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Strain in buried self-assembled SiGe wires studied by grazing-incidence x-ray diffraction
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For the calculation of strain fields of buried self-assembled SiGe wires in a SiGe/Si multilayer, an analytical
model has been developed. It is applied for a simulation of the diffraction pattern from buried wires, which
were investigated by grazing-incidence x-ray diffraction. The simulations are based on the distorted-wave Born
approximation, and using the analytical approach for calculating the inhomogeneous elastic strain fields within
the wires and in the surrounding Si matrix, computation times can be considerably decreased. In the measured
reciprocal space maps, satellite intensity maxima indicate a good lateral and vertical correlation of the wire
positions. Both from the grazing-incidence diffraction and from photoluminescence, an average Ge content in
the wires of 20% is found, considerabbwer than the deposited value of 45%. The resulting lateral maximum
elastic relaxation of the wire lattice is about 85% on the top ridge.
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I. INTRODUCTION with a miscut smaller than 0.052.
(i) Selective growth on prepatterned substrates can result

Self-organized semiconductor nanostructures have ain quantum wires?
tracted a lot of interest in recent years, because they offer (iii) It was shown that thestep bunchingprocess in
vast opportunities for fundamental studies of the epitaxialSiGe/Si multilayers grown on vicinal $001) and (113 sub-
growth as well as because of their potential for semiconducstrates can lead to more or less regularly arranged terraces,
tor devices. Since their size, shape, composition, and straiwhich serve as suitable templates for the subsequent forma-
status influence their electronic and optical properties, a lotion of Ge rich wires or island¥:®
of effort has been devoted in the past to their structural So far, the main mechanism leading to island or wire
analysis. In the self-organization process, growth instabili-growth was attributed to a thermodynamically driven growth
ties, either of kinetic nature or strain-induced ohese ex- instability, associated with the partial relaxation of strain at
ploited for fabrication of semiconductor nanostructures. Thehe surface steps, and strain relaxation of the islands and the
nucleation of islands on wetting layer@VL's) via the wires!® More recent investigations point to the important
Stranski-Krastanow mechanism has been studied intensivelgfluence of kinetic growth instabilities for the growth of Si
for the heteroepitaxy of sufficiently strained systémghe  as well as of SiGe on vicin&D01) Si substrates”*® Strained
surface morphology of such islands has been investigated byiGe material epitaxially deposited on such stepped surfaces
atomic force microscopy(AFM) and scanning tunneling mi- may form wirelike stripes. Whether elongated islands or
croscopy(STM),* buried islands were studied by transmis- wires are formed on such terraces, depends critically on the
sion electron microscopy (TEM) and cross-sectional growth conditiong:*1%20
STM.” Furthermore, high-angle x-ray diffractidras well as X-ray scattering methods have a large potential for the
surface sensitive grazing-incidence diffracfiofGID) and  shape and strain analysis of semiconductor heterostructures
grazing incidence small-angle x-ray scattetth¢GISAXS) and embedded nanostructufésThe scanning microscopy
techniques were employed to study the strain status, the sizeschniques(such as AFM, TEM, Scanning electron micro-
and the shape of the islands. scropy have high spatial resolution, but they are often de-

Whereas self-assembled islands were studied extensivesructive and have a rather small investigated sample area
so far, much less work was devoted to self-assembled quafzm? nn?). In contrast, the nondestructive x-ray techniques
tum wires. They can serve as templates for the growth ohave high resolution in reciprocal space and the measured
guantum dots, and due to their homogeneity in one directionlata provide statistical information from sample areas of the
offer an easier research approach narrowed on the croserder of several mf Especially x-ray diffraction techniques
section plane properties. Several different approaches hawee very suitable for the determination of the strain status of
been used to achieve self-assembled wire growth. buried and also free-standing nanostructdrés Grazing-

(i) Tersoff and Tromp! have shown that strained epitaxial incidence setups allow for certain depth resolution and better
layers, which tend initially to grow as dislocation-free is- intensity contrast due to the decrease of scattering from the
lands, may exhibit a shape transition to elongated islands arglbstrate. However, the data analysis of strain fields is so far
herewith allow better stress relaxation. This eventually carbased on fitting procedures using model calculations, and
lead to self-organized wires on nominally flat substrates. Thespecially the calculation of strain using the finite element
mechanism was demonstrated recently for the growth ofmethod(FEM) is very time consuming.

InGaAs/GaAs multilayer structures deposited(681) GaAs We have developed an alternative analytical method to
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calculate the strain distribution in buried nanostructures,
which is faster and also easier to implement into, e.g., x-ray
scattering simulations. For a first application of the method,
we investigate a SiGe wire sample, where modeling needs to
be performed in two dimensions only. There is, however, no
general restriction of the method to two-dimensional models.
We choose a SiGe wire sample for this study, because the
sample structure and wire shape are already known from
previous GISAXS measuremerifsHere, we obtain addi-
tional information on the Ge content, and on the elastic re-
laxations within the SiGe wires and in the surrounding Si
matrix.

In contrast to earlier work, our method takes the elastic
relaxation at the sample surface into account, which is im-
portant for structures close to the surface. The results of our
analytical calculations are compared to conventional FEM
calculations, and found to obtain nearly identical results. The
calculated displacement fields are used as an input for simu-
lations of the scattered intensity in strain sensitive GID ge-
ometry, based on distorted-wave Born approximation. FIG. 1. AFM image of the top Si surface of the investigated

The paper is organized as follows: In Sec. Il experimentali/SiGe multilayer sampl€. The inset shows the autocorrelation
data are presented. Section Il deals with the calculation ofunction of the surface calculated from the AFM data.
the displacement fields induced by a stack of buried self-

assembled SiGe wires, and describes the calculation of thgs well as in GID and GISAXS geometries. In HRXRD and
scattered x-ray intensities in GID geometry. In Sec. IV theg|D we have detected the scattered intensity as a function of
analysis of the scattering data is presented, and the results aff reduced scattering vect@r=K;—K; —h, whereh is the
compared to an analysis of photoluminescence spectra. Fiiffraction vector (i.e., the vector of the reciprocal lattice
nally the results are summarized in Sec. V. andK; ¢ are the wave vectors of the primary and scattered
beams.
GISAXS experiments have been carried out in order to
get information on the shape of the buried wires, the results
In this work we have investigated a series of samplexan be found in Ref. 24. The GISAXS spectra clearly
containing SiGe quantum wires grown in a self-organizedshowed that the buried SiGe wires have a triangular cross
regime by solid source molecular-beam epit&4BE). The  section with a base length of about 350 A, and a sléaes)
samples consist of 20 periods of nominally 25-A-thick angle of about 6°, i.e.Jarger than the miscut angles
Si,_,Ge, layers separated by 100-A Si layers. The nominal=3.5°. The lengths of the SiGe wires are about 2500
Ge contentx of the alloy layers is 0.35, 0.40, and 0.45 for +500 A, actually similar to the feature lengths on the sample
samplesA, B, and C, respectively. In order to initiate step surface, as determined by AFM.
bunching and the wire growth, a vicinéd01) Si substrate We have performed an HRXRD, scan around the sym-
with a rather large miscut ang|é=3.5° towards thé100] metrical (004) reciprocal lattice point using a laboratory
direction was chosen. All samples were capped with a-ray source with Cu l&; radiation, a four-crystal G220
100-A-thick Si layer. The details on the MBE growth are Bartels monochromator, and an open detector. Figure 2
described in Ref. 25. shows the measured dai@ots together with the integrated
Figure 1 shows an atomic force micrograph of sanple intensities(open circleg of the superlatticéSL) peaks and a
which exhibits a pronounced one-dimensional periodic ripplesimulation based on dynamical scattering the@aglid line).
structure at the Si surface, with the ripples oriented perpenFrom the peak distance an SL period of #2B A follows.
dicular to the substrate miscut, i.e., along f@&0] direction. =~ Due to the buried wire structure and the limited detector
Since the height of these surface ripples is rather(ith a  resolution, the peaks are broadened, therefore we have fitted
peak-to-valley height difference of about 6,Ahis surface the envelope curve dhtegrated intensitiesf the broadened
corrugation does not contribute significantly to the scatteregheaks, instead of the peak values of the intensity satellites. In
x-ray intensity. The inset shows the autocorrelation functionthe simulation we assumed a layered structure, where the
demonstrating that a correlation of the wire positions extend§iGe layer was divided into the WL and an effective wire
over about six mean ripple periods; this period is about 890ayer. The latter is a layer with a thickness equal to the wire
A. height as obtained from GISAXS data and a Ge content cor-
Whereas with AFM only the surface of the Si cap layerresponding to the lateral average over the wires and the sur-
can be investigated, x-ray diffraction and small-angle scatterrounding Si matrix. However, an unambiguous fit of all the
ing experiments can yield information on the buried struc-parameters of both layers is not possible. For instance, if we
tures as well. Scattering experiments were performed in coassume a Ge content »f20% in the wires, we obtain for
planar high-resolution x-ray diffractiotHRXRD) geometry, the Ge concentration and for the thickness of the WL the

Il. EXPERIMENTS
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transversal plane "
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FIG. 2. Q, scan of sampl€ around the(004) reciprocal lattice
point (points, with the integrated intensities of the pedksgcles,
together with the simulatiodine).

values 32% and 28 A, respectively. For another choicg of
=30% in the wire, for the WL the values 33% and 25 A
follow.

In HRXRD, the intensity distribution is strongly influ-
enced by the in-plane and vertical components of the strain
fields in the wires and the surrounding Si matrix. In order to
enhance the sensitivity for the in-plane strain component, as
well as the sensitivity to the rather thin wire stack, we em-
ployed GID geometry. For an orientation of the wires along
the [010] direction, the(400 and (040 reciprocal lattice
points are suitable, with the diffraction vector perpendicular
and parallel to the wires, respectively. The diffracting crystal
lattice planes are perpendicular to the sample surface, so that
the diffraction plane lies in th&,Q, plane as sketched in
Fig. 3(@). By simultaneous movement of the sample and de-
tector(i.e., by changing the directions of the wave vectdrs
andK;) we perform a so-calletbngitudinalscan, whereas a B, gp—— ﬁ
transversalscan is recorded by moving solely the sample e Bz/
azimuthal position. |

Figure 3b) outlines the relation between the orientations !
of the wires in real space and tigg andQ, coordinates in (©) A
reciprocal space. The intensity satellites due to wires are
sketched schematically. In the transversal geometry, the FIG. 3. (a) Sketch of the GID geometrK; andK, are the wave
length of the scattering vect@~h is approximately con- vectors of the primary and scattered beams, respectilely,the
stant throughout the map and perpendicular to the displaceliffraction vector,«; ; denote the angles of incidence and exit, re-
ments, hence this geometry is not strain sensitive. In thépectively. (b) Definition of the coordinate system in reciprocal
longitudinal setup the diffraction vector is parallel to the in- SPace and the geometries for the reciprocal space maps denoted
plane displacements, hence this geometry gives a good strajl@ngitudinal” and “transversal.” (c) Sketch of the wire cross sec-
sensitivity. tion assumed in the calculations.

The shape of the wires, which enters the numerical calcu- .
lations of the diffracted intensity described below, is The GID experiments were carried out at the TR@I
sketched in Fig. @). We use the triangular wire cross sec- and ID3 beamlines at the ESRF, Grenoble, using a wave-
tion obtained from previous GISAXS measureméfits, length ofA=1.55 A, a diamond111) double crystal mono-
which is determined by three parameters: the width of thechromator(TROIKA) or a Si(111) double monochromator
wire baseA, and two anglesB; , of the side facets. The (ID3). The scattered intensity was recorded using a linear
direction of the correlation of the wirpositionsat different  position sensitive detector placed at a distance of 900 mm
interfaces is not always vertical but can also be inclined byfrom the sample. Its orientation was perpendicular to the
angle y with respect to the growth directidf.For such an sample surface, so that a detector line spectrum corresponds
arrangement we will use in the following the expressidm  roughly to theQ, direction. The scattered radiation is ana-
lique replication lyzed spatially as a function of the exit angle by 1024
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FIG. 4. Longitudinal400) reciprocal space maps measured with
incidence anglesy;=0.5° (a) and a;=0.2° (b). The step of the
contour lines is 18?° In panel(a) the lines denoted 1 and 2 corre-
spond to the trajectories of extracted line scans shown in Fig. 8.
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detector channels. Hence, two-dimensional reciprocal space 038 085 09 0.95 1 1.05 11

maps were recorded in single scans. The resolution in recip- Energy (eV)

rocal space wadQ,=5x10 *A"1 AQ,=3.7x10 3A"1 _

and AQ,=2.6x 103 A1 for the maps in(400 and (040) FIG. 5. Low-temperature photoluminescen@®l) spectra of

samplesA, B, andC. The nominal composition of the three samples
is given in the text. Besides the PL from the Si substrate and the Si
epilayers around 1.09 eV, strong PL signals from the SiGe alloy

t".VO dlfferentdangles of InCI.delncai =0.§0ar2dc;]i=0.2l mf layers are observed for energies below 1 eV. For sapiéth the
Figs. 4a) and 4b), respectively. For;=0.5° the angle o lowest Ge contenfnominal 35%, a PL spectrum characteristic for

incidence is above the critical angle of total external reflec, gige quantum well is observed. In addition to the wetting layer

tion and hence the x rays penetrate through the whole S|yminescence, PL lines ascribed to the recombination of excitons in
stack. Thus we observe several intensity maxima alQRg  the quantum wire appear in the spectra of the samples with higher
reflecting the periodic structure along theé01] direction.  nominal Ge contentsampleB, 40%; C, 45%. The PL peaks are
The lateral intensity satellites reflect the lateral periodicity ofjapeled according to the type of phonons involved in the exciton
the wires. recombinatior(NP, no phonon; TO, transverse optic; TA, transverse
The lines denoted by 1 and 2 drawn through the laterahcoustig with a subscript indicating the sample region in which the
intensity maxima in Fig. @) are slightly inclined by an recombination occuréWL, wetting layer; WR, quantum wije
angley with respect to the horizont&), axis. This indicates
that the wire positions at different SiGe/Si interfaces are rep
licated obliquely along a direction inclined by an angle

diffractions, respectively.
The (400 maps denoted as “longitudinal” are plotted for

served in the spectrum of sampe Therefore, we conclude
that in this sample no quantum wires have formed, which is
e P N . also found in HRXRD measurements of the sample. The PL

Fora;=0.2%, as shpwn_ in Fig. (), no pgrm_dm Intensity spectra of sample8 and C with higher Ge contents are
extrema along th€, direction occur, as for incidence angles " " . . ) "
below the critical angle the penetration depth of x rays iSS|gn|f|cantly different: In addition to the strongly quenched
very small and only the top layer of wires contributes to then Fw line and its phonon replica, additional PL peaks appear
scattered intensity. In this figure, the intensity maxima ob-T ZtBe sp:a/ctbral. a 2L0adN PL|.I|r‘(daSbr$lI'ed NBI"(Ré IS pbsierved
servable on the vertical rods for the small€stdo not stem _mev below the WL Ine. NS peak dominates any
from the vertical correlation of the wire positions, they areContrIbUtlon of the TAw. I|ne.pOSS|ny present in the spectra
caused by the maxima of the facioit¢|? in Eq. (25). These of samplesB and C. We assign the Ng; peak to PL from
maxima occur ife; and/ora; (angle of exit of the scattered excitons cqnfmed to the self-organized quantum wires. For
beam equala 29" sampleC with the highest Ge content, the )\Rbecomes the

c strongest signal in the PL spectrum. In addition to the,NP

As a cross check of the GID measurements, IOW_peak also the TO replica (T4) is clearly resolved in the
T = 4.2 K) photolumi L) h ! . .
temperaturd ) photoluminescencePL) has been spectrum of sampl€. For sampleB, the TGy signal is less

measured. The spectra of samphesB, andC are shown in pronounced and appears as a shoulder in the PL spectrum.

. ) i . .
Fig. 5. The PL was excited by the 514-nm line of an Ar Since the signature of the quantum wire PL is strongest for

laser with an intensity of 160 mi W. The spectrum of thesampIeC the experiments aiming at the structural character-
sample with the lowest Ge cont mpleA) is typical for ization of the self-assembled quantum wires concentrate on

a two-dimensional SiGe quantum well layer: The lines atthis sample
0.997 eV, 0.979 eV, and at 0.940 éMbeled NR, , TAw, , pie.
and TQy_ in Fig. 5 are commonly attributed to the no-
phonon(NP) luminescence of a SiGe quantum well exciton
and its transverse-acoustic and transverse-optical phonon For the simulation of the GID measurements it is neces-
replicas?®?’ No indication of PL from quantum wires is ob- sary to calculate the elastic deformation of the crystal lattice

Ill. THEORY
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in the wires and around them. This is described below in parpending on its chemical composition. As we show later, the
A, followed by the calculation of the scattered intensity inresults of this approximative approach compare well with
part B. exact simulations based on FEM. The volume force density
is then given byt
A. Displacement field of a periodic array

of buried quantum wires f=—F d(r)
! ax; '
i

F=(C}y+2C) s, (4)
The most frequently applied method for the calculation of
the strain distribution in and around nanostructures is thevhere()(r) is the shape function of the wire arréynity in
FEM. However, the disadvantage of FEM is that it is ratherthe SiGe wires and zero outside thermand &=(a,,
time consuming, and any change of, e.g., a wire shape re- aq)/agq; is the relative mismatch of the wire lattice with
quires a change of the calculation grid, so that FEM cannofespect to the host lattice.
be easily included into a software simulating and fitting x-ray ~ For the calculation of the displacement field of a wire
scattering patterns. Therefore, we have developed an analyttructure we define the coordinate system according to Fig.
cal approach for the calculation of the displacement field of3, The free surface is @=T, and the wires are elongated
wires buried below the sample surface. Recently, a similaparallel to they axis [010]. We assume that the wires are
analytic method for the calculation of the strains around anfinitely long and homogeneous aloggtherefore both the
periodic sequence of etched quantum wires has beefrce density and the displacement fiel@d) depend only on
developed)’ which is valid in the limit of elastic isotropy.  x andz In addition, for the wires parallel tf010] and for

We start from the equilibrium equatiofs cubic symmetry ofC,, the displacement vectar(r) is al-
ways perpendicular to the wires, i.e,=0. For wire orien-
ﬂ.}.fizo, i k=x.y,z, (1) tations with Iow_er symmetry, howevewﬁO may occur.
IX For the Fourier component of the displacement field
where ut(k,z) .
uF(k,z)E( o ) =f dxu(x,z)e ', (5)
Tik=Cjkim€im i) uf(k,z) —o

are the components of the stress tensqy, are the compo-  we obtain from Eq(1) the matrix equation

nents of the strain tensoGjy, are the elastic constants of

the material, and; are the components of the volume force A(uF)”+iI§(uF)’—éuF= P, (6)
density caused by the lattice mismatch of the wire lattice

with respect to the host crystal. At the free sample surface thehere
boundary conditions

R C 0
A<k>=( . )

O'jknk|surface: 0, j=x,y,z () 0 Cp

have to be fulfilled, wheren is the vector of the surface
normal. I§(k) _ ( k(Cpot C44))

In order to be able to solve the problem analytically, we k(Cy2t+Cyqs) 0 ’
perform the following simplifications.

(1) We restrict ourselves to a cubic crystal with(@1) R k?Cy; 0
surface and the wires alo@10]. Then, the material is de- C(k)= 0 K ) (7)
scribed by three elastic constants; in the well-known 6 44
X6 C,g notation* the independent constants @g;,C1,,  and the vector on the right-hand side of E6) is
and C4,. In fact, this simplification is not crucial for the
possibility of an analytic solution of Eq1), but it simplifies ikQF
the formulas substantially. P(k,z)= F( (OF) ,) : (8

(2) We assume that the sample surface is ideally flat. This
assumption simplifies the form of the boundary conditionswe have denoted the derivative with respect toy a prime
(2) and it is necessary for an analytic calculation. Therefore(’). QF(k,z) is the one-dimensional Fourier transformation
the calculation method is suitable only for wires buried be-of (x,z).
low a free surface. The boundary conditions far™ at the free surface and at

(3) Strictly speaking, Eq(1) is valid only if the elastic the rear sample surface far below the wire array are
constants are the same everywhere in the sample volume.

Therefore, we have to neglect the difference between the A(uF)’+if)-uF|z=T,H,m=0, 9
elastic constants of the Si matrix and of the wire SiGe lattice.

However, the elastic constants of the wires affect substarivhere

tially the volume force density. Therefore, we assume the

validity of Eq. (1), but in the expression for the force density f)(k)z(

0 kCy
we include the elastic constan®,; of the wire lattice de- (10

kC,, O
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The general solution of Eq6) is a sum of a general coefficientsc,_ are obtained from the boundary conditions
solutionv,y of a homogeneous equation at z=T that can be written in the form

A(vy)"+iB(vy)' —Cv,=0 (11) -
) ’ ) ’ o z Cn(Kn-Uyn—tKvyp )€ n-
and any particular solutiown, of the full Eq.(6). The general n-
solution of the homogeneous equation is a linear combina-

F
tion of the eigensolutions =— CiCur gﬂ (Wynt Ky T Wy K)
4
Vg(k,2)= 2 co(k)vp(k)e!n, (12 X QK ke )€ e, (18

n=1

wherek; . jare the roots of the characteristic equation HZ_ o (Cygicy vy +Cokv, g )€ Txn
def W(k,x)]=de(Ax?+Bk+C)=0 (13

andv,, are the corresponding eigenvectors = m n2+ (C11Wzn+ Knt

W(k, k), =0. (14) +Cy Wy K) QFF(K, K )€ TH0, (19

The particular solution of the full equation can be ex-where
pressed using the two-dimensional Fourier transformation

» QFF(k K)=F dzOQf(k,z)e
VEF(k q)=f dzv,(k,z)e~ 9 ' —o ’
p 1 0 p b

of the displacement field as =f_ de_ dzQ(x,z)e " (kx+x2)

VEi(k,a) = —[W(k,q)] *P™(k,q). (19 s the two-dimensional Fourier transformation of the shape

The inverse Fourier transform can be performed using théunCtIon of the wire array.

residuum theoremx.., andx,_ denote the eigenvalues with We assume that the individual wires in the multilayer

o e : ivel ave identical shapeQ,(x,z) and they are perfectly peri-
ggf;t;: ethznf?nglegig:’/eeslsr;:)%g]lgrart{]epglirésp;l;gzrneecr?tvfeie)l/,d and W%dically distributed at the SiGe-Si interfaces with the lateral

period L and the(vertical) period of the multilayeD (see

_ Fig. 3. We assume also a perfect oblique replication of the

uF(k2)= X cpven? wire positions determined by a given angle Then the
Lo shape function of the wire array can be expressed as

+ > QT (K kpy ,Z) W, €260 » o N1
CiCul & n+ n+ Q(x,2) = E EO Q(x—m.L—m,D taq x],z—m,D),
my=—o m,=
—HZ Q7 (K kn- ,Z)Wn—eiz"”}, (16)  whereN is the number ofvertical) periods in the multilayer.
This yields
where
2 2 += 2m 5 +-
1 ( Cadk(K2— k2)+(Cyy— o)k 0 (k)= T2 ak=P) X0,
Wn:—_ 2 2 2 2=
ITj (k= &)) \ Cparcp(k5—k?)+ (Cp— Cr) Kk A
j#n{Kn T Kj) |\ Cyg 1n—C _ B
nmo=n n X(P,K,z—mZD)e im,D[«+k tan(y)]
and )
with

* z H ! ’
Q+(k,;<,z)=f dx’f dz'Q(x',z")e '+ w2, x . o
- - Q;,(k,x,z):J’ dx’J’ dz' Q,(x',z")e  (k+xz)
*® T H ’ r
Q*(k,K,z)zf dx’f dz’ Q(x’',z' e (kK +xz)
C ,
(17)

The coefficientg, in Eq. (16) can be determined from the We have denoted bl =24p/L (p is an integerthe vectors
boundary condition$9). From the boundary condition at the of a one-dimensional lattice reciprocal to the one-
rear surface 1— —«) c,,.=0 follows. The remaining two dimensional wire array. Since the functiofls ~ (k, «,z) are

e T ] ) ,
Qv;(kaK,Z):J dX’J dZ,QW(X',Z’)e_'(kX +x2')
% 2
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£IA)

FIG. 6. (Color) Distributions
of the strain tensor components
€xx (@, € (b), and €, (c) ob-
tained from analytical calculation.
The parameters of the wire afe
=350 A, B;=6°, 8,=90°, Xge
=0.2, and the depth of the wire
base below the surface was
120 A. The step of the contours is
Aey,=A€,,=2X10%, andAe,,
=3x10 % in the respective pan-
els.
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superpositions ofs-like peaks centered in this reciprocal also suppressed the overlapping of the deformation fields of
wire lattice, the displacement field has the form of a Fouriemeighboring wires by choosing their distance/2P suffi-
series ciently large. The influence of the surface stress relaxation
[Eq. (3)] on the strain distribution is substantial, if the depth
u(x,z)=>, uf(P,z)eP*, (20) of the wire below the surface does not exceed few thousar)ds
P of angstroms. Therefore, one can expect that the relaxation
affects the scattered intensity mainly for scattering geom-

.. F .
where the coefficients (P,2) are given .b.y Eq(16). etries with a small penetration depth of the incident x-ray
In order to demonstrate the applicability of the procedurebeam such as in GID

above, we have simulated the distribution of the strain tensor . - : .
The in-plane componerd,, exhibits a maximum tensile

components strain of about 0.7% near the steeper side facet of the trian-
au, au, 1/du, du, gular wire. This value corresponds to the lateral elastic re-
Ex=T gy €27 g and 62":5(&7 E) laxation of about 85% with respect to fully relaxed bulk
Sig.eG& 2. In the surrounding Si matrix close to this facet of
of a single buried wire with a triangular cross section buriedthe wire a maximum compressive lateral strain of the order
120 A below the free relaxed surface, the shape of the wiref 0.6% occurs. The distribution of the,, component is
is obtained from GISAXS datésee below The strain com- plotted in Fig. §b). The maximum value of,, is about
ponentse,,, €,,, and e, oOf the strain calculated with the 1.45%, which nearly equals the vertical strain in a pseudo-
analytical model foxge.=20% are shown in Figs.(&), 6(b), morphic tetragonally distorted homogeneouggSi, , layer.
and €c), respectively. In order to achieve a sufficient reso-Above and below the wire, the Si lattice is compressed ver-
lution in real space, we have used a large set of the values ditally by about 0.3% in maximum.
P, the differencesP of the neighboring® values in this set The validity of our analytical method is demonstrated in
was chosen much smaller thanr2Ax, where Ax is the  Fig. 7, where we compare theand z components of the
range of thex coordinates in Fig. 6. In this figure, we have displacement vectan(x,z) calculated using FEM, and using
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100 N =7 following, we restrict to theS polarization only. We solve the
M‘\&‘\\%‘V wave equation by means of the distorted-wave Born approxi-
O} 4 !l"ﬂﬁ“ ¥ L . . . . . .
¥ a8 mation, where the scattering potential is divided into two
2 1o (N’ parts\7=AVA+VB, whereV, describes an unperturbed sys-
T o200 e’ SN 4 tem andVy the perturbation. Here, we choose a semi-infinite
200 (a) Si substrate as the unperturbed system and we solve the
L . wave equation with/,=—K2xg', i.e., only refraction pro-
100F cesses in the substratgg() are treated dynamically, but dif-
ol ] fraction processes witg=h included in
i N T V=~ K2x(r)exp —ih-u(r)] 22
= 200} ' are treated kinematically. We choose two independent solu-
00k (b) ] tions E(r) and E{N(r) of this equation(the latter being
time inverted so that their corresponding incident compo-

400 300 200 -100 0 100 200 300 400
x (A)

nents in vacuum are the actual primary and scattered
beamd?33
FIG. 7. Comparison of the displacement fieldgx,z) [panel EMI(ry=ekir,  EMI(r)=glKer,
(@] and u,(x,z) (b) of a single buried wire calculated by FEM
(dashed lingsand by our analytical approadfull lines). The step

of the contours ifAu=0.05 A.

In the substrate,
EN(N)]c0=tiek",  EP(N)]o=t7elki

our approach. The figure shows the displacement fields of holds, wheret; ; are the Fresnel transmittivities of the sur-
single triangular wire, corresponding to the wire shape in ouface for the primary and scattered beams, respectively, and
sample. It is obvious that the analytical and FEM calculak; ; are the wave vectors corrected to refraction and absorp-
tions yield nearly identical results. The slight differencestion in the unperturbed system.

may result from the discretization of the grid in the FEM  The intensity scattered from the wires is proportional to
calculations or from the fact that the actual elastic parameterge differential cross section of the scattering dud/go

of the wire and the Si matrix are different.

1 A) |\ A
B=167T2|<E$ |Ve[EP)[2. (23)
Fn our model, the SiGe WL's are not included, because these
would affect the intensity only at the coherent rod, i.e.,
around the zeroth lateral satellite.
Assuming a perfect lateral periodicity of the wires, we
obtain for the scattered intensity the following expression:

do
B. Calculation of the scattered intensity m)

In this section, expressions are derived which describe th
distribution of thediffuselyscattered intensit{(Q) in recip-
rocal space(the coherent truncation rod scattering is ex-
cluded from the calculationIin GID scattering geometry the
reduced scattering vect@=K;—K;—h has to be corrected
for refraction and absorptiom=k;—k;—h, wherek; ; are
the wave vectors of the primary and scattered beams, respec-
tively, corrected for refraction and absorption in the crystal
lattice.

The calculation of the scattered intensity is based on thehijs equation describes an intensity distribution concentrated
solution of the wave equation in periodic satellite peaks forming the one-dimensional re-
ciprocal lattice determined by the lateral wire periodicity
(lateral satellites We have denoted bi¢p(q,) the structure
- ) ) ) ) ) factor of the wire corresponding to the vect®rof the one-
whereV=—K*x(r) is the scattering potential ane(r) is  gimensional reciprocal lattice. Since the wires are elongated
the crystal polarizability. In a slightly deformed crystal, the 40nq they direction, the strain field and the polarizability do
polarizability can be expressed as a modified Fourier serieg, depend ory and the intensity exhibits a sharp peak at

Q,=0. The Pth structure factor is given bysee also Ref.

x<r>=29 xg(rexdig-[r—u(r)]], 34)

1(Q)=consi 5<Qy)§ 8(Qx—P)|Fp(gy)]? (29

(A+KHE(r)=V-E(r), (21)

L/2 .
dx e—I[PX+ 0,(z—T)]

—L2

the zero-order Fourier coefficient of the polarizability
(x(r))=xqo is responsible for refraction, itsth coefficient
describes the diffraction with the diffraction vectbr The
displacement fieldi(r) is caused by the buried wire array .
and the spatial dependence of the Fourier coefficigpts) wherey; is thehth coefficient of the crystal polarizability of
reflects the local changes in the chemical composition. In théhe host lattice and

T
Fp(Qg,) = const><titff dzf

X[ xn(x,z)e" MU — 537 (25)
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Xn(X,2)= (XN = xi)Q(x,2) + xiy

is the modulated polarizability of the wire array. In Eg5)

we have excluded the crystal truncation rod from the struc-
ture factor by subtracting(ﬁ' from the local polarizability
coefficient yn(r)exg—ih-u(r)]. The phase functionh
-U(x,2z) is calculated using Eq$16) and(20).

The infinitely sharpé-like lateral satellite peaks in Eq.
(24) are valid for a perfect lateral periodicity of the array of
wires. In the experiment, the satellite peaks are broadened
due to the finite angular resolution and the deviations from
perfect periodicity of the wire positions. While the finite
resolution broadens all the satellites by the same amount, a
random distribution of the distances of the neighboring wires {
causes an increase of the satellite widths with increg$thg 100 , . . g
Taking both effects into account and neglecting the sharp -0.04 -0.02 0.00 0.02 0.04
peak in theQ, dependence of the intensity, we obtain for the Q (VA)
intensity distribution in theQ,Q, plane a modified expres- *
sion FIG. 8. Line scans extracted from the measured intensity maps
along the lines 1 and 2 in Fig(& (points, together with their fits
using Eq.(26) (lines). The scans are shifted vertically for clarity.

Intensity (arb. units)

u@@hww;mmrmwwﬁ(m

. . of the lateral satellites we obtain a distribution of wire dis-
where the narrow intensity peaks are smeared out by Binces with a width oB(L)~125 A

Lorenzian function The resulting parametefEp|? of the lateral satellites are
plotted as full circles in Fig. 9. They have been simulated

Rp(Q)= —— ;2 (27 using the ex_pressions giv_en in Sec.[EIqs.(lG), (20)_, and
TOp 1+ % (25)]. The wires have a triangular cross section with a base
op lengthA of 350 A and a large side facet inclined by an angle

. . . .. B1=6° with respect to the growth plane. The small-angle
where integrals of these functions were normalized to Unityg 4yering data are not sensitive to the si@p@f the shorter
F.‘?”O‘g;f;% fhrom tg‘; shor;—r:;ng;-r?r;jer mOdZI of tr&e WIT€ sidewall of the wire(see Fig. 3. In the simulations we have

position the width o, 0 t. e Pt unc'uon EpeNnds on 5 nd that this angle has only negligible influence on the
the orderp of the lateral satellite according to the expression, ¢ its in the range fron®,=60° to 8,=90° and we have

— o2+ (pho)? 28) therefore assume@,=90° in all simulations. It turns out
op=Noot(pAa)”, that a good agreement with the experimental GID data can

Wherea-o is the width of the zeroth-order satellite caused byaCtua”y be achieved for various combinations of values for
the finite experimental resolution, antlo=5(L)/L is the ~ B1 andXge: In GID we are mainly sensitive to the strain
broadening due to a disordé(L) of the lateral wire dis- variation. Increasing3,, i.e., increasing the aspect ratio of
tances. Note that the disorder of the wire positions does ndfie wires, will lead to an increase in the in-plane relaxation.

change thentegrated intensitienf the satellites, which al- However, increasing the Ge contexg. will have a very
ways remain proportional tHp|2. similar effect, and hence the two quantities cannot be sepa-

rated from the GID data alone. Knowin@; from our
GISAXS experiment, it is possible to determirg, by fit-
ting the structure factord p|2 unambiguously. The intensity
In order to compare the measured and simulated intensif the zeroth-order peak has to be excluded from the com-
ties quantitatively, we have extracted line scans from thegarison since it is influenced by the coherent truncation rod
measured GID reciprocal space maps along the lines denoteshd coherent scattering was not taken into account in our
1 and 2 in Figs. é,b. The resulting scans are plotted in Fig. simulations. The best correspondence was achieveddor
8. Using Eq.(26) we fitted these scans, with the satellite =(20+10)%.
intensities|F p|? as free parameters. The good agreement of The correspondence of the experimental satellite inte-
the fit with the experimental data demonstrates that the shorgrated GID intensitie$F 5|2 with the simulated ones is not
range-order model for the lateral positions of the wires in Eqperfect. The discrepancy could be caused by, e.g., an inho-
(26) well describes the lateral arrangement of the wires.  mogeneous distribution of Ge atoms in the volume of the
From the fits we obtain a mean wire distance lof wires. However, it is obvious from this comparison that the
=(890+20) A and a replication anglg=5+1°, in good mean Ge content in the wires is substantiddiyer than the
agreement with the GISAXS measurements. The width otomposition of deposited SiGe alloy with a Ge content of
the zeroth-order satellite, caused by the finite experimentad5%.
resolution, isoy~1.5x10 2 A~ and from the broadening The unexpected experimental finding of a Ge content of

IV. ANALYSIS OF THE WIRE STRUCTURE
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‘WL parameters:
— 254,45%
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Ge content . (%)

FIG. 10. Calculated difference between the ground-state ener-
gies of heavy holes confined to the wetting IayEEV() and to the
guantum wire ES\,R) as a function of the Ge contery,g of the
wire (thickness: 37 A) assembled on top of the wetting layer.
ES, -Edr is plotted for the three different wetting layer composi-
tions indicated in the plot. As discussed in the text, in the calcula-
tion, the quantum wires are modeled by step quantum wells. The
alignment of the heavy-hole valence-band edge in growth direction,
the ground-state wave functions, and energies are sketched in the
2 6 4 2 0 2 4 6 3 insets for a 25 A, 45% wetting laygthe Ge content in the wire is
x=0%) and for three step quantum wells modeling the wire struc-
ture. ForE, — ESr=—20 meV (corresponding to the energy dif-

FIG. 9. Integrated satellite intensitiéBp|2 of the lateral satel- ference of the Nig,_and NRyg lines observed in the PL spectra of
lites obtained from the linear scans in Fig.(i8lack circles, and ~ SamPple<C), the heavy-hole band alignments are shown in the insets
their simulations for various Ge concentrations in the wires. The O tWo wetting layer compositions: the nominal for sam@lend
panels(a) and (b) show the experimental satellite intensities in the 1€ one determined by the HRXRD experiments, respectively. In
scans 1 and 2 in Fig. 8, respectively, along with the correspondinéhe plot, the points corresponding to structures shown in the insets
simulated values. The abscissa position of data points corresponds€ marked byO.
to the order of the lateral satellites.

satellite order

positions (27 A,38%). The insets of Fig. 10 show the
the self-organized wires lower than that in the WL is alsovalence-band alignment for heavy holes together with the
reflected in the PL spectra of samplBsand C containing ~ Sduare moduli of the ground-state wave function for several
wires: Figure 5 shows that the quantum-wire no-phonon liné€lected parameter combinations. Obviously the small differ-
(NP,yg) is shifted to a lower energy with respect to the,jjP  €Nce of 20 meV between the_energl_es_ of the no-phonon_llnes
line in the spectra of sampl@andC by an amount as small of wire and well can be explained within this model only if a
as~20 meV. In order to correlate the observed small shiftdérmanium concentration between 20% and 30% is assumed
with the Ge concentration in the quantum wires, we havd the self-assembled part of the wiifer all three parameter
calculated the confinement energies in the WL and in th&@irs assumed for the WL compositjorTherefore, the re-
quantum wires. Since the extension of the wires in the laterafu/ts Of the PL measurements are in excellent agreement with

direction is approximately ten times larger than in the verti-th€ results obtained by GID experiments, confirming that the

cal direction, in the calculations we neglect the lateral conC€ content in the wires is indeedwer than that of the

finement and model the quantum wire structure by a Stmgieposited allqy, ir] contrast to the behavior of buried self-
quantum well consisting of the WL and the self-assembleSSembled SiGe |§I7ands, which usually have a Ge content
wire part. Figure 10 shows the difference between the calcu?igher than the WL
lated ground-state energié:a‘)\,L of the the wetting layer

alone ancEy of the step quantum we{lnodeling the quan-

tum wire) as a function of the Ge content within the self-

organized wires. This difference models the energy shift be- Self-organizedouried SiGe wires in a 20-period SiGe/Si
tween the no-phonon lines for the quantum well and wiremultilayer sample with 45% deposited germanium content
observed in the PL spectt&ig. 5 of samplesB andC. The  were investigated by grazing-incidence x-ray diffraction. The
calculations using thk- p modef® have been performed for laterally periodic wires in the Si/SiGe superlattice, which is
three different compositions of the WL: the nominal compo-grown on a vicinal001) Si substrate with a miscut angle of
sition for sampleC (25 A,45%), a composition close to the about 3.5°, are oriented along th@10] direction. An ana-
composition of sampleC determined by x-ray diffraction lytical model for the strain fields within the SiGe wires and
(29 A,32%) and for a composition between these two comin the Si matrix was derived. The inhomogeneous strain

V. SUMMARY
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fields resulting from this model serve as an input for theorganized as well as etched and buried nanostructures with
simulation of the scattered intensities in GID geometry, usingplanar surfaces.

distorted-wave Born approximation. Using the shape of the
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