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We present a first-principles study of the thermal expansion of B_e€()l@mrface, within the quasiharmonic
approximation(QHA). The maximum temperature studie@i=700 K) is well below melting and QHA is
adequate in this regime. Many layers are involved in the thermal relaxation of this surface, and in order to
apply QHA to this complex system we developed a method for the efficient computation of the third-order
derivatives of the total energy in a metallic system using the density-functional perturbation theory . Computer
codes for this method are made available on the web. We find that as the temperature increases the short
interlayer spacings near the surface contract and the long interlayer spacings expand. The mechanism leading
to this behavior is disclosed and compared with that for ME@)OGnd Al110) surfaces, where a similar effect
was previously observed.
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[. INTRODUCTION ture, where quantum effects are negligible, the QHA is valid
well below the melting temperature. QHA is commonly be-
Thermal expansion of low index metallic surfaces canlieved to describe correctly bulk properties. It has also been
lead to a rich variety of behaviors for different systems, andused to describe surface thermal expansion for several
through the years, this topic has attracted both experimentalystem<~8 although the surface case is more delicate and
and theoretical attention. Particularly interesting is the recengpecial care should be used in applying the QHA scheme to
discovery of systems in which the distance between the firgt. An accurate representation of the density of vibrational
two surface atomic layers decreases by increasing the tenstates is necessary in order to obtain the quasiharmonic free
perature(thermal contraction This phenomenon was first energy’ and oversimplified approaches can be misleading, as
observed in the AlL10) surface by measuremehind first-  we demonstrated in the case of(B&01) surface’ Moreover,
principles calculatio,and then in the Mg(100) surface’?  for Al(100 (Ref. 10 and Ag111) (Ref. 1) it was shown
In the latter case both measurements and calculations rédat QHA is inadequate to describe surface thermal expan-
ported an oscillatory thermal expansion, i.e., contraction ofion for temperature approaching melting.
the first and third interlayer spacing, and expansion of the The density-functional perturbation theotFPT) ap-
second and fourth interlayer spacing. proach of Ref. 12 allows the efficient computation of the
In a purely harmonic crystal atomic mean positions do notibrational frequencies, which are necessary in order to cal-
change by increasing the temperature, thus, thermal expafUlate the Helmholtz free energy within the QHA. However,
sion is a consequence of anharmonic terms in the interatomfgecause of the complexity of the calculations involved, up to
potential. The occurrence of the first interlayer thermal connow the QHA has been used to study surfaces in which es-
traction in A(110) is explained by Marzart al? as the con- ~ Sentially only one layer is involved in the thermal
sequence of the larger anharmonicity of the second surfac@pansior’~® Application of the method to more complex
layer with respect to the first one. On the contrary, onSystems requires the knowledge not only of the vibrational
Mg(lOTO) thermal contraction is strictly linked to the in- frequencies of a system but also of their de_r vatives with
crease of the bulk lattice spacing parallel to the surfatea respect to atomic displacements. These quantities are related

given temperature, the mean position of atomic surface la to the third-order derivatives of the total energy of the sys-

ers is determined by the balance between energetic and eHa_m. In this_ work we Wi." d(_ascribe an efficient algori.thm to
y g mpute third-order derivatives of the total energy within the

tropic effects, and from general arguments one should expe ) Py 3
a surface to expand by increasing the temperdtuneleed, FPT approach, extending the so-callech*21” theorent
to metallic systems.

in both Al(110), and Mg(lO_I)) surfaces the surface as a In a recent work this approach already allowed us to

thle expan_ds. Hence, inte_rlay_er thermal contraction is Yescribe, within QHA, the complex pattern of multilayer
topic deserving much attention in view of a better under- ' '

standing of the delicate interplay between energetic and er{hermal expansion In M_g(l(]D]) surface. Our calculations, .
tropic effects at the surface. performed in an appropriate range of temperature, resultgd in
Nowadays, there are essentially two feasible methods tQOOd agreement .W'th low eI_ectron energy diffraction
treat thermal expansion within a computational approacﬁneasuremenfsln this work we will use the same method to

based on density-functional thedtymolecular-dynamics study the thermal expansion of Be(MMlsurface up to the
(MD) simulation and lattice dynamics in the quasiharmonictemperaturd =700 K, which is well below bulk Be melting
approximation(QHA). These are two complementary ap- temperature 1600 K). On Be(100) surface we observe
proaches: while MD is valid only above the Debye tempera-an oscillatory thermal relaxation similar to and stronger than
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the one we have previously reported for Mg(D01 The where the static forcesr 07_Et°‘/adi(d),_ can be efficiently
mechanism leading to this phenomenon will be analyzedc@lculated for any point in the configuration space cf
pointing out similarity and differences of the two systems. thanks to Hellmann-Feynman theorem. The solution of Eg.
The outline of the paper is as follows. In Sec. Il we briefly (3) is not more complex than a standard structural relaxation
summarize the QHA approach and we describe a generéind provides an estimate of the equilibrium parameters of the
method to calculate the third-order derivatives of the totalSyStém. An improved solution, to any desired accuracy level,
energy in a metallic system. In Sec. Ill we give more tech-c@n be obtained by calculating the VF's for the new configu-

nical details about the calculation, and we present the obr—ati_l(_)rr]‘ a\r}g'ite_rating thte lp(;ocedL(ere totr?elf %on;s_iste??y.
tained thermal expansion of Be(1@) surface. Finally, in € Vs in a crystal depend onh the vibrational frequen-

Sec. IV we analvze the results. making a comparison wit ciesw, and on their derivativedw ./ dd; which, in turn, can
’ y ! 9 P e obtained from the second- and third-order derivatives of

Mg(1010) and A(110 surfaces. the total energy of the system with respect to distortions of
the atomic geometry. In the remaining of this section we will
Il. METHOD describe thdirst-principlesapproach that we used to calcu-

late second- and third-order derivatives of the energy. We
) ] will give the expression for the energy derivatives with re-
Let us consider a crystal described by the structural pagpect to a generic parameter, from whiel and dw,,/dd;

A. The quasiharmonic approximation

rametersp=(py,Pz, - ..,Pn). In the QHA the Helmholtz can be easily obtained as explained in Refs. 12,13.
free energyF is approximated by
F(T,p)=E®Y(p)+F(T,p) (1) B. First-principles approach
We used a plane-wave and pseudopotential approach to
B0 p) 4 ke TS In| 2 Sim{ﬁwa(p)H the density-functional theoryDFT) of Ref. 5. Within DFT,
Bl & 2kgT || derivatives of the total energy can be obtained thanks to the

oty ) “2 n+1" theorem® In this context the theorem states that,
where E”X(p) is the total static energy of the crystal and e thenth-order variation of the electronic charge density
w,(p) are the frequencies of the vibrational modes. Given gyit respect to an external perturbation, it is possible, in
temperaturd, the equilibrium values of the paramet@rare  rinciple, to obtain the variation of the total energy up to the
obtained by minimizing=. If the system is described by one (5,1 1)th order. As a consequence, the first-order variation
or two parameters only it is practical and efficient to com-q¢ the charge density gives access to second- and third-order
pute w,(p) in various points in the parameter space, calcUeriyatives of the energy. First-order variation of the charge
late F''® exactly in these points, and interpolate its value iNcan be obtained by linear-response methods such as BFPT,
between when searching the minimum. In the general casg,q its generalization to metdf§DFPT has already allowed
this scheme is cumbersome, and a simpler approach, if thgjirq_order calculations in semiconducting systéf and
needed derivatives are available, is to solve directly the sysp, ihe following sections this scheme is extended to the more

tem of equations complex metallic case. As a first step, in the following sec-
JEtot gEvib tion, we rewrite the metallic DFPT in a slightly different way
(p)+ (p,T)=0, 2) from that reported in Ref. 14.
Ip; Ip;
by any of the methods used in structural optimization. The C. Linear response for metals

computation of the derivatives of the vibrational contribution system a large number lopoints is neces-
to the free energy is, however,_ at least one order of ma(‘:"méary to reach sufficient accuracy in the Brillouin-zone sam-
tude more complex than the first term in Eg). For sur-

faces, thus, the slightly different approach described below iglmg. A commorl1ly used .af)pror;ch to 'th|s problem 'S t.o n-
more appropriate. troduce a smearing functiof(x),”’ that is an approximation

The structure of a surface is defined by the positions off the step function characterized by a smearing width
the surface layersd=d,,d,, . ..) and thebulk parameters The only justification for thisad hocprocedure is that as
a, which in an hcp crystal are the two lattice parameters — 0 one would recover the "absolutely” converged redalt
=(a,c). Before approaching the surface problem, the depentn® €xpense of using a prohibitively fikepoint mesh, and
dence oriT of the bulk parametefsa(T)] can be obtained by that, even at a finite value af, one can obtain accurate

an independent calculation. Afterward, as a first approximalesults. ,
tion, one can assume a linear dependenc&®f on d. In Within the smearing approach, the Kohn-Shais)

this hypothesis the derivatives of the vibrational contribution€duations, which are to be solved self-consistently to obtain
to the free energy + (aF*"/ad,), [we will call them vibra- € €lectronic charge densityr), are
tional forces(VF’s)] do not depend onl, and the system of

equations to be solved is [T+ Visll i) = €l ), 4
aEtOt &Fvib
7q, LT dl* 754~ [ah). T1=0, ® va(r>=vext<r>+%[r”)], (5
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~ v

(=3 Bl ()P, © )= 3 I, W)
Gj € j
> ’éF_:J n(rydr=N (7) D. Third order for metals

Taking the third-order derivative of E() with respect to

whereTX" is the single-particle kinetic-energy operatdg, A one obtains

is the self-consistent KS potentiale,. iS the external poten- 42
tial due to the ionsE,[n] is the interaction functionalusu- E@=> _279Fi D2 —GF.) €1 e®
ally written as the sum of the Hartree energy and an i

exchange-correlation contributiprN is the number of elec-

~ ~ 3
trons, andég;= 6(ex—€;), where the Fermi energyg is d_ [ ]_J SE|[n ]n( rydrt, (13)
determined by the last equation. The natural definition of the ' on(r)
total electronic energy becontés )
that, following Ref. 13, can be reduced to
E,[n]=>, {Ari+ €0} +1{En]— f o] n(r)dr
e AL on(r) ’ E£3)=Z+J Uéi%(r)n(r)dr+3j o @(nW(r)dr
8
~ .~ ~ ~ 8°E|[n]
whereAg =" _yd(y)dy|x=c _., and 8(x) = (d/9x) 6. +j n®
. A . sn(rysn(r’)sn(r”)

When a perturbationv gy, is superimposed on the exter-

nal potential, the KS self-consistent potential is modified ac- X (H)nW(r"ynM(r"ydrdr'dr”, (14)

cordingly toVys— Vst AV, where\ is a small param-
eter. We will indicate theith derivative of a quantitf, with ~ With
respect ton equivalently byF™ or (d"/d\")F. It is conve-

nient to introduce a “cutoff” energyE that separates the ~— z=, (6”0Fi<¢§1>|v(,<15> €M)y +358) (M — )3
electronic states that are partially occupied due to the finite !

width of the smearing function from those that can be con-
sidered completely empty. In practice one can choose any +6

E=er+ 30, whereo is the width of the smearing function

‘6. The first variation of the charge densit{")(r) can then where 3= (d/9x) | _.. In the present form the terd
be obtained solving self-consistently the following set of Pl

equations:

NG <</f.|v<”|w<”>] (15

states are, in fact, required to calculégé?). Moreover, the

possibility that the denominator in E¢L2) approaches zero
[T+ Vst aPy—e] [¢)=—PVdw), (9

problems can be overcome following the recipe given in
" 5%E|[n] Refs. 15,16. However, that approach is based on the exis-
R =v5r+ f

!
on(ryon(r’) states, and is not useful for metals.
_ To deal with the metallic case, we rewrifeas

N =2 {Grl () g7 (1) +ccl+ el y(n)]2, 7 62 Dei( iV )
! Fi Ks

O i VAWV =B (0 [V ) VD

Eij

+2 | w,(r><wjlv<”lwi>¢r(r>, (11)

v
%
wheredg; = (e — €), SV indicates summation over the par- v
tially occupied stategthose with energy<E), P, is a pro- +2E
jector on the manifold spanned by these states, whijle ik
=1-— P, is the projector on the empty-state manifold. Equa- ;
tion (9) needs to be solved only for the partially occupied +36(1){ E
states, and the value of must be chosen so that the linear e
system is not singular. It can be demonstrated {l&}

=P lﬂfl))’ where| lpfl)) is the first-order variation of a wave Jrs(e(l)) (E 1)V(1)) _(6(1))3( 2 '3(1_)) (16)
function, which in standard perturbation theory is given by F ™ R

V(l)v(l)v(l)

Ori€xi+ Oppe + 6
E|J€]k€k| ( Fi€kj FkE€ji Fj€ |k)

— B¢
'v<l>v<1)+22 6F.<wllv<”|¢>i>]

Ei‘
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may lead to numerical instabilities. For semiconductors these
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side view top view TABLE |. Static relaxation of Be and Mg(1@) surfacesAd;
is the difference from the corresponding bulk value of the distance
betweenith andjth surface layers.

Be(1010) Mg(1010)
010y € ) )€ ) ) [001] Calc? Expt? Calc® Expt
Ad(%) —245 —25(—4/+3) —-19.0 —-16.4+2.0
[010] —> Adyy(%) +6.6 +5(—3/+5) +7.9 +7.8:1.0
Ads34(%) —14.8 —11(—5/+8) —-10.8 —-10.5+3.0

FIG. 1. Schematic drawing of thecp Be(1010) surface.d;;  Adus(%) +47  +2(-2/+4) +39 +38*16
indicates the separation between ttieandjth surface layers. At-

oms with different color belong to differef001) planes. Ady(%) —38 —5.0 -11 —03
whereV{N= (4 |V #)), €;=€—¢;, and|¢;) can be ob- AdSS(Z/") -18 —23 -10 -10
tained from Eq(9). In this way, we have expressed the third- 2dae(%) +06 +1.0 +0.7

order derivative of the energy of a metallic system in a formaCaIcuIation from Ref. 23.
that depends only on the finite number of partially OCCUpied’Experimental from Ref. 24.
eigenstates of the KS Hamiltonian. Furthermore, every term- culation from Ref. 3

in Eg. (16) having a(nearly null denominator has a well- dExperimental from R.efls
defined and finite limit that can be explicitly computed. As o

an example
hcp crystal, the distancd between two neighboring atomic
i O il VAUV = 0 (i |V ) VP _ layers parallel to the (1) surface has two possible values
g €ii d=a/+\/3, ord=0.5a/+/3. We will call them long- and short-
- (1) W 0 interlayer distance, respectively. (1)l surface can be ter-
— O il PV’ — SR Vi #) Vi’ (17 minated in two possible ways, depending on whether the first

surface interlayer distance is “short,” or “long.” For this
A code implementing the concepts above has been develyork we have considered only the most stabtshort” ter-
oped in the framework of thewscrandpHoNONpackagel®  mination. The surface relaxation we obtained is compared in
and is available on the web at the same URL. Table | with the results previously obtained for the

- Mg(lOTO) surface® Although results reported in Table | are
lll. Be (1010) SURFACE obtained by a purely static relaxation and do not include
A. Technical details zero-point energy effects, they are in reasonable agreement

with  low-temperature low-energy electron-diffraction

Calculations were performed within the Iocal-density(LEED) measurementé:3 Indeed. we will show in the fol-
alp;()jr_oxmatlcl?nl, using separabI_%Jsemdopotent?&g,nd N" " Jowing section that zero-point energy does not considerably
cluding nonlinear core correction.Brillouin-zone integra- affect low-temperature surface relaxation.

tions were performed within the smearing approach of Ref. In both Be and Mg the surface undergoes an oscillatory
17, using the Hermite-Gauss smearing function of order one. : o ) ) y .

; 23 . relaxation consisting in a contraction of the “short” spacings
In two previous works <> we demonstrated that this ap-

proach reproduces correctly the low-temperature structuréfhe first and the third surface interlayer distancesd an

and vibratonal propertes of Be bulk and t8009 and  EEHRRY I O EEEINE S e
(1010) surfaces. Furthermore, in Ref. 7 we showed th '

. a&he sum of a “short” and a “long” spacingi.e. dj n2,
QHA correctly reproduces Be bulk thermal expansion up to ’

the temperaturd =700 K. A direct comparison with a first- WTeret?‘i iSI the distancet betvx;(:]en tlhth_ ar;d _thtej tlh layers .
priciples molecular-dynamics run established its validity on'€1ax by a lower percentage than a singie In e[ ayer"spacmg
the (0001 surface up to this temperature. Details of the(dnn+1), Suggesting that the contraction of the “short” spac-

present work are the same as in Refs. 7,22,23. ing is intimately tied with the expansion of the “long” one.
The relaxation of the two surfaces is thus very similar despite

the fact that Be and Mg have very different bulk and surface
electronic structure® This suggests that the geometry of the
We obtained the static-equilibrium structure of the Bencp (1010) surface plays an important role. A possible way
bulk and of Be(100) surface by minimizing the total of interpreting these relaxation patterns, which relies essen-
energy.>%* Calculated equilibriunthcp lattice constants are tially on the structure of the (1@) surface, is described in
in good agreement with experimental valu@s parenthe-  the remaining of this section. A similar argument was already
se3: a=4.25 (4.33) a.u.c/a=1.572 (1.568). The struc- ysed by Narasimhan to explain structural features of some
ture of thehcp Be(1010) surface is depicted in Fig. 1. In an fcc (110 surfaces®

B. Static-equilibrium structure

245402-4



FIRST-PRINCIPLES STUDY OF THE THERMA. .. PHYSICAL REVIEW B 65 245402

Let us call®, ,, the second derivative of the energy with aFvib
respect to displacements, perpendicular to the Q}04ur- - %
face, of thenth andmth layers. According to our calculations i
in bulk Be ®,, ,,;=—0.031 or—0.022 a.u/(there are two Be ({OTOI) . 4 —Me (IIOTQ)

inequivalent possibilities and &, ,.,=—0.036 a.u.. In
bulk Mg, ®, ,,;=-0.010 or—0.003 a.u. andb, =
—0.022 a.u. In both case®,, | is larger than®, .4/,
implying that a displacement of thath layer will induce a
stronger force on then(+2)th layer than on then+1)th
one. This is not surprising: in ahcp crystal, atoms are i ]
arranged in planes in th@0021) direction (see Fig. 1 and 3F "o T=0k i

bonds between nearest-neighiiN) atoms connect theth e
(1010) surface layer not only with then(t 1)th layer but d d, d; d, d

also with the 6+ 2)th one. In fact, the bonds between NN _ _

atoms belonging to theth and (1+ 1)th layers form a lower FIG. 2. Be(10D) and Mg(10D) surfaces: calculated deriva-
angle with the surface than the bonds between NN’s belondives of the vibrational free enerdpf a 1xX 1 surface unit ceJlwith

ing to nth and 1+ 2)th layers. Thus the atomic motion in "espect to displacements perpendicular to the surface for 'Fhe five
the surface normal direction stretches more the bond lengtButermost layersdy,, . . .ds), at various temperatures. VF's with a
with NN’s in (n+2)th layer than with those inn(+1)th positive sign lead to an expansion toward the vacuum. Units are
layer. If the interlayer potential between tmgh and @ RY/Bohr

+1)th layers is softer than the one betweeth and (

+2)th ones, it is easier to change the distances between tlrresponding equilibrium positions. The new VF's were
1st and 2nd, 3rd and 4th. . layers, than between 1st, 3rd, used to solve Eq(3) again and the resulting relaxation did
5th, ... layers. When this is the case, a contraction of thenot change significantly. We conclude that, for this system,
first interlayer spacing will induce an expansion of the seccorrect results can be obtained performing just one
ond interlayer spacing and an oscillatory relaxation of thestep in the self-consistent cycle described in Sec. Il A to

lower layers, just as observed in Be and Mg (@psurfaces. solve Eq.(2). o

The contraction of the first interlayer spacing in a metallic ~ VF's are shown in Fig. 2 and are compared with the VF's
surface is not an unusual behavior: surface atoms move tdhat we calculated in our work on the Mg(10) surface’ In
ward the bulk so as to increase their coordination and inboth Be and Mg we calculated only the five outermost VF’s,
crease the density of the surrounding cha&fg@/e suggest obtaining that the largest VF’s are those on the two outer-
that the relative stiffness of surface layers explains how thenost layers. The other VF's are much smaller, indicating that
contraction of the first interlayer propagates to the lower layfive VF’s are enough to obtain quantitatively correct results

ers in an oscillatory way. for the relaxation of the first four spacings. An interesting
_ feature, appearing from Fig. 2, is that on Be(001he VF of
C. Thermal expansion the second surface layer is larger and increases faster with

In order to calculate the VF&lefined in Sec. Il A which ~ temperature than the VF of the first layer. This means that,
are necessary to obtain the thermal expansion, we calculatd@creasing the temperature, the entropic effect will “push”
the dynamical matrices of a 16-layers slab and their derivath® second layer toward the vacuum more strongly than the
tives with respect to atomic displacements. These matricefér_St one. We can, thus, expect.that the first surface interlayer
were calculated exactly at two different sets of in-plane spacWill undergo thermal contraction. On the contrary, on the
ings corresponding to the static-equilibrium structure and tdVig(1010) surface, the VF on the first layer is larger than the
the theoretical bulk value at=700 K. The matrices used one on the second.
for the intermediate temperatures were obtained by linear The different behavior of the VF's is not surprising given
interpolation. The vibrational free energy and VF's of thethe fact that the phonon dispersion of the two surfaces are
five outermost layers were calculated summing over a 1@ualitatively different. In fact, the surface phonon dispersion
X 10 grid in the surface Brillouin zone and over all the of Be(10_10), analyzed in Ref. 23, is somewhat “anoma-
branches of a slab obtained Fourier interpolating matricefous.” As an example, the lowest phononic branch between
calculated exactly, on a’22 grid. As a first approximation,  he syrface Brillouin-zone poin® andT is localized on the
we calculated VF's using slabs having the layers in the pogecond surface layer and not on the topmost, as it would be
sitions corresponding to the static equilibrium. natural to expect in a free-electron-like metal, and as it hap-

In order to solve Eq(3) we relaxed the atomic positions . —
(by minimization of freqe( e)nergyof a slab, imposinngF's as Pensin the Mg(10Q) surfac€® The calculated thermal ex-

external forces. This calculation was performed with five dif-Pansion of Be(10Q) is shown in Fig. 3. We find aascilla-
ferent slabs having the in-plane spacing expanded at the thiry thermal relaxation thermal contraction of the short-
oretical bulk value corresponding =0, 110, 300, 500, Interlayer spacindi.e. d,, ds4) and expansion of the long-
and 700 K. In order to check the accuracy of these resultdnterlayer spacing(i.e. dj3, ds5). The same behavior,
we calculated a second set of VF’s for=700 K in the although weaker, was previously found in Mg(D)f
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Be (1010) with temperature, leading to a change of the static interlayer
forces. We will refer to this as to the “static” contribution.

T Ad,, The second contribution comes from the entropic term in the
r Adys surface free energy, and will be called “vibrational” since is
L

+10%—=

directly related to the surface VF's. Let us consider a surface
having as in-plane lattice spacing, the lattice spaeaifig of

the bulk at the temperaturE Let us calld}(T) the static-
equilibrium layer positions of this surface, that are the posi-
tions obtained by minimizing only the static energy. Since
S T Ad,, the surface free energy is not considered, the dependence of
d® on the temperature is solely due to what we called the

0%~

-10%=

-20%—=

“static” contribution. Let us now calldi(T) the relaxation
-30%[~ \Ad12 obtained applying the surface VF’s to the layers of a surface
e T BT == = in which the in-plane lattice spacing is kept fixed at the
Temperature (K) =0 value. The dependencedif on the temperature is solely
o due to what we called the “vibrational” contribution.
FIG. 3. Calculated thermal relaxation of Be(Ilsurface. Clearly, both contributions are present in a real system, and
Adjj(T)=[d;;(T) —d;;(0))/d”(T), whered;; is the distance be- can be isolated only in an ideal experiment. Also, notice that

tweenith andjth surface layers, and”*(T) is the corresponding  the static-equilibrium positions described in Sec. Ijl &e
bulk value at the temperatufle Open dots are LEED measurements different from diS(O), since in this last case the bulk lattice

from Ref. 24. spacing is changed by zero-point energy.

A simple model to clarify these concepts is the following.
Expanding the static energy up to the second order around
Qﬂf, Eg. (3) becomes

Moreover, as in Mg, the sum of a “short” and a “long”
spacing (I, ,+») is less contracted and less dependent o
temperature than single interlayer spacinds {.1). As two

examplesAd;3is —3.8% atT=0 K and reaches-4.2% at 9%E JEVib
T=700 K, whileAd,, remains—0.5% fromT=0 K up to > o [dj—d}(T)]+——[a(T),d,T]=0.
T=700 K. 1T (), a8(m) '

Finally, zero-temperature calculations of Fig. 3 are differ- (18)
ent from static-equilibrium results of Table | because of theFurthermore, if we assume that the second derivative of the
inclusion of zero-point energy effects. The two results areenergy and the VF’s do not depend on the structure of the
very similar (within a couple of percentdecause contribu- system, Eq(18) becomes
tions from bulk zero-point energy and surface zero-point en-

ergy are nearly canceling each other. The first leads to an PE gFviP
ex%);\nsion of t?lle bulk quilibrium lattice spaciﬁg/,hich, in 2 dd;ad; [di_dJS(T)]’L ad, (T)=0. (19
turn, leads to an overall contraction of the surface. The sec-
ond, acting directly on the surface layers, leads to an overall he solution of the system is, thus
expansion of the surface. S2E | ~1gpvib
di=d¥T)- > (m) —a D
IV. DISCUSSION J ij J
We have shown that Be(TOJ undergoes an oscillatory =d¥(T)+ 6di”(T)=di°+ SdX(T)+ &d¥(T), (20

thermal relaxation similar to the one previously observed Onwhere 4° are the laver positions at zero temperature. This
Mg(1010).2 In Sec. Il B we suggested that the oscillatory ! yer p g '

relaxation at zero temperature is a consequence of the relapproach is not an oversimplified one. Indeed, we could
. ; . peral 9 8how that it produces quantitatively correct results for Be
tive stiffness in the potential between different layers. In

such a situation, an increased contraction of the first inter@"d Mg(10D) surfaces. However, the main reason we dis-

layer (dy), as the temperature increases, will lead to the®USS it is that, in this model, the thermal relaxation is given
observed oscillatory thermal relaxation. In this section we®x@ctly by the sum of two distinct contributions. By defini-

will analyze the mechanism leading th, thermal contrac- tion, the dependence @id; on T is purely “static.” On the
tion on Be and Mg(lﬁm) surfaces other hand, the dependence &y on T is purely “vibra-

tional,” and it can be easily verified that with this model
d?(T)=d%+ 6d’(T). This model should, thus, help the
reader to understand how the two contribution that we called
At finite temperature, the mean position of atomic surface'static” and “vibrational” affect the surface thermal

layers is determined by the balance between energetic arekpansion.

entropic effects. The thermal relaxation of a surface is, thus, It is well known that a crystal described by a purely har-
given by two main contributions. Due to the bulk thermal monic interatomic potential does not undergo thermal expan-
expansion, the in-plane lattice spacing of a surface increaseson. However, the fact that in the described model the static

A. Static and vibrational contribution
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Be (1010) Finally, d;, thermal contraction had been observed also in
Al(110 surface®? In this case, after analyzing the results of
-20%[~ a molecular-dynamic simulation, the authors of Ref. 2 argue
25% that the observed thermal contraction is a consequence of the

larger anharmonicity of the second surface layer with respect
to the first one. Indeed, a measure of the anharmonicity of a
BT 200 400 600 800 degree of freedom is the corresponding VF and we find that
one important contribution to thermal contraction in

-30%

Mg (1010) Be(1010) surface occurs because the VF on the second layer
L7 S —— is larger than the VF on the first one, that is, the anharmo-
D Ad nicity in the second layer is stronger thgn in the first one.

__________________ 1 Thus, it seems that there is a rather strict analogy between
-25% - the thermal contraction in AL10) and Be(lO_D) surfaces.
0% 100 200 300 400 On the other hand, in Mg(1@) surface thermal contraction

Temperature (K) is weaker and somehow accidental, resulting from the deli-

FlG. 4. Be(15D 4 Ma(15D . h | relaxati cate balance of the “static” and “vibrational” contributions
. 4. Be( ) and Mg( ) surfaces: thermal relaxation in this system.

of the distance between the first two surface layers. Continuous
lines show the actual thermal relaxation. Daskéokted lines are
obtained fromd$(T) [d¥(T)], defined in the text, and represent the
“static” (“vibrational” ) contribution to the thermal expansion. V. CONCLUSIONS

energy is harmonic is not contradictory. Indeed, if the anhar- In this work we developed a method for the efficient com-
monic terms of the static energy are sufficiently small it canputation of the third-order derivative of the total energy in a
be shown that in Eql) the static energy can be considered metallic system, thanks to the t2+1” theorem and using

harmonic introducing only a negligible error. On the con-the density-functional perturbation theory. The implementa-
trary, the dependence ¢'"® on the anharmonic terms is tion of the method allowed us to study, within the quasihar-

essential for thermal expansion to occur. monic approximation, the thermal expansion of systems de-
scribed by many structural parameters. As an application we
B. Be, Mg(1010), and Al(110:: A comparison presented a study of the thermal expansion of BeQ)Gsur-

In order to understand how the “static” and “vibrational” face. Increasing the temperature the surface undergoes a re-
contributions influence the first interlayer thermal contrac-markableoscillatory thermal relaxatiorsimilar to and stron-
tion we calculated thel’(T) andd?(T), defined in the pre- 9er than the one previously calculated and observed in

ceding section for both Be and Mg(10} surfaces. The re- Mg(1010) surface. We suggest that this phenomenon is due
sults for the first interlayer distance are shown in Fig. 4. Welo the thermal contraction of the first interlayer distance
observe that the “static” relaxation leads to a contraction ofPropagating to the lower layers in an oscillatory way because
dy,, by increasingT, both in Be and Mg. Actually, if surface of the relative stiffness of the potent|als_ between different
vibrational contributions are not taken into account, it islayers. According to our analysis, in Mg(10} the first in-
hardly surprising that by increasing the in-plane lattice spacterlayer thermal contraction results from a delicate balance
ing the first surface interlayer distance contracts, so as tbetween two opposite contributions. While the change in sur-
keep the atomic volume nearly constant. The relaxation duéce static forces, caused by the bulk thermal expansion, fa-
to the “vibrational” contribution in Be and Mg is instead vors contraction, the VF's tend to make the first interlayer
different. In the case of Mg it leads to an expansion, thusdistance expand. On the contrary, in BeT(DQ;Lthe large
behaving in a rather “normal” way, while in Be it leads to @ anharmonicity of the second surface layer plays an important

contraction by increasing. This behavior can be related to role in enhancing the thermal contraction and the resulting
the already noticed difference of the VF's in the two sur-effect is much stronger.

faces. In Be the VF on the second layer increases faster with

temperature than the VF on the first layer, favoréhg con-

traction. On the contrary, in Mg the VF on the first layer ACKNOWLEDGMENTS
increases faster than the one on the second layer, favoring

d;> expansion. In summaryl,, thermal contraction occursin =\ oo grateful to N. Marzari, Ismail, and S. Narasimhan

both Be and Mg(10Q) surfaces but, while in Mg(1@) it  for helpful discussion. Part of the work was done within the
is due to the “static” contribution, which is actually nearly |niziativa Calcolo Paralleloof INFM, and we acknowledge
compensated by the “vibrational” one, in Be(10Lboth the  partial support from COFIN program of MIUR. All calcula-
“static” and the “vibrational” contributions are leading to tions were performed employing thewscF and PHONON
thermal contraction and a stronger effect is predicted in thipackages® The codes we implemented for the present work
case. are available on the web, at the same URL.
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