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Hall conductivity of a two-dimensional graphite system
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Within a self-consistent Born approximation, the Hall conductivity of a two-dimensional graphite system in
the presence of a magnetic field is studied by quantum transport theory. The Hall conductivity is calculated for
short- and long-range scatterers. It is calculated analytically in the limit of strong magnetic fields and in the
Boltzmann limit in weak magnetic fields. The numerical calculation shows that the Hall conductivity displays
the quantum Hall effect when the Fermi energy is in low-lying Landau levels and the scattering is weak. When
the Fermi energy becomes away from«50, it tends to the Boltzmann result.
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I. INTRODUCTION

Since the discovery of carbon nanotubes,1 the transport
property of a carbon network of nanometer scale has
tracted much attention. There have been a lot of experime
works focusing on the transport measurement in vari
nanotube structures.2–5 Meanwhile, the conductance of ca
bon nanotubes has been calculated using diffe
approaches.6–18 It is well known that a carbon nanotube co
sists of coaxially rolled two-dimensional~2D! graphite
sheets. Therefore, the theoretical investigation on the tr
port property of the 2D graphite system is instructive fo
comprehensive understanding of the transport property of
nanotubes.

In a previous work,19 the density of states and the condu
tivity sxx were calculated by quantum transport theory,
which short- and long-range scatterers were taken into
count. It was found that quantum theory provides resu
quite different from those of Boltzmann transport theory.
high magnetic fields, in particular, the conductivity exhibits
series of peaks, the values of which depend only on the n
ral constants and the Landau level index. In order to giv
complete picture of the electronic transport property of t
system, we elucidate the Hall conductivity in the pres
paper. As in the previous work, we will consider two cases
which the electron is scattered by short- and long-range s
terers and we will also employ a self-consistent Bo
approximation20 ~SCBA! in the quantum transport theory.

The paper is organized as follows: In Sec. II the effect
Hamiltonian in the framework of the effective mass appro
mation is introduced and the eigenstates in the absenc
scatterers are summarized. In Sec. III the Hall conductivit
calculated by using center migration theory. In Sec. IV n
merical results are shown and discussed. In Appendixe
and B analytical demonstrations of the weak-magnetic-fi
limit and the Boltzmann limit are given. Last, there is a br
summary in Sec. V.

II. HAMILTONIAN

In a 2D graphite system, a unit cell contains two carb
atoms denoted asA and B. Two p bands having approxi
mately a linear dispersion cross the Fermi level atK andK8
points of the first Brillouin zone, whose wave vectors a
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t-
tal
s

nt

s-

e

c-
s

u-
a
s
t

n
t-

e
-
of
s
-
A
d
f

n

given by K5(2p/a)(1/3,1/A3) and K 85(2p/a)(2/3,0),
with a being the lattice constant. The effective-mass Ham
tonian in the absence of scatterers in a magnetic field app
perpendicular to the system~the xy plane! is given by

H05
g

\S 0 p̂x2 i p̂y 0 0

p̂x1 i p̂y 0 0 0

0 0 0 p̂x1 i p̂y

0 0 p̂x2 i p̂y 0

D ,

~1!

whereg is a band parameter,p̂5p̂1eA/c with p̂ being the
electron momentum operator, andA is the vector potential
given byA5(0,Bx) in the Landau gauge. The correspondi
Schrödinger equation

H0F5«F ~2!

can be solved exactly.
In the absence of a magnetic field, the eigenfunction

H0 is given by

Fsk
K ~r !5

1

A2L
exp~ ik•r !S s

eiw(k)

0

0,

D ~3!

and

Fsk
K8~r !5

1

A2L
exp~ ik•r !S 0

0

eiw(k)

s

D , ~4!

whereL2 is the area of the system,w(k) is the angle of the
wave vectork, ands denotes the bands (s511 for the con-
duction band ands521 for the valence band!. The corre-
sponding energy is given by

«sk5sgk, ~5!

with k5uku.
©2002 The American Physical Society20-1
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In the presence of a magnetic field, the eigenfunctionFnk
j

is specified by a set of quantum numbersa5( j ,n,k) where
j 5K and K8, the Landau level indexn50,61,62, . . . ,
and k is the electron wave vector in they direction. The
complete expression of eigenfunction is as follows:21,22

Fnk
K ~r !5

Cn

AL
exp~2 iky!S sgn~n!i unu21f unu21

i unuf unu

0

0

D ~6!

and

Fnk
K8~r !5

Cn

AL
exp~2 iky!S 0

0

i unuf unu

sgn~n!i unu21f unu21

D , ~7!

with

Cn5H 1 ~n50!,

1/A2 ~nÞ0!,
~8!

sgn~n!5H 1 ~n.1!,

0 ~n50!,

21 ~n,0!,

~9!

and

f unu5
1

A2unuunu!Ap l
expF2

1

2 S x2 l 2k

l D 2GH unuS x2 l 2k

l D ,

~10!

where l 5Ac\/eB and Hn(x) is the Hermite polynomial.
The eigenenergy is dependent on the quantum numbn
only,

«n5sgn~n!\vAunu, ~11!

\v5
A2g

l
. ~12!

It should be noted that\v has the dimension of energy but
not equivalent to the cyclotron frequency. According to O
sager’s quantization scheme,21 an energy spectrum similar t
the above can be obtained semiclassically. However,
Landau level withn50 is absent in the semiclassical spe
trum, which indicates that the occurrence of such a leve
totally a quantum effect.

We consider two different kinds of scatterers. First, t
range of the scattering potential is smaller than the lat
constant of the 2D graphite. When such a short-range s
terer is present at a carbon A siter i

A , the effective Hamil-
tonian has been calculated as11
24542
-

e
-
is

e
at-

Ui
A~r !5S 1 0 eif i

A
0

0 0 0 0

e2 if i
A

0 1 0

0 0 0 0

D ui
Ad~r2r i

A!, ~13!

with f i
A5(K 82K )•r i

A andui
A being the strength. Similarly

for a scatterer located at a carbonB site r i
B ,

Ui
B~r !5S 0 0 0 0

0 1 0 eif i
B

0 0 0 0

0 e2 if i
B

0 1

D ui
Bd~r2r i

B!, ~14!

wheref i
B5(K 82K )•r i

B .
Next, the range is larger than the lattice constant but m

smaller than the typical electron wavelength~which is infi-
nite at«50). In this case matrix elements betweenK andK8
points can be neglected and the potential is given by a d
onal matrix, i.e.,

Ui~r !5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D uid~r2r i !, ~15!

where r i is the impurity position. This type of scatterer
called a long-range one.

In the effective-mass approximation, the potential ran
of either scatterers~long or short range! is much smaller than
the varying range of the wave functions which is scaled
the electron wave length. Therefore, we assume the s
form of d function for both long- and short-range potentia
This argument was examined in a previous work,11 which
showed that a Gaussian-type potential can be well appr
mated as a long-range potential as described by the ab
equation when the potential range is larger than the lat
constant; on the other hand, it can be regarded as a s
range potential when the range is smaller than half of
lattice constant. The classification of the scatterers into th
of long and short range is made by the presence and abs
of scattering betweenK andK8 points.

Some actual point defects can be sorted into short-
long-range scatterers explicitly. For example, the fluorinat
of the graphite surface causes a kind of localp-electron
defect, which is demonstrated to be a short-range scattere
some calculations.23 Adsorption induced by exposure of th
graphite to ozone and ultraviolet radiation gives rise to
long-range scattering potential.24 In addition, we can expec
that a Coulomb impurity, the center of which is located in t
substrate near the graphite sheet, will obviously be a lo
range scatterer.

Some point defects have short- and long-range charac
istics simultaneously. A recent experiment25 reported that a
boron atom in a boron-doped graphite surface brings abo
notable correction on the electron density only in the ran
of one unit cell around it, which can be regarded as a sh
0-2
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range scatterer. However, the boron atom slightly defo
the flatness of the graphite surface in a much larger ran
which will cause a weak long-range scattering on the e
tron motion.17

The relaxation time in the absence of a magnetic field
defined as

1

t
5

2p

\ (
j 85K,K8

(
s8k8

u^ jskuUu j 8s8k8&u2d~«sk2«s8k8!,

~16!

whereU is the effective Hamiltonian for scatterers andu jsk&
refers to the eigenfunction ofH0 in the absence of magneti
field. In the case of short-range scatterers it is given by

1

t
5

1

2
@ni

A^~ui
A!2&1ni

B^~ui
B!2&#

u«u
\g2 , ~17!

whereni
A andni

B are the concentration of scatterers in a u
area and̂ •••& means the average. The relaxation time
long-range scatterers is given by

1

t
5ni^~ui !

2&
u«u

2\g2 . ~18!

When we assumeu25^(ui
A)2&5^(ui

B)2&5^(ui)
2& and ni

5ni
A1ni

B and ni
A5ni

B , the relaxation time becomes th
same between short- and long-range cases and

1

t
5

2pu«u
\A

, ~19!

where we have introduced a dimensionless paramete
characterize the scattering strength given by

A5
4pg2

niu
2 . ~20!

With the use of the Boltzmann transport equation,
transport relaxation time is given by

1

t tr
5

2p

\ (
j 85K,K8

(
s8k8

u^ jskuUu j 8s8k8&u2~12cosu!

3d~«sk2«s8k8!, ~21!

where cosu5k•k8/k2. In the case of short-range scattere
t tr5t, while t tr52t in the case of long-range scatterers b
cause of the absence of backward scattering. Conside
case«.0 first. The classical equation of motion is given b

\
dk

dt
52

e

c
v3B, ~22!

in the presence of a magnetic fieldB, wherev is the velocity.
This gives the cyclotron frequencyvc5eBv2/c«, wherev is
the electron velocity given byv5uvu5g/\. Note thatvc
diverges at«50. The conductivity tensorsmn is calculated
as
24542
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sxx5syy5
s0

11~vct tr!
2

, sxy52syx52
vct trs0

11~vct tr!
2

,

~23!

with

s05
e2

p2\

A

4

t tr

t
. ~24!

In weak magnetic fieldsvct tr!1, we have the relation

sxy52vct trs0 , ~25!

and in high magnetic fieldsvct tr@1,

Dsxy5sxy1
neec

B
52

1

vct tr
sxx , ~26!

wherene is the electron density measured from«50. In a
weak magnetic field, the Hall conductivity diverges as«22 at
«50, becauses0 is independent of energy and bothvc
}«21 andt tr}«21 diverge. The above discussion holds ev
for «,0, if we set

vc5
eBv2

c«
5sgn~«!

eBv2

cu«u
. ~27!

If we put «5«n , we have\vc5sgn(n)(\v/2Aunu).

III. HALL CONDUCTIVITY

The Kubo formula concerning the conductivity as a line
response function to an external field is written as26

smn5E
0

`

dtE
0

b

dle2st^ j n~2 i\l! j m~ t !& ~s→10!,

~28!

where j m is themth component of the current2eẋm with ẋ
the velocity and2e the electronic charge,j m(t) the Heisen-
berg representation of the current operatorj m , ^•••& means
the average over the canonical ensemble, andb51/kBT with
T being the temperature.

In the presence of a magnetic field perpendicular to
2D surface, the electron coordinate operatorsx and y are
decomposed into two parts as follows:27

x5j1X, y5h1Y, ~29!

whereX andY are called the guiding center coordinates, a
j and h are called the relative coordinates of the cyclotr
motion, defined by

j5
l 2py

\
, h52

l 2px

\
. ~30!

In a magnetic field, (X,Y) and (j,h) constitute a set of
canonical variables for the dynamics of the electron. Sub
tuting Eq.~29! into the original Kubo formula, Eq.~28!, a set
of new formulas for the Hall conductivity in the framewor
of so-called center migration theory can be obtained, wh
reads27–29
0-3
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sxy52
neec

B
1Dsxy ~31!

and

Dsxy5
e2\

ipL2E
0

`

f ~«!d«

3 KTrẊS ]

]«
ReG~«1i0!D ẎImG~«1i0!2~Ẋ↔Ẏ!L ,

~32!

where f («) is the Fermi distribution function and the Gree
function G(«) is defined as

G~«!5
1

«2H ~33!

and

S Ẋ

Ẏ
D 5

l

\ S l
]

]y

2 l
]

]x

D U~r !. ~34!

The center migration theory is equivalent to the origin
Kubo formula when dealing with the conductivity in a ma
netic field.29 It has an advantage in the study of the high-fie
transport because it gives clear physical pictures in that
electron transport may be viewed as a diffusionlike proc
of the electron orbital which has a localized character.27

Thep bands of 2D graphite where the Fermi level lies
symmetric about«50 in the effective-mass approximation
If being combined with the usual fact that the Hall condu
tivity vanishes when a band is completely occupied, t
leads to the reasonable assumption that the Hall conduct
vanishes in undoped 2D graphite with the Fermi level a«
50. In the above expressions, therefore, the lower limit
the integral has been chosen to be«50 and the electron
densityne should also be regarded as the electron num
above«50 (ne,0 for «,0).

With a little trick Eq. ~32! can be formally changed into

Dsxy52
e2\

4pL2E f ~«!d« lim
«8→«

]

]«8
^TrẊ@G~«81 i0!

1G~«82 i0!#Ẏ@G~«1 i0!2G~«2 i0!#2~Ẋ↔Ẏ!&.

~35!

From the above equation it can be seen that it is essenti
treat the quantity

J5^@TrẊG~«8!ẎG~«!#&, ~36!

which is equivalent to the diagrams shown in Fig. 1 in t
SCBA. Now, Dsxy is divided into two parts namedDsxy

(1)

and Dsxy
(2) corresponding to the diagrams shown by Fig

1~a! and 1~b!. In Fig. 1 all Green functions refer to the av
erage ones over all configurations of scatterers. In additio
24542
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the so-called proper vertex part a new quantityjaa8(«,«8)
has been introduced in Fig. 1~b!, which may be called thej
part.30 It is obtained graphically from a self-energy diagra
by replacing one of matrix elements of the potentialU(r ) by
the correspondingl ]U(r )/]y or l ]U(r )/]x as shown more
clearly in Fig. 2. It can be justified thatDsxy

(1) vanishes iden-
tically in the SCBA and onlyDsxy

(2) has a contribution to the
Hall conductivity.

A. Case of short-range scatterers

In the case of short-range scatterers, the averaged G
function and self-energy over scatterer configurations are
agonal. They are

^Gaa8~«!&5daa8Gn~«!,
~37!

Saa8~«!5daa8S~«!.

In the SCBA the self-energyS(«) can be determined by th
self-consistency equation

S~«!5
~\v!2

2A (
n52Nc

Nc 1

«2«n2S~«!
. ~38!

In the above equation, a cutoff numberNc is necessary to
truncate the summation because the infinite summation in
right side leads to a logarithmic divergence. The cutoffNc
should be chosen such that the corresponding cutoff en
ec5ANc\v should be of the order of the bandwidth.15

The j part can be calculated as follows:

FIG. 1. Diagrams ofDsxy in the self-consistent Born approxi
mation ~SCBA!. ~a! Dsxy

(1) . ~b! Some examples ofDsxy
(2) .

FIG. 2. The self-energy and correspondingj part in the SCBA.
0-4
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jaa8
y

~«,«8!52d j , j 8dk,k8

CnCn8

A2
$@Aunu

1sgn~n!sgn~n8!Aun8u#d un8u,unu212@Aun8u

1sgn~n!sgn~n8!Aunu#d unu,un8u21%

3@S~«!2S~«8!#, ~39!

jaa8
x

~«,«8!52 id j , j 8dk,k8

CnCn8

A2
$@Aunu

1sgn~n!sgn~n8!Aun8u#d un8u,unu21

1@Aun8u1sgn~n!sgn~n8!Aunu#d unu,un8u21%

3@S~«!2S~«8!#. ~40!

From Eqs.~39! and ~40! it can be readily found that the
following conditions are satisfied:

ja8a
y

~«8,«!5jaa8
y

~«,«8!,

ja8a
x

~«8,«!52jaa8
x

~«,«8!. ~41!

All diagrams involving the vertex parts in Fig. 1~b! in-
clude such a factor asja1a

18
y

(«,«8)^Ua
18a

28
Ua2a1

&, which re-

sults in a product of two delta functionsd un
18u,un1u61d un

18u,un1u .

Because of their incompatibility, the vertex corrections va
ish in the case of short-range scatterers. By using Eqs.~39!–
~41!, Dsxy in the SCBA can be obtained for the case
short-range scatterers as

Dsxy5E d«S 2
] f

]« DDsxy~«!, ~42!

with

Dsxy~«!5
e2

p2\

2~ ImS!2

~\v!2
Im(

n>0
@2u«2S~«!u2

1~2n11!~\v!2#gn~«1 i0!gn11~«2 i0!,

~43!

where

gn~«!5
1

2
~Gn1G2n!5

«2S~«!

@«2S~«!#22unu~\v!2
. ~44!

We consider a particular situation as the magnetic field
very strong, the scattering is relatively weak, and the ene
« is in the vicinity of theNth Landau level, i.e.,«;«N ,
which is called hereafter the strong magnetic field limit. U
der this situation the self-energy can be solved by retain
only a term with n5N in the summation of the self
consistency equation. In this case the density of state
calculated as
24542
-

f

is
y

-
g

is

D~«!52
AImS

p2g2
5

2

2p l 2

2

pG F12S «2«N

G D 2G1/2

, ~45!

with

G5
A2\v

AA
. ~46!

Accordingly, an approximate expression ofDsxy(«) correct
up to the orderG/\v becomes

Dsxy~«!5
e2

p2\
sgn~N!

4uNu3/2G

\v F12S «2«N

G D 2G3/2

,

~47!

which vanishes for the Landau levelN50. The correspond-
ing expression of conductivitysxx is given by19

sxx~«!5
e2

p2\
~2uNu1dN0!F12S «2«N

G D 2G . ~48!

The above shows that there is the relation betweensxx and
Dsxy as

Dsxy~«!52
2 ImS

\vc
sxx~«!, ~49!

with vc given by Eq.~27! at «5«N . This is equivalent with
Eq. ~26! when\/t tr5\/t is replaced by22ImS(«).

In Appendix A, the Hall conductivitysxy is demonstrated
to vanish identically in the limit of zero magnetic field. It i
quite tedious to obtain an explicit expression ofsxy in the
weak-field limit and therefore we shall consider only t
Boltzmann limit where the broadening\/t is much smaller
than energyu«u. Explicit calculations are performed in Ap
pendix B and give

sxy52vcts0 , ~50!

in perfect agreement with the result of Boltzmann transp
theory.

B. Case of long-range scatterers

In the case of long-range scatterers,K andK8 are decou-
pled and have the same contributions to the Hall conduc
ity. Therefore, at first we shall focus on theK point only to
deal with the Hall conductivity and then multiply the fina
results by a factor of 2. Unlike the case of short-range sc
terers, the averaged Green function and the self-energy
not diagonal with respect to the Landau level index and h
off-diagonal elements between1n and 2n. They are ex-
pressed as

Saa8~«!5daa8S
d~«!1da2a8S

o~«!,

^Gaa8~«!&5daa8Gn
d~«!1da2a8Gn

o~«!, ~51!

where 6a5(6n,k). By defining S65Sd6So, the self-
consistency equation to determine the self-energy is given
0-5
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S15
~\v!2

A (
n50

Nc «2S2

~«2S1!~«2S2!2«n
2 ,

S25
~\v!2

A (
n51

Nc «2S1

~«2S1!~«2S2!2«n
2 . ~52!

The j parts take the following forms:

jaa8
y

~«,«8!5jaa8
y1

~«,«8!1jaa8
y2

~«,«8!, ~53!

with

jaa8
y1

~«,«8!

5dkk8

CnCn8

A2
$Aunusgn~n!sgn~n8!@S2~«!2S2~«8!#

2sgn~n8!@Z~«!2Z~«8!#

1Aun8u@S1~«!2S1~«8!#%d un8u,unu11 ~54!

and

jaa8
y2

~«,«8!

52dkk8

CnCn8

A2
$Aun8usgn~n!sgn~n8!@S2~«!2S2~«8!#

2sgn~n!@Z~«!2Z~«8!#

1Aunu@S1~«!2S1~«8!#%d unu,un8u11 , ~55!

where a new quantity

Z~«!5~\v!21S2~«!@«2S2~«!# ~56!

has been defined. Further,jaa8
x («,«8) is associated with

jaa8
y («,«8) through the relation

jaa8
x

~«,«8!5jaa8
x1

~«,«8!1jaa8
x2

~«,«8!, ~57!

jaa8
x6

~«,«8!57 i jaa8
y6

~«,«8!. ~58!

With the above results the Hall conductivity can be d
rived by dealing with the diagrams illustrated by Fig. 1~b!.
Unlike in the case of short-range scatterers, the vertex
rections have contributions to the Hall conductivity. The
fore, all diagrams in Fig. 1~b! have to be taken into accoun
After a tedious derivation an expression ofDsxy is obtained
as follows:

Dsxy~«!5sa1sb , ~59!

with

sa5
e2

p2\

2A

~\v!4$ReS1ImS2@~ ImS1!21~ Im S2!2#

1«@~ ImS1!32~ ImS2!3#

2ReS2ImS1@~ ImS1!21~ Im S2!2#% ~60!

and
24542
-

r-
-

sb5
e2

p2\
ImF s~«!

12w~«2 i0,«1 i0!G , ~61!

where

w~«,«8!5
~\v!2

A (
n50

`

gn
1~«!gn11

2 ~«8!, ~62!

gn
6~«!5

«2S7~«!

@«2S1~«!#@«2S2~«!#2«n
2

~63!

and

s~«!52
2A

~\v!4 @S2* Im S21«ImS1

2S1* Im S12Im~S1S2!#2. ~64!

It should be noted that the contribution ofK8 has been
added.

In the strong-magnetic-field limit, when the energy
close to theNth Landau level, i.e.,«;«N , approximate ex-
pressions can be obtained. We have

D~«!5
1

2p l 2

2

pGN
F12S «2«N

GN
D 2G1/2

~65!

and

Dsxy~«!5
e2

p2\
sgn~N!

uNu3/2GN

\v F12S «2«N

GN
D 2G3/2

,

~66!

with GN5G for NÞ0 andG05A2G. The above vanishes fo
N50. The diagonal conductivity has been calculated as19

sxx~«!5
e2

p2\
~ uNu1dN0!F12S «2«N

GN
D 2G . ~67!

The above shows that there is the relation betweensxx and
Dsxy as

Dsxy~«!52
Im S

\vc
sxx~«!, ~68!

with vc given by Eq.~27! at «5«N . The deviationDsxy is
proportional tosxx and ImS, but the coefficient is a half of
that in the short-range case. This difference correspond
the relationt tr52t. Because the diagonal conductivity
smaller by a factor of 2 forNÞ0, the peak value ofDsxy
becomes smaller by a factor of 4 than that in the case
short-range scatterers.

In the Boltzmann limit in weak magnetic fields, on th
other hand, we have

sxy52vct trs0 , ~69!

in perfect agreement with the result of the Boltzma
transport theory. The above is proportional tot tr

2 and there-
fore, for the same value of the effective scattering param
A, usxyu is 4 times as large as that in the case of short-ra
scatterers.
0-6
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IV. NUMERICAL RESULTS AND DISCUSSION

The self-consistency equations to determine the s
energy, Eqs.~38! and ~52!, can be solved numerically b
iteration method, and the resulting self-energy is used
calculations of the Hall conductivity. In Fig. 3 the calculat
Hall conductivity is shown as a function of the Fermi ener
« for several typical scattering strength in the case of sh
range scatterers. Following the previous work,2 the Landau
level index corresponding to the cutoff energy is chosen
Nc52500. When the scattering is relatively weak (A5100
and 50!, the Hall conductivity has a steplike structure as
function of« at the region of low-lying Landau levels, whic
reflects the quantum Hall effect. The positions of plate
occur at the forbidden regions of the density of the sta
between Landau levels.19 On the other hand, when the Ferm
energy is at regions corresponding to higher Landau lev
the spacing between the adjacent Landau levels becomes
row and therefore scattering effects become more domin
As a result, the Hall conductivity displays peaks instead o
plateau in these regions. There is no Hall plateau in the c
of sufficiently strong scattering (A520 and 10! due to the
strong overlap of the electron density of states.19

Figure 4 shows the numerical result for the case of lo
range scatterers. The Hall conductivity is a little larger th
the corresponding value of the case of short-range scatte
except when the Fermi level lies in a gap between neighb
ing Landau levels and it is quantized into an integer multi
of e2/h. This is due to the lack of the backscattering, lead
to a reduction ofDsxy by a factor of 4 in the case of th
long-range scatterers, mentioned in the previous section

In Figs. 5 and 6 the calculated Hall conductivity corr
sponding to the short- and long-range scatterers, respecti

FIG. 3. The Hall conductivitysxy as a function of energy for
A5100, 50, 20, and 10 for the case of short-range scatterers.
24542
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is plotted in a larger energy range. The corresponding res
of the Boltzmann transport theory are also shown. Fr
these two figures it can be found that when the energy is
away from the vicinity of zero, the Hall conductivity in th
SCBA agrees with the corresponding Boltzmann result v

FIG. 4. The Hall conductivitysxy as a function of energy for
A5100, 50, 20, and 10 for the case of long-range scatterers.

FIG. 5. The Hall conductivitysxy as a function of energy for
A5100, 50, and 20 for the short-range scatterers. The corresp
ing results of Boltzmann transport theory are shown by das
lines.
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YISONG ZHENG AND TSUNEYA ANDO PHYSICAL REVIEW B65 245420
well, especially when the scattering strength is very we
On the contrary, when the energy is close to zero, the res
in the SCBA depart from the Boltzmann results, which im
plies that in this region semiclassical Boltzmann theory is
adequate to describe the Hall conductivity of the 2D graph
system. By comparing Fig. 5 with Fig. 6, it can be found th
the Hall conductivity in the case of long-range scatterers
always larger than the corresponding value in the case
short-range scatterers.

A 2D system with parabolic band structure always exh
its a sinusoidal oscillation in the diagonal and Hall condu
tivities as Fermi energy increases, accompanying the m
trends to the Boltzmann limits.30,31 On the contrary, the os
cillating characteristic disappears rapidly in the conduct
ties in the present 2D graphite system with the increase
the Fermi energy as shown in Figs. 5 and 6. This is the di
consequence of the linear and zero-gap band structure
scribed by Eq.~5! in the graphite sheet. In fact, the spa
between the adjacent Landau levels with large indexes
comes very small. Thus the scattering effect suppresses
cillation of the density of states in this range, which results
an agreement of the quantum conductivities with the Bo
mann results when the Fermi energy is far away from
low-lying Landau levels.

In usual single-wall nanotubes the quantum coherenc
the electron wave around the circumference determ
whether they become metallic or semiconducting.18 The situ-
ation is expected to be same in multiwall nanotubes. In m
tiwall nanotubes it is believed that most of the current
carried by a few outermost metallic nanotubes. Oscillatio
of the conductance ascribed to the Altshuler-Aronov-Spiv
type32 and those ascribed to the Aharonov-Bohm effect
the band structure33 were observed in thick multiwall nano

FIG. 6. The Hall conductivitysxy as a function of energy for
A5100, 50, and 20 for long-range scatterers. The correspon
results of Boltzmann transport theory are shown by dashed lin
24542
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tubes in the presence of a magnetic field parallel to
axis.34,35 In these experiments the phase coherence len
was estimated to be only of the order of the circumferen
even at very low temperatures.34,35 This shows that coher
ence along the circumference may not be so perfect in th
multiwall nanotubes.

When the phase coherence length is smaller than the
cumference, the transport may approximately be descri
by local conductivitiessxx andsxy in a 2D graphite system
In such a case, the linear transport equation at the ste
state can roughly be expressed asj y(x)5@sxx(x)
1sxy(x)2sxx(x)21#Ey , wherex andy are coordinates in the
circumference and axis direction, respectively,j y(x) is the
local current density, andEy is the electric field. This shows
for example, in a high magnetic field, when the Fermi ene
is at «50, that the conductance is independent of the sc
tering strength becausesxx given by natural constants inde
pendent of the field strength contributes to t
conductance.19 Furthermore, when the scattering is weak a
the Fermi energy is at plateau regions of the conductiv
sxy , the conductivitysxx vanishes. In this case, most of th
current is carried by these regions of the nanotube.

A 2D graphite sheet does not exist in nature. One poss
candidate may be graphite intercalation compounds of s
1 having isolated graphite sheets separated from each o
by an intercalant layer. However, the interaction between
graphite layer and intercalants alters the band structure
siderably. In fact, most intercalation compounds have Fe
surfaces consisting of a three-dimensional sphere~originat-
ing from so-called interlayer states! and that of 2D
graphite.36 Therefore, they do not provide a realistic 2
graphite sheet for the measurement of magnetrotranspor

In some graphite systems, weak disorder results in sta
ing faults, giving rise to a small increase in the interlay
distance. When a special value~0.344 nm! is reached, the
stacking of individual graphite layers becomes uncorrela
and the resulting two-dimensional honeycomb structure
uncorrelated graphite layers is called turbostra
graphite.37,38 This turbostratic graphite may be a candida
for the transport measurement of a 2D graphite.

The recent development in microfabrication technolo
has enabled fabrication of various artificial structures such
quantum dots, wires, point contacts, etc., at high-mobi
semiconductor heterostructures. In particular, an artificial
lattice can be fabricated by periodic arrays of antidots an
honeycomb structure is realized by a hexagonal antidot ar
Such an artificial antidot lattice can be another promis
system where the transport of the 2D graphite can be m
sured experimentally.

V. SUMMARY

The Hall conductivity of a two-dimensional graphite sy
tem has been calculated in a magnetic field within the s
consistent Born approximation. The analytical expression
the Hall conductivity have been derived in the two cases
dominant short- and long-range scatterers. In the stro
magnetic-field limit, it has been found that the phenome
logical relation betweenDsxy andsxx holds for the case of

g
.
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HALL CONDUCTIVITY OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 65 245420
short-range scatterers. The same is true in the long-ra
case if the difference betweent andt tr is properly taken into
account. In the limit of a weak magnetic field and in t
Boltzmann limit the Hall conductivity of quantum transpo
theory agrees with the Boltzmann result. Numerical calcu
tions have been performed for several typical scatter
strength. The Hall conductivity displays the quantum H
effect when the electron Fermi energy is in low-lying Land
levels and the scattering is relatively weak. On the ot
hand, when the Fermi energy becomes far away from«50,
the Hall conductivity in the SCBA tends to the correspond
Boltzmann result.
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APPENDIX A: WEAK-FIELD LIMIT
OF HALL CONDUCTIVITY

The Hall conductivity must disappear when the magne
field tends to zero for both cases of short- and long-ra
scatterers. We give an analytical demonstration of the we
magnetic-field limit of the Hall conductivity as below.

1. Short-range scatterers

Noting that Dsxy(0)50, the Hall conductivity can be
written as

sxy5
e2

p2\

1

~\v!2E
0

«

2A Im S~«8!d«8

1E
0

«

d«8 f ~«8!
d

d«8
Dsxy~«8!, ~A1!

for the case of short-range scatterers. By using the Eu
Maclaurin formula, the self-energy can be expressed as

S5
1

AE ~«2S!dt

~«2S!22t
2

~\v!4

12A

1

~«2S!3 1•••, ~A2!

where the terms with higher powers than (\v)4 have been
ignored. We write the dependence of self-energy on\v for-
mally as

S5S01S1~\v!21S2~\v!41•••. ~A3!
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Then substituting it into Eq.~A2!, we have

S05
1

AE0

«c
2 ~«2S0!dt

~«2S0!22t
,

S150,

S252
1

12~«2S0!2@A«12~«2S0!#
, ~A4!

where«c is a cutoff energy introduced to avoid divergenc
With the above results, the integrands in Eq.~A1! can be

expanded as a power series of (\v)2. It will be seen that the
terms proportional to (\v)22 and (\v)0 vanish. The re-
maining terms in the expression of the Hall conductivity a
proportional to either (\v)2 or higher powers of (\v)2,
which tend to zero at the weak-magnetic-field limit. Th
one comes to the conclusion that the Hall conductivity d
appears in the absence of a magnetic field for the cas
short-range scatterers.

2. Long-range scatterers

For the case of long-range scatterers, the Hall conduc
ity is written as

sxy5
e2

p2\

1

~\v!2E
0

«

A@ Im S11Im S2#d«8

1E
0

«

d«8 f ~«8!
d

d«8
Dsxy~«8!. ~A5!

By using the Euler-Maclaurin formula, the self-energy f
the case of long-range scatterers can be expressed as

S65
1

AE ~«2S7!dt

~«2S1!~«2S2!2t
6

~\v!2

2A

1

«2S6

2
~\v!4

12A

1

~«2S6!2~«2S7!
1•••. ~A6!

Expanding the self-energyS6 in terms of (\v)2 formally as

S65S0
61S1

6~\v!21S2
6~\v!41•••, ~A7!

and substituting it into Eq.~A6!, we have

S05
1

AE ~«2S0!dt

~«2S0!22t
,

S1
152S1

25
1

2A~«22S0!
,

S2
15S2

252
1

4

1

A«12~«2S0! S 1

3~«2S0!2

2
1

A~«22S0!~«2S0!
1

1

A2~«22S0!2D . ~A8!

Following the same procedure as in the case of sh
range scatterers, the integrands in Eq.~A5! are expanded as
0-9
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power series of (\v)2 by using the above result about se
energyS6. The expanding ofDsxy(«8) should be started
with Eqs.~59!–~64!. It will be seen that only the terms pro
portional to either (\v)2 or the higher powers of (\v)2 are
left in the series, which disappear when the magnetic fi
tends to zero at the weak-magnetic-field limit. Therefore,
Hall conductivity vanishes in the zero-field limit also for th
case of long-range scatterers.

APPENDIX B: BOLTZMANN LIMIT
OF HALL CONDUCTIVITY

The Boltzmann limit of the Hall conductivity is derive
from the SCBA result in this appendix.

1. Short-range scatterers

In the expression of the Hall conductivity, the first pa
2ecne /B gives a term proportional to (\v)2, which is

e2

p2\
~\v!22AE

0

«

ImS2~«8!d«8, ~B1!

whereS2 is given by Eq.~A4!. WhenA@1, except at the
extreme vicinity of «850, the self-energy S0(«8)
'2p i u«8u/A is much smaller than«8, which causesS2 to
decrease very rapidly for sufficiently large«8 (S2}«823).
Further, due to the symmetry of ImS2(«8) with respect to
«8, the above integral is approximated by

ImE
2«

«

S2~«8!d«8'ImE
2`

`

S2~«8!d«850, ~B2!

where the analyticity ofS2(«8) in the upper complex plane
has been used.

Only the following term remains whenDsxy(«) is ex-
panded in terms of (\v)2 and all other terms are muc
smaller:
i

y

l
h

.

G

ev
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e

Dsxy~«!5
e2

p2\
2G0

2~\v!2

3ImE 2@ u«2S0u21t#u«2S0u2dt

@~«2S0!22t#@~«2S0* !22t#4 .

~B3!

In the Boltzmann limit, the above becomes

Dsxy~«!52sgn~«!
e2

p2\

p~\v!2

16G0
2 52vcts0 , ~B4!

in agreement with the Boltzmann result.

2. Long-range scatterers

There are three terms ofS2 in Eq. ~A8! for the case of
long-range scatterers. However, it can be justified that
contributions of them to the Hall conductivity can be ignor
with the same measure of the case of short-range scatte
Then we need only consider the terms proportional to (\v)2

in Dsxy(«). The contribution fromsa can be ignored and
the following terms should be retained when expand
w(«2 i0,«1 i0) in terms of (\v)2:

w~«2 i0,«1 i0!

5
1

2
2 i

psgn~«!~\v!2

23A@ ImS0~«!#2F11 i
~\v!2

22«Im S0~«!

2
~\v!4

24«2@ Im S0~«!#2
1•••G . ~B5!

Substituting the above into the expression ofsb , we obtain
the Hall conductivity as

Dsxy~«!52sgn~«!
e2

p2\

p~\v!2

4G0
2 52vct trs0 , ~B6!

in agreement with the Boltzmann result.
tt.
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