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Theory of the quantum Hall Smectic Phase. II. Microscopic theory
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We present a microscopic derivation of the hydrodynamic theory of the quantum Hall smectic or stripe phase
of a two-dimensional electron gas in a large magnetic field. The effective action of the low-energy state is
derived here from a microscopic picture by integrating out high-energy excitations with a scale of the order of
the cyclotron energy. The remaining low-energy theory can be expressed in terms of two canonically conjugate
sets of degrees of freedom: the displacement field that describes the fluctuations of the shapes of the stripes and
the local charge fluctuations on each stripe.
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I. INTRODUCTION

It is by now generally accepted that electron correlatio
in a two-dimensional electron gas~2DEG! at sufficiently
high Landau levels, are responsible for the large anisotro
in the transport properties observed in recent experiment
extremely high mobility samples in large magnetic fields.1–3

Analyzing fluctuations around a Hartree-Fock stripe state4–7

and exploiting an analogy with the stripe related phases
other strongly correlated electron systems,8 Fradkin and Kiv-
elson proposed9 that the ground states of quantum hall sy
tems with partially filled Landau levels withN>2 are pre-
dominantly electronic liquid crystalline.

In a separate paper, coauthored with Kivelson a
Oganesyan,10 hereafter referred to as paper I, we proposed
effective low-energy theory for the quantum Hall smec
described in terms of the Goldstone modes of the bro
translation and rotation symmetry. The effective low-ene
Lagrangian for this state is given by
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~1.1!

where we have assumed that the stripes run along thex di-
rection. Hereu(x,y) is the displacement field, the Goldston
mode of the broken translation symmetry, representing
transverse displacements of the stripes~i.e., along they di-
rection!, f is the Luttinger field, representing the char
fluctuations on each stripe,l is the wavelength of the strip
state, andk i , k' , andQ are elastic constants.

In this paper we give a physically intuitive microscop
derivation of the effective low-energy theory of Eq.~1.1!.
The approach that we will use here is based on a microsc
theory which focuses on the role of dynamical shape fluct
tions in the quantum Hall stripe state and to their coupl
with the charge fluctuations in this state. Thus, we will p
special attention to the role played by the displacement fi
u, as well as to its coupling to the charge fluctuations on e
stripe represented by the Luttinger fieldf.

The construction that we use here is partially inspired
the picture of the quantum Hall smectic suggested
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Hartree-Fock calculations.4–7,11–13 Koulakov and
co-workers5 and Moessner and Chalker6 found that the stripe
state can be viewed as a set ofN filled Landau levels, with a
charge modulation due to the electrons in the partially fil
Landau level~see Fig. 1!. For fully polarized~‘‘spinless’’!
fermions at a static level this state looks similar to an array
strips of charge, corresponding to regions with an effect
filling factor N11, surrounded by regions with filling facto
N. Thus, the electrons arrange themselves in a state w
locally mimics a gapped integer Hall state. If this charg
modulated state was due to an imposed external poten
inside these regions the electron fluid would be incompre
ible and only the excitations at their ‘‘edges’’ would rema
gapless. Hence, at a static level, the state looks similar to
array of fixed chiral Luttinger liquids, the edges of integ
quantum Hall stripes, a picture advocated by Fradkin a
Kivelson,9 and by MacDonald and Fisher14 ~see also Refs.
15, 16!. This, however, is not the full story since this char

FIG. 1. Schematic representation of the quantum Hall sme
state as a set of stripes, running along the verticalx axis. HereN
1n* is the total filling factor,l is the period of the stripe,f(y) is
the effective local potential, andm is the effective chemical poten
tial. The arrows represent the internal chiral edge states.
©2002 The American Physical Society20-1
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modulated state is a self-consistent ground state, and no
result on any externally applied potential.

In an insightful paper, MacDonald and Fisher investiga
the properties of the quantum Hall smectic viewed as
array of coupled chiral Luttinger liquids subject to co
straints imposed by the requirement of global rotational
variance. One of the issues raised in Ref. 14 is how m
independent degrees of freedom does the quantum
smectic actually have. Fradkin and Kivelson9 had advocated
a picture in which both charge and shape degrees of free
although coupled were both part of the physical picture.
rect inspection of the effective action of Eq.~1.1! shows that
the displacement fieldu, which embodies the shape fluctu
tions, and the Luttinger fieldf of charge fluctuations are
canonically conjugate dynamical variable much as coo
nates and momenta are in classical mechanics. This con
tion is a direct manifestation of the Lorentz force, crucial f
the dynamics of charged particles in magnetic fields. Th
although shape and charge are both useful descriptions o
physics, we find that they are not truly independent degr
of freedom, in agreement with the point of view of Ma
Donald and Fisher.

A simple change of basis relates the quantum smectic
ture, which uses as degrees of freedom the displacement
u and the Luttinger fieldf, and the picture of an array o
coupled chiral Luttinger liquids

u→]xf
11]xf

2, ~1.2!

f→f12f2. ~1.3!

In the chiral Luttinger liquid basis the effective Lagrangi
of Eq. ~1.1! theory takes the same form as in the effect
theory of MacDonald and Fisher.14 In Hartree-Fock theories
of the stripe state,5–7,11–13the stripe state is derived by ba
ancing the energy density of the Hartree contribution, wh
favors phase separation, against the energy density of
Fock contribution which, as an exchange driven effect fav
the spreading out of the charge. In these calculations, Lan
level mixing is taken into account in the form of an effecti
interaction for electrons in a partially filled Landau level b
it is otherwise ignored.The resulting stripe state is struct
with a fairly short wavelengthl. For Landau level indexN
52, Hartree-Fock calculations yield a wavelengthl;3l ,
wherel is the magnetic length, whereas forN@1, Moessner
and Chalker find6 l;constANl, where the constant factor i
a number of order 3. At the level of these calculations5,6

dynamics is ignored. Dynamics is incorporated later on
the level of a time-dependent Hartree-Fock approximati
as in the extensive work of Fertig and co-workers12,13. Using
these methods Fertig and co-workers calculated the spec
of collective modes, and studied the problem of the s! tabi
of the stripe state with respect to a possible stripe crys
However, while Hartree-Fock theories have been very s
cessful in predicting a smectic state and in studying som
its important properties, they do not yield a transparent p
ture of the role of the quantum fluctuations of the edges
the charge stripes. Conceptually, this is an undesirable
24532
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ture since the displacement fields of these edges are
Goldstone bosons of the spontaneously broken transla
symmetry.

The main purpose of this paper is to construct an effec
theory in which the effects and the dynamics of the displa
ment fieldu, the Goldstone boson of the broken translati
symmetry of the quantum Hall smectic, and of the Lutting
field f, is made explicit. Although it is possible to derive th
effective theory by a detailed analysis of a Hartree-Fock c
culation, as was done by Lopatnikova and co-workers17 re-
cently and independently from this work, here we will intr
duce instead an alternative approach based on the intu
picture of the stripe state as an array of regions of inte
quantum Hall states separated by dynamical edges. For
plicity we will consider the case of short range interactio
with a pair potential given in Eq.~2.7!, instead of a long-
range Coulomb interaction. Although long-range interactio
change the behavior of the charged collective modes, t
precise form are not central neither to the existence of
stripe state itself nor to much~but not all! of the qualitative
physics.

We begin by constructing an effective local potential
means of a decoupling of the microscopic density-den
interactions in terms of a Hubbard-Stratonovich fieldw, and
then proceeding to~formally! integrating out the fermionic
degrees of freedom. At the level of a static approximati
the field w plays essentially the role of a scalar~Hartree!
potential self-consistently generated by the electron-elec
interactions. For a system of electrons in a fixed area,
Hartree term leads to a phase-separation instability. As
pointed out above, the exchange effects of the Fock te
stabilize a stripe structure. We will show here that it is po
sible to stabilize the stripe state instead by the quantum fl
tuations of the edge states and by a suitable choice of bo
ary conditions. Below we construct an effective action whi
includes the effects of the Hartree contributions and of
quantum fluctuations of the edge states and show that
action leads to a stable stripe solution provided we cho
boundary conditions with a fixed number of stripe wav
lengths. The resulting stripe state that we find has a wa
length comparable in scale to the wavelength found
Hartree-Fock calculations,5,6 but the ground-state energy
not as good.~Naturally, it is possible to compute the effec
of the Fock terms.! Nevertheless, the approach use here le
to an effective action parametrized instead by the geom
of the stripe states, i.e., the positions of the stripes~or ‘‘in-
ternal edges’’!, and by the local charge fluctuations on ea
stripe. Furthermore, we also find that the elastic constant
the effective theory are physically sensible.

The next step is to construct the stripe ground state a
solution of the saddle-point~self-consistent! equations de-
rived from an effective action as described above. We w
assume that the stripe state locally looks similar to region
a integer quantum Hall states separated by edges. We
construct the stripe solution with a fixed integer numbern of
periods of wavelengthl for the stripe for a geometry o
width Ly5nl. We will then compute the total energy of th
state with a fixed number of periods. This total energy h
two contributions:~a! a piece coming from the ‘‘bulk re-
0-2
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THEORY OF THE QUANTUM HALL . . . . II . . . . PHYSICAL REVIEW B 65 245320
gions’’ and ~b! a piece coming from the ‘‘edges.’’ We wil
then find the optimal solution by minimizing the total ener
as the periodl is varied while keeping the number of period
n fixed.

The saddle-point solution thus constructedwSP is a
smooth differentiable function of the coordinatey normal to
the stripe orientation. It varies periodically in space about
average value which plays the role of the Fermi energy. T
plane is thus split into two types of regions:~a! regions in
which the fieldwSP is nearly constant and far from the Ferm
energy and~b! regions in whichwSP crosses the Fermi en
ergy. In the former, the system behaves as a perturbed
dau level problem with a full gap in the single particle spe
trum. Inside these regions we can approximate the effec
action for slow time and space-dependent fluctuations ow
by means a gradient expansion of the fermionic determin
In other terms, we will keep field configurations which va
slowly on the scale of the cyclotron gap and are smooth
scales long compared with the cyclotron length. This pro
dure is safe away from edge states. However, whereverwSP
crosses the Fermi level, the system has gapless fermi
excitations. In these regions it behaves similar to an e
state with a definite Fermi velocity determined by the slo
of the stripe solution. These edge states regions mus
taken into account explicitly in order stabilize the stri
state.~These approximations are very accurate if the wa
length of the stripe state is long compared to the cyclot
length. However, for reasonable interactions it is not
case. Nonetheless we will work within this approximati
since it yields qualitatively correct answers.!

Thus, instead of regarding the edges as quasistatic s
tures, the quantum Hall smectic is a theory of fermions m
ing onfluctuating stripes. This motion of the stripes is physi
cally due to the fact that the position of the stripes is defin
arbitrarily ~up to a displacement by an integer number
wavelengths!. This arbitrariness is due to the fact that t
translation symmetry normal to the stripe is spontaneou
broken in this state. Since this is a continuous symme
there should be a Goldstone boson associated with it, w
we will parametrize by the displacement fieldu of the stripe
position. In other terms, a correct quantum theory of t
state requires that these collective modes be quantized
rectly. We will do this by parametrizing the physically im
portant configurations as deformed stripe solutionswSPof the
form

wSP5wSPS yA12
1

2
~]xu!21uD , ~1.4!

whereu5u(x,y,t) is the displacement field. Hence, we w
describe the fluctuations of the quantum hall smectic in te
of two sets of degrees of freedom:~a! the ‘‘internal’’ chiral
fermions and~b! the shape fluctuations represented by a
namical displacement field. Nevertheless, we will see be
that these degrees of freedom are not independent from
other and that they are related in a manner dictated ent
by the quantum mechanics of a charged fluid in a magn
field.
24532
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This paper is organized as follows. In Sec. II we pres
the derivation of the effective action for the stripe state. H
we construct an effective action forw in the ‘‘bulk regions’’
and at long wavelengths, and show how it couples to
edge modes. These in turn will be written in terms of a se
chiral edge bosons. We will use this effective action to fi
the optimal stripe solution of the saddle-point equatio
which is presented in Sec. III. In this section, and in Appe
dix A, we discuss how the~Hartree! stripe solution is stabi-
lized by quantum edge fluctuations. It turns out that the
sults that follow from the solution that we will derive her
has the same physical properties and it is for all pract
purposes equivalent to the results of the Hartree-Fock th
ries. In Sec. IV we analyze the effect of quantum fluctuatio
around the saddle point. Here we derive the coupling
tween the displacement fieldu and the nonchiral Luttinger
field f. In this section we give an estimate of the elas
constants entering in Eq.~1.1!. Finally, in Sec. V we discuss
our results and present our conclusions. In the Append
we give technical details of the derivations discussed in
text.

II. EFFECTIVE ACTION FOR THE QUANTUM HALL
STRIPE STATE

In this section we will derive an effective action we
suited for description of an inhomogeneous state such
stripe state. Thus we will begin with a microscopic theory
interacting electrons in a large magnetic field and identify
degrees of freedom needed to construct a stripe state. In
III we will find the optimal stripe solution by means of
variational approach.

The generating functional of two-dimensional~nonrelativ-
istic! interacting fully spin-polarized electrons in a perpe
dicular magnetic field is

Z@Ãm#5E Dc* DceiS(c,Ãm), ~2.1!

where

S5E d3z Fc* ~z!@ iD 02m#c~z!1
1

2m
uDc~z!u2G

2
e2

2 E d3zd3z8uc~z!u2V~z2z8!uc~z8!u2 ~2.2!

and

Dm5]m1 ieAm1 ieÃm ~2.3!

is the covariant derivative. Here¹W 3AW 5BW is the external
uniform magnetic field,V(x2y) is a two-body interaction
potential, andÃm are small electromagnetic perturbations i
troduced to probe the system.

We can decouple the quartic interaction term by mean
a Hubbard-Stratonovich~HS! transformation, and introduce
a new fieldw. The generating functional now takes the for
0-3
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DANIEL G. BARCI AND EDUARDO FRADKIN PHYSICAL REVIEW B 65 245320
Z@Ãm#5E Dc* DcDweiS[c,Ãm ,w] ~2.4!

with

S5E d3zFc* ~z!@ iD 02m2w#c~z!1
1

2m
uDc~z!u2G

1
1

2E d3zE d3z8w~z!V21~z2z8!w~z8!, ~2.5!

whereV21 is the inverse of the instantaneous pair poten
operatorV(z2z8). Much of what we will discuss here ca
be done for any pair potential. However, to be able to find
explicit analytic solution we will work with a short rang
interaction with coupling constantg and rangea. In any
event at this level the physics will not depend too much
the details of the pair interaction. In particular, there exist
choice of short range pair interactions for which the con
bution of the interaction term to the action reduces to
following local expression

1

2E d3xE d3x8w~x!V21~x2x8!w~x8!

[E d3xS a2

2g
@¹w~x!#21

1

2g
w~x!2D ~2.6!

provided thatV(xW ) is the short-ranged interaction potentia

V~xW !5
g

2pa2
K0S uxW u

a
D , ~2.7!

whereK0(z) is the modified Bessel function.
The fermionic action is now quadratic and, formally, t

fermionic path integral can be carried out obtaining

Z~Ãm!5E DweiSeff[ Ãm ,w] , ~2.8!

whereSeff(Ãmw) is given by

Seff52 iTr lnF iD 02m2w1
1

2m
D2G

1
1

2E d3zd3z8w~z!V21~z2z8!w~z8!. ~2.9!

This effective action is well defined provided the fermio
determinant does not have any zero eigenvalues. Howe
even for fairly general smooth configurations of the fieldw
there can be zero modes in the fermion determinant. To
this, let us consider configurations in whichw varies very
slowly. In this case, the main effect of the fieldw is to shift
the single particle energies of the electrons, i.e., the ener
of the Landau levels will vary from point to point but suffi
ciently slowly so that Landau level mixing can be ignored
a first approximation. Thus, at least locally in space, the e
trons fill up an integer numberN of Landau levels. Clearly
the Hubbard-Stratonovich fieldw plays the role of an effec
tive local chemical potential. Thus, almost everywhere
24532
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space, for these field configurations there is a gap in
fermionic spectrum of the order of the cyclotron ener
\vc . In this case, the fermion determinant is well behav
It is well known that, for such regular configurations, th
effective actionSbulk is a local functional ofw and its
derivatives.18–22 However, wherew crosses the Fermi en
ergy, i.e., where the number of filled Landau levels chan
from N to N21, the gap vanishes, there are fermion ze
modes, and hence the fermion determinant is badly beha
The points of the plane where, at fixed timet, w crosses the
chemical potential define a set of instantaneous curves~or
‘‘strings’’ !. These curves are internal ‘‘edges’’ that enclo
regions with a given integer filling factor.

Therefore, instead of blindly integrating out all the ferm
onic modes, we will integrate out all modes with ener
greater than or of order\vc . For a system with filling factor
n5N1n* , where n* is the effective filling factor of the
partially filled Landau level, we can indeed integrate out
fermionic states without difficulty except for those states
theNth Landau level with support on the ‘‘strings.’’ Thus w
will treat these states separately. We will see below that th
states will play a crucial role in the dynamics of the quantu
Hall stripe state. Thus, the full system can be described
terms of an effective action of the form

Seff@w,c̃#5Sbulk@w#1Sstring@w,c̃#, ~2.10!

whereSbulk@w# is the effective action of the of the fieldw
due to both the bulk regions and to the filled Landau leve
In Eq. ~2.10!, Sstring is the contribution to the action due t
the low-energy~chiral! fermion modes,c̃, localized in the
neighborhood of the strings, which have not been integra
out. Note that both the position of the strings and the eff
tive edge-potential seen by the chiral fermions are impl
functions of the field configurationw. In general the strings
aredynamical, with a nontrivial time dependence which ha
to be included explicitly in the path integral. In additio
although at the level of the bare Hamiltonian the fieldw is a
space and time-dependent field with no independent dyn
ics of its own, the fluctuations of the bulk regions, i.e., t
regions where the filling factor is constant, induce nontriv
dynamics for the fieldw. We will show below and in Appen-
dix C that the necessity of retaining the chiral fermion ze
modes along the strings~and much about the form ofSstring)
could be deduced, even were we have blindly integrated
all the fermionic modes, from the requirements of gauge
variance.

By definition, the effective actionSbulk@w# can be con-
structed perturbatively as the sum of all the one-particle
reducible correlation functions of the fieldw ~see, for in-
stance, Ref. 23!. The procedure outlined in Eq.~2.9! yields
the one-loop approximation toSbulk@w#, i.e., this is the Har-
tree approximation with random phase approximation~RPA!
corrections. To lowest order, the one-loop approximat
yields the contribution to the effective action from particl
hole fluctuations between the topmost occupied Landau le
and the first unoccupied Landau level. This is the contrib
tion with the leading residue at long wavelengths. There
other one-loop contributions but have smaller residue
0-4
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THEORY OF THE QUANTUM HALL . . . . II . . . . PHYSICAL REVIEW B 65 245320
larger energy denominators. Thus, in the leading orde
1/B, in which Landau level mixing is not taken into accoun
only the term with the leading residue are important. In t
paper we will only keep the contributions from the leadi
residue since they are the largest and play and saturate
sum rules~at low momenta!. The typical form of these term
can be found, for instance, in Ref. 21. There it is shown th
in momentum space, these terms have residue proportion
qW 2, dictated by current conservation, multiplied by a L
guerre polynomial o! f the variableqW 2/B, and an energy pole
at the cyclotron frequency. In this paper we will make t
~crude! approximation of setting both the energy denomin
tor and the Laguerre polynomial at their zero frequency a
zero momentum values. The approximate form of the eff
tive action that results is accurate for long wavelengths
for slowly varying excitations. We will find below that th
wavelength of the stripe state is a actually not long~in fact
about three magnetic lengths! and hence this approximatio
is not accurate. Nevertheless it does yield a number of qu
tatively correct results. We have checked, for instance,
including the full frequency dependence does not appre
bly change our results. Thus, for the sake of simplicity
will use the long wavelength, low-frequency approximatio
However, this approximation does include the effects of
quantum fluctuations of the ‘‘internal edges’’ which will pla
an important role here.

In principle it is straightforward, but tedious, to add fu
ther corrections toSbulk@w#, such as the Fock or exchang
correction, which plays a crucial role in stabilizing the stri
solution.5,6,17However we will find in Sec. III that by a suit
able choice of boundary conditions it is possible to stabil
the stripe state with the contributions from the quantum fl
tuations of the ‘‘internal edges,’’ without including the Foc
terms. Although energetically the results found at this le
of approximation are not as good energetically as in Hartr
Fock the solution, this procedure turns out to yield a st
which, at least qualitatively, has very similar properties to
one found in Hartree-Fock. Thus, for instance, we will fi
that the wavelength of the stripe state is very close to
Hartree-Fock results.5 In the remainder of this paper we wi
use the one-loop approximation toSbulk@w#.

A. Contributions from incompressible regions

The form of Sbulk can be computed quite easily. It ha
essentially the same form18,21,22 as the effective action fo
weak and slowly varying electromagnetic perturbations
the integer quantum Hall effect

Sbulk5Sw1SA , ~2.11!

whereSw is the one-loop effective action for the Hubbar
Stratonovich fieldw

Sw5E d3xH g2~w!

4pvc

3

8eB
~¹2w!21S g~w!

4pvc
1

a2

2gD ~¹w!2

1
w2~x!

2g
1

e

2p
Bg~w!w~x!2

e2

4pm
g2~w!B2J .

~2.12!
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The coupling to a weak electromagnetic perturbationÃm
yields the additional term in the effective action

SA5E d3xH e2

2p
g~w!Ã0B1

e2

4p
g~w!emnrÃm]nÃr

1
e2g~w!

4pvc
E22

e2g2~w!

4pm
B21

eg~w!

2p
Bw

1
eg~w!

2pvc
EW •¹W wJ . ~2.13!

In Eqs.~2.12! and ~2.13! we have neglected terms higher
derivatives and higher powers of the gauge field. These te
are functions of higher powers~and higher derivatives! of E,
B, andw. The coefficients of these terms are suppressed
higher powers of 1/B ~see Ref. 21!. In Eqs.~2.12! and~2.13!
we have denoted byg(w) the integer-valued function given
by

g~w!5 (
n50

`

QFm1w2S n1
1

2DvcG , ~2.14!

whereQ(x) is the step function. Hereg(w) is an integer-
valued function of the fieldw, and counts the number o
filled Landau levels. It jumps by one unit whereverw crosses
the Fermi energy. Equation~2.13! represents the action of th
small electromagnetic perturbations. The first term~linear in
the perturbation! yields the constraint between the tot
charge density and the magnetic field (r}B). The other
terms, quadratic in the electromagnetic perturbation,
Maxwell-Chern-Simons terms with a local Hall conductan
for a system with an integer number of completely fille
landau levels, given here byg(w), an effective local dielec-
tric constant «5e2g(w)/(2pvc), and an effective local
magnetic permeabilityx5e2g2(w)/(2pm).

The effective action of Eq.~2.12! gives an accurate de
scription of the physics at distances long compared with
magnetic length and for frequencies low compared with
cyclotron frequencyvc . Thus, as it stands, this effectiv
action does not describe the Kohn mode. To restore the
fects of this collective mode it is necessary to consider
full density-density correlation function, which contains a
even powers in the frequency.21 We will ignore these effects
since the degrees of freedom involved in the stripe state
concentrated at energies much less that\vc and are decou-
pled from the Kohn mode.

B. Contributions from internal edges

As a consequence of gauge invariance, the action~2.12!
does not contain terms with an explicit dependence on
time derivative ofw. Thus it may seem that the fieldw has
no independent dynamics in this approximation. Howev
the dynamics ofw arises from the nontrivial physics assoc
ated with the strings defined by the discontinuities ofg(w).

More specifically, we are interested in the case in wh
the system hasN completely filled Landau levels and theNth
Landau level is only partially filled. Then, on the points
the plane where
0-5
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w~x,y,t !5S N1
1

2Dvc2m ~2.15!

the gap collapses. Notice that Eq.~2.15! is just the argumen
of the functiong(w). Equation~2.15! defines a generic time
dependent curveRW n(s,t), wheren labels the string ands is
the arclength along the string.

As discussed in Appendix B, for a general field config
ration w, Sstring is very complicated. However, to the exte
that the relevant configurations ofw are quasistatic and
smooth, this problem looks very similar to the standard e
state problem. The main difference is that in the problem
are interested in here the electric field which generates
‘‘edge’’ is itself a dynamical field. It is well known from the
theory of edge states24 in the integer quantum Hall effec
~IQHE!, that in order to define a consistent, gauge-invaria
effective action for this system, it is necessary to add to
bulk action Eq.~2.11!, the action of one-dimensional chira
fermions ~or its bosonized version! with support at the
edge.25–28 For an array of parallel static straight edges~i.e.,
for at a smectic saddle-point configurationwSP, the
bosonized effective action is25

Sstring@wSP,f#5(
n
E dsdt

4p
$] tfn,6]sfn7v]sfn]sfn%,

~2.16!

wherev is the velocity of the chiral Bose fieldsf6 . The
velocity v is the sum of two contributions:~a! the drift ve-
locity cu¹W wu/B, where¹W w is the effective electric field nor
mal to the edge and~b! a finite renormalization due to th
forward scattering interactions among the edge fermions.
a system with many edges there is also a host of poss
forward scattering interactions that mix the edge states.14 We
will discuss these interaction below. The sign6 in Eq. ~2.16!
is the chirality of each edge.

It is also relatively straightforward, as shown in Append
B, to treat field configurations which represent small fluctu
tions aboutwSP. Between two nearby edges the quantu
Hall fluid is incompressible. Thus, as the fieldw fluctuates it
induces a charge redistribution at the edges. Physically
means that the edge fermions~and the equivalent chira
bosons! feel an effective dynamical longitudinal electric fie
due to the fluctuating geometry of the edges induced by
fluctuations of w. The result is, to leading order inuw
2wSPu,

SI@w,f#[Sstring@w,f#2Sstring@wSP,f#, ~2.17!

where

SI5(
n
E dsdtH wn,6]sfn,61

1

v
~]sRni] t

2Rni

6v]s
2Rni] tRni!6]sfn,6

1~Ã01Ãi@]sRni6] tRni# !6]sfn,6J , ~2.18!

wheren labels the stripe,6 are the right and left moving
edges of each stripe, andi 51,2 are the components of th
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displacement vectorRW . The first line of Eq.~2.18! is the
coupling of the instantaneous charge fluctuations with
local potential. Herewn represents the fluctuating compone
of the Hubbard-Stratonovich field at thenth stripe. The main
effect of this term is to generate the conventional dens
density interactions. The second line in Eq.~2.18! is the geo-
metrical coupling due to thetime dependenceof the position
on then-th stripeRW n(s,t), or rather itsdisplacementaway
from the static mean field configuration. The last line rep
sents the coupling of thenth dynamical edge to an externa
electromagnetic perturbation. Notice that the coupling to
fluctuating geometry of the stripe has the same form as
coupling to a gauge field.

The relation between the stripe displacement fieldRW n(s,t)
and the Hubbard-Stratonovich fieldw can be found by dif-
ferentiating Eq.~2.15! with respect tos and t:

]RW

]s
•¹W w50, ~2.19!

]RW

]t
•¹W w52

]w

]t
. ~2.20!

The interpretation of these equations is simple. Equat
~2.19! tells us that, since the curveRW (s,t) is an equipotential,
then ¹W w is normal to the edge direction]RW /]s. Equation
~2.20! implies that the time variation ofw produces a varia-
tion of RW perpendicular to the curve.

In what follows we will be interested primarily in the lon
wavelength fluctuations of the shapes of the stripes. In
regime, we need to keep track only of the fluctuations ofRW n
normal to the stripe~which will be considered to be straigh
on average!. We will denote the normal component ofRW n by
the displacement fieldun . We will show in Sec. IV that the
natural parametrization of the long wavelength fluctuatio
of the smectic phase by has the form

w5wSP@u#1dw, ~2.21!

where wSP@u# is a solution of the saddle point equation
locally deformed~for thenth stripe! by thedisplacement field
un(x), anddw are the fluctuations of the gapped degrees
freedom. We will also find that the only role of the geomet
couplings of Eq.~2.18! is to renormalize the effective cou
plings. In contrast, the first term of Eq.~2.18! is ultimately
responsible for the dynamics of the smectic phase. From n
on we will refer toun as the displacement field of thenth
stripe. A key property of the actionSeff@w,$f%# is the way
gauge invariance is realized in this phase: neitherSbulk nor
Sstripe are separately gauge invariant, but their sum is.27–30

This mechanism for cancelation of anomalies is discusse
detail in Appendix C.

III. THE SADDLE-POINT EQUATION
AND THE STRIPE SOLUTION

In the last section we constructed an effective action s
able for a stripe state. The effective action has two contri
0-6
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THEORY OF THE QUANTUM HALL . . . . II . . . . PHYSICAL REVIEW B 65 245320
tions: a ‘‘bulk’’ piece and an ‘‘edge’’ piece. In Sec. II w
gave a simple, quadratic local expression for the ‘‘bulk’’ co
tribution, valid at the one-loop level and for short-range
teraction. As we discussed above this form of the effect
action is an RPA expression and it does not include the c
ventional Fock correction to the electron self-energy. T
‘‘edge’’ contribution is due to charge fluctuations on th
‘‘strings’’ discussed in the last section. Notice that at th
level the description is still static.

In this section we will obtain the saddle point configur
tion wSP for a stripe state of a partially filledNth Landau
Level ~i.e., for N21,n,N). Here we will use the effective
action discussed in the last section to construct a solu
using the following procedure. We will take the configurati
wSP to be a smooth periodic function of the coordinatey
perpendicular to the stripes~which we take to be along thex
direction!,

wSP~x,y![wSP~y!5wSP~y1l!, ~3.1!

where l is the period of the stripe. Furthermore we w
assume that the system has an extentLy5nsl along they
axis wherens is the number of stripes. In what follows w
will work with a fixed number of periodsns and find the
value of the periodl that minimizes the total energy at fixe
but largens .

We will construct the stripe state as follows. First, as
discussed in the previous section, we will regard the str
state as a set of bulk regions separated by strings, repre
ing the edges, i.e., the set of points of the plane wherewSP
crosses the chemical potentialm. We will construct an ex-
tremal solutionswSP which is a smooth, differentiable an
periodic function with wavelength~or period! l. As we
showed in Sec. II, in the ‘‘bulk’’ regions the electron gas
incompressible. Thus, in these regions, the effective ac
Seff is well approximated by a local function of the fieldwSP.
Consequently, inside these regions,wSP is just the solution of
a simple equation, the saddle-point equation. The solu
can then be constructed locally and it will be subject to
propriate boundary~matching! conditions on the curves rep
resenting the enclosing edges. For short range interact
the saddle-point equation is a partial differential equat
whose solutions are easily constructed. In the stripe s
there are two types of bulk regions, with filling factorsn
5N and n5N11, respectively, separated from each oth
by curves~or strings!, the internal edges. We will denote b
nT the effective filling factor of the partially filled landa
level N. Thus,nT denotes the fractional area of the samp
occupied by regions withn5N11. Hence,nT is fixed by the
number of electrons and by the magnetic field and it will
held fixed as we determine the optimal solution by vary
over the periodl. A qualitative picture of this solution is
depicted in Fig. 1. In the rest of this section we present
main results of this analysis, relegating the details to App
dix A.

It is convenient to define the dimensionless coupling c
stantg[2pgvcl

2. We will also rescale the lengths, includ
ing the rangea of the potential, byx→xl and t→t/vc ,
where l is the magnetic length andvc is the cyclotron fre-
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quency. With this choice of units the saddle-point equat
~SPE! in the bulk regions is given by

2S g~w!1
a2

g D¹2w1
w

g
5g~w!vc . ~3.2!

Eq. ~3.2!, is invariant under global translations and rotation
as well as under local gauge transformations. Homogen
and inhomogeneous solutions of Eq.~3.2! were constructed
in Ref. 22. The homogeneous solution, withg(w)5N, is
wN5Ngvc and it represents a uniform quantum Hall flu
state with filling factorn5N. Inhomogeneous solutions o
this equation are also permitted and have the form

w5wN1h. ~3.3!

Sinceg(fN1h)5N, h is the solution of

¹2h2jN
2 h50, ~3.4!

andjN
2 [1/(gN1a2).

The solutionsh(y) of Eq. ~3.4! are simple real exponen
tial functions with suitably chosen coefficients. The con
tion on the functiong implies that in a given regionh should
satisfy the bounds

S N1
1

2Dvc2m2wN,h,S N1
3

2Dvc2m2wN .

~3.5!

For a stripe with periodl and effective filling factornT , for
each period there are two incompressible regions. Since
solution is periodic it is sufficient to consider the fundame
tal interval 0<y,l and the two incompressible region
meet aty5nTl. What matters here is that a smooth depe
dence of charge distribution ony requires that the solution
w(y) should be not only continuous aty5nTl but also dif-
ferentiable. Otherwise the charge distribution will not be d
ferentiable and the energy of the state is necessarily lar
The solution thus constructed is then extended periodic
beyond the fundamental period@0,l). Notice that in this con-
struction the value of the chemical potentialm is determined
from the value of the full solutionw(y) at y5nTl. In Ap-
pendix A we give explicit expressions for the functionh(y).

In order to determine the optimum periodl we now need
to minimize the energy. To do that we will consider a stri
state with a fixed and finite number of periodsns , for a
system with a finite widthLy commensurate with the numbe
of stripes, i.e.,Ly5nsl.

Next we compute the total energy which is the sum of
‘‘bulk’’ energy associated with the solutionw(y), and the
energy of the ‘‘edges’’ in the partially filled Landau level. I
Appendix A we give details of the solution and of the calc
lation of its ground state energy. There we show that the b
contribution to the energy, computed fromSw@wSP#, is a
monotonically increasing function ofl ~at fixedns), as it is
expected for the Hartree term of the ground state energy
particular, for largel the bulk energy is to an excellent ap
proximation linear inl. The energy due to the charge flu
tuations at the ‘‘edges’’ is obtained by integrating out t
fermions near the regions where the solution crosses
0-7
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DANIEL G. BARCI AND EDUARDO FRADKIN PHYSICAL REVIEW B 65 245320
chemical potential. This energy depends parametrically
the local profile of the stripe which acts as the effective el
trostatic potential that creates the edges and it is a mono
cally decreasing function ofl, which diverges asl→0, and
approaches zero asl→`.

Next minimize the total energy per period. Since the b
to the energyper periodis a monotonically increasing func
tion of the periodl ~roughly linear!, and the edge contribu
tion per periodis a monotonically decreasing function ofl,
there exists a finite value of the periodl which minimizes
the total energy per period. The result is a rather complica
function of the coupling constantg, of the Landau level in-
dex N, and of the effective filling factornT of the partially
filled Landau level. The solution simplifies considerably
the Landau level is large,N@1, and fornT51/2. In this limit
we find thatl̄, the optimal value of the period, is given by

l̄54lAgN1a2sinh21SA g

g11D , ~3.6!

where l is the magnetic length. For finiteN, even forN as
low as 2, the largeN expression turns out to be a goo
approximation. Notice that for reasonable values of the
mensionless coupling constantg,1, l'3ANl. These re-
sults are in qualitative agreement with the more prec
Hartree-Fock calculations.5,6

We also find that the solution changes very smoothly a
function ofnT the vicinity ofnT51/2. Thus, from now on we
will restrict our discussion to the much simpler case ofN
@1 andnT51/2. In practice, there are few other details
the solution that we will need for the rest of the discussi
In particular in the following section we will use the solutio
explicitly to determine the velocity of the effective edg
modes as well as to compute the elastic constants of
smectic phase~see Appendix E!.

Thus, this procedure yields a finite value of the optim
periodl. Oncel is determined, we take the thermodynam
limit by just letting ns→`. Notice that, in this process, w
actually vary the area of the system at fixed filling factor a
fixed number of periods. In this process the number of p
ticles is not necessarily kept fixed. Also, in this calculatio
the chemical potential is not fixed either as it depends on
position of the stripes and is determined from the act
saddle-point solution that minimizes the energy.

The variational approach that we followed here differs
a number of ways from the conventional Hartree-Fock
proximation. In the Hartree-Fock approximation one wor
with a system withfixed sizein the thermodynamic limit, and
looks for an extremum of the~free! energy density. In this
approach there is a competition between the Hartree co
bution, which favors stripes withl→0, and the Fock term
which favors stripesl→`, resulting in a state with finite
period. In our construction we also found a Hartree te
which favors a state withl→0 but here the state is stabilize
by the contribution from the edges~see Appendix A!. In the
approach that we followed here, the energy associated
the edge fluctuations~usually ignored in the Hartree-Foc
approximation! counter the preference of the Hartree te
for stripes with vanishingly small period, by supplying
24532
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‘‘pressure’’ term which stabilizes the state. Notice, howev
that if instead of minimizing the energyper periodwe would
have minimized the energyper unit total transverse length
Ly , we would not have found a minimum since the ed
contributionper unit lengthis a constant, independent of th
period l. The resulting state would have hadl50. Of
course this is what happens in the Hartree-Fock approxi
tion, in which case it is the Fock~or exchange! term of the
energy densitythat stabilizes the state. In any case, what w
matter here is that it is possible to construct a state with
correct properties, although a number of them, such as
ground state energy are not as good as in the Hartree-F
approximation. In any case most our results are fully con
tent with the work of Refs. 5 and 6 even at the quantitat
level. The simpler approach that we used here has the ad
tage of being very intuitive and that it yields analytical r
sults making the analysis of the fluctuations considera
simpler than in the Hartree-Fock approximation.

IV. QUANTUM FLUCTUATIONS AND SMECTIC
SYMMETRY

In this section we consider the effect of quantum fluctu
tions about the mean-field state found in the previous s
tion. The low-energy modes of the system in this state
smooth deformations of the location of the stripes on len
scales long compared with the period of the stripe. These
the Goldstone modes of the broken translational symme
In terms of the Hubbard-Stratonovich field, these fluctuatio
are not small and cannot be treated simply as Gaussian
turbations since they do not have a restoring force. Th
fluctuations are similar to the zero modes of soliton syste
and must be quantized exactly. On the other hand, sm
fluctuations ofw are gapped, and, among other effects, th
describe deformations of the stripes with a typical leng
scale shorter than the periodl. Ultimately, the main effects
of these fluctuations is to renormalize the parameters of
low-energy theory, including the forward scattering intera
tion between stripes.

We will parametrize the low-energy modes with a colle
tive coordinateu(x,y,t), that varies on long length scale
uxu,uyu@l and long timesutu@1/vc , wherevc is the cyclo-
tron frequency. In this way, the set of functions that repres
the low energy modes are given by smooth deformations
the saddle-point solution

w5wsp$ya@u#1u~x,y,t !%, ~4.1!

wherea@u# given by

a@u#512
1

2 S ]u

]xD 2

~4.2!

is a small dilation of they coordinate needed to keep th
period of the stripe constant, even for ‘‘small’’ rotationsu
}x. This parametrization is sufficient to construct the~lin-
earized! effective theory of the Goldstone modes, which h
the form of a quantized elastic theory.

In this parametrization, they coordinate of thenth stripe
is
0-8
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y5yna@u#1u~x,yn ,t !, ~4.3!

whereyn is the coordinate of thenth period of the stripe in
the mean-field configuration.

Therefore, we will split the Hubbard-Stratonovich field
two terms: a deformation of the saddle point parametrized
the displacement fieldu, and the high energy local fluctua
tions dwu :

w~x,y,t !5wsp~ya@u#1u!1dwu . ~4.4!

The effective action~2.10! now takes the form

Seff@w,u,$f%#5S~w@u# !1Sf1SI1
1

2E d3xd3x8dwu~x!

3
d2S

dwu~x!dwu~x8!
dwu~x!1•••. ~4.5!

In this equationS(w@u#) is the action Eq.~2.11 of the de-
formed saddle pointw@u#5wSP(ya@u#1u), while Sf andSI
n
on
y
e

e

rip
om

a

o

on
a
in
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are given by Eqs.~2.16! and ~2.18! evaluated on the de
formed stripes of Eq.~4.3!. In Eq. ~4.5! we have not taking
into account couplings betweendw and higher derivatives o
u since these interactions only give rise to irrelevant ope
tors that only renormalize the coupling constants of
theory.

Since the small fluctuationsdw couple linearly with the
charge density, they can be readily integrated out. Their
effect is a contribution to the forward scattering interacti
among the edge modes. Thus, we get an effective action
the chiral edge fields of the form

Sf5E d2qdv

~2p!3 (
a,b

1

2
fa~v,qW !pab~v,qW !fb~v,qW !* ,

~4.6!

wherea,b56 denotes chirality of the mode. The tensorpab

is given by
pab~v,qW !5S 2qxv2qx
2$v1F 11~qW !% 2qx

2F 12~qW !

2qx
2F 21~qW ! qxv2qx

2$v1F 22~qW !%
D . ~4.7!
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The effect of the integration over the high-energy modes
encoded in the functionsF ab(qW ). An explicit evaluation of
these functions is given in Appendix D.

Thus, we arrive to a long distance effective action co
taining essentially two sets of degrees of freedom: the l
wavelength deformationsu(x,y,t), and the charge densit
fluctuationsfa(x,t). The effective action can be cast in th
form

S5Su1Sf1SI , ~4.8!

where the first term depends only onu, the second on the
chiral fieldsf6 , and the third describes the interaction b
tween charge and deformation through

SI5(
n
E dx ]xfn

aw@yn
a1u~x,yn ,t !#. ~4.9!

We see that we can obtain an effective theory for the st
deformation integrating out the charge degrees of freed
Conversely, integrating the deformation field we obtain
theory for the charge fluctuations. Of course these two
tions contain the same physics.

The form of Su is strongly constrained by symmetry. T
begin with, Su it is a function only of the derivatives ofu
since a constant shift inu is just a global translation, which
has no energy cost. In addition, a constant derivative al
the direction of the stripe is equivalent to an infinitesim
global rotation, which in the absence of symmetry break
is

-
g

-

e
.

a
c-

g
l
g

fields is also an exact symmetry of the action. Thus, for sm
distortions, the effective actionSu has the form outlined in
Ref. 10@see Eq.~1.1!#:

Su52E dxdydtH Q

2 S ]2u

]x2D 2

1
k'

2 S ]u

]yD 2J 1•••,

~4.10!

whereQ andk' are elastic constants that will be given b
low. In momentum spaceSu becomes

Su52E d2qdv

~2p!3 S Q

2
qx

41
k'

2
qy

21••• D uũ~q!u2.

~4.11!

From the symmetry point of view, this action complete
characterizes the smectic phase. In particular, it has the s
symmetries of the free energy for a classical smectic.31 Thus,
the coefficientQ is the compressibility of the system and th
typical length scalej5AQ/k' is the penetration length.

However, the properties of the quantum smectic phase
not determined by symmetry alone since such argume
cannot determine the quantum dynamics of this phase
order to find what is the dynamics of the quantum smec
we begin by noting that at frequencies low compared w
vc , the displacement fieldsu do notactually have a dynam
ics of their own. At this energy scale, their dynamics resu
solely from the coupling to the fluctuations of the gaple
fields fa, representing the ‘‘edge modes’’ of each strip
0-9
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DANIEL G. BARCI AND EDUARDO FRADKIN PHYSICAL REVIEW B 65 245320
These are the only degrees of freedom with low ene
states. Thus, the dynamics of the quantum smectic is c
trolled by the coupling between the displacement fields
the edge modes.

In order to investigate the role of this coupling it is in
structive to integrate out the degrees of freedomfa, repre-
senting the edge modes, and to determine the form of
effective theory of the displacement fieldsu alone. However,
since the fieldsfa are gapless, the resulting effective dyna
ics of the displacement fields is nonlocal. Let us denote
wn

a the deformed saddle-point solution for theath edge of the
nth stripe, i.e.,

wn
a[wSP$yn

aa@u#1u~x,yn ,t !%. ~4.12!

The effective action obtained upon integrating ou the e
modes has the form

2(
n,m

E dxdx8dtdt8
1

2
]xwn

a~p21!n,m
ab ]x8wm

b . ~4.13!

This expression has two contributions: static and dynam
The static contribution is proportional tow2. This is just a
renormalization of the coupling constantg and at this level
its only effect is to renormalize the coefficientk' in Eq.
~4.10!. Thus, in order to evaluate the dynamic contribution
what follows we will subtract the static part from Eq.~4.13!
and absorb it an a finite renormalization ofk' ~see below!.

In order to write Eq.~4.13! in terms of the displacemen
field u we calculate explicitly thex derivatives and write the
resulting expression in the continuum limit on then variable.
The form of the end result of this calculation is dictated
the symmetries of the classical smectic as well as by how
ground state stripe configuration transforms under spatia
flections. For the case that we have worked out in detai
this paper the stripe, i.e., the charge profile, is invariant un
reflections about the middle of a stripe. This is a parity ev
state. A consequence of this symmetry is that the effec
velocities of right and left moving edge fields on each str
fn

a are the same. However, if the stripe state is not invar
under reflection, the parity odd piece of the solution forc
the effective velocities of the left and right moving fields
be unequal, resulting in a different spectrum of low-ene
states. We will refer to this as the parity odd state. Physica
a simple way to get an asymmetric state is to apply an
plane electric field perpendicular to the stripe state~naturally,
in a system with the center of mass pinned by the confin
potential!. This situation would yield ‘‘unbalanced’’ chira
excitations with different velocities and couplings for th
right and left movers. It is simple to show that the breaki
of parity changes the spectrum from av;qx

3 dispersion to
an v;qx

5 law ~at qy50). We will not discuss this case i
detail.

For a parity even stripe, the velocity of the chiral mod
are equal,v5vR5vL and it is a simple task to compute th
dynamical term of the displacement fieldu. Putting all terms
~both static and dynamic! together we find that the effectiv
Lagrangian~in Fourier space! for the displacement fieldsu is
given by
24532
y
n-
d

e

-
y

e

c.

e
e-
n
er
n
e

e
t

s

y
y,
-

g

s

L@u#5F v̄2

2k il
2l 4 S 2v2

v22 v̄2qx
2D 2

Q

2
qx

42
k'

2
qy

2G uũqu2,

~4.14!

where ũq[ũ(v,q), v̄ is the renormalized velocity, andl
54gANl is the period of the stripe in the limitsNg1a2

@g, g!1. In this limit, the elastic constants take the valu

v5
g

2
N21/2vcl , ~4.15!

k i5
p2

16g3
N23/2vc , ~4.16!

k'5
5

4
gN5/2vcl

22, ~4.17!

Q5
3

128p
gNvc , ~4.18!

where we have used that forg small v̄'v. A detailed deri-
vation of these constants is given in Appendix E.

From Eq. ~4.14! we immediately obtain the dispersio
relation for the low-energy excitations~in dimensionless
form!

v25k̄ iqx
2F Qqx

41k'qy
2

11
k̄ i

v2
~Qqx

41k'qy
2!G , ~4.19!

where k̄ i5k il
2l 4. Clearly, there is a crossover at the m

mentum scale q* 5(v2/Qk̄ i)
1/4 where the dispersion

changes form cubic to a linear behavior

v56Ak̄ iuqxuAQqx
41k'qy

2 for qx!q* , ~4.20!

v56 v̄uqxu for qx@q* . ~4.21!

It is obvious from Eq.~4.14! that the dynamics of the strip
deformations is nonlocal. This behavior is induced by t
dynamics of the gapless ‘‘internal edge states.’’

It is interesting to note that, in spite of this nonlocality,
is simple to find a local effective Landau-Ginsburg-lik
theory for the quantum unpinned smectic phase using
fields: ~a! the Goldstone modeu and ~b! an effective non-
chiral scalar fieldf representing the charge fluctuation
each stripe. This is possible so because theu field for a parity
even stripe couples with to a nonchiral linear combination
f1 andf2. The effective Landau-Ginsburg Lagrangian f
the smectic phase, in dimensionful units, is given by

L5
1

l l 2
f] tu1

k i

2v2
~] tf!22

k i

2
~]xf!2

2
Q

2
~]x

2u!22
k'

2
~]yu!2. ~4.22!
0-10
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The elastic constants of this effective action are given in
~4.18!.

Except for the second term, and up to a choice of un
the effective Lagrangian of Eq.~4.22! has exactly the sam
form as the Lagrangian of Eq.~1.1! which was introduced on
phenomenological grounds in Ref. 10. The term proportio
to (] tf)2 is an irrelevant operator at the quantum Hall sm
tic fixed point. This irrelevant operator is responsible for t
crossover discussed above at momentaqx@q* . In this re-
gime the quantum smectic behaves effectively in the sa
way as a system of pinned stripes, the smectic metal pha
Ref. 15.

Using the values of the elastic constants of Eq.~4.18! it is
straightforward to estimate the scale at which the crosso
between the cubic and linear dispersion takes place. U
the value of the stripe period known from Hartree-Fo
calculations,5 to estimate a value for the coupling constantg,
and our analytical expressions in the largeN limit, we find a
crossover momentum scale at

q* '
2

Ap

l 21

N3/8
, ~4.23!

wherel is the magnetic length. For instance, forN52, lq*
'0.86 and forN54, lq* '0.66. This means that for lowe
Landau levels, the crossover takes place at scales nea
ultraviolet cutoff 1/l . In this regime the dispersion relation
for an excitation withqy50, is cubic,

v'0.2N1/2vc~ lqx!
3, ~4.24!

wherevc is the cyclotron frequency. ForN52 and forqxl
51/2 the typical frequency isv'431022vc . Thus, a light
scattering experiment probing the system at wavevector
the regimelqx'0.5, should be able to reach the cubic regim
of the dispersion relation, which is the signature of the~un-
pinned! quantum Hall smectic phase. These wave vect
correspond to a wavelength of the order of 2 to 3 times
stripe period, i.e., of the order of 1mm. In higher Landau
levels this effect should be more difficult to detect since
crossover scale decreases rapidly asN increase@see Eq.
~4.23!#. In summary, we found an effective long waveleng
description of the quantum smectic in full agreement w
the general picture of stripe states, such as electronic liq
crystal phases, as discussed in Refs. 8,9.

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper we have derived the effective theory for
low energy degrees of freedom of the quantum Hall sme
phase introduced phenomenologically in Ref. 10. The qu
tum Hall smectic phase of the 2DEG breaks spontaneo
both translation invariance~in the direction perpendicular to
the stripes! and rotational invariance. In our approach t
quantum Hall smectic is pictured as a pattern of locally
compressible regions separated by dynamical edges d
mined by an effective~Hubbard-Stratonovich! dynamical po-
tential. The resulting ‘‘edge modes’’ are thus coupled to
dynamical fluctuations of the shape of the incompress
regions, represented by a set of displacement fields. Co
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quently, the low-energy physics of the quantum Hall smec
is described in terms of two coupled and canonically con
gate fields:~a! the displacement fieldsu that describe the
geometry of the quantum Hall smectic and~b! the charge
degrees of freedom represented by the nonchiral ‘‘Luttin
field’’ f.

While the form of the static part of the action is dictate
entirely by symmetry, in general, the dynamics depends
the particular details of the model. However, in this case,
effective dynamics is dictated by the Lorentz force whi
governs the motion of charged particles in electromagn
fields. An important consequence is that it requires that
charge and displacement fields to become canonical co
gate to each other. In Ref. 10 we discussed the conseque
of this effective theory as a fixed point. There it is also d
cussed at length the issue of the stability of the quantum H
smectic phase and a possible transition to a crystalline s
both of which remain still interesting and open problems.

In this paper we used the effective low-energy theory
determine the spectrum of collective modes of the quan
Hall smectic and found that they obey anv}qx

3 law. It
should be possible to detect these modes in Raman scatt
experiments. Furthermore, we also found that there exist
energy and momentum scales, determined by irrelevant
erators, above which the quantum Hall smectic behaves
two-dimensional array of Luttinger liquids, a smectic met
lic state.

An open and very interesting question is the possible
istence of a quantum nematic state of the 2DEG in la
magnetic fields at zero temperature. This is an import
question both conceptually and experimentally as it appe
to be consistent with the experimental data.9,32 Recently, in
Ref. 33 a theory of a quantum nematic Fermi fluid at ze
external magnetic field as an instability of a Fermi liqu
state was presented. It will be particularly interesting to co
struct a theory of thequantummelting of the quantum Hall
smectic by a dislocation-antidislocation unbinding mech
nism. A key ingredient of such a theory is the quantum m
chanical origin of charge quantization in the smectic. Wo
along these lines is currently in progress. Recently, Wex
and Dorsey34 used Hartree-Fock calculations to determi
the effective elastic constants of a quantum Hall nema
phase and used them to estimate the critical temperatur
the quantum Hall nematic-isotropic transition.

Finally, another open question of interest is the possi
transition to a paired quantum Hall state.35,36 Our stability
analysis shows that it is possible to have a direct phase t
sition to a paired state. This possibility is supported by ex
diagonalization studies in small systems.37,38 However, it is
quite likely that there is a complex phase diagram, such
the one discussed in Ref. 9, including a nematic phase, v
ous crystalline phases and incompressible fluid phases
as the paired quantum Hall state.
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APPENDIX A: MEAN-FIELD THEORY OF THE STRIPE
STATE

In this appendix we give the details of the construction
the saddle-point solution for the stripe state. As discusse
Sec. III we must first construct solutions of Eq.~2.12!. In
particular we will seek solutions which within a periodl
have the form

w~y!5H wN~y! for 0,y,nl,

wN11~y! for nl,y,l,
~A1!

wherewN andwN11 are general solutions of Eq.~3.2!, with
g5N andg5N11, respectively. In other words, in the re
gion of the plane whereg5N all Landau levels up to and
including the levelN21 are completely filled.~Here, for the
sake of simplicity we are ignoring spin.! The filling factorn,
with 0,n,1, is the effective filling factor of the partially
filled Nth Landau level. A general solution of this type rea

wN~y!5gvcN1a1ejNy1a2e2jNy. ~A2!

Smooth periodic functions satisfy the boundary condition

wN~0!5wN11~l!,

wN8 ~0!5wN118 ~l!,

wN~nl!5wN11~nl!,

wN8 ~nl!5wN118 ~nl!. ~A3!

These conditions determine completely the coefficientsa1

anda2 of Eq. ~A2!. The explicit solution is

wN~y!5gvc
H N1

jN11sinhH l

2
@jN11~12n!#J

s~j,n!

3coshFjNS y2
nl

2 D GJ , ~A4!

wN11~y!5gvc
H N112

jNsinhH l

2
@jNn#J

s~j,n!

3coshFjN11S y2
l

2
~11n! D GJ , ~A5!

where
24532
d
.

f
in

s~j,n!5jN11coshH jN

nl

2 J sinhH jN11S 12n

2 DlJ
1jNsinhH jN

nl

2 J coshH jN11S 12n

2 DlJ .

~A6!

Thus, we found a family of solutions parametrized by t
wavelengthl. A qualitative picture of this solution is de
picted in Fig. 1. As we already explain in Sec. III B we fixl,
by minimizing thetotal energy per period.

1. The energy of the saddle-point configuration

There are two contributions to the total energy:~1! the
bulk energy and~2! the energy of the chiral edges.

a. The bulk energy

To calculate the energy of the stripe solution we simp
replace Eqs.~A1!, ~A4!, and~A5! into Eq. ~2.12! to find

Wbulk5
1

4pE d2x g~w!$w1g~w!vc%

5
npLx

4p E
0

l

dy g~w!$w1g~w!vc%, ~A7!

wherenp is the number of periods in the sample andLx is the
length in thex direction. The energy per period, per unitx
length has the form

W̃bulk5lW̄~N!1W~l!, ~A8!

where

W̄~N!5
vc

2
~11g!@N2n1~N11!2~12n!# ~A9!

and

W~l!5gvc

1

jN
H N

jN11

jN
2~N11!

jN

jN11
J

3

sinhH l

2
jNnJ sinhH l

2
jN11~12n!J

sinhH l

2
@jNn1jN11~12n!#J . ~A10!

SinceW(l) is bounded,W̃bulk is a monotonically increasing
function of l @with Wbulk(0)50#. For largel, the first term
of Eq. ~A8! dominates, and in that limitW̃bulk is essentially a
linear function ofl, see Fig. 2.

b. The energy of the chiral edges.

As we already pointed out, the discontinuities of the fun
tion g(w) determine a set of one-dimensional curv
~‘‘strings’’ ! where the chiral degrees of freedom reside.
the level of the saddle-point solution these are static stra
lines aty5nl andy5(n1n)l, with n an integer.
0-12
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Upon integrating over the array of chiral bosons, and t
ing into account thatw is static, we can calculate the contr
bution of the edges to the energy per period. Since
saddle-point solutionw is independent ofx, and w(0)
5w(nl) and ]yw(0)52]yw(nl), we find that the energy
per period per unit length~along thex axis! is

W̃edge5
w~0!2

u]yw~0!u
. ~A11!

In terms of the explicit solutions~A1!, ~A4!, and ~A5!, this
energy reads

W̃edge5
gvc

jN11

sinhH l

2
@jNn1jN11~12n!#J

sinhS l

2
jN11@12n# D sinhS l

2
jNn D

3F N1
jN11

jN

sinhS l

2
jN11@12n# D coshS l

2
jNn D

sinhH l

2
@jNn1jN11~12n!#J G 2

.

~A12!

For largel this function approximates exponentially fast
constant, and diverges as 1/l for small values of the period

Thus, the total energy per period of the saddle-point
lution is

W̃5W̃bulk1W̃edge ~A13!

whereW̃bulk andW̃edgeare given by Eq.~A8! and Eq.~A12!,
respectively. In Fig. 2 we depict these functions. We see
the competition between bulk and edge energies yield
stable and finite value of the periodl̄.

FIG. 2. Energy of the saddle-point solution.
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2. The Nš1 limit

In order to clarify the dependence of the optimal periodl̄
with the microscopic parameters of the theory it is conv
nient to consider particular limits where the expressions
the energy become tractable. In particular, it is possible
find an explicit analytic result for the period of the stripe
the limit N@1 ~see Ref. 6!. In this limit, jN /jN1151
1O(1/N), and the energyW̃ given by Eq.~A13! becomes

W̃5gvc

N2

jN H S 11g

g DljN

2

1

sinhS l

2
jND

sinhS l

2
jN@12n# D sinhS l

2
jNn D J . ~A14!

Note thatl always appears in the combinationljN/2. This
means that the natural scale for the period isjN/2. In terms
of the variablex̄5ljN/2, the extremal condition

dW̃~ x̄!

dx̄
50 ~A15!

becomes

n csech2~n x̄!1~12n!csech2@~12n!x̄#5
g11

g
.

~A16!

For n51/2 we find the explicit solution

x̄52sinh21HA g

g11J . ~A17!

Thus, the period of the stripe, for largeN andn51/2, is

l̄54AgN1a2sinh21HA g

g11J l . ~A18!

Equation~A18! implies that the period of the stripe is set b
a combination of the cyclotron radius of the partially fille
Landau levelANl, the range of the interactiona, and a func-
tion of the dimensionless coupling constantg. In particular,
the wavelength of the stripe state is of the order of the
clotron radius only in the limit in which the dimensionles
range of the interaction is small,a!AgN. In this limit, the
result of Eq.~A18! agrees with the estimates of Koulako
and co-workers.5 It turns out that expression~A18! is a very
good approximation even for small values ofN. In Fig. 3 we
compare the numerical solution of the period forN54 with
the largeN approximation. Notice that the position of th
optimal value ofl is essentially the same for both curves

We can also solve Eq.~A16! whenn'1. In this case the
period of the stripe is written as
0-13
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l̄5S 2

12n DA g

g11
AgN1a2l . ~A19!

It turns out that the period increases as the filling factor
creases~away from 1/2). In any case, we expect that f
filling factors not too close to 1/2 the stripe state sho
become unstable to other types of phases, such as a bu
phase,5 a striped crystal,9,11,14and possibly a quantum nem
atic phase.9,32

APPENDIX B: THE GEOMETRICAL COUPLINGS

In this section we derive the effective action for the chi
edge states of the stripe state. Qualitatively this problem
very much analogous to that of the fermion zero mod
bound to a dynamical domain wall.39 Here we will show how
a geometrical electric field is induced on the stripe due to
dynamics.

The action for two-dimensional fermions in a magne
field and a time dependent background potentialw is

S5E d3zFc* ~z!@ iD 02m2ew#c~z!1
1

2m
uDc~z!u2G ,

~B1!

where Di5] i1 iAi and ¹W 3AW 5Bẑ. The Hubbard-
Stratonovich fieldw behaves as a scalar potential in elect
dynamics. As such it~adiabatically! deforms of the Landau
levels. If the topmost filled Landau levelN crosses the
chemical potential at some set of smooth curves

w@ x̄~s,t !,ȳ~s,t !,t#5EN2m ~B2!

then the system has gapless excitations with support on t
curves, which thus behave as dynamical edges. HereEN is
the energy of theNth Landau level. This equation defines
time-dependent stringlike object, a two-dimensional surf
embedded in a Euclidean three-dimensional space-t

FIG. 3. Comparison between the energy forN54 and theN
→` limit.
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whose position is defined byRW (s,t)5@ x̄(s,t),ȳ(s,t)#. For
the most part it will be sufficient to consider only one edge
a time.

Let us expand the potentialw around its constant value o
the string

w~x,y,t !5w~ x̄,ȳ,t !1 ṽn̂mxm , ~B3!

where

ṽ5u]mwu5AS ]w

]t D 2

1u¹W wu2 ~B4!

andnm is a unit vector perpendicular to the surface defin
by Eq. ~B2!. The effective action in this approximation is

S5E d3zFc* ~ iD 02EN1 ṽn̂mxm!c1
1

2m
uDc u2G .

~B5!

To proceed with the calculation, we rewrite the action
generalized coordinates

xm5~x0 ,x1 ,x2!→jm5~j0 ,j1 ,j2!.

The coordinate transformation and the metric is defined
jm5(]jm /]xn)xn and gmn5(]xa/]jm)(]xb/]jn)dab , re-
spectively. It is convenient to choose a coordinate sys
defined by

j25n̂mxm ~B6!

in such a way that the differential quadratic form is given

ds25dj2
21gabdjadjb,

where

a, b50, 1. ~B7!

In these coordinates the domain wall is defined by the eq
tion j250 and the action of Eq.~B5! now reads

S5E d3j AgFc* ~j!F i S ]jm

]t D ]

]jm
1 ṽj22ENGc~z!

1
1

2m
hmnuDc~j!u2G , ~B8!

where we have used the notation

hmn5
]jm

]xi

]jn

]xi
, g5udetgmnu. ~B9!

It is now convenient to choose the Landau gauge in the n
coordinates

A050, A15Bj2 , A250. ~B10!

Next we expand the Fermi fieldc in the new coordinates an
find

c~j0 ,j1 ,j2!5(
n,p

Cn,pXn~j1!Yp
n~j2!Tn~j0!. ~B11!
0-14
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The set of functions$Xn(j1),Yp
n(j2),Tn(j0)% constitute a

complete basis, and satisfy the eigenvalue equations

i ]0Tn5vnTn, ~B12!

i ]1Xn5knXn, ~B13!

H 2
hm2hm2

2m
]2

222Bhm1hm2S j22
mṽ

~hm1!2
B2D ]2

1
~hm1!2

2m
j2

22ENJ Yp
n5ln,pYp

n . ~B14!

Equation~B14! is nothing but the eigenvalue equation for t
linear harmonic oscillator~in generalized coordinates!. By
inspection we see that Eq.~B14! has a zero modeln,P50
providedEN is the energy of a Landau level in the undi
torted coordinates. Upon substitution of Eq.~B11! into Eq.
~B5!, using the usual orthogonality relations for the oscilla
eigenfunctions, and after factoring out the zero mode fr
the rest of the spectrum, we find that the effective action
the zero mode is given by

S05E d2j Ag
1

2
$c0* ~j!Dc0~j!2Dc0* ~j!c0~j!%,

~B15!

where

D5S ]j0

]t
2vhm1hm0D ]

]j0
2S vhm1hm12

]j1

]t D ]

]j1
.

~B16!

Here we have definedv[ ṽ/B.
For the problem of interest here, we will specialize the

results to the case of a stripe whose mean position
straight line along thex axis, as defined in the saddle-poi
approximation of Sec. III. With this aim in mind, we define
coordinate system as

x05j0 ,

x15j1 ,

x25d~j0 ,j1![
dw~j0 ,j1 ,x250!

u]x2
w~x250!u

, ~B17!

whered(j0 ,j1) is an infinitesimal local displacement of th
position of the edge. In this coordinate system the effec
action can be cast in the form

S5E d2j Ag$c0* ~j!~]02v]1!c0~j!1Gc0* ~j!c0~j!%,

~B18!

where G5 1
2 g21/2Dg1/2. This quantity couples in the sam

way that a gauge field couples to a chiral zero mode. No
that this gauge field looks similar to a pure gauge and as s
it would seem that it should have no effect on the theo
That would indeed be the case if the theory of the z
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modes was gauge invariant. However, this is not the c
here as these modes have a gauge anomaly.

Equation~B18! is the action of a one-dimensional chir
fermion in curved spacetime. It is well known that this sy
tem is anomalous and as a consequence the divergence o
current is proportional to the curvature of the space time.
a matter of fact, the currentJ of the chiral fermion satisfies

]0J01v]1J15detS ]2d~j0 ,j1!

]ja
]jb

D . ~B19!

to leading order ind(j0 ,j1). Therefore, within this approxi-
mation, Eq.~B19! reduces to the divergence of the edge c
rent in Cartesian coordinates. Hence, we are led to inter
the quantity det@]2d(j0 ,j1)/]ja

]jb
# as aninduced geometri-

cal electric fieldgiven by

Egeom5
1

v
]1

2d]0
2d2~]0]1d!2. ~B20!

The same expression for the geometrical electric field w
also derived for a system of Dirac fermions with tim
dependent domain walls.39 It is straightforward to see tha
Egeom is generated by the ‘‘dynamical electromagne
potential’’

A0
dyn5]1d]0

2d, ~B21!

A1
dyn5]1d]1]0d. ~B22!

We have used this type of coupling in the second line of E
~2.18!.

APPENDIX C: CHARGE CONSERVATION,
CANCELATION OF ANOMALIES, AND THE CALLAN-

HARVEY EFFECT

In this Appendix we show that charge conservation in
stripe state is realized thorough an anomaly cancela
mechanism that includes the effects of dynamical edges.
problem that needs to be addressed here is that we
separated the dynamical degrees of freedom into a ‘‘bu
piece , given by Eqs.~2.13! and~2.12!, and an ‘‘edge’’ piece,
Eq. ~2.16!. It turns out that theU(1) gauge transformation o
the external gauge field is not a symmetry of each part of
action separately, but instead it is a symmetry of the f
system. this problem is quite familiar in the physics of t
QHE.25–27,30The main difference in the problem of intere
here is that the edges are not static. This subtle cancelatio
anomalies is an example of the well known Callan-Harv
mechanism.29

To illustrate the point, let us consider a general tim
dependent gauge transformation

Ã0→Ã01]0a~x,y,t !, Ãi→Ãi1] ia~x,y,t !. ~C1!

The only term in the bulk action that it is not gauge invaria
is the Chern-Simons term for the electromagnetic pertur
tions
0-15
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WC-S5
e2

4pE d3x g~w!emnrÃm]nÃr , ~C2!

where g(w)5(n50
` Q(m2En1w) and En5(n1 1

2 )vc ,
whereQ(x) is the step function. All the other terms inSeff
are gauge invariant.

The variation of the Chern-Simons action Eq.~C2! is,

dWCS52
e2

4pE d3x$]mg~w!emnr]nÃr2]m~aemnr]nÃr!%

~C3!

which can be split in two terms

dWCS5dEW1dBW ~C4!

with

dEW5
e2

2pE d3x @2a] ig~w!e i j Ej1] i$ag~w!e i j Ej%#,

~C5!

dBW5
e2

2pE d3x @2a]0g~w!B1]0$ag~w!Bj%#,

~C6!

whereEj5] i Ã02]0Ãi and B5e i , j] i Ã j are the electric and
magnetic field associated toÃm . If g(w) is a constant, then
dW50 up to boundary terms. However,

]mg~w!5(
n

d~m2En1w!]mw. ~C7!

Thus, in the presence of an electromagnetic field, and foN
completely filled Landau Levels, we have

dEW52
e2

2pE d3xad~m2EN1w!e i j ] jwEi

1
e2

2pE d3x ] i$ag~w!e i j Ej%, ~C8!

dBW52
e2

2pE d3xad~m2EN1w!] twB

1
e2

2pE d3x ]0$ag~w!Bj%. ~C9!

The first integral of Eq.~C8! has support on a one
dimensional dynamical string]V defined by

]V:$w~x,y,t !5EN2m%. ~C10!

The second integral is a surface term, on a surface that
tains the string, Eq.~C10!. Explicitly we find

dEW56
e2

p E
R3]V

dsdta t̂EW~s,t !, ~C11!

where t̂ i5e i j ] jw/u¹W wu is a unit vector tangent to the string
]V. The 6 sign is the orientation of the curve.
24532
n-

dBW of Eq. ~C9! does not vanish becausew is in general
a time-dependent function. Then, by using Eq.~2.20! it is
possible to writedBW as a function of the variation of the
actual position of the string in the form

dBW56
e2

p E
R3]V

dsdtaS ]RW

]t
•n̂DB~s,t !. ~C12!

From Eqs.~C11! and~C12! we see that the divergence of th
current in the bulk is

] tr1] iJi56
e2

p H t̂•EW1S ]RW

]t
•n̂DBJ , ~C13!

where theE andB have support on the strings]V defined in
Eq. ~C10!.

It is not difficult to show that this divergence is cancel
against the divergence of the currents of the chiral e
states derived in Eq.~2.16!. The induced current at the edg

Js57
e2

p

]s
2

]0]s7v]s
2 H Ã0~s,t !1S ]RW

]t
•n̂D Ãn~s,t !J .

~C14!

Here we have assumed the gaugeÃi t̂ i50, whereÃn is the
component of the vector potential locally normal to t
strings. Evaluating the divergence of this current, we find

~]07v]s!Js57
e2

p H ]sÃ01S ]RW

]t
•n̂D ]sÃnJ

57
e2

p H t̂•EW1S ]RW

]t
•n̂DB~s,t !J ~C15!

which cancels Eq.~C13! exactly. In Eq.~C15! we ignored
terms proportional to]s(]RW /]t•n̂) since they can be ab
sorbed in a reparametrization of the curves→ f (s,t).

APPENDIX D: FLUCTUATION PROPAGATORS

The propagatorsF ab of Eq. ~4.7! are the inverse of the
fluctuation operator

d2Sw

dw~x8!dw~x!
u52H S g~w!1

a2

g D¹22
1

gJ d~x2x8!

~D1!

without the zero modes. In other words we need to evalu
the Green function

H S g@w~x!#1
a2

g D¹22
1

gJ G~xW ,xW8!522pd~xW2xW8!

~D2!

subject to the condition thatG(xW ,xW8)50 whenuxW2xW8u→`.
These boundary conditions automatically take off the z
modes since exclude any fluctuation that could globa
translate or rotate the system. Notice that this propagato
static, i.e., it is instantaneous. This feature is a conseque
of the local incompressibility of the bulk regions. Equatio
0-16
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~D2! is a singular partial differential equation due to the pr
ence of the functiong@w(x)#. Defining the functionf (y) as

f ~y!5H N1
a2

g
, nl<y,~N1n!l,

N111
a2

g
, ~n1n!l<y,~n11!l.

~D3!

with n integer and 0,n,1, considering also a smooth reg
larization of f (y) ~i.e., finite temperature! and Fourier trans-
forming in the coordinatex

G~x2x8;y,y8!5E dqx

2p
eiqx(x2x8)G~qx ;y,y8! ~D4!

we arrive at the following differential equation iny:

F2 f ~y!
d2

dy2
1S qx

2f ~y!1
1

gD GG~qx ;y,y8!5~2p!2d~y2y8!

~D5!

with

G~qx ;y1l,y81l!5G~qx ;y,y8!. ~D6!

To solve Eq.~D5! we adopt a recursive method. First w
solve the equation for an arbitrary periodn ~away form the
position of the functiond). In this case we have

F2 f ~y!
d2

dy2
1S qx

2f ~y!1
1

gD GFn~y!50. ~D7!

A general solution reads

Fn
2~y!5An

2eK2(y2nl)1Bn
2e2K2(y2nl) ~D8!

for nl<y,(n1n)l and

Fn
1~y!5An

1eK1[ y2(n1n)l]1Bn
1e2K1[ y2(n1n)l] ~D9!

for (n1n)l<y,(n11)l, where we defined

K2
2 5qx

21
1

gN1a2
, ~D10!

K1
2 5qx

21
1

g~N11!1a2
. ~D11!

Imposing the continuity of the functionFn(y) and its deriva-
tive Fn8(y) at the pointsy5(n1n)l and y5(n11)l it is
possible to find a relation between the coefficients of
solution in different periods. In matrix notation this relatio
reads

S An
2

Bn
2D 5MnS A0

2

B0
2D ~D12!

and
24532
-

e

S An
1

Bn
1D 5~M 8!nS A0

1

B0
1D , ~D13!

whereM and M 8 are two 232 matrices~functions ofK1

andK2) with unit determinant and the subindex 0 indicat
and arbitrary fixed period chosen as the origin of coor
nates. Similar equations, involving the inverse matricesM 21

andM 821 can be found for negative values ofn.
The propagators we are looking for are given by

F n
115Fn

2~nl!5An
21Bn

2 , ~D14!

F n
125Fn

1@~n1n!l#5An
11Bn

1 . ~D15!

Therefore, in order to guarantee the boundary condition

lim
n→6`

F n
ab50 ~D16!

we choose (A0
2 ,B0

2) to be an eigenvector ofM with eigen-
value m2,1. For concreteness let us define the vec
(a2 ,b2) such that

M S a2

b2
D 5m2S a2

b2
D ~D17!

with m2,1 anda2
2 1b2

2 51. In this way we can write

S An
2

Bn
2D 5am2

n S a2

b2
2D , ~D18!

wherea is an arbitrary coefficient. We can write a simila
expression for negativen

S A2n
2

B2n
2 D 5b m2

n21S a1

b1
D , ~D19!

where (a1 ,b1) is a unit eigenvector of the matrixM 21.
~The eigenvalue is the same due to detM51).

Finally, let us suppose that thed function has support in
y850. We can determine the two unknown coefficientsa
andb by asking continuity of the function and discontinui
of the derivative at the origin:

F0
2~0!2F21

1 ~0!50, ~D20!

dF0
2

dy
U

y50

2
dF21

1

dy
U

y50

52
~2p!2

f ~0!
, ~D21!

where we choose the regularization off (y) such thatf (0)
5N1a2/g1 1

2 .
Following this tedious by direct algebra it is possible

exactly determine the propagators of Eqs.~D14! and ~D15!.
Although the result is a complicated expression, it can
cast in a simpler form considering the limitNg1a2@g and
n51/2. In this limit, the differenced5K12K2 is an infini-
tesimal quantity and the propagators to leading order ind
read
0-17
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F n
11~qx!52p2

e2unuK2l

K2S N1
a2

g D , ~D22!

F n
12~qx!52p2

e2K2l/2

K2S N1
a2

g D H
e2nK2l, n>0,

e(n11)K2l, n,0.

~D23!

To obtain the propagators in momentumqy space we make
the following Fourier transformation:

F ab~qx ,qy!5 (
n52`

`

F n
ab~qx!e

iqyn. ~D24!

It is straightforward to obtain

F 11516p2v
sinh~K2l!

K2l

1

cosh~K2l!2cosqy
,

~D25!

F 12516p2v
sinh~K2l/2!

K2

~11e2 iqy!

cosh~K2l!2cosqy
,

~D26!

where in this approximation

v5
1

2

g3/2

AgN1a2
. ~D27!

In the long wavelength limitqx→0 andqy→0, the kernels
Fab(q) take the finite limiting values

F 11~0!5
16p2v
ljN

coth~ljN/2!, ~D28!

F 12~0!5
16p2v
ljN

1

sinh~ljN/2!
~D29!

which are simple smooth functions of the coupling consta

APPENDIX E: ELASTIC CONSTANTS

In this appendix we show some details of the calculat
of the constantsQ, k' , andk i that enter the action of Eq
~4.14!. The elastic constantsQ and k' are obtained by re-
placing inSw @Eq. ~2.12!# the deformed saddle-point solutio
w(u) @Eq. ~4.1!#. The main contribution toQ comes from the
first term of Eq.~2.12!,

E d3x

4p

3g2

8
@]x

2w~u!#25E d3x

4p

3g2~w8!2

8
~]x

2u!2,

~E1!

wherew8 is a derivative off. While the term]x
2u in Eq.

~E1! is a slowly varying function ofy in a scale long with
respect to the stripe periodl, and the expressiong2(w8)2 is
a rapidly varying function within a periodl. Therefore, at
24532
t.

n

long distances, we can safely take the mean value of the
expression over one period, obtaining

E d3x

4p

3g2

8
@]x

2w~u!#25E d3x Q~]x
2u!2, ~E2!

where we have defined

Q5
3

32plE0

l

dyS g~w!
]w~y!

]y D 2

. ~E3!

In momentum space, this corse-graining procedure is equ
lent to take the zero momentum limit of the Fourier tran
form of g(w)f8. We simply obtain

Q5
3

32p
N2v2. ~E4!

In the limit Ng1a2@g we can use Eq.~D27! for the veloc-
ity obtaining

Q5
3

128p

N2g2

gN1a2
. ~E5!

In Eq. ~4.18! we show the value ofQ for a very short ranged
potentiala→0.

The compressibilityk' is nothing but the energy densit
per period of the saddle-point configuration calculated in A
pendix A@see Eq.~A14!#. To formally obtain this expression
we proceed as follows: first we substitutew by the deformed
saddle pointw(u) in Eq. ~2.12!. Then we performed the
change of variablesy85ya1u obtaining to leading order in
the derivatives ofu

E d3xL$w@u~x,y!#%

'E d3xL@w~y!#1
1

2E d3xL@w~y!#S ]u

]yD 2

1•••.

~E6!

Again, in the last integral, the factorL(w) is a periodic func-
tion of y with periodl, while ]yu is a slowly varying func-
tion of y. Therefore we can take the mean value ofL(w) on
a period defining in this way

k'5
1

2lE0

l

dyH Fg1
a2

2gG S ]w~y!

]y D 2

1gw

1S 1

2g
1

v1F 112ReF 12

~v1F 11!22uF 12u2
D w2J , ~E7!

wherew is the undeformed saddle-point solution. The k
nelsF 11 andF 12 come from the contribution of the chira
modes to the action and are given in Appendix D. Notice t
only theqW→0 limit of this kernels is important here. In th
limit gN1a2@g andg!1 this expression is given by

k'5
5

4
N2g1/2AgN1a2. ~E8!
0-18
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The dynamical term in Eq.~4.14! comes form the Gaussia
integral of the chiral modes and is given by Eq.~4.13!. We
can rewrite it more explicitly as

2
1

2 (
nm

E d2xd2x8wn8wm8 Pmn]xum]xun , ~E9!

where

Pmn5$p11
21 1p22

21 2p12
21 2p21

21 %mn . ~E10!

Calculating the inverse matrixp21, subtracting the static
part, and taking the continuum limit as in the preceding ca
we finally find the dynamical contribution to the Lagrangia
~in momentum space!

Ldyn52
1

2
K

v2

v22 v̄2qx
2

, ~E11!
2453
n

ses
n

where the renormalized velocity is given by

v̄25~v1F 11!22uF 12u2 ~E12!

and the constantK can be calculated from

K5
1

lE0

l

dy
v1F 112ReF 12

@~v1F 11!22uF 12u2#
S ]w

]y D 2

. ~E13!

From Eq.~4.13! we have that

k i5
v̄2

Kl
. ~E14!

Using the expression forF ab given in Appendix D we find
in the limit Ng1a2@1 andg!1

k i5
p2

16
g23N23/2. ~E15!
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