3 )2+ (Im = 7)2]} (60)

and

the relation7,=27. Because the diagonal conductivity is
smaller by a factor of 2 foN+0, the peak value oAo,,
becomes smaller by a factor of 4 than that in the case of
short-range scatterers.

In the Boltzmann limit in weak magnetic fields, on the
other hand, we have

(69

in perfect agreement with the result of the Boltzmann
transport theory. The above is proportionalflfpand there-
fore, for the same value of the effective scattering parameter
A, |oyy| is 4 times as large as that in the case of short-range
scatterers.

Oxy= — WcTy00,

245420-6



HALL CONDUCTIVITY OF A TWO-DIMENSIONAL . .. PHYSICAL REVIEW B 65 245420

T ' T '
Long-Range Scatterers |
Ny=2500 |

T ' T '
Short-Range Scatterers |
Ng=2500 |

Hall Conductivity (units of e2/h)
o

Hall Conductivity (units of e2/h)
o

-2 -2
-4 -4
-6 -6
8 . | . | . | . 8 . | . | . | .
-2 -1 0 1 2 -2 -1 0 1 2
Energy (units of fiw) Energy (units of fiw)
FIG. 3. The Hall conductivityo,, as a function of energy for FIG. 4. The Hall conductivityo,, as a function of energy for

A=100, 50, 20, and 10 for the case of short-range scatterers. ~ A=100, 50, 20, and 10 for the case of long-range scatterers.

IV. NUMERICAL RESULTS AND DISCUSSION is plotted in a larger energy range. The corresponding results

] ] ) of the Boltzmann transport theory are also shown. From

The self-consistency equations to determine the selffhege two figures it can be found that when the energy is far
energy, Eqs(38) and (52), can be solved numerically by ayay from the vicinity of zero, the Hall conductivity in the

iteration method, and the resulting self-energy is used fogcpA agrees with the corresponding Boltzmann result very
calculations of the Hall conductivity. In Fig. 3 the calculated

Hall conductivity is shown as a function of the Fermi energy
¢ for several typical scattering strength in the case of short-
range scatterers. Following the previous worttke Landau
level index corresponding to the cutoff energy is chosen as
N.=2500. When the scattering is relatively weak=100
and 50, the Hall conductivity has a steplike structure as a
function ofe at the region of low-lying Landau levels, which
reflects the quantum Hall effect. The positions of plateau
occur at the forbidden regions of the density of the states
between Landau levelS.On the other hand, when the Fermi
energy is at regions corresponding to higher Landau levels,
the spacing between the adjacent Landau levels becomes nar-
row and therefore scattering effects become more dominant.
As a result, the Hall conductivity displays peaks instead of a
plateau in these regions. There is no Hall plateau in the cases
of sufficiently strong scatteringA=20 and 10 due to the
strong overlap of the electron density of stafes.

Figure 4 shows the numerical result for the case of long- i
range scatterers. The Hall conductivity is a little larger than r —— Quantum
the corresponding value of the case of short-range scatterers [ --— Bolzmann 4 I o
except when the Fermi level lies in a gap between neighbor- '10_10 5 0 5 10
ing Landau levels and it is quantized into an integer multiple
of e?/h. This is due to the lack of the backscattering, leading
to a reduction ofAo,, by a factor of 4 in the case of the  FIG. 5. The Hall conductivityo,, as a function of energy for
long-range scatterers, mentioned in the previous section. A=100, 50, and 20 for the short-range scatterers. The correspond-

In Figs. 5 and 6 the calculated Hall conductivity corre-ing results of Boltzmann transport theory are shown by dashed
sponding to the short- and long-range scatterers, respectiveliges.

10 ———— ———

s Short-Range
Scatterers
Ne=2500

Hall Conductivity (units of e2/h)
o

Energy (units of fiw)
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20 — T T ] tubes in the presence of a magnetic field parallel to the
oA Long-Range 1 axis3*%® In these experiments the phase coherence length
15 100~ / / Scatterers 1 was estimated to be only of the order of the circumference

N=2500 even at very low temperaturé$® This shows that coher-
ence along the circumference may not be so perfect in thick
multiwall nanotubes.

When the phase coherence length is smaller than the cir-
cumference, the transport may approximately be described
- : by local conductivitiesr,, and oy, in a 2D graphite system.
=== 1 In such a case, the linear transport equation at the steady
state can roughly be expressed gg(x)=[ox(X)
+oyy(X)2oxx(X) 1E, , wherex andy are coordinates in the
circumference and axis direction, respectivgly(x) is the
local current density, anBl, is the electric field. This shows,
for example, in a high magnetic field, when the Fermi energy
is ate =0, that the conductance is independent of the scat-
tering strength because,, given by natural constants inde-

10 |

10 |

Hall Conductivity (units of e2/h)
o

-15 |

L —— Quantum ," /I 1 pendent of the field strength contributes to the
[ --— Boltzmann ! / conductancé? Furthermore, when the scattering is weak and
-20_10' S— '5 S— (') oL ; E— 10 the Fermi energy is at plateau regions of the conductivity
) oy, the conductivityo,, vanishes. In this case, most of the
Energy (units of fiw) current is carried by these regions of the nanotube.

A 2D graphite sheet does not exist in nature. One possible
candidate may be graphite intercalation compounds of stage
§ having isolated graphite sheets separated from each other
by an intercalant layer. However, the interaction between the

well, especially when the scattering strength is very weakdraphite layer and intercalants alters the band structure con-
On the contrary, when the energy is close to zero, the resul@derably. In fact, most intercalation compounds have Fermi
in the SCBA depart from the Boltzmann results, which im-Surfaces consisting of a three-dimensional sphiergginat-
plies that in this region semiclassical Boltzmann theory is not"d from so-called interlayer statesand that of 2D
adequate to describe the Hall conductivity of the 2D graphitéraphite® Therefore, they do not provide a realistic 2D
system. By comparing Fig. 5 with Fig. 6, it can be found thatgraphite sheet for the measurement of magnetrotransport.
the Hall conductivity in the case of long-range scatterers is [N some graphite systems, weak disorder results in stack-

always larger than the corresponding value in the case dfd faults, giving rise to a small increase in the interlayer
short-range scatterers. distance. When a special val@@.344 nm is reached, the

A 2D system with parabolic band structure always exhib-Stacking of individual graphite layers becomes uncorrelated
its a sinusoidal oscillation in the diagonal and Hall conduc-2nd the resulting two-dimensional honeycomb structure of
tivities as Fermi energy increases, accompanying the maiincorrelated  graphite layers is = called — turbostratic
trends to the Boltzmann limif®3! On the contrary, the os- 9graphiteZ”=" This turbostratic graphite may be a candidate

cillating characteristic disappears rapidly in the conductivi-for the transport measurement of a 2D graphite.
ties in the present 2D graphite system with the increase of The recent development in microfabrication technology
the Fermi energy as shown in Figs. 5 and 6. This is the diredd@s enabled fabrication of various artificial structures such as

consequence of the linear and zero-gap band structure dguantum dots, wires, point contacts, etc., at high-mobility

scribed by Eq.(5) in the graphite sheet. In fact, the spaceser_nlconductor het_erostructures_. In particular, an grtlﬂmal 2D

between the adjacent Landau levels with large indexes bdattice can be fabricated by periodic arrays of antidots and a
comes very small. Thus the scattering effect suppresses 08oneycomb structure is realized by a hexagonal antidot array.
cillation of the density of states in this range, which results inSuch an artificial antidot lattice can be another promising

an agreement of the quantum conductivities with the BoltzSystem where the transport of the 2D graphite can be mea-
mann results when the Fermi energy is far away from thesured experimentally.

low-lying Landau levels.

FIG. 6. The Hall conductivityo,, as a function of energy for
A=100, 50, and 20 for long-range scatterers. The correspondin
results of Boltzmann transport theory are shown by dashed lines.

In usual single-wall nanotubes the quantum coherence of V. SUMMARY
the electron wave around the circumference determines '
whether they become metallic or semiconductifighe situ- The Hall conductivity of a two-dimensional graphite sys-

ation is expected to be same in multiwall nanotubes. In multem has been calculated in a magnetic field within the self-
tiwall nanotubes it is believed that most of the current isconsistent Born approximation. The analytical expressions of
carried by a few outermost metallic nanotubes. Oscillationghe Hall conductivity have been derived in the two cases of
of the conductance ascribed to the Altshuler-Aronov-Spivakdominant short- and long-range scatterers. In the strong-
type* and those ascribed to the Aharonov-Bohm effect onmagnetic-field limit, it has been found that the phenomeno-
the band structuré were observed in thick multiwall nano- logical relation between o, and o, holds for the case of
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short-range scatterers. The same is true in the long-rangehen substituting it into EqtA2), we have
case if the difference betweerand r, is properly taken into

account. In the limit of a weak magnetic field and in the s :lfsﬁ (e—Zq)dt
Boltzmann limit the Hall conductivity of quantum transport °"AJo (8—20)2—'[’
theory agrees with the Boltzmann result. Numerical calcula-

tions have been performed for several typical scattering 3,=0,

strength. The Hall conductivity displays the quantum Hall

effect when the electron Fermi energy is in low-lying Landau 1

levels and the scattering is relatively weak. On the other 2p=- 12(e -39 Ae+2(e—30)]" (A4)

hand, when the Fermi energy becomes far away feor0,

the Hall conductivity in the SCBA tends to the correspondingWheres is a cutoff energy introduced to avoid divergence.
Boltzmann result. With the above results, the integrands in E41) can be

expanded as a power series 6f()?. It will be seen that the
terms proportional to f{w) 2 and (iw)° vanish. The re-
maining terms in the expression of the Hall conductivity are
This work was supported in part by Grants-in-Aid for proportional to either fw)? or higher powers of {w)?,
Scientific Research and for COE Resear(@2CE2004 which tend to zero at the weak-magnetic-field limit. Then
“Control of Electrons by Quantum Dot Structures and Its one comes to the conclusion that the Hall conductivity dis-
Application to Advanced Electronic$”from Ministry of  appears in the absence of a magnetic field for the case of
Education, Science, Culture, and Sports, Japan. One of thshort-range scatterers.
authors(Y.Z.) would like to thank the Ministry for support
and acknowledges the National Science Foundation of China 2. Long-range scatterers
(NNSFQ for financial support under Grant Nos. For th f lona- it the Hall ductiv-
NNSFC69890220 and NNSFC69971012. Y.Z. also wishes tg_ ' ' 1€ ¢as€ ot fong-range scatierers, the Hafl conductiv
thank T. Yaguchi, Dr. H. Suzuura, Dr. S. Uryu, and other'ty Is written as
workers in the group for some help. Numerical calculations e
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Tokyo.

ACKNOWLEDGMENTS

2 1 e
f AlIm3*+Im3~]de’

YT T2 (hw)2)o

€ d
+f ds'f(s’)—,AUXy(s'). (A5)
APPENDIX A: WEAK-FIELD LIMIT 0 de
OF HALL CONDUCTIVITY By using the Euler-Maclaurin formula, the self-energy for
The Hall conductivity must disappear when the magnetidn® case of long-range scatterers can be expressed as
field tends to zero for both cases of short- and long-range 1 (e—S7)dt (hw)? 1
scatterers. We give an analytical demonstration of the weak- Ei:—f — _ + -
magnetic-field limit of the Hall conductivity as below. Al (e=27)(e=X7)-t~ 2A &-X"
(hw)? 1 . A6
- 1. Short-range scatterers N 108 (S—Ei)z(s—Ei) (AB)
Noting that A¢y,(0)=0, the Hall conductivity can be Expanding the self-energy™ in terms of . w)? formally as
written as
@ 1 fe 3=+ () + 35 (ho)t+ -, (A7)
Oxy= 23 —(hw)zjo 2AImZ(s")ds’ and substituting it into EQA6), we have
1 (8_20)dt
€ d EO:_I - =
+ | de'f(e’)—Aoy(e'), (A1) Al (e—3g)%—t’
0 de’
for the case of short-range scatterers. By using the Euler- PO 1
Maclaurin formula, the self-energy can be expressed as ! b2A(e—23)
1 (e-3)dt (ho)* 1 Lo 1 1 ( 1
- _ . Sf=s,=-=
2 Af (e—3)°—t 12A (8—2)3+ . (A2) 2 =2 4 Ae+2(e—3) | 3(e—2)?
where the terms with higher powers thah()* have been B 1 N A8)
ignored. We write the dependence of self-energy.anfor- A(e—23,)(e—3,) A%(e—23)%)
mally as
Following the same procedure as in the case of short-
S=30+31(hw)?+3,(ho)t+- - -. (A3)  range scatterers, the integrands in &p) are expanded as a
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power series of §w)? by using the above result about self- e? ) )
energy>~. The expanding ofAay,(e') should be started Aoyy(e)=—z2l5(hw)
with Egs.(59)—(64). It will be seen that only the terms pro-
portional to either § w)? or the higher powers off{w)? are 2[|e —So|2+t]|e —2p|%dt
left in the series, which disappear when the magnetic field X1m [(e—S0)2—tl[(e—3%)2—t]*
tends to zero at the weak-magnetic-field limit. Therefore, the
Hall conductivity vanishes in the zero-field limit also for the (B3)
case of long-range scatterers. In the Boltzmann limit, the above becomes
2 2
. e mw(hw)
APPENDIX B: BOLTZMANN LIMIT Aoy (8)=—SgNE) —o= — = — werog, (BA)
OF HALL CONDUCTIVITY ot one) T2 T1er o ee
The Boltzmann limit of the Hall conductivity is derived in agreement with the Boltzmann result.
from the SCBA result in this appendix.
2. Long-range scatterers
1. Short-range scatterers There are three terms &, in Eq. (A8) for the case of

long-range scatterers. However, it can be justified that the
contributions of them to the Hall conductivity can be ignored
with the same measure of the case of short-range scatterers.
9 Then we need only consider the terms proportionalite >

e € . . . .
T(ﬁw)ZZAJ’ Im3,(¢')ds’, (B1) in Aaxy(s). The contribution fromo, can be ignored anq
mh 0 the following terms should be retained when expanding
o(e—i0,e+i0) in terms of ¢ w)?:

In the expression of the Hall conductivity, the first part
—ecn./B gives a term proportional toi)?, which is

where3, is given by Eq.(A4). WhenA>1, except at the

extreme vicinity of £'=0, the self-energy Sq(e’) ¢(e—i10e+i0)
~—ri|e’|/A is much smaller thams’, which cause&, to 5 5
decrease very rapidly for sufficiently large (3,x&’~3). _ 1 7sgrie)(hw) [ i (hw)
Further, due to the symmetry of [By(e’) with respect to 2 23A[ImI ()2 2%eIm3g(e)
¢', the above integral is approximated by
(haw)*
€ © B " +0 . (85)
Imj 22(8')dg'~|mj S,(e")de’=0, (B2) 2% [ImZ4(e)]

Substituting the above into the expressionogf, we obtain

where the analyticity oE,(s') in the upper complex plane the Hall conductivity as
has been used.

2 2
. . . e° w(ho)
Only the following term remains whedo,(s) is ex- Aoyy(e)= _SQ“S)WZT:_‘”CTWW (B6)
panded in terms of {w)? and all other terms are much 0
smaller: in agreement with the Boltzmann result.
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