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Theory of the quantum Hall Smectic Phase. Il. Microscopic theory
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We present a microscopic derivation of the hydrodynamic theory of the quantum Hall smectic or stripe phase
of a two-dimensional electron gas in a large magnetic field. The effective action of the low-energy state is
derived here from a microscopic picture by integrating out high-energy excitations with a scale of the order of
the cyclotron energy. The remaining low-energy theory can be expressed in terms of two canonically conjugate
sets of degrees of freedom: the displacement field that describes the fluctuations of the shapes of the stripes and
the local charge fluctuations on each stripe.
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. INTRODUCTION Hartree-Fock  calculatiorfs.**=*®  Koulakov ~ and
co-workers and Moessner and ChalRdound that the stripe
It is by now generally accepted that electron correlationsstate can be viewed as a setMfilled Landau levels, with a
in a two-dimensional electron ga@DEG) at sufficiently  charge modulation due to the electrons in the partially filled
high Landau levels, are responsible for the large anisotropiesandau level(see Fig. 1 For fully polarized(“spinless”)
in the transport properties observed in recent experiments ofermions at a static level this state looks similar to an array of
extremely high mobility samples in large magnetic fieldS.  strips of charge, corresponding to regions with an effective
Analyzing fluctuations around a Hartree-Fock stripe 8tdte fijjing factor N+ 1, surrounded by regions with filling factor
and exploiting an analogy with the stripe related phases of Thys, the electrons arrange themselves in a state which
other strongly correlated electron systehisadkin and Kiv- locally mimics a gapped integer Hall state. If this charge-
elson p_roposegqmat the ground states of quantum hall sys-moqylated state was due to an imposed external potential,
tems with partially filled Landau levels with=2 are pre-  jyqide these regions the electron fluid would be incompress-
dominantly electronic liquid crystalline. _ ible and only the excitations at their “edges” would remain
In a seg)arate paper, coauthored with Kivelson andygpiess. Hence, at a static level, the state looks similar to an
Ogan_esyar’l, hereafter referred to as paper I, we proposed anyray of fixed chiral Luttinger liquids, the edges of integer
effective low-energy theory for the quantum Hall SmeCt'Cquantum Hall stripes, a picture advocated by Fradkin and
described in terms of the Goldstone modes of the bmke'kivelson,g and by MacDonald and FisHér(see also Refs.

translation and rotation symmetry. The effective Iow—energy15, 16. This, however, is not the full story since this charge
Lagrangian for this state is given by
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where we have assumed that the stripes run along ttie
rection. Hereu(x,y) is the displacement field, the Goldstone
mode of the broken translation symmetry, representing the VA Ca A I-=wA| A
transverse displacements of the striies., along they di-
rection, ¢ is the Luttinger field, representing the charge Y
fluctuations on each stripg, is the wavelength of the stripe

state, and¢, «, , andQ are elastic constants.

In this paper we give a physically intuitive microscopic o(y)
derivation of the effective low-energy theory of Ed..1). Ey-n
The approach that we will use here is based on a microscopit
theory which focuses on the role of dynamical shape fluctua- y
tions in the quantum Hall stripe state and to their coupling
with the charge fluctuations in this state. Thus, we will pay
special attention to the role played by the displacement field G, 1. Schematic representation of the quantum Hall smectic
u, as well as to its coupling to the charge fluctuations on eacktate as a set of stripes, running along the verticakis. HereN
stripe represented by the Luttinger fietd +v* is the total filling factor\ is the period of the stripep(y) is

The construction that we use here is partially inspired bythe effective local potential, and is the effective chemical poten-
the picture of the quantum Hall smectic suggested bytial. The arrows represent the internal chiral edge states.
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modulated state is a self-consistent ground state, and not there since the displacement fields of these edges are the
result on any externally applied potential. Goldstone bosons of the spontaneously broken translation
In an insightful paper, MacDonald and Fisher investigatedsymmetry.
the properties of the quantum Hall smectic viewed as an The main purpose of this paper is to construct an effective
array of coupled chiral Luttinger liquids subject to con- theory in which the effects and the dynamics of the displace-
straints imposed by the requirement of global rotational inment fieldu, the Goldstone boson of the broken translation
variance. One of the issues raised in Ref. 14 is how mangymmetry of the quantum Hall smectic, and of the Luttinger
independent degrees of freedom does the quantum Hafeld ¢, is made explicit. Although it is possible to derive the
smectic actually have. Fradkin and KivelSdrad advocated effective theory by a detailed analysis of a Hartree-Fock cal-
a picture in which both charge and shape degrees of freedogyjation, as was done by Lopatnikova and co-worKers-
although coupled were both part of the physical picture. Di-cently and independently from this work, here we will intro-
rect inspection of the effective action of H@.1) shows that  gyce instead an alternative approach based on the intuitive
the displacement field, which embodies the shape fluctua- pictyre of the stripe state as an array of regions of integer
tions, and the Luttinger field) of charge fluctuations are qguantum Hall states separated by dynamical edges. For sim-
canonically conjugate dynamical variable much as coordipjicity we will consider the case of short range interactions
nates and momenta are in classical mechanics. This connegith a pair potential given in Eq2.7), instead of a long-
tion is a direct manifestation of the Lorentz force, crucial for range Coulomb interaction. Although long-range interactions
the dynamics of charged particles in magnetic fields. Thusghange the behavior of the charged collective modes, their
although shape and charge are both useful descriptions of thiecise form are not central neither to the existence of the
physics, we find that they are not truly independent degreesyripe state itself nor to muctbut not al) of the qualitative
of freedom, in agreement with the point of view of Mac- ppysics.
Donald and Fisher. . _ . We begin by constructing an effective local potential by
A simple change of basis relates the quantum smectic piGneans of a decoupling of the microscopic density-density
ture, which uses as degrees of freedom the displacement fiejgheractions in terms of a Hubbard-Stratonovich figldand
u and the Luttinger fields, and the picture of an array of then proceeding tdformally) integrating out the fermionic

coupled chiral Luttinger liquids degrees of freedom. At the level of a static approximation,
the field ¢ plays essentially the role of a scal@dartree
U—dyd ' +dyd ™, (1.2 potential self-consistently generated by the electron-electron

interactions. For a system of electrons in a fixed area, the
. Hartree term leads to a phase-separation instability. As we
b—¢ —¢ . 1.3 pointed out above, the exchange effects of the Fock term
stabilize a stripe structure. We will show here that it is pos-
In the chiral Luttinger liquid basis the effective Lagrangian sible to stabilize the stripe state instead by the quantum fluc-
of Eq. (1.1 theory takes the same form as in the effectivetuations of the edge states and by a suitable choice of bound-
theory of MacDonald and Fishét.In Hartree-Fock theories — ary conditions. Below we construct an effective action which
of the stripe staté;”**~*3the stripe state is derived by bal- includes the effects of the Hartree contributions and of the
ancing the energy density of the Hartree contribution, whichquantum fluctuations of the edge states and show that this
favors phase separation, against the energy density of thgction leads to a stable stripe solution provided we choose
Fock contribution which, as an exchange driven effect favor$oundary conditions with a fixed number of stripe wave-
the spreading out of the charge. In these calculations, Landdgngths. The resulting stripe state that we find has a wave-
level mixing is taken into account in the form of an effective length comparable in scale to the wavelength found by
interaction for electrons in a partially filled Landau level but Hartree-Fock calculatiors® but the ground-state energy is
it is otherwise ignored.The resulting stripe state is structurgot as good(Naturally, it is possible to compute the effects
with a fairly short wavelength.. For Landau level indeX  of the Fock termg.Nevertheless, the approach use here leads
=2, Hartree-Fock calculations yield a wavelength-3l,  to an effective action parametrized instead by the geometry
wherel is the magnetic length, whereas -1, Moessner  of the stripe states, i.e., the positions of the strif@s*in-
and Chalker finfix ~const/NI, where the constant factor is ternal edges}, and by the local charge fluctuations on each
a number of order 3. At the level of these calculatiths stripe. Furthermore, we also find that the elastic constants of
dynamics is ignored. Dynamics is incorporated later on, athe effective theory are physically sensible.
the level of a time-dependent Hartree-Fock approximation, The next step is to construct the stripe ground state as a
as in the extensive work of Fertig and co-workérs Using  solution of the saddle-pointself-consistent equations de-
these methods Fertig and co-workers calculated the spectrurived from an effective action as described above. We will
of collective modes, and studied the problem of the s! tabilityassume that the stripe state locally looks similar to regions of
of the stripe state with respect to a possible stripe crystal integer quantum Hall states separated by edges. We then
However, while Hartree-Fock theories have been very suceonstruct the stripe solution with a fixed integer numbei
cessful in predicting a smectic state and in studying some gberiods of wavelengti\n for the stripe for a geometry of
its important properties, they do not yield a transparent picwidth L,=n\. We will then compute the total energy of this
ture of the role of the quantum fluctuations of the edges oftate with a fixed number of periods. This total energy has
the charge stripes. Conceptually, this is an undesirable feawo contributions:(a) a piece coming from the “bulk re-
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gions” and (b) a piece coming from the “edges.” We will This paper is organized as follows. In Sec. Il we present
then find the optimal solution by minimizing the total energy the derivation of the effective action for the stripe state. Here
as the period is varied while keeping the number of periods we construct an effective action fer in the “bulk regions”
n fixed. and at long wavelengths, and show how it couples to the
The saddle-point solution thus constructedp is a  edge modes. These in turn will be written in terms of a set of
smooth differentiable function of the coordinateormal to  chiral edge bosons. We will use this effective action to find
the stripe orientation. It varies periodically in space about arthe optimal stripe solution of the saddle-point equations,
average value which plays the role of the Fermi energy. Thevhich is presented in Sec. lll. In this section, and in Appen-
plane is thus split into two types of region&) regions in  dix A, we discuss how théHartreg stripe solution is stabi-
which the fieldpgpis nearly constant and far from the Fermi lized by quantum edge fluctuations. It turns out that the re-
energy andb) regions in whichegp crosses the Fermi en- sults that follow from the solution that we will derive here
ergy. In the former, the system behaves as a perturbed Lahas the same physical properties and it is for all practical
dau level problem with a full gap in the single particle spec-purposes equivalent to the results of the Hartree-Fock theo-
trum. Inside these regions we can approximate the effectivées. In Sec. IV we analyze the effect of quantum fluctuations
action for slow time and space-dependent fluctuationg of around the saddle point. Here we derive the coupling be-
by means a gradient expansion of the fermionic determinantween the displacement fieldl and the nonchiral Luttinger
In other terms, we will keep field configurations which vary field ¢. In this section we give an estimate of the elastic
slowly on the scale of the cyclotron gap and are smooth omgonstants entering in E@l.1). Finally, in Sec. V we discuss
scales long compared with the cyclotron length. This proceour results and present our conclusions. In the Appendixes
dure is safe away from edge states. However, whereygr Wwe give technical details of the derivations discussed in the
crosses the Fermi level, the system has gapless fermiontext.
excitations. In these regions it behaves similar to an edge
state with a definite Fermi velocity determined by the slope
of the stripe solution. These edge states regions must be
taken into account explicitly in order stabilize the stripe
state.(These approximations are very accurate if the wave- In this section we will derive an effective action well
length of the stripe state is long compared to the cyclotrorsuited for description of an inhomogeneous state such as a
length. However, for reasonable interactions it is not thestripe state. Thus we will begin with a microscopic theory of
case. Nonetheless we will work within this approximationinteracting electrons in a large magnetic field and identify the
since it yields qualitatively correct answers. degrees of freedom needed to construct a stripe state. In Sec.
Thus, instead of regarding the edges as quasistatic strutd we will find the optimal stripe solution by means of a
tures, the quantum Hall smectic is a theory of fermions mov~variational approach.
ing onfluctuating stripesThis motion of the stripes is physi- The generating functional of two-dimensioriabnrelativ-
cally due to the fact that the position of the stripes is definedstic) interacting fully spin-polarized electrons in a perpen-
arbitrarily (up to a displacement by an integer number ofdicular magnetic field is
wavelengths This arbitrariness is due to the fact that the
translation symmetry normal to the stripe is spontaneously - N
broken in this state. Since this is a continuous symmetry, Z[AM]ZJ Dy* Dy’ A, 2.1
there should be a Goldstone boson associated with it, which
we will parametrize by the displacement fialdf the stripe  where
position. In other terms, a correct quantum theory of this
state requires that these collective modes be quantized cor-
rectly. We will do this by parametrizing the physically im- —f d3z
portant configurations as deformed stripe solutipgsof the

form
1 2
Psp= @sp Y 1—5(0&“) +u

whereu=u(x,y,t) is the displacement field. Hence, we will
describe the fluctuations of the quantum hall smectic in terms ) o - . o
of two sets of degrees of freedorfa) the “internal” chiral 1S the covariant derivative. HerB X A=B is the external
fermions andb) the shape fluctuations represented by a dytniform magnetic fieldV(x—y) is a two-body interaction
namical displacement field. Nevertheless, we will see belowpotential, andA , are small electromagnetic perturbations in-
that these degrees of freedom are not independent from eatioduced to probe the system.

other and that they are related in a manner dictated entirely We can decouple the quartic interaction term by means of
by the quantum mechanics of a charged fluid in a magnetia Hubbard-StratonovicfHS) transformation, and introduce
field. a new fielde. The generating functional now takes the form

Il. EFFECTIVE ACTION FOR THE QUANTUM HALL
STRIPE STATE

1
Y* ([IDo— ulp(z) + ﬁlDl,/f(Z)l2

e2
—gf 2z [y(2)|V(z—=2)|p(Z)]? (2.2

, (14 and

D,=d,tieA, +ieA, (2.3
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- S space, for these field configurations there is a gap in the
Z[AM]=j Dy* DyDepe'SlVAu 4] (2.4 fermionic spectrum of the order of the cyclotron energy
. fiwe. In this case, the fermion determinant is well behaved.
with It is well known that, for such regular configurations, the
1 effective actionS,, is a local functional ofe and its
S:j 432 * (2)[IDo— pw— @](2) + — |D(2)|? derivatives®=%2 However, wherep crosses the Fermi en-
2m ergy, i.e., where the number of filled Landau levels changes
1 from N to N—1, the gap vanishes, there are fermion zero
+ —f d3zf d3z’ o(z2)V Y z—2") p(Z'), (2.5  modes, and hence the fermion determinant is badly behaved.
2 The points of the plane where, at fixed timep crosses the
whereV ™1 is the inverse of the instantaneous pair potentiachemical potential define a set of instantaneous cutwes
operatorV(z—z'). Much of what we will discuss here can “strings”). These curves are internal “edges” that enclose
be done for any pair potential. However, to be able to find aff€gions with a given integer filling factor.
explicit analytic solution we will work with a short range ~ Therefore, instead of blindly integrating out all the fermi-
interaction with coupling constarg and rangea. In any  ©nic modes, we will integrate out all modes with energy
event at this level the physics will not depend too much orgreater than or of ordéfrw, . For a system with filling factor
the details of the pair interaction. In particular, there exists &=N+v*, where v* is the effective filling factor of the
choice of short range pair interactions for which the contri-partially filled Landau level, we can indeed integrate out all
bution of the interaction term to the action reduces to thefermionic states without difficulty except for those states on
following local expression the Nth Landau level with support on the “strings.” Thus we
will treat these states separately. We will see below that these
1( 4 3, . ) , states will play a crucial role in the dynamics of the quantum
Ef d Xf d*X" e(X)V"H(X=x") p(X") Hall stripe state. Thus, the full system can be described in
terms of an effective action of the form

(2.9

a2 1
= dsx(—V X) 2+ 5= p(x)? ~ ~
J | 2gtv et 5o Sl 0.1 =Sl ¢+ Sund 71, (210
provided that\/(i) is the short-ranged interaction potential where S,,[ ¢] is the effective action of the of the field
due to both the bulk regions and to the filled Landau levels.
In Eq. (2.10, Sgying is the contribution to the action due to

V(X)= g KO(m

2mral a)’ 2.7 the low-energy(chiral) fermion modesy, localized in the
neighborhood of the strings, which have not been integrated
whereK,(2) is the modified Bessel function. out. Note that both the position of the strings and the effec-
The fermionic action is now quadratic and, formally, the tive edge-potential seen by the chiral fermions are implicit
fermionic path integral can be carried out obtaining functions of the field configuratiop. In general the strings
aredynamica) with a nontrivial time dependence which has
Z("A#):f Dgpeiseﬁlz\wp]' (2.8  to be included explicitly in the path integral. In addition,
although at the level of the bare Hamiltonian the fields a

space and time-dependent field with no independent dynam-
ics of its own, the fluctuations of the bulk regions, i.e., the
regions where the filling factor is constant, induce nontrivial
} dynamics for the fieldo. We will show below and in Appen-
dix C that the necessity of retaining the chiral fermion zero
1 modes along the stringand much about the form &ing)
+ EJ Bz’ o(2)V " Hz—2)e(z'). (2.9  could be deduced, even were we have blindly integrated out
all the fermionic modes, from the requirements of gauge in-
This effective action is well defined provided the fermion variance.
determinant does not have any zero eigenvalues. However, By definition, the effective actiors,,J ¢] can be con-
even for fairly general smooth configurations of the figld structed perturbatively as the sum of all the one-particle ir-
there can be zero modes in the fermion determinant. To seeducible correlation functions of the field (see, for in-
this, let us consider configurations in whigh varies very stance, Ref. 23 The procedure outlined in Eq2.9) yields
slowly. In this case, the main effect of the figidis to shift  the one-loop approximation 8, ¢], i.e., this is the Har-
the single particle energies of the electrons, i.e., the energigsee approximation with random phase approximatieRA)
of the Landau levels will vary from point to point but suffi- corrections. To lowest order, the one-loop approximation
ciently slowly so that Landau level mixing can be ignored toyields the contribution to the effective action from particle-
a first approximation. Thus, at least locally in space, the elechole fluctuations between the topmost occupied Landau level
trons fill up an integer numbeX of Landau levels. Clearly, and the first unoccupied Landau level. This is the contribu-
the Hubbard-Stratonovich field plays the role of an effec- tion with the leading residue at long wavelengths. There are
tive local chemical potential. Thus, almost everywhere inother one-loop contributions but have smaller residue and

whereSg(A,¢) is given by

iD +1D2
'oMsDﬁ

Se=—iTrIn
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larger energy denominators. Thus, in the leading order imhe coupling to a weak electromagnetic perturbatiop
1/B, in which Landau level mixing is not taken into account, yjelds the additional term in the effective action

only the term with the leading residue are important. In this

paper we will only keep the contributions from the leading 3 e? ~ e? wreE R
residue since they are the largest and play and saturate the SAzf d*%) 5 Y(@)AB+ — v(@) e "A,Ld,A,
sum rulegiat low momenta The typical form of these terms

can be found, for instance, in Ref. 21. There it is shown that, ey(e) , €Y(e) , eyle)

in momentum space, these terms have residue proportional to + Ao, &= 4mm B+ 2 Be

ﬁz, dictated by current conservation, multiplied by a La-

guerre polynomial o! f the variablg?/B, and an energy pole +e7(¢) & €¢]_ (2.13
at the cyclotron frequency. In this paper we will make the 27w

(crude approximation of setting both the energy denomina-in Eqs.(2.12 and(2.13 we have neglected terms higher in
tor and the Laguerre polynomial at their zero frequency anderivatives and higher powers of the gauge field. These terms
zero momentum values. The approximate form of the effecgre functions of higher powerfand higher derivativeof &,

tive action that results is accurate for long wavelengths angs and . The coefficients of these terms are suppressed by
for slowly varying excitations. We will find below that the higher powers of B (see Ref. 21 In Egs.(2.12) and(2.13

wavelength of the stripe state is a actually not lémgfact e have denoted by(¢) the integer-valued function given
about three magnetic lengjhand hence this approximation by

is not accurate. Nevertheless it does yield a number of quali-
tatively correct results. We have checked, for instance, that -
including the full frequency dependence does not apprecia- ye)=2> 0
bly change our results. Thus, for the sake of simplicity we n=0
will use the long wavelength, low-frequency approximation.where ®(x) is the step function. Herg/(¢) is an integer-
However, this approximation does include the effects of theyalued function of the fieldp, and counts the number of
quantum fluctuations of the “internal edges” which will play filled Landau levels. It jumps by one unit wherevecrosses
an important role here. the Fermi energy. Equatid®.13 represents the action of the
In principle it is straightforward, but tedious, to add fur- small electromagnetic perturbations. The first tetimear in
ther corrections td,,{ ¢], such as the Fock or exchange the perturbation yields the constraint between the total
correction, which plays a crucial role in stabilizing the stripecharge density and the magnetic field<B). The other
solution>®*"However we will find in Sec. Ill that by a suit- terms, quadratic in the electromagnetic perturbation, are
able choice of boundary conditions it is possible to stabilizemaxwell-Chern-Simons terms with a local Hall conductance
the stripe state with the contributions from the quantum flucfor g system with an integer number of completely filled
tuations of the “internal edges,” without including the Fock |andau levels, given here by(¢), an effective local dielec-
terms. Although energetically the results found at this levekric constante=e?y(¢)/(27w.), and an effective local
of approximation are not as good energetically as in Hartreemagnetic permeability = e2y2(¢)/(27m).
Fock the solution, this procedure turns out to yield a state The effective action of Eq(2.12 gives an accurate de-
which, at least qualitatively, has very similar properties to thescription of the physics at distances long compared with the
one found in Hartree-Fock. Thus, for instance, we will find magnetic |ength and for frequencies low Compared with the
that the wavelength of the stripe state is very close to theyclotron frequencyw,. Thus, as it stands, this effective
Hartree-Fock result3In the remainder of this paper we will action does not describe the Kohn mode. To restore the ef-

L
T3

Mt - We |, (2.14

use the one-loop approximation 8 ¢]. fects of this collective mode it is necessary to consider the
o _ . . full density-density correlation function, which contains all
A. Contributions from incompressible regions even powers in the frequengyWe will ignore these effects

The form of Sy, can be computed quite easily. It has since the degrees of freedom involved in the stripe state are
essentially the same foffi?*??as the effective action for concentrated at energies much less that and are decou-

weak and slowly varying electromagnetic perturbations inPled from the Kohn mode.
the integer quantum Hall effect

Spulk=Set Sa (2.1 . )
_ ) _ As a consequence of gauge invariance, the adi2oh?
whereS, is the one-loop effective action for the Hubbard- goes not contain terms with an explicit dependence on the

B. Contributions from internal edges

Stratonovich fieldy time derivative ofp. Thus it may seem that the field has
YA (@) 3 ye) a2 no independent dynamics in this approximation. However,
S«):J' d3x{ —(V2<p)2+(—+— (V)2 the dynamics ofp arises from the nontrivial physics associ-
47w 8eB 4moc 29 ated with the strings defined by the discontinuitiesy¢®).

More specifically, we are interested in the case in which
yz(go)Bz] . the system hall completely filled Landau levels and thih
Landau level is only partially filled. Then, on the points of
(2.12  the plane where

PA(x) e e?

29 +EBY(<P)<P(X)_ amm
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1

N displacement vectoR. The first line of Eq.(2.18 is the
2

We™ p (2.15 coupling of the instantaneous charge fluctuations with the
_ o local potential. Herep,, represents the fluctuating component
the gap collapses. Notice that H@.15 is just the argument o the Hubbard-Stratonovich field at théh stripe. The main

of the functiony(¢). Equation(2.19 defines a generic time-  effect of this term is to generate the conventional density-
dependent curv®,(s,t), wheren labels the string and is  density interactions. The second line in E2.18) is the geo-
the arclength along the string. metrical coupling due to théme dependencef the position

As discussed in Appendix B, for a general field configu-g the n-th stripe R,(s,t), or rather itsdisplacemenaway
ration ¢, Sgying IS very complicated. However, to the extent from the static mean field configuration. The last line repre-
that the relevant configurations @f are quasistatic and sents the coupling of theth dynamical edge to an external
smooth, this problem looks very similar to the standard edg@|ectromagnetic perturbation. Notice that the coupling to the

state problem. The main difference is that in the problem we,ctyating geometry of the stripe has the same form as the
are interested in here the electric field which generates thgyypling to a gauge field.

“edge” is itself a dynamical field. It is well known from the

theory of edge statésin the integer quantum Hall effect S .
(IQHE), that in order to define a consistent, gauge-invariantand the_Hubbard—Stratpnowch field can b? found by dif-
ferentiating Eq.(2.15 with respect tos andt:

effective action for this system, it is necessary to add to the
bulk action Eq.(2.11), the action of one-dimensional chiral

p(Xy,t)=

The relation between the stripe displacement ﬂéws,t)

fermions (or its bosonized versiOnw_ith support at the E.V*(ony (2.19
edge®>~28 For an array of parallel static straight eddées., Js
for at a smectic saddle-point configuratioagp, the .
bosonized effective action¥s IR - dep
E'V(p:—g. (22@
dsdt
SstrinJGDSP"ﬁ]:; fH{at¢n,ias¢n+vas¢n&s¢n}’ The interpretation of these equations is simple. Equation

(2.16 (2.19 tells us that, since the cur\f%(s,t) is an equipotential,

wherev is the velocity of the chiral Bose fieldg. . The en ﬁ_¢ is normal to the edge Qirectioaﬁlﬁs. Equation
velocity v is the sum of two contributionga) the drift ve-  (2-20 implies that the time variation af produces a varia-

locity c|V ¢|/B, whereV ¢ is the effective electric field nor- 10N of R perpendicular to the curve.
mal to the edge an¢b) a finite renormalization due to the In what follows we will be interested primarily in the long _
forward scattering interactions among the edge fermions. popavelength fluctuations of the shapes of the strlpes.&ln this
a system with many edges there is also a host of possiblkegime, we need to keep track only of the fluctuation&Kpf
forward scattering interactions that mix the edge stitgtge ~ normal to the stripéwhich will be considered to be straight
will discuss these interaction below. The siginin Eq. (2.16) on average We will denote the normal component ﬁ by
is the chirality of each edge. the displacement field,. We will show in Sec. IV that the

It is also relatively straightforward, as shown in Appendix natural parametrization of the long wavelength fluctuations
B, to treat field configurations which represent small fluctua-of the smectic phase by has the form
tions aboutpgp. Between two nearby edges the quantum
Hall fluid is incompressible. Thus, as the fiefdfluctuates it ¢=¢sd U]+ op, (221
induces a charge redistribution at the edges. Physically thi\ﬁ/
means that the edge fermiortand the equivalent chiral
bosons feel an effective dynamical longitudinal electric field
due to the fluctuating geometry of the edges induced by th
fluctuations of ¢. The result is, to leading order ihy

here ¢ u] is a solution of the saddle point equations
locally deformedfor thenth stripe by thedisplacement field
a(X), and ¢ are the fluctuations of the gapped degrees of
reedom. We will also find that the only role of the geometric
couplings of Eq.(2.18 is to renormalize the effective cou-

~ s plings. In contrast, the first term of E¢R.18) is ultimately
SiL ¢, $]1=Sstind ®, 1~ Sstrind Psp: D1, (2.17)  responsible for the dynamics of the smectic phase. From now
h on we will refer tou, as the displacement field of theh
where

stripe. A key property of the actioB. ¢,{¢}] is the way
1 gauge invariance is realized in this phase: neitggf nor
S=> j dsdt @ - dsbn, - + —(IRnI2Rn; Sauipe @re separately gauge invariant, but their surfi’ig?
v This mechanism for cancelation of anomalies is discussed in
detail in Appendix C.

+032Rid(Rn) + s +

Ill. THE SADDLE-POINT EQUATION

+ (Aot AL dsRni+ dRni]) = dscbn = | » (2.18 AND THE STRIPE SOLUTION

wheren labels the stripe are the right and left moving In the last section we constructed an effective action suit-
edges of each stripe, anig-1,2 are the components of the able for a stripe state. The effective action has two contribu-
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tions: a “bulk” piece and an “edge” piece. In Sec. Il we quency. With this choice of units the saddle-point equation
gave a simple, quadratic local expression for the “bulk” con- (SPB in the bulk regions is given by

tribution, valid at the one-loop level and for short-range in- 5
teraction. As we discussed above this form of the effective a\_, ¢

action is an RPA expression and it does not include the con- a ( Nt 5| Vietg=rie)oc. 3.2

g 9
ventional Fock correction to the electron self-energy. The . . q lobal lati d .
“edge” contribution is due to charge fluctuations on the Eq. (3.2), is invariant under global translations and rotations,

“strings” discussed in the last section. Notice that at this3S well as under local gauge transformations. Homogenous
level the description is still static. and inhomogeneous solutions of E8.2) were constructed

In this section we will obtain the saddle point configura- " Bef. 22. The homogeneous solution, wifif¢) =N, is
tion ggp for a stripe state of a partially filetith Landau #n=NGwc and it represents a uniform quantum Hall fluid
Level (i.e., forN—1< »<N). Here we will use the effective state with filling factorv=N. Inhomogeneous solutions of

action discussed in the last section to construct a solutioH"IS equation are also permitted and have the form

using the following procedure. We will take the configuration o=yt 3.3
¢gp to be a smooth periodic function of the coordinate N '
perpendicular to the stripdshich we take to be along the  Sincey(¢n+ ) =N, 7 is the solution of
direction),

V29— &n=0, (34
PsHX,Y)=@sHY) = @sHy+\), 3.1 and £&=1/(gN+a?).
The solutionsy(y) of Eqg. (3.4) are simple real exponen-
tial functions with suitably chosen coefficients. The condi-

tion on the functiony implies that in a given regior should
satisfy the bounds

where \ is the period of the stripe. Furthermore we will
assume that the system has an exteptne\ along they
axis whereng is the number of stripes. In what follows we
will work with a fixed number of periodsg and find the
value of the period that minimizes the total energy at fixed 1 3
but largeng. (N+§ N+ 5) We— L= PN -
We will construct the stripe state as follows. First, as we 3.5
discussed in the previous section, we will regard the stripe ‘
state as a set of bulk regions separated by strings, represefier a stripe with period and effective filling factow, for
ing the edges, i.e., the set of points of the plane wheye each period there are two incompressible regions. Since the
crosses the chemical potential We will construct an ex- solution is periodic it is sufficient to consider the fundamen-
tremal solutionsepsp which is a smooth, differentiable and tal interval O<sy<\ and the two incompressible regions
periodic function with wavelengtior period \. As we meet aty=vr\. What matters here is that a smooth depen-
showed in Sec. Il, in the “bulk” regions the electron gas is dence of charge distribution onrequires that the solution
incompressible. Thus, in these regions, the effective actio(y) should be not only continuous gt v{\ but also dif-
Set is well approximated by a local function of the figjdp. ferentiable. Otherwise the charge distribution will not be dif-
Consequently, inside these regiopgpis just the solution of ferentiable and the energy of the state is necessarily larger.
a simple equation, the saddle-point equation. The solutiofhe solution thus constructed is then extended periodically
can then be constructed locally and it will be subject to ap-beyond the fundamental peripd,\). Notice that in this con-
propriate boundarymatching conditions on the curves rep- struction the value of the chemical potentiais determined
resenting the enclosing edges. For short range interactiorisom the value of the full solutiorp(y) aty=wv{\. In Ap-
the saddle-point equation is a partial differential equatiorpendix A we give explicit expressions for the functigqy).
whose solutions are easily constructed. In the stripe state In order to determine the optimum periadwe now need
there are two types of bulk regions, with filling factors to minimize the energy. To do that we will consider a stripe
=N and v=N+1, respectively, separated from each otherstate with a fixed and finite number of periods, for a
by curves(or stringg, the internal edges. We will denote by system with a finite width., commensurate with the number
vy the effective filling factor of the partially filled landau of stripes, i.e.L,=ng\.
level N. Thus, v denotes the fractional area of the sample Next we compute the total energy which is the sum of the
occupied by regions with=N+ 1. Hence vt is fixed by the  “bulk” energy associated with the solutiop(y), and the
number of electrons and by the magnetic field and it will beenergy of the “edges” in the partially filled Landau level. In
held fixed as we determine the optimal solution by varyingAppendix A we give details of the solution and of the calcu-
over the period\. A qualitative picture of this solution is lation of its ground state energy. There we show that the bulk
depicted in Fig. 1. In the rest of this section we present theontribution to the energy, computed froB)[ ¢ggl, is a
main results of this analysis, relegating the details to Appenmonotonically increasing function of (at fixedny), as it is
dix A. expected for the Hartree term of the ground state energy. In
It is convenient to define the dimensionless coupling conparticular, for largex the bulk energy is to an excellent ap-
stantg=2mgw./?. We will also rescale the lengths, includ- proximation linear in\. The energy due to the charge fluc-
ing the rangea of the potential, byx—x| and t—t/w., tuations at the “edges” is obtained by integrating out the
wherel is the magnetic length and, is the cyclotron fre- fermions near the regions where the solution crosses the

O™ U= PN <
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chemical potential. This energy depends parametrically ofipressure” term which stabilizes the state. Notice, however,
the local profile of the stripe which acts as the effective electhat if instead of minimizing the energyer periodwe would
trostatic potential that creates the edges and it is a monotonirave minimized the energger unit total transverse length
cally decreasing function of, which diverges ax —0, and L, we would not have found a minimum since the edge
approaches zero as—o. contributionper unit lengthis a constant, independent of the
Next minimize the total energy per period. Since the bulkperiod . The resulting state would have had=0. Of
to the energyper periodis a monotonically increasing func- course this is what happens in the Hartree-Fock approxima-
tion of the period\ (roughly lineaj, and the edge contribu- tion, in which case it is the Foclor exchanggterm of the
tion per periodis a monotonically decreasing function ®f  energy densityhat stabilizes the state. In any case, what will
there exists a finite value of the periadwhich minimizes  matter here is that it is possible to construct a state with the
the total energy per period. The result is a rather complicatedorrect properties, although a number of them, such as the
function of the coupling constamy, of the Landau level in- ground state energy are not as good as in the Hartree-Fock
dex N, and of the effective filling factow; of the partially — approximation. In any case most our results are fully consis-
filled Landau level. The solution simplifies considerably if tent with the work of Refs. 5 and 6 even at the quantitative
the Landau level is largé&> 1, and forvr=1/2. In this limit  level. The simpler approach that we used here has the advan-

we find that, the optimal value of the period, is given by tage of being very intuitive and that it yields analytical re-
sults making the analysis of the fluctuations considerably
_ g simpler than in the Hartree-Fock approximation.
=4l \/gN+aZSinh_1 g+_l
IV. QUANTUM FLUCTUATIONS AND SMECTIC
wherel is the magnetic length. For finitd, even forN as SYMMETRY
low as 2, the largeN expression turns out to be a good ] ) )
approximation. Notice that for reasonable values of the di- !N this section we consider the effect of quantum fluctua-
mensionless coupling constagtc 1, A~3NI. These re- tions about the mean-field state found in the previous sec-
sults are in qualitative agreement with the more precisé'on' The Iow—ene_rgy modes of the system n this state are
Hartree-Fock calculatiori smooth deformations of _the Iocathn of the stripes on length
We also find that the solution changes very smoothly as cales long compared with the period of the stripe. These are
function of v the vicinity of vr=1/2. Thus, from now on we the Goldstone modes of the broken translational symmetry.

will restrict our discussion to the much simpler caseNbf In terms of the Hubbard-Stratonovich field, these fluctuations

>1 andwr=1/2. In practice, there are few other details of are not small and cannot be treated simply as Gaussian per-

the solution that we will need for the rest of the discussion.turb"’ltlons since they do not have a restoring force. These

In particular in the following section we will use the solution fluctuations are similar to the zero modes of soliton systems

explicitly to determine the velocity of the effective edge and mgst he quantized exactly. On the other hand, small
fluctuations ofe are gapped, and, among other effects, they

modes as well as to compute the elastic constants of th escribe deformations of the stripes with a typical length
smectic phasésee Appendix . ) )
phases bp E scale shorter than the periad Ultimately, the main effects

Thus, this procedure yields a finite value of the optimal . ) .
period\. OnceN is determined, we take the thermodynamicOf these fluctuations is to renormalize the parameters of the
: y low-energy theory, including the forward scattering interac-

limit by just letting ng—oc. Notice that, in this process, we .
actually vary the area of the system at fixed filling factor and'o" betvyeen stripes. .

fixed number of periods. In this process the number of par-, we will .parametrlze the Iow-energy modes with a collec-
ticles is not necessarily kept fixed. Also, in this calculation,t've coordinateu(x,y,t), that varies on long length scales

the chemical potential is not fixed either as it depends on th@‘|’|y|>)‘ and long t_imeé't|>1/“’°' wherea_)c is the cyclo-
position of the stripes and is determined from the actuafron frequency. In this way, the set of functions that represent
saddle-point solution that minimizes the energy. the low energy modes are given by smooth deformations of

The variational approach that we followed here differs inthe saddle-point solution
a number of ways from the conventional Hartree-Fock ap-
proximation. In t)rlle Hartree-Fock approximation one Workz ¢=¢spyafu]Fulxy.n}, 4.
with a system wittfixed sizen the thermodynamic limit, and wherea[u] given by
looks for an extremum of théfree) energy density. In this
approach there is a competition between the Hartree contri- 1/du
bution, which favors stripes with —0, and the Fock term afu]=1- E(ﬁ_x
which favors stripes\—oo, resulting in a state with finite
period. In our construction we also found a Hartree termis a small dilation of they coordinate needed to keep the
which favors a state with— 0 but here the state is stabilized period of the stripe constant, even for “small” rotations
by the contribution from the edgésee Appendix A In the  «x. This parametrization is sufficient to construct tfie-
approach that we followed here, the energy associated witharized effective theory of the Goldstone modes, which has
the edge fluctuationsusually ignored in the Hartree-Fock the form of a quantized elastic theory.
approximation counter the preference of the Hartree term In this parametrization, thg coordinate of thenth stripe
for stripes with vanishingly small period, by supplying a is

: (3.6

2

4.2
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y=ya[u]+u(x,yp,t), 4.3 are given by Eqgs(2.16 and (2.18 evaluated on the de-
. . . .. formed stripes of Eq(4.3). In Eq. (4.5 we have not taking
wherey, is the coordinate of thath period of the stripe in ;4 account couplings betweey and higher derivatives of

the mean-field configuration. ... usince these interactions only give rise to irrelevant opera-
Therefore, we will split the Hubbard-Stratonovich field in 45 that only renormalize the coupling constants of the
two terms: a deformation of the saddle point parametrized theory.

the displacement field, and the high energy local fluctua- — gipce the small fluctuation8¢ couple linearly with the

tions o¢, : charge density, they can be readily integrated out. Their net
_ ffect is a contribution to the forward scattering interaction
Y.t = +u)+ Spy . 4.4 ¢ . )
ey D =ggfyalul+u)+ de, 4.4 among the edge modes. Thus, we get an effective action for
The effective actior(2.10 now takes the form the chiral edge fields of the form

1
Sul .01 1=S(eluD + 84+ + 5 | ¢’ sy Pado <1 . .
S*b:f(zTﬁaZ:ﬂiww’q” (.6) 8" .0,

2
oS Soy(X)+ - - . (4.5 (4.6)

X—

Opy(X) dpy(X")

In this equationS(¢[u]) is the action Eq(2.11 of the de- wherea,b=* denotes chirality of the mode. The tensgt®
formed saddle poinp[ u]= ¢sdya[u]+u), while S, andS, is given by

[ —de—gi{orFT ()} —gF " (a)
(w,q)= A RE (4.7)
S A (¢)) Qe —Gefo+F ()}

The effect of the integration over the high-energy modes idields is also an exact symmetry of the action. Thus, for small
encoded in the functionfab((i)_ An exp|icit evaluation of distortions, the effective aCtiOSu has the form outlined in
these functions is given in Appendix D. Ref. 10[see Eq(1.D]:

Thus, we arrive to a long distance effective action con- 5
taining essentially two sets of degrees of freedom: the long s, f dxdydn{ Q ( (92u> K| (ﬁu>2]

wavelength deformations(x,y,t), and the charge density * o

. . . ) 2\ gx2 ay
fluctuations¢?(x,t). The effective action can be cast in the (4.10
form '

whereQ and «, are elastic constants that will be given be-
S=S5,+S4+S, (4.8 low. In momentum spac§, becomes
where the first term depends only onthe second on the d?qde (Q K, _
chiral fields ¢, and the third describes the interaction be- S,=— j —— | =qi+ —q§+ - u(g)]?.
) (2m)3\2 2
tween charge and deformation through
4.1)
_ a_rya From the symmetry point of view, this action completely
Si= 2 f dX dxdnelyntux.yn. O] (4.9 characterizes the smectic phase. In particular, it has the same

symmetries of the free energy for a classical smettichus,

We see that we can obtain an effective theory for the stripghe coefficieniQ is the compressibility of the system and the
deformation integrating out the charge degrees of freedontypical length scal€=\Q/«, is the penetration length.
Conversely, integrating the deformation field we obtain a However, the properties of the quantum smectic phase are
theory for the charge fluctuations. Of course these two acnot determined by symmetry alone since such arguments
tions contain the same physics. cannot determine the quantum dynamics of this phase. In

The form of S, is strongly constrained by symmetry. To order to find what is the dynamics of the quantum smectic,
begin with, S, it is a function only of the derivatives af ~ we begin by noting that at frequencies low compared with
since a constant shift in is just a global translation, which ., the displacement fields do notactually have a dynam-
has no energy cost. In addition, a constant derivative alongs of their own. At this energy scale, their dynamics results
the direction of the stripe is equivalent to an infinitesimalsolely from the coupling to the fluctuations of the gapless
global rotation, which in the absence of symmetry breakindields ¢?2, representing the “edge modes” of each stripe.
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These are the only degrees of freedom with low energy 02 —w? Q K,
states. Thus, the dynamics of the quantum smectic is con- L‘[u]:[ 5 4< = 2) — - —qf,
trolled by the coupling between the displacement fields and 2k N7\ 0= v gy 2 2
the edge modes. (4.14

In order to investigate the role of this coupling it is in- Whereaqzﬁ(w,q), o is the renormalized velocity, an

structive to integrate out the degrees of freedefy repre- . . o L 5
senting the edge modes, and to determine the form of th§4g‘/NI is the period of the stripe in the limitblg+a

effective theory of the displacement fieldslone. However, >0, g<<1. In this limit, the elastic constants take the values
since the fieldsp? are gapless, the resulting effective dynam-

[ugl?

ics of the displacement fields is nonlocal. Let us denote by v= gN*”ZwCI, (4.15
@5 the deformed saddle-point solution for thth edge of the 2
nth stripe, i.e., 5
a a K ZW—N_s/Zw (4.16
Pa=psdynelul+u(x,yn, O} (4.12 I 1693 ¢
The effective action obtained upon integrating ou the edge 5
modes has the form KL:ZgNS/chl -2 (4.17
-> dxd%dtdt’l& Q3w 1 s b, (413 3
A 2 Q= 55 9Nwe, (4.18

This expression has two contributions: static and dynamic. — _ )
The static contribution is proportional 2. This is just a Where we have used that fgrsmallv~v. A detailed deri-
renormalization of the coupling constagitand at this level ~ Vation of these constants is given in Appendix E. _
its only effect is to renormalize the coefficiert in Eq. From Eq.(4.14 we immediately obtain the dispersion
(4.10. Thus, in order to evaluate the dynamic contribution infélation for the low-energy excitationéin dimensionless
what follows we will subtract the static part from E@.13  orm)
and absorb it an a finite renormalization of (see below. . )
In order to write Eq.(4.13 in terms of the displacement 2_ 2 Qo+ K10y 4.19
field u we calculate explicitly thex derivatives and write the @7 K9 ;” ' '
resulting expression in the continuum limit on theariable. 1+ —Z(qu+ Klqi)
The form of the end result of this calculation is dictated by v
the symmetries of the classical smectic as well as by how the here ki= i\ Clearly. th : t th )
ground state stripe configuration transforms under spatial re~ ¢ © <1~ KA eagy, _elr/c: IS @ crossover at the mo
flections. For the case that we have worked out in detail ifmentum scale g* =(v*/Qx)™" where the dispersion
this paper the stripe, i.e., the charge profile, is invariant undethanges form cubic to a linear behavior
reflections about the middle of a stripe. This is a parity even
state. A consequence of this symmetry is that the effective o==* \/’;_”|qx|\/QQ§+ k. g, for oy<q*, (4.20
velocities of right and left moving edge fields on each stripe
¢% are the same. However, if the stripe state is not invariant w==*v|q, for q,>q*. (4.21
under reflection, the parity odd piece of the solution forces . ] ] ]
the effective velocities of the left and right moving fields to !t iS obvious from Eq(4.14) that the dynamics of the stripe
be unequal, resulting in a different spectrum of |0W_energ};jeform'atlons is nonlocal. _Thls behavior is induced by the
states. We will refer to this as the parity odd state. Physicallydynamics of the gapless “internal edge states.” o
a simple way to get an asymmetric state is to apply an in- It_|s |nterest|_ng to note that, in _splte of this n(_)nlocallty_, it
plane electric field perpendicular to the stripe staurally, 1S Simple to find a local effective Landau-Ginsburg-like
in a system with the center of mass pinned by the confiningh€ory for the quantum unpinned smectic phase using two
potentia). This situation would yield “unbalanced” chiral Tfields: () the Goldstone mode and (b) an effective non-
excitations with different velocities and couplings for the chiral scalar field¢ representing the charge fluctuation of
right and left movers. It is simple to show that the breaking®ach stripe. This is possible so becauseutfield for a parity
of parity changes the spectrum fromaavqi dispersion to  €Ven stripe couples with to a nonchiral linear combination of

" - . : .
an w~q§ law (at g,=0). We will not discuss this case in b and¢_ - The effe_:ctl\(e Lan_dau-Gm;bur_g L_agranglan for
detail. the smectic phase, in dimensionful units, is given by

For a parity even stripe, the velocity of the chiral modes 1
are equalp =vg=v, and it is a simple task to compute the = dout—ILam2—"l s )2
dynamical term of the displacement fieldPutting all terms |2¢ Yo 2 ) 2( «b)
(both static and dynamjidogether we find that the effective
Lagrangian(in Fourier spacgfor the displacement fieldsis
given by

2|4

—%(aiu)z—%(ayu)z. (4.22
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The elastic constants of this effective action are given in Eqquently, the low-energy physics of the quantum Hall smectic
(4.18. is described in terms of two coupled and canonically conju-
Except for the second term, and up to a choice of unitsgate fields:(a) the displacement fields that describe the

the effective Lagrangian of Eq4.22 has exactly the same geometry of the quantum Hall smectic afig) the charge
form as the Lagrangian of E@l.1) which was introduced on degrees of freedom represented by the nonchiral “Luttinger
phenomenological grounds in Ref. 10. The term proportionafield” ¢.
to (d,¢)? is an irrelevant operator at the quantum Hall smec- While the form of the static part of the action is dictated
tic fixed point. This irrelevant operator is responsible for theentirely by symmetry, in general, the dynamics depends on
crossover discussed above at momemtaq*. In this re- the particular details of the model. However, in this case, the
gime the quantum smectic behaves effectively in the sameffective dynamics is dictated by the Lorentz force which
way as a system of pinned stripes, the smectic metal phase gbverns the motion of charged particles in electromagnetic
Ref. 15. fields. An important consequence is that it requires that the
Using the values of the elastic constants of Eql8 itis  charge and displacement fields to become canonical conju-
straightforward to estimate the scale at which the crossovegate to each other. In Ref. 10 we discussed the consequences
between the cubic and linear dispersion takes place. Usingf this effective theory as a fixed point. There it is also dis-
the value of the stripe period known from Hartree-Fockcussed at length the issue of the stability of the quantum Hall
calculations, to estimate a value for the coupling constgnt  smectic phase and a possible transition to a crystalline state,
and our analytical expressions in the laigéimit, we find a  both of which remain still interesting and open problems.

crossover momentum scale at In this paper we used the effective low-energy theory to
determine the spectrum of collective modes of the quantum
L. 2 |1 Hall smectic and found that they obey amqf(’ law. It
ar~ \/_; @3’ (4.23 should be possible to detect these modes in Raman scattering

experiments. Furthermore, we also found that there exists an
wherel is the magnetic length. For instance, fér=2, Iq* energy and momentum scales, determined by irrelevant op-
~0.86 and forN=4, Iq* ~0.66. This means that for lower erators, above which the quantum Hall smectic behaves as a
Landau levels, the crossover takes place at scales near theo-dimensional array of Luttinger liquids, a smectic metal-
ultraviolet cutoff 1I. In this regime the dispersion relation, lic state.

for an excitation withg, =0, is cubic, An open and very interesting question is the possible ex-
istence of a quantum nematic state of the 2DEG in large

w~0.2N"w(1q,)°, (424 magnetic fields at zero temperature. This is an important

where o, is the cyclotron frequency. Foi=2 and forg,] question both conceptually and experimentally as it appears

to be consistent with the experimental d&fa.Recently, in

scattering experiment probing the system at wavevectors iRef- 33 a theory_ of.a quantum nematic Fermi fluid at zero
the regimdq,~0.5, should be able to reach the cubic regimee>(tem"jll magnetic field as an msf[ablllty Qf a Fe.rml liquid
of the dispersion relation, which is the signature of the- state was presented. It will be particularly interesting to con-

pinned quantum Hall smectic phase. These wave vectorSUct a theory of theuantummelting of the quantum Hall

correspond to a wavelength of the order of 2 to 3 times themectic by a dislocation-antidislocation unbinding mecha-

stripe period, i.e., of the order of Jum. In higher Landau nism. A key ingredient of such a theory is the quantum me-

levels this effect should be more difficult to detect since theCh"’m'C"’II origin of charge quantization in the smectic. Work

crossover scale decreases rapidly Nidncrease[see Eq. along these lines is currently in progress. Recently, quler
(4.23]. In summary, we found an effective long wavelength and Dorsey used Hartree-Fock calculations to determine

description of the quantum smectic in full agreement withthhe effect(ljve elgsiﬂc cotnstart1_ts (:f ztahqua_r:_tur?tHall ne{natlc ¢
the general picture of stripe states, such as electronic liquif] 125€ and used them 1o estimate the critical temperature o

crystal phases, as discussed in Refs. 8,9. the quantum Hall nematic-isotropic transition. .
Finally, another open question of interest is the possible

transition to a paired quantum Hall stdte’® Our stability
V. CONCLUSIONS AND OPEN PROBLEMS analysis shows that it is possible to have a direct phase tran-

In this paper we have derived the effective theory for theSition to a paired state. This possibility is supported by exact
low energy degrees of freedom of the quantum Hall smecti€iagonalization studies in small systefts’ However, it is
phase introduced phenomenologically in Ref. 10. The quanduite likely that there is a complex phase diagram, such as
tum Hall smectic phase of the 2DEG breaks spontaneousl{fi¢ one discussed in Ref. 9, including a nematic phase, vari-
both translation invariancén the direction perpendicular to Ous crystalline phases and incompressible fluid phases such
the stripes and rotational invariance. In our approach the@s the paired quantum Hall state.
guantum Hall smectic is pictured as a pattern of locally in-
co_mpressible regi(_)ns separated by dyr_wamical e_dges deter- ACKNOWLEDGMENTS
mined by an effectivéHubbard-Stratonovighdynamical po-
tential. The resulting “edge modes” are thus coupled to the We are profoundly indebted to S. Kivelson and V. Ogane-
dynamical fluctuations of the shape of the incompressiblsyan who helped us with numerous and pointed questions
regions, represented by a set of displacement fields. Consend discussions throughout this work. We thank H. Fertig,

=1/2 the typical frequency i®~4x 10 2w, . Thus, a light

245320-11



DANIEL G. BARCI AND EDUARDO FRADKIN

M. P. A. Fisher, B. I. Halperin, T. C. Lubensky, and A. H.

MacDonald for useful discussions. This work was supported
in part by the National Science Foundation Grant Nos.

DMR98-08685(S.A.K.) and DMR98-17941(E.F). D.G.B.

was partially supported by the University of the State of Rio

de Janeiro, Brazil and by the Brazilian agency CNPq.

APPENDIX A:  MEAN-FIELD THEORY OF THE STRIPE
STATE

In this appendix we give the details of the construction of
the saddle-point solution for the stripe state. As discussed i

Sec. Il we must first construct solutions of E@.12. In
particular we will seek solutions which within a period
have the form

for O<y<w\,

VA<Y<N\,

en(y)

Al
en+1(Y) (A1)

e(y)= for

where ¢y and ¢y, 1 are general solutions of E€3.2), with

y=N and y=N+1, respectively. In other words, in the re-

gion of the plane wheres/=N all Landau levels up to and
including the leveN—1 are completely filled(Here, for the
sake of simplicity we are ignoring spjrThe filling factorv,
with 0<wv<1, is the effective filling factor of the partially

filled Nth Landau level. A general solution of this type reads

on(y)=goN+a,eN+a e V. (A2)

Smooth periodic functions satisfy the boundary conditions
en(0) =Nt 1(N),
en(0)=@p 11 (N),

en(VN) = ont1(VN),

en(PN) = oy (VN). (A3)

These conditions determine completely the coefficients
anda_ of Eq. (A2). The explicit solution is

A
§N+13inh{§[§|\1+1(1_ V)]]
N+

on(Y) =0

o(é,v)
VA
xoosv{gN( —7) : (A4)
S (a
stmh{E[fNV]]
en+ 1Y) =0go N+1—W
N
Xcosf{éml(y—g(lﬂ) ,  (AD)

where
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129 1-v
o(&,v)=E&ny1COS §N7 sinhy ény 1 > A

] 12N 1-v
+§Nsmh{ §N7] cosr{ §N+1( > ))\] .

(A6)

Thus, we found a family of solutions parametrized by the
wavelength\. A qualitative picture of this solution is de-
picted in Fig. 1. As we already explain in Sec. Il B we fix

Ry minimizing thetotal energy per period.

1. The energy of the saddle-point configuration
There are two contributions to the total enerdg¥) the
bulk energy and2) the energy of the chiral edges.
a. The bulk energy

To calculate the energy of the stripe solution we simply
replace Eqs(Al), (A4), and(A5) into Eq.(2.12 to find

1
Wbulkzﬂj d?x y(@){e+ y(@)wc}

npLy (A
:W JO dy y(e){e+y(e)wd,

(A7)

wheren, is the number of periods in the sample dnds the
length in thex direction. The energy per period, per uwit
length has the form

Wouie=AW(N) +W()), (A8)

where

and

—(N+1)

J— (O
W(N)=?(1+g)[N2v+(N+1)2(1—v)] (A9)
W()\)=gwci[N§N+l

én ]
EN §N §N+1

(N RN
smh{ig,\,v] smh{ig,\,ﬂ(l— v)]

A
Sinh{z[fNV"’fNH(l_ V)]]

X . (A10)

SinceW()) is boundedW,, is a monotonically increasing
function of \ [with W, (0)=0]. For large\, the first term

of Eq. (A8) dominates, and in that limiiV,, is essentially a
linear function of\, see Fig. 2.

b. The energy of the chiral edges.

As we already pointed out, the discontinuities of the func-
tion vy(¢) determine a set of one-dimensional curves
(“strings”) where the chiral degrees of freedom reside. At
the level of the saddle-point solution these are static straight
lines aty=n\ andy=(n+»)\, with n an integer.
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FIG. 2. Energy of the saddle-point solution.

Upon integrating over the array of chiral bosons, and tak-
ing into account that is static, we can calculate the contri-
bution of the edges to the energy per period. Since th

saddle-point solutiony is independent ofx, and ¢(0)

=¢(v\) anddye(0)=—dye(v\), we find that the energy

per period per unit lengtfalong thex axis) is

- ¢(0)?

edge— | &y§0(0)| . (A11)

In terms of the explicit solution§Al), (A4), and (A5), this
energy reads

A
g, Sinh{z[fNV"' Enva(l— V)]’
Wedge:

s sin?-(%g,\,ﬂ[l— v])sinl—<%§Nv)

- sin 2§N+1[ v]|cos 5 &nv
N
En sinr{g[wwmlu—v)]]

(A12)

2

X| N+
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2. The N>1 limit

In order to clarify the dependence of the optimal period
with the microscopic parameters of the theory it is conve-
nient to consider particular limits where the expressions for
the energy become tractable. In particular, it is possible to
find an explicit analytic result for the period of the stripe in
the limit N>1 (see Ref. & In this limit, &y/éni1=1

+O(1/N), and the energyV given by Eq.(A13) becomes

A

N? | [1+g
2

W=gw,—
9 éN g

R
smr(EgN)
+. N R
sml-(ig,\,[l—v])sm%(Eng

Note that\ always appears in the combinatiagy/2. This

[neans that the natural scale for the periody&. In terms

of the variable;=)\§N/2, the extremal condition

(A14)

—— =0 (A15)

o
=

becomes

_ _ 1
v csech(vx)+(1—v)csech[(1—v)x]= &

(A16)

For v=1/2 we find the explicit solution
x=2sinh! \/—g— (A17)

g+1)’

Thus, the period of the stripe, for largéand v=1/2, is

— : [ 9
— 2 —1
N=4\gN+a“sinh [ g+1}|'

Equation(A18) implies that the period of the stripe is set by
a combination of the cyclotron radius of the partially filled
Landau levelyNI, the range of the interactica and a func-

(A18)

For large\ this function approximates exponentially fast ation of the dimensionless coupling constantin particular,

constant, and diverges as\1for small values of the period.

the wavelength of the stripe state is of the order of the cy-

Thus, the total energy per period of the saddle-point soclotron radius only in the limit in which the dimensionless

lution is
W= Wbulk+ Wedge (A13)

whereW,,; andWygeare given by Eq(A8) and Eq.(A12),

range of the interaction is sma#</gN. In this limit, the
result of Eq.(A18) agrees with the estimates of Koulakov
and co-workers.It turns out that expressioff\18) is a very
good approximation even for small valueshfin Fig. 3 we
compare the numerical solution of the period fb# 4 with
the largeN approximation. Notice that the position of the

respectively. In Fig. 2 we depict these functions. We see thajptimal value ofx is essentially the same for both curves.
the competition between bulk and edge energies yields a e can also solve EqA16) whenv~1. In this case the

stable and finite value of the perio_d

period of the stripe is written as
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whose position is defined bR(s,t)=[x(s,t),y(s,t)]. For
the most part it will be sufficient to consider only one edge at

a time.
Let us expand the potential around its constant value on
the strin
w, — g
T e(xy,)=e(X,y,t) +vn,x,, (B3)
where
~ 10 2
v=ld,¢|= (E Vol? (B4)

andn,, is a unit vector perpendicular to the surface defined
by Eqg. (B2). The effective action in this approximation is

0 10 20 30 40 50 1
AN s=f d3z| ¢* (iDo— Ex+ton,x,) ¢+ %|Dw|2 :
. (BS)
FIG. 3. Comparison between the energy f=4 and theN
—o0 |imit. To proceed with the calculation, we rewrite the action in
generalized coordinates
— 2
)\:(1 ) \ ,gi_l\/g'\Hazl' (A19) X, = (Xo,X1,X2)— &, = (€0,€1,62)-
-V

The coordinate transformation and the metric is defined by
It turns out that the period increases as the filling factor in-¢,,=(d¢,/9x,)x, and gw=(ax“/a§#)(axﬁ/a§”) Oap,r TE-
creases(away from 1/2). In any case, we expect that for spectively. It is convenient to choose a coordinate system
filling factors not too close to 1/2 the stripe state shoulddefined by
become unstable to other types of phases, such as a bubble R
phase, a striped crystal;**'*and possibly a quantum nem- &=n,X, (B6)

: 32
atic phase. in such a way that the differential quadratic form is given by

APPENDIX B: THE GEOMETRICAL COUPLINGS d?=dé5+ gapde2ded,

In this section we derive the effective action for the chiralwhere
edge states of the stripe state. Qualitatively this problem is
very much analogous to that of the fermion zero modes a, b=0, 1. (B7)
bound to a dynamical domain waf Here we will show how

. S > .. In these coordinates the domain wall is defined by the equa-
a geometrical electric field is induced on the stripe due to it

Yion £,=0 and the action of EB5) now reads

dynamics.

The action for two-dimensional fermions in a magnetic [0€,\ 0 -
field and a time dependent background potentias S:j d3¢ \g|v* (&) I(W) E+U§2_EN W(z)

“
3 * i 1 2 1
S= | d%2 y*(2)[IDo— p—eel(2)+ 5= DY)?|, + 5= 7D oI, (B8)
(B1) .
where we have used the notation

where D;=4;+iA; and VXA=BZz The Hubbard- 5. ¢
Stratonovich fieldp behaves as a scalar potential in electro- mw__ﬂ rog= |detgw,|. (B9)

dynamics. As such itadiabatically deforms of the Landau S a% Ox
levels. If the topmost filled Landau levell crosses the

: . It is now convenient to choose the Landau gauge in the new
chemical potential at some set of smooth curves

coordinates
e[x(s,1),y(s,),t]=Ex—u (B2) Ao=0, A;=B&,, A,=0. (B10)

then the system has gapless excitations with support on thedext we expand the Fermi fiel in the new coordinates and
curves, which thus behave as dynamical edges. Hgrés  find
the energy of the\th Landau level. This equation defines a

time-dependent stringlike object, a two-dimensional surface (o E1,60) = CnoX(E)YN(ENT(&). (BLY)
embedded in a Euclidean three-dimensional space-time, o o P P
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The set of functions{X"(&1),Y(&2), T"(&o)} constitute a modes was gauge invariant. However, this is not the case

complete basis, and satisfy the eigenvalue equations here as these modes have a gauge anomaly.
Equation(B18) is the action of a one-dimensional chiral
i19oT"=w,T", (B12)  fermion in curved spacetime. It is well known that this sys-
tem is anomalous and as a consequence the divergence of the
19 X"=k,X", (B13)  current is proportional to the curvature of the space time. As

a matter of fact, the curredtof the chiral fermion satisfies

2 ph? 2 mo
- 95— 2Byp*igt?| €,— B2 |9, 3?8( &,
[ 2m (n*h? (?OJ0+U&1J1=de< %’Sl)). (B19)
(n*h)? .
+ ng_ EN] Yp=NnpYp- (B14)  to leading order in5(&y,£,). Therefore, within this approxi-
mation, Eq.(B19) reduces to the divergence of the edge cur-

Equation(B14) is nothing but the eigenvalue equation for the rent in Ca_lrteslan2 coordinates. Hence, we are led to mtgrpret
linear harmonic oscillatofin generalized coordinatesBy  the quantity dét°6(£o,£1)/d¢ d¢, ] as aninduced geometri-
inspection we see that E¢B14) has a zero moda, p=0 cal electric fieldgiven by
provided Ey is the energy of a Landau level in the undis-
torted coordinates. Upon substitution of E&§11) into Eq.
(B5), using the usual orthogonality relations for the oscillator
eigenfunctions, and after factoring out the zero mode from
the rest of the spectrum, we find that the effective action forThe same expression for the geometrical electric field was
the zero mode is given by also derived for a system of Dirac fermions with time-
dependent domain walfS. It is straightforward to see that

1 2 2 2
Egeon= 93 6358— (301.9)°. (B20)

1 E is generated by the “dynamical electromagnetic
So= | d%¢ Vo S{ub(E)Dyo(§)— Dyl (£) ()}, Somtial”
2 p
(B19 A= 5. 59268 (B21)
where o o™
A= 9, 591046. (B22)
D=<a—go—v7]“1n”o>&——(vn“ln"l—&—gl i ! 1orto
at d&o ot | 9, We have used this type of coupling in the second line of Eq.
(B16  (2.19.
Here we have defined=1/B.
For the problem of interest here, we will specialize these APPENDIX C:  CHARGE CONSERVATION,
results to the case of a stripe whose mean position is a CANCELATION OF ANOMALIES, AND THE CALLAN-
straight line along the axis, as defined in the saddle-point HARVEY EFFECT

approximation of Sec. Ill. With this aim in mind, we define a

: In this Appendix we show that charge conservation in a
coordinate system as

stripe state is realized thorough an anomaly cancelation
mechanism that includes the effects of dynamical edges. The

Xo= o, problem that needs to be addressed here is that we have
X,= & separated the dynamical degrees of freedom into a “bulk”
Losb piece , given by Eq92.13 and(2.12), and an “edge” piece,
S0 (£q,E1,%=0) Eq.(2.16. It turns out that théJ (1) gauge transformation of
Xp=08(&g,E1)= i , (B17)  the external gauge field is not a symmetry of each part of this
|9x,9(x2=0)] action separately, but instead it is a symmetry of the full

system. this problem is quite familiar in the physics of the
QHE 2>-2730The main difference in the problem of interest
%ere is that the edges are not static. This subtle cancelation of
anomalies is an example of the well known Callan-Harvey
mechanisnt’

S=f d2¢ \/6{%(5)((90—0(91)%(5)+F¢3(§)¢0(§)}, To illustrate the point, let us consider a general time-
(B18) dependent gauge transformation

where d(&y,£4) is an infinitesimal local displacement of the
position of the edge. In this coordinate system the effectiv
action can be cast in the form

where I'=3g~Y2Dg"2 This quantity couples in the same Ro—Rotdoa(xy,t), A—A+aaxyt). (CD
way that a gauge field couples to a chiral zero mode. Notice

that this gauge field looks similar to a pure gauge and as suchhe only term in the bulk action that it is not gauge invariant
it would seem that it should have no effect on the theoryis the Chern-Simons term for the electromagnetic perturba-
That would indeed be the case if the theory of the zerdions
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eZ
WC—S:EJ d3X y(go)ep,va/.L&VApv (CZ)

where y(¢)=32,_oO(u—E,+¢) and E,=(n+3)ao,
where®(x) is the step function. All the other terms B4
are gauge invariant.

The variation of the Chern-Simons action EG2) is,

e? ~ ~
WVCS: - EJ’ dgx{é)ﬂ'y(@)e,uvpavAp_ ﬁy(aeﬂvpavAp)}
(C3)
which can be split in two terms
(SVVCS: 55W+ 5BW (C4)

with

o2
W= Zf d* [—adiy(e)e;&+afay(e) ;&)
(CH

e2
so= 5| &% [~ adov(e)B+ofay()B )],
(Co
where &= g;A;— doA; and B=€; ;d;A; are the electric and

magnetic field associated FDM. If y(¢) is a constant, then
S6W=0 up to boundary terms. However,

‘%7(90):; o(pu—Ente)d,e. (C7)

Thus, in the presence of an electromagnetic field, and\for

completely filled Landau Levels, we have

2
e
OW=— 5~ f d*xad(n—Ent ¢)€ijd 08

2
+2€_WJ d* df{ay(e)e;El, (C8
o2
OgW=— EI d*xad(uw—En+ @) dioBB
o2
+§J d3x dolay(@)B;}. (C9

The first integral of Eq.(C8 has support on a one-

dimensional dynamical string() defined by

IQ:{e(x,y,t)=Ex—pu}. (C10

The second integral is a surface term, on a surface that con-

tains the string, Eq(C10. Explicitly we find

2

e
55W: +—

dsdtaté(s,t),
T JRX 0O

(C1)
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oW of Eqg. (C9) does not vanish becauseis in general
a time-dependent function. Then, by using E2.20 it is
possible to writedzW as a function of the variation of the
actual position of the string in the form

e2

5BW: —

IR .
- RdeSdm(a_t'n)B(s’t)' (C12

From Eqgs.(C11) and(C12) we see that the divergence of the
current in the bulk is

eZ
é’tp+ (?i‘-]i = i?

A >

t-&+

IR A)
E-n B, (Cl3)

where thef and B have support on the string$) defined in
Eg. (C10.

It is not difficult to show that this divergence is canceled
against the divergence of the currents of the chiral edge
states derived in Eq2.16). The induced current at the edge
9

IR A)~
EW'] An(S,t) .
(C14

e? -
JS=I; Ag(s,t)+

AodsF V2

Here we have assumed the gaué =0, whereA, is the
component of the vector potential locally normal to the
strings. Evaluating the divergence of this current, we find

R | ~
E~n asAn

IR )
E-n B(s,t)

2
e ~
(doFvdg)Is= I?| dAgt

el .
=:—‘t~5+

m

(C19

which cancels Eq(C13) exactly. In Eq.(C15 we ignored

terms proportional tod (dR/at-n) since they can be ab-
sorbed in a reparametrization of the cusre f(s,t).

APPENDIX D: FLUCTUATION PROPAGATORS

The propagators#? of Eq. (4.7) are the inverse of the
fluctuation operator

8%S,

| {( ( >+a2)vz 1]5( )
—_—|=- — | V2= =1 8(x—x
Se(x') (X) 7 g

g
(DY

without the zero modes. In other words we need to evaluate
the Green function

a_z Z_E vt — oo’
Ye(xX)]+ g \4 g G(x,x")=—2m8(x—x")

(D2)

subject to the condition tha®(x,x’') =0 when|x—x'|—.

These boundary conditions automatically take off the zero
modes since exclude any fluctuation that could globally
translate or rotate the system. Notice that this propagator is

wheret; = eijaj¢/|ﬁ¢| is a unit vector tangent to the strings static i.e., it is instantaneous. This feature is a consequence

2. The = sign is the orientation of the curve.

of the local incompressibility of the bulk regions. Equation
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(D2) is a singular partial differential equation due to the pres-

ence of the function/ ¢(x)]. Defining the functionf(y) as

a2

N+ —,

f(y): a2
N+1+ —,

g

NA<y<(N+v)A\,

(D3)
(n+v)Asy<(n+1)\.

with n integer and 8 v<<1, considering also a smooth regu-
larization off(y) (i.e., finite temperatupeand Fourier trans-
forming in the coordinate

dg, .. .,
G(x—x’;y,y’)=f2—7:e'qx‘x IG(ay:y,y') (DA

we arrive at the following differential equation in

d2 2 1 2 ’
—fy) — Faxf(y)+ =] [Glax:y.y ) =(2m)“a(y—y")
dy g
(D5)
with
G(ax;y TNy +N)=G(ax:y.Y"). (D6)

To solve Eq.(D5) we adopt a recursive method. First we
solve the equation for an arbitrary periodaway form the
position of the functiorny). In this case we have

d? 1
‘f(y)d_yz+ aef(y)+ g/ [Fry)=0. (O7)
A general solution reads
Fo(y)=A, e 4 Ble K-(y=m) (D8)

for nn<y<(n-+v»)\ and
F;(y):A:eM[y—(MV)A]_FB:e—K+[y—(n+V)>\] (D9)

for (n+v)A<y<(n+1)\, where we defined

K2=q2t — (D10)
- gN+a?’

Ki=q§+;. (D11)
g(N+1)+a?

Imposing the continuity of the functiol, (y) and its deriva-
tive F/(y) at the pointsy=(n+v)\ andy=(n+1)\ it is
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|

whereM and M’ are two 2x2 matrices(functions ofK ,
andK _) with unit determinant and the subindex O indicates
and arbitrary fixed period chosen as the origin of coordi-
nates. Similar equations, involving the inverse matriges
andM’ ! can be found for negative values wof

The propagators we are looking for are given by

Ag

D1
8. (D13)

Aq
B+

n

):(M/)n

Frt=F,(n\)=A, +B,, (D14)

Fr =F [(n+v)\]=A"+B/. (D15)

Therefore, in order to guarantee the boundary condition

lim Fgf=0

n—*ow

(D16)

we choose A, ,B,) to be an eigenvector d¥l with eigen-
value m_<1. For concreteness let us define the vector
a_

(a_,B-) such that
B-) :m‘(ﬂ_)

with m_<1 anda? + 82 =1. In this way we can write

A, a_
W
wherea is an arbitrary coefficient. We can write a similar
expression for negative
a.
)

where (@, ,.) is a unit eigenvector of the matrik ~1.
(The eigenvalue is the same due toMet1).

Finally, let us suppose that th&function has support in
y'=0. We can determine the two unknown coefficieats
andb by asking continuity of the function and discontinuity
of the derivative at the origin:

M

(D17)

) =am” (D18)

AT,
.

-n

=b m’l‘l( (D19

Fo(0)—Ff,(0)=0, (D20)
dFg dFY,  (2m)?
dy |, dy [, fO° (b2

where we choose the regularization fify) such thatf(0)

possible to find a relation between the coefficients of the= N+ a?/g+ 1.

solution in different periods. In matrix notation this relation

reads
An\_ ol R0
Bn Bo

(D12)

and

Following this tedious by direct algebra it is possible to
exactly determine the propagators of E¢314) and(D15).
Although the result is a complicated expression, it can be
cast in a simpler form considering the lintg+a?>g and
v=1/2. In this limit, the differencé=K  —K_ is an infini-
tesimal quantity and the propagators to leading ordes in
read
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e InK_x long distances, we can safely take the mean value of the last
Frr(gy)=2m2 20 (D22)  expression over one period, obtaining
K_| N+ — 3 2
d°x 3y
’ J.Z;—§{£¢wn%3[&xowwﬁ, (E2)
_ —nK_\ =
4o . o © S ’ n=0, where we have defined
Fo (O =27"—F——
a e(n+ 1K\ n<o 2
K_ N+E * : 3 M de(y) E3
To obtain the propagators in momentigy space we make In momentum space, this corse-graining procedure is equiva-
the f0||owing Fourier transformation: lent to take the zero momentum limit of the Fourier trans-
form of y(¢)®’'. We simply obtain
ap = ap igyn 3
F (qXqu) n;x ~7:n (qx)e [ (D24) Q: _N2U2. (E4)
32
Itis straightforward to obtain In the limit Ng+a?>g we can use Eq:D27) for the veloc-
RS sinh(K_\) 1 ity obtaining
TN coshiK_\)—cosq,’ 3 N2g2
(D25 =128, m (E5)
e —16m2 sinhK_A\/2) — (1+e') In Eq. (4.18 we show the value of) for a very short ranged
K_ coshifK _\)—cosq,’ potentiala—0.
(D26) The compressibility«, is nothing but the energy density
P A per period of the saddle-point configuration calculated in Ap-
where in this approximation pendix A[see Eq(Al14)]. To formally obtain this expression
1 a2 we proceed as follows: first we substituteby the deformed
v:_g—_ (D27)  saddle pointe(u) in Eq. (2.12. Then we performed the
2 \JgN+a? change of variableg’ =y« + u obtaining to leading order in

- the derivatives ofi
In the long wavelength limig,—0 andq,— 0, the kernels

Fap(q) take the finite limiting values .
| axetetuoyy

2

1%
NEn coth A &p/2), (D28

f++(0)=

~ | ¢ 1( 5 &u)z
NJd Xﬁ[@(V)]JrEJ d3xL[¢(y)] y T

2
167v 1 (D29) (E6)

Ny sinh(Aén/2) L . . -
Again, in the last integral, the factdl{ ¢) is a periodic func-
which are simple smooth functions of the coupling constanttion of y with period\, while dyu is a slowly varying func-
tion of y. Therefore we can take the mean valuelgt) on

Fr(0)=

APPENDIX E: ELASTIC CONSTANTS a period defining in this way
In this appendix we show some details of the calculation 1 AN 2
: a“|[de(y)

of the constant®), «, , and | that enter the action of Eq. N dyj | y+ 2all 2 v
(4.14. The elastic constant® and x, are obtained by re- 0 9 y
placing inS, [Eq. (2.12] the deformed saddle-point solution 1 L Ftt _ReFt
¢(u) [Eq.(4.1)]. The main contribution t@ comes from the + ( el ) 2, (E7)
first term of Eq.(2.12, 29 (v+FTT)2—|Ft)?

d3x 32 d3x 3y%(¢')2 where ¢ is the undeformed saddle-point solution. The ker-
J — ——[Pe(u)]?= J — ——(d%u)?, nelsF** andF "~ come from the contribution of the chiral
47 8 4m 8 ED modes to the action and are given in Appendix D. Notice that
only thec]—»O limit of this kernels is important here. In the
where ¢’ is a derivative of¢. While the termaiu in Eq.  limit gN+a?>g andg<1 this expression is given by
(E1) is a slowly varying function ofy in a scale 2Iong 2With .
respect to the stripe period and the expressiop“(¢’) is P2 T2
a rapidly varying function within a period. Therefore, at Kl_ZN g7 VgN+a“. (E8)
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The dynamical term in Eq4.14) comes form the Gaussian where the renormalized velocity is given by
integral of the chiral modes and is given by E4.13. We

can rewrite it more explicitly as vi=(v+F )2 |F 2 (E12
1 and the constari can be calculated from
_ 2 2! !
2 ;ﬂ dXd™X" @ @mILmndxUmdyUn (E9) - EJ)\ y v+ FHt—ReF*t- (6’_90)2 €13
where Mo T+ FrH | FP Y]
Hmn:{wiJrTr:l _ 77117— 77:1+}mn- (E10 From Eq.(4.13 we have that_
2
Calculating the inverse matrixr—1, subtracting the static KH:U__ (E14)
part, and taking the continuum limit as in the preceding cases KA
we finally find the dynamical contribution to the Lagrangian ysing the expression faF*# given in Appendix D we find
(in momentum spage in the limit Ng+a?>1 andg<1
c L @ (E11) m°
= T SN ToT=7, — —3pN]—3/2
dyn 2 w2_v2q)2( KH_Eg N . (E1H
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