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First-principles study of the thermal expansion of Be„101̄0…
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We present a first-principles study of the thermal expansion of Be(1010̄) surface, within the quasiharmonic
approximation~QHA!. The maximum temperature studied (T5700 K) is well below melting and QHA is
adequate in this regime. Many layers are involved in the thermal relaxation of this surface, and in order to
apply QHA to this complex system we developed a method for the efficient computation of the third-order
derivatives of the total energy in a metallic system using the density-functional perturbation theory . Computer
codes for this method are made available on the web. We find that as the temperature increases the short
interlayer spacings near the surface contract and the long interlayer spacings expand. The mechanism leading

to this behavior is disclosed and compared with that for Mg(1010̄) and Al~110! surfaces, where a similar effect
was previously observed.
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I. INTRODUCTION

Thermal expansion of low index metallic surfaces c
lead to a rich variety of behaviors for different systems, a
through the years, this topic has attracted both experime
and theoretical attention. Particularly interesting is the rec
discovery of systems in which the distance between the
two surface atomic layers decreases by increasing the
perature~thermal contraction!. This phenomenon was firs
observed in the Al~110! surface by measurements1 and first-
principles calculation,2 and then in the Mg(1010̄) surface.3

In the latter case both measurements and calculations
ported an oscillatory thermal expansion, i.e., contraction
the first and third interlayer spacing, and expansion of
second and fourth interlayer spacing.

In a purely harmonic crystal atomic mean positions do
change by increasing the temperature, thus, thermal ex
sion is a consequence of anharmonic terms in the interato
potential. The occurrence of the first interlayer thermal c
traction in Al~110! is explained by Marzariet al.2 as the con-
sequence of the larger anharmonicity of the second sur
layer with respect to the first one. On the contrary,
Mg(101̄0) thermal contraction is strictly linked to the in
crease of the bulk lattice spacing parallel to the surface.3 At a
given temperature, the mean position of atomic surface
ers is determined by the balance between energetic and
tropic effects, and from general arguments one should ex
a surface to expand by increasing the temperature.4 Indeed,
in both Al~110!, and Mg(101̄0) surfaces the surface as
whole expands. Hence, interlayer thermal contraction i
topic deserving much attention in view of a better und
standing of the delicate interplay between energetic and
tropic effects at the surface.

Nowadays, there are essentially two feasible method
treat thermal expansion within a computational appro
based on density-functional theory:5 molecular-dynamics
~MD! simulation and lattice dynamics in the quasiharmo
approximation~QHA!. These are two complementary a
proaches: while MD is valid only above the Debye tempe
0163-1829/2002/65~24!/245402~8!/$20.00 65 2454
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ture, where quantum effects are negligible, the QHA is va
well below the melting temperature. QHA is commonly b
lieved to describe correctly bulk properties. It has also be
used to describe surface thermal expansion for sev
systems,6–8 although the surface case is more delicate a
special care should be used in applying the QHA schem
it. An accurate representation of the density of vibration
states is necessary in order to obtain the quasiharmonic
energy,9 and oversimplified approaches can be misleading
we demonstrated in the case of Be~0001! surface.7 Moreover,
for Al ~100! ~Ref. 10! and Ag~111! ~Ref. 11! it was shown
that QHA is inadequate to describe surface thermal exp
sion for temperature approaching melting.

The density-functional perturbation theory~DFPT! ap-
proach of Ref. 12 allows the efficient computation of t
vibrational frequencies, which are necessary in order to
culate the Helmholtz free energy within the QHA. Howev
because of the complexity of the calculations involved, up
now the QHA has been used to study surfaces in which
sentially only one layer is involved in the therm
expansion.6–8 Application of the method to more comple
systems requires the knowledge not only of the vibratio
frequencies of a system but also of their derivatives w
respect to atomic displacements. These quantities are re
to the third-order derivatives of the total energy of the s
tem. In this work we will describe an efficient algorithm t
compute third-order derivatives of the total energy within t
DFPT approach, extending the so-called ‘‘2n11’’ theorem13

to metallic systems.
In a recent work,3 this approach already allowed us

describe, within QHA, the complex pattern of multilay
thermal expansion in Mg(1010̄) surface. Our calculations
performed in an appropriate range of temperature, resulte
good agreement with low electron energy diffractio
measurements.3 In this work we will use the same method t
study the thermal expansion of Be(1010̄) surface up to the
temperatureT5700 K, which is well below bulk Be melting
temperature (;1600 K). On Be(101̄0) surface we observe
an oscillatory thermal relaxation similar to and stronger th
©2002 The American Physical Society02-1
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the one we have previously reported for Mg(1010̄). The
mechanism leading to this phenomenon will be analyz
pointing out similarity and differences of the two systems

The outline of the paper is as follows. In Sec. II we brie
summarize the QHA approach and we describe a gen
method to calculate the third-order derivatives of the to
energy in a metallic system. In Sec. III we give more tec
nical details about the calculation, and we present the
tained thermal expansion of Be(1010̄) surface. Finally, in
Sec. IV we analyze the results, making a comparison w
Mg(101̄0) and Al~110! surfaces.

II. METHOD

A. The quasiharmonic approximation

Let us consider a crystal described by the structural
rametersp5(p1 ,p2 , . . . ,pn). In the QHA the Helmholtz
free energyF is approximated by

F~T,p!5Etot~p!1Fv ib~T,p! ~1!

5Etot~p!1kBT(
a

lnF2 sinhF\va~p!

2kBT G G ,
where Etot(p) is the total static energy of the crystal an
va(p) are the frequencies of the vibrational modes. Give
temperatureT, the equilibrium values of the parametersp are
obtained by minimizingF. If the system is described by on
or two parameters only it is practical and efficient to co
puteva(p) in various points in the parameter space, cal
late Fv ib exactly in these points, and interpolate its value
between when searching the minimum. In the general c
this scheme is cumbersome, and a simpler approach, if
needed derivatives are available, is to solve directly the s
tem of equations

]Etot

]pi
~p!1

]Fv ib

]pi
~p,T!50, ~2!

by any of the methods used in structural optimization. T
computation of the derivatives of the vibrational contributi
to the free energy is, however, at least one order of ma
tude more complex than the first term in Eq.~2!. For sur-
faces, thus, the slightly different approach described belo
more appropriate.

The structure of a surface is defined by the positions
the surface layers (d5d1 ,d2 , . . . ) and thebulk parameters
a, which in an hcp crystal are the two lattice parametera
5(a,c). Before approaching the surface problem, the dep
dence onT of the bulk parameters@a(T)# can be obtained by
an independent calculation. Afterward, as a first approxim
tion, one can assume a linear dependence ofFv ib on d. In
this hypothesis the derivatives of the vibrational contribut
to the free energy ,2(]Fv ib/]di), @we will call them vibra-
tional forces~VF’s!# do not depend ond, and the system o
equations to be solved is

]Etot

]di
@a~T!,d#1

]Fv ib

]di
@a~T!,T#50, ~3!
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where the static forces,2]Etot/]di(d), can be efficiently
calculated for any point in the configuration space ofd
thanks to Hellmann-Feynman theorem. The solution of
~3! is not more complex than a standard structural relaxa
and provides an estimate of the equilibrium parameters of
system. An improved solution, to any desired accuracy le
can be obtained by calculating the VF’s for the new config
ration and iterating the procedure to self consistency.

The VF’s in a crystal depend on the vibrational freque
ciesva and on their derivatives]va /]di which, in turn, can
be obtained from the second- and third-order derivatives
the total energy of the system with respect to distortions
the atomic geometry. In the remaining of this section we w
describe thefirst-principlesapproach that we used to calcu
late second- and third-order derivatives of the energy.
will give the expression for the energy derivatives with r
spect to a generic parameter, from whichva and ]va /]di
can be easily obtained as explained in Refs. 12,13.

B. First-principles approach

We used a plane-wave and pseudopotential approac
the density-functional theory~DFT! of Ref. 5. Within DFT,
derivatives of the total energy can be obtained thanks to
‘‘2 n11’’ theorem.13 In this context the theorem states tha
given thenth-order variation of the electronic charge dens
with respect to an external perturbation, it is possible,
principle, to obtain the variation of the total energy up to t
(2n11)th order. As a consequence, the first-order variat
of the charge density gives access to second- and third-o
derivatives of the energy. First-order variation of the cha
can be obtained by linear-response methods such as DF12

and its generalization to metals.14 DFPT has already allowed
third-order calculations in semiconducting systems,15,16 and
in the following sections this scheme is extended to the m
complex metallic case. As a first step, in the following se
tion, we rewrite the metallic DFPT in a slightly different wa
from that reported in Ref. 14.

C. Linear response for metals

In a metallic system a large number ofk points is neces-
sary to reach sufficient accuracy in the Brillouin-zone sa
pling. A commonly used approach to this problem is to
troduce a smearing functionũ(x),17 that is an approximation
of the step function characterized by a smearing widths.
The only justification for thisad hocprocedure is that ass
→0 one would recover the ‘‘absolutely’’ converged result~at
the expense of using a prohibitively finek-point mesh!, and
that, even at a finite value ofs, one can obtain accurat
results.

Within the smearing approach, the Kohn-Sham~KS!
equations, which are to be solved self-consistently to ob
the electronic charge densityn(r ), are

@Tkin1VKS#uc i&5e i uc i&, ~4!

VKS~r !5vext~r !1
dEI@n#

dn~r !
, ~5!
2-2
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n~r !5(
i

ũFi uc i~r !u2, ~6!

(
i

ũFi5E n~r !dr5N, ~7!

whereTkin is the single-particle kinetic-energy operator,VKS
is the self-consistent KS potential,vext is the external poten
tial due to the ions,EI@n# is the interaction functional~usu-
ally written as the sum of the Hartree energy and
exchange-correlation contribution!, N is the number of elec-
trons, andũFi5 ũ(eF2e i), where the Fermi energyeF is
determined by the last equation. The natural definition of
total electronic energy becomes14

Ev@n#5(
i

$D̃Fi1e i ũFi%1H EI@n#2E dEI@n#

dn~r !
n~r !dr J ,

~8!

whereD̃Fi5*2`
x yd̃(y)dyux5eF2e i

, and d̃(x)5(]/]x) ũ.

When a perturbationlvext
(1) is superimposed on the exte

nal potential, the KS self-consistent potential is modified
cordingly toVKS→VKS1lVKS

(1) , wherel is a small param-
eter. We will indicate thenth derivative of a quantityF, with
respect tol equivalently byF (n) or (dn/dln)F. It is conve-
nient to introduce a ‘‘cutoff’’ energyĒ that separates th
electronic states that are partially occupied due to the fi
width of the smearing function from those that can be c
sidered completely empty. In practice one can choose
Ē>eF13s, wheres is the width of the smearing functio
ũ. The first variation of the charge densityn(1)(r ) can then
be obtained solving self-consistently the following set
equations:

@Tkin1VKS1aPv̄2e i # uf i&52Pc̄VKS
(1)uc i&, ~9!

VKS
(1)~r !5vext

(1)~r !1E d2EI@n#

dn~r !dn~r 8!
n(1)~r 8!dr 8, ~10!

n(1)~r !5(
i

v̄

$ũFi@f i~r !c i* ~r !1cc#1 d̃FieF
(1)uc i~r !u2%,

1(
i j

v̄
ũFi2 ũF j

e i2e j
c j~r !^c j uVKS

(1)uc i&c i* ~r !, ~11!

whered̃Fi5 d̃(eF2e i), ( v̄ indicates summation over the pa
tially occupied states~those with energy<Ē), Pv̄ is a pro-
jector on the manifold spanned by these states, whilePc̄
512Pv̄ is the projector on the empty-state manifold. Equ
tion ~9! needs to be solved only for the partially occupi
states, and the value ofa must be chosen so that the line
system is not singular. It can be demonstrated thatuf i&
5Pc̄uc i

(1)&, whereuc i
(1)& is the first-order variation of a wav

function, which in standard perturbation theory is given b
24540
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(1)&5 (

e jÞe i

uc j&
^c j uVKS

(1)uc i&
e i2e j

. ~12!

D. Third order for metals

Taking the third-order derivative of Eq.~8! with respect to
l one obtains

Ev
(3)5(

i
H S d2

dl2
ũFi D e i

(1)12S d

dl
ũFi D e i

(2)1 ũFie i
(3)J

1
d3

dl3 H EI@n#2E dEI@n#

dn~r !
n~r !dr J , ~13!

that, following Ref. 13, can be reduced to

Ev
(3)5Z1E vext

(3)~r !n~r !dr13E vext
(2)~r !n(1)~r !dr

1E d3EI@n#

dn~r !dn~r 8!dn~r 9!
n(1)

3~r !n(1)~r 8!n(1)~r 9!drdr 8dr 9, ~14!

with

Z5(
i

H 6ũFi^c i
(1)uVKS

(1)2e i
(1)uc i

(1)&1 d̃Fi
(1)~e i

(1)2eF
(1)!3

16S d

dl
ũFi D ^c i uVKS

(1)uc i
(1)&J , ~15!

where d̃Fi
(1)5(]/]x) d̃ueF2e i

. In the present form the termZ
cannot be easily computed. Both conduction and vale
states are, in fact, required to calculateuc i

(1)&. Moreover, the
possibility that the denominator in Eq.~12! approaches zero
may lead to numerical instabilities. For semiconductors th
problems can be overcome following the recipe given
Refs. 15,16. However, that approach is based on the e
tence of an energy gap between occupied and unoccu
states, and is not useful for metals.

To deal with the metallic case, we rewriteZ as

Z56(
i

ũFi^f i uVKS
(1)uf i&

16(
i j

v̄ ũFi^f i uVKS
(1)uc j&Vji

(1)2 ũF j^c i uVKS
(1)uf j&Vji

(1)

e i j

12(
i jk

v̄ Vi j
(1)Vjk

(1)Vki
(1)

e i j e jkeki
~ ũFiek j1 ũFke j i 1 ũF je ik!

13eF
(1)H (

i j

v̄ d̃Fi2 d̃F j

e i j
Vi j

(1)Vji
(1)12(

i
d̃Fi^c i uVKS

(1)uf i&J
13~eF

(1)!2S (
i

d̃Fi
(1)Vii

(1)D 2~eF
(1)!3S (

i
d̃Fi

(1)D , ~16!
2-3
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whereVi j
(1)5^c i uVKS

(1)uc j&, e i j 5e i2e j , and uf i& can be ob-
tained from Eq.~9!. In this way, we have expressed the thir
order derivative of the energy of a metallic system in a fo
that depends only on the finite number of partially occup
eigenstates of the KS Hamiltonian. Furthermore, every te
in Eq. ~16! having a~nearly! null denominator has a well
defined and finite limit that can be explicitly computed. A
an example

lim
e i→e j

ũFi^f i uVKS
(1)uc j&Vji

(1)2 ũF j^c i uVKS
(1)uf j&Vji

(1)

e i j
5

2 ũFi^f i uf j&Vji
(1)2 d̃Fi^c i uVKS

(1)uf j&Vji
(1) . ~17!

A code implementing the concepts above has been de
oped in the framework of thePWSCFandPHONONpackage,18

and is available on the web at the same URL.

III. Be „101̄0… SURFACE

A. Technical details

Calculations were performed within the local-dens
approximation,19 using separable pseudopotentials,20 and in-
cluding nonlinear core correction.21 Brillouin-zone integra-
tions were performed within the smearing approach of R
17, using the Hermite-Gauss smearing function of order o
In two previous works22,23 we demonstrated that this ap
proach reproduces correctly the low-temperature struct
and vibrational properties of Be bulk and its~0001! and
(101̄0) surfaces. Furthermore, in Ref. 7 we showed t
QHA correctly reproduces Be bulk thermal expansion up
the temperatureT5700 K. A direct comparison with a first
priciples molecular-dynamics run established its validity
the ~0001! surface up to this temperature. Details of t
present work are the same as in Refs. 7,22,23.

B. Static-equilibrium structure

We obtained the static-equilibrium structure of the
bulk and of Be(101̄0) surface by minimizing the tota
energy.22,23 Calculated equilibriumhcp lattice constants are
in good agreement with experimental values~in parenthe-
ses!: a54.25 (4.33) a.u.,c/a51.572 (1.568). The struc
ture of thehcp Be(101̄0) surface is depicted in Fig. 1. In a

FIG. 1. Schematic drawing of thehcp Be(101̄0) surface.di j

indicates the separation between thei th and j th surface layers. At-
oms with different color belong to different~0001! planes.
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hcp crystal, the distanced between two neighboring atomi

layers parallel to the (1010̄) surface has two possible value
d5a/A3, ord50.5a/A3. We will call them long- and short-

interlayer distance, respectively. (1010̄) surface can be ter
minated in two possible ways, depending on whether the
surface interlayer distance is ‘‘short,’’ or ‘‘long.’’ For this
work we have considered only the most stable24 ‘‘short’’ ter-
mination. The surface relaxation we obtained is compare
Table I with the results previously obtained for th

Mg(101̄0) surface.3 Although results reported in Table I ar
obtained by a purely static relaxation and do not inclu
zero-point energy effects, they are in reasonable agreem
with low-temperature low-energy electron-diffractio
~LEED! measurements.24,3 Indeed, we will show in the fol-
lowing section that zero-point energy does not considera
affect low-temperature surface relaxation.

In both Be and Mg the surface undergoes an oscillat
relaxation consisting in a contraction of the ‘‘short’’ spacin
~the first and the third surface interlayer distances!, and an
expansion of the ‘‘long’’ spacings~the second and the
fourth!. From Table I we can also notice that in both cas
the sum of a ‘‘short’’ and a ‘‘long’’ spacing~i.e. dn,n12,
wheredi j is the distance between thei th and thej th layers!
relax by a lower percentage than a single interlayer spac
(dn,n11), suggesting that the contraction of the ‘‘short’’ spa
ing is intimately tied with the expansion of the ‘‘long’’ one
The relaxation of the two surfaces is thus very similar desp
the fact that Be and Mg have very different bulk and surfa
electronic structures.25 This suggests that the geometry of th
hcp (101̄0) surface plays an important role. A possible w
of interpreting these relaxation patterns, which relies ess
tially on the structure of the (1010̄) surface, is described in
the remaining of this section. A similar argument was alrea
used by Narasimhan to explain structural features of so
f cc ~110! surfaces.26

TABLE I. Static relaxation of Be and Mg(1010̄) surfaces.Ddi j

is the difference from the corresponding bulk value of the dista
betweeni th and j th surface layers.

Be(101̄0) Mg(101̄0)
Calc.a Expt.b Calc.c Expt.d

Dd12(%) 224.5 225(24/13) 219.0 216.462.0
Dd23(%) 16.6 15(23/15) 17.9 17.861.0
Dd34(%) 214.8 211(25/18) 210.8 210.563.0
Dd45(%) 14.7 12(22/14) 13.9 13.861.6

Dd13(%) 23.8 25.0 21.1 20.3
Dd24(%) 20.5 20.3 11.7 11.7
Dd35(%) 21.8 22.3 21.0 21.0
Dd46(%) 10.6 11.0 10.7

aCalculation from Ref. 23.
bExperimental from Ref. 24.
cCalculation from Ref. 3.
dExperimental from Ref. 3.
2-4
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Let us callFn,m the second derivative of the energy wi
respect to displacements, perpendicular to the (1010̄) sur-
face, of thenth andmth layers. According to our calculation
in bulk Be Fn,n11520.031 or20.022 a.u.~there are two
inequivalent possibilities!, and Fn,n12520.036 a.u.. In
bulk Mg, Fn,n11520.010 or 20.003 a.u. andFn,n125
20.022 a.u. In both casesuFn,n12u is larger thanuFn,n11u,
implying that a displacement of thenth layer will induce a
stronger force on the (n12)th layer than on the (n11)th
one. This is not surprising: in anhcp crystal, atoms are
arranged in planes in the~0001! direction ~see Fig. 1! and
bonds between nearest-neighbor~NN! atoms connect thenth
(101̄0) surface layer not only with the (n11)th layer but
also with the (n12)th one. In fact, the bonds between N
atoms belonging to thenth and (n11)th layers form a lower
angle with the surface than the bonds between NN’s belo
ing to nth and (n12)th layers. Thus the atomic motion i
the surface normal direction stretches more the bond len
with NN’s in (n12)th layer than with those in (n11)th
layer. If the interlayer potential between thenth and (n
11)th layers is softer than the one betweennth and (n
12)th ones, it is easier to change the distances between
1st and 2nd, 3rd and 4th, . . . layers, than between 1st, 3rd
5th, . . . layers. When this is the case, a contraction of
first interlayer spacing will induce an expansion of the s
ond interlayer spacing and an oscillatory relaxation of
lower layers, just as observed in Be and Mg (1010̄) surfaces.

The contraction of the first interlayer spacing in a meta
surface is not an unusual behavior: surface atoms move
ward the bulk so as to increase their coordination and
crease the density of the surrounding charge.27 We suggest
that the relative stiffness of surface layers explains how
contraction of the first interlayer propagates to the lower l
ers in an oscillatory way.

C. Thermal expansion

In order to calculate the VF’s~defined in Sec. II A!, which
are necessary to obtain the thermal expansion, we calcu
the dynamical matrices of a 16-layers slab and their der
tives with respect to atomic displacements. These matr
were calculated exactly at two different sets of in-plane sp
ings corresponding to the static-equilibrium structure and
the theoretical bulk value atT5700 K. The matrices used
for the intermediate temperatures were obtained by lin
interpolation. The vibrational free energy and VF’s of t
five outermost layers were calculated summing over a
310 grid in the surface Brillouin zone and over all th
branches of a slab obtained Fourier interpolating matri
calculated exactly on a 232 grid. As a first approximation
we calculated VF’s using slabs having the layers in the
sitions corresponding to the static equilibrium.

In order to solve Eq.~3! we relaxed the atomic position
~by minimization of free energy! of a slab, imposing VF’s as
external forces. This calculation was performed with five d
ferent slabs having the in-plane spacing expanded at the
oretical bulk value corresponding toT50, 110, 300, 500,
and 700 K. In order to check the accuracy of these resu
we calculated a second set of VF’s forT5700 K in the
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corresponding equilibrium positions. The new VF’s we
used to solve Eq.~3! again and the resulting relaxation d
not change significantly. We conclude that, for this syste
correct results can be obtained performing just o
step in the self-consistent cycle described in Sec. II A
solve Eq.~2!.

VF’s are shown in Fig. 2 and are compared with the VF
that we calculated in our work on the Mg(1010̄) surface.3 In
both Be and Mg we calculated only the five outermost VF
obtaining that the largest VF’s are those on the two ou
most layers. The other VF’s are much smaller, indicating t
five VF’s are enough to obtain quantitatively correct resu
for the relaxation of the first four spacings. An interesti
feature, appearing from Fig. 2, is that on Be(1010̄) the VF of
the second surface layer is larger and increases faster
temperature than the VF of the first layer. This means th
increasing the temperature, the entropic effect will ‘‘pus
the second layer toward the vacuum more strongly than
first one. We can, thus, expect that the first surface interla
will undergo thermal contraction. On the contrary, on t
Mg(101̄0) surface, the VF on the first layer is larger than t
one on the second.

The different behavior of the VF’s is not surprising give
the fact that the phonon dispersion of the two surfaces
qualitatively different. In fact, the surface phonon dispers
of Be(101̄0), analyzed in Ref. 23, is somewhat ‘‘anom
lous.’’ As an example, the lowest phononic branch betwe
the surface Brillouin-zone pointsĀ andḠ is localized on the
second surface layer and not on the topmost, as it would
natural to expect in a free-electron-like metal, and as it h
pens in the Mg(101̄0) surface.28 The calculated thermal ex
pansion of Be(101̄0) is shown in Fig. 3. We find anoscilla-
tory thermal relaxation: thermal contraction of the short
interlayer spacing~i.e. d12, d34! and expansion of the long
interlayer spacing~i.e. d23, d45!. The same behavior
although weaker, was previously found in Mg(1010̄).3

FIG. 2. Be(101̄0) and Mg(101̄0) surfaces: calculated deriva
tives of the vibrational free energy~of a 131 surface unit cell! with
respect to displacements perpendicular to the surface for the
outermost layers (d1 , . . .d5), at various temperatures. VF’s with
positive sign lead to an expansion toward the vacuum. Units
Ry/Bohr.
2-5
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Moreover, as in Mg, the sum of a ‘‘short’’ and a ‘‘long
spacing (dn,n12) is less contracted and less dependent
temperature than single interlayer spacings (dn,n11). As two
examples,Dd13 is 23.8% atT50 K and reaches24.2% at
T5700 K, whileDd24 remains20.5% fromT50 K up to
T5700 K.

Finally, zero-temperature calculations of Fig. 3 are diff
ent from static-equilibrium results of Table I because of
inclusion of zero-point energy effects. The two results
very similar ~within a couple of percents! because contribu
tions from bulk zero-point energy and surface zero-point
ergy are nearly canceling each other. The first leads to
expansion of the bulk equilibrium lattice spacing,7 which, in
turn, leads to an overall contraction of the surface. The s
ond, acting directly on the surface layers, leads to an ove
expansion of the surface.

IV. DISCUSSION

We have shown that Be(1010̄) undergoes an oscillator
thermal relaxation similar to the one previously observed
Mg(101̄0).3 In Sec. III B we suggested that the oscillato
relaxation at zero temperature is a consequence of the
tive stiffness in the potential between different layers.
such a situation, an increased contraction of the first in
layer (d12), as the temperature increases, will lead to
observed oscillatory thermal relaxation. In this section
will analyze the mechanism leading tod12 thermal contrac-
tion on Be and Mg(101̄0) surfaces.

A. Static and vibrational contribution

At finite temperature, the mean position of atomic surfa
layers is determined by the balance between energetic
entropic effects. The thermal relaxation of a surface is, th
given by two main contributions. Due to the bulk therm
expansion, the in-plane lattice spacing of a surface incre

FIG. 3. Calculated thermal relaxation of Be(1010̄) surface.
Ddi j (T)5@di j (T)2di j (0)#/dblk(T), wheredi j is the distance be-
tween i th and j th surface layers, anddblk(T) is the corresponding
bulk value at the temperatureT. Open dots are LEED measuremen
from Ref. 24.
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with temperature, leading to a change of the static interla
forces. We will refer to this as to the ‘‘static’’ contribution
The second contribution comes from the entropic term in
surface free energy, and will be called ‘‘vibrational’’ since
directly related to the surface VF’s. Let us consider a surf
having as in-plane lattice spacing, the lattice spacinga(T) of
the bulk at the temperatureT. Let us calldi

s(T) the static-
equilibrium layer positions of this surface, that are the po
tions obtained by minimizing only the static energy. Sin
the surface free energy is not considered, the dependen
di

s on the temperature is solely due to what we called
‘‘static’’ contribution. Let us now calldi

v(T) the relaxation
obtained applying the surface VF’s to the layers of a surf
in which the in-plane lattice spacing is kept fixed at theT
50 value. The dependence ofdi

v on the temperature is solel
due to what we called the ‘‘vibrational’’ contribution
Clearly, both contributions are present in a real system,
can be isolated only in an ideal experiment. Also, notice t
the static-equilibrium positions described in Sec. III B! are
different from di

s(0), since in this last case the bulk lattic
spacing is changed by zero-point energy.

A simple model to clarify these concepts is the followin
Expanding the static energy up to the second order aro
di

s , Eq. ~3! becomes

(
j

]2E

]di]dj
U

a(T),ds(T)

@dj2dj
s~T!#1

]Fv ib

]di
@a~T!,d,T#50.

~18!

Furthermore, if we assume that the second derivative of
energy and the VF’s do not depend on the structure of
system, Eq.~18! becomes

(
j

]2E

]di]dj
@dj2dj

s~T!#1
]Fv ib

]di
~T!50. ~19!

The solution of the system is, thus

di5di
s~T!2(

j
S ]2E

]d]dD
i j

21]Fv ib

]dj
~T!

5di
s~T!1ddi

v~T!5di
01ddi

s~T!1ddi
v~T!, ~20!

where di
0 are the layer positions at zero temperature. T

approach is not an oversimplified one. Indeed, we co
show that it produces quantitatively correct results for
and Mg(101̄0) surfaces. However, the main reason we d
cuss it is that, in this model, the thermal relaxation is giv
exactly by the sum of two distinct contributions. By defin
tion, the dependence ofddi

s on T is purely ‘‘static.’’ On the
other hand, the dependence ofddi

v on T is purely ‘‘vibra-
tional,’’ and it can be easily verified that with this mod
di

v(T)5di
01ddi

v(T). This model should, thus, help th
reader to understand how the two contribution that we ca
‘‘static’’ and ‘‘vibrational’’ affect the surface therma
expansion.

It is well known that a crystal described by a purely ha
monic interatomic potential does not undergo thermal exp
sion. However, the fact that in the described model the st
2-6
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energy is harmonic is not contradictory. Indeed, if the anh
monic terms of the static energy are sufficiently small it c
be shown that in Eq.~1! the static energy can be consider
harmonic introducing only a negligible error. On the co
trary, the dependence ofFv ib on the anharmonic terms i
essential for thermal expansion to occur.

B. Be, Mg„101̄0…, and Al„110…: A comparison

In order to understand how the ‘‘static’’ and ‘‘vibrational
contributions influence the first interlayer thermal contra
tion we calculated thedi

s(T) anddi
v(T), defined in the pre-

ceding section for both Be and Mg(1010̄) surfaces. The re
sults for the first interlayer distance are shown in Fig. 4.
observe that the ‘‘static’’ relaxation leads to a contraction
d12, by increasingT, both in Be and Mg. Actually, if surface
vibrational contributions are not taken into account, it
hardly surprising that by increasing the in-plane lattice sp
ing the first surface interlayer distance contracts, so a
keep the atomic volume nearly constant. The relaxation
to the ‘‘vibrational’’ contribution in Be and Mg is instea
different. In the case of Mg it leads to an expansion, th
behaving in a rather ‘‘normal’’ way, while in Be it leads to
contraction by increasingT. This behavior can be related t
the already noticed difference of the VF’s in the two su
faces. In Be the VF on the second layer increases faster
temperature than the VF on the first layer, favoringd12 con-
traction. On the contrary, in Mg the VF on the first lay
increases faster than the one on the second layer, favo
d12 expansion. In summary,d12 thermal contraction occurs in
both Be and Mg(101̄0) surfaces but, while in Mg(1010̄) it
is due to the ‘‘static’’ contribution, which is actually nearl
compensated by the ‘‘vibrational’’ one, in Be(1010̄) both the
‘‘static’’ and the ‘‘vibrational’’ contributions are leading to
thermal contraction and a stronger effect is predicted in
case.

FIG. 4. Be(101̄0) and Mg(101̄0) surfaces: thermal relaxatio
of the distance between the first two surface layers. Continu
lines show the actual thermal relaxation. Dashed~dotted! lines are
obtained fromdi

s(T) @di
v(T)#, defined in the text, and represent th

‘‘static’’ ~‘‘vibrational’’ ! contribution to the thermal expansion.
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Finally, d12 thermal contraction had been observed also
Al ~110! surface.1,2 In this case, after analyzing the results
a molecular-dynamic simulation, the authors of Ref. 2 arg
that the observed thermal contraction is a consequence o
larger anharmonicity of the second surface layer with resp
to the first one. Indeed, a measure of the anharmonicity
degree of freedom is the corresponding VF and we find t
one important contribution to thermal contraction

Be(101̄0) surface occurs because the VF on the second la
is larger than the VF on the first one, that is, the anharm
nicity in the second layer is stronger than in the first on
Thus, it seems that there is a rather strict analogy betw

the thermal contraction in Al~110! and Be(101̄0) surfaces.

On the other hand, in Mg(1010̄) surface thermal contractio
is weaker and somehow accidental, resulting from the d
cate balance of the ‘‘static’’ and ‘‘vibrational’’ contribution
in this system.

V. CONCLUSIONS

In this work we developed a method for the efficient co
putation of the third-order derivative of the total energy in
metallic system, thanks to the ‘‘2n11’’ theorem and using
the density-functional perturbation theory. The implemen
tion of the method allowed us to study, within the quasih
monic approximation, the thermal expansion of systems
scribed by many structural parameters. As an application

presented a study of the thermal expansion of Be(1010̄) sur-
face. Increasing the temperature the surface undergoes
markableoscillatory thermal relaxationsimilar to and stron-
ger than the one previously calculated and observed

Mg(101̄0) surface. We suggest that this phenomenon is
to the thermal contraction of the first interlayer distan
propagating to the lower layers in an oscillatory way beca
of the relative stiffness of the potentials between differe
layers. According to our analysis, in Mg(1010̄) the first in-
terlayer thermal contraction results from a delicate bala
between two opposite contributions. While the change in s
face static forces, caused by the bulk thermal expansion
vors contraction, the VF’s tend to make the first interlay
distance expand. On the contrary, in Be(1010̄), the large
anharmonicity of the second surface layer plays an impor
role in enhancing the thermal contraction and the result
effect is much stronger.
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