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We develop an effective low-energy theory of the quantum K@H) smectic or stripe phase of a two-
dimensional electron gas in a large magnetic field in terms of its Goldstone modes and of the charge fluctua-
tions on each stripe. This liquid-crystal phase corresponds to a fixed point that is explicitly demonstrated to be
stable against quantum fluctuations at long wavelengths. This fixed-point theory also allows an unambiguous
reconstruction of the electron operator. We find that quantum fluctuations are so severe that the electron Green
function decays faster than any power law, although slower than exponentially, and that consequently there is
a deep pseudo-gap in the quasiparticle spectrum. We discuss, but do not resolve, the stability of the quantum
Hall smectic to crystallization. Finally, the role of Coulomb interactions and the low-temperature thermody-
namics of the QH smectic state are analyzed.
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Recent experiments on extremely high mobility two- tition betweeneffective attractive short-range forcasd the
dimensional electron gasé2DEG’s) in large magnetic fields familiar (long range Coulomb interactions. We will see be-
by Lilly and co-workers$ and by Du and co-workefshave low that these mean field pictures of the stripe state are a
revealed an unusually large and strongly temperaturegood starting point for a description of a quantum Hall smec-
dependent anisotropy in the transport properties. These, ariit. However, at Hartree-Fock level, the smectic phase can
subsequent experimenitfiave made it clear that this anisot- easily be seelt™*?to be unstable to crystallization, that is to
ropy is an intrinsic property of a new, anisotropic metallic the occurrence of a charge-density wave along the stripe di-
phase of the 2DEG. The anisotropic metal, rather than theection which breaks translational symmetry and produces an
fractional quantum Hall effect, apparently dominates theinsulating state which can be thought of as an anisotropic
physics of all partially filled Landau leveld.L's) with LL Wigner crystal.
indexN=2. In the present paper, we will develop a theory of the un-

Motivated by these experiments and theoretical work orpinned quantum Hall smectic phase, and investigate its low
Hartree-Fock states with stripe ordef, and exploiting an energy properties. Based on our earlier wotR,it is our
analogy with the stripe related phases of other strongly corbelief that it is the quantum Hall nematic state, not the smec-
related electron systerfistwo of us proposet that the tic, that is the most experimentally important phase. How-
ground states of quantum Hall systems with partially filledever, these are new phases of matter, and their precise char-
Landau levels witiN=2 are predominantly electronic liquid acterization is important in its own right, and for possible
crystalline. These phases, with broken rotation and someelevance to future experiments. Moreover, a mean-field
times translation symmetry, are intermediate between the isdheory of the quantum Hall nematic, to serve as a starting
tropic quantum fluid and the quasiclassical electronic crystalpoint for a similar analysis, has not yet been developed al-
In particular, we argued for the existence of quantum Hallthough important progress in this direction has been méde.
smectic, nematic, and hexatic phases. Serious progress has also been made towards understanding

The simplest liquid-crystalline phase to visualize is thethe nematic Fermi fluid in zero external magnetic fild.
smectic or stripe ordered phase, which breaks translation The central result of this paper is an effective low-energy
symmetry in one direction, but is nonetheless a fluid in thetheory for the QH smectic which can be expressed in terms
sense that there is no gap to current carrying states and thesétwo canonically conjugate sets of degrees of freedom: the
is a noninteger number of electrons per magnetic unit celldisplacement fields of the stripes, i.e., the Goldstone mode of
As mentioned above, early Hartree-Fock calculations sugthe spontaneously broken translational symmetry, and the
gested that the ground state of the 2DEG in large magnetichiral edge modes of each stripe. In a separate publiction
fields is a unidirectional charge density wa@DW).* These  two of us we will give a microscopic derivation of this ef-
results are manifestly incorrect in the lowest Landau levelfective low-energy theory.
where the fractional quantum Hall effect occurs, and the The quantum smectic is also interesting from a broader
ground state is, to good approximation, the Laughlin state. conceptual point of view, in that the Goldstone modes are so
But, for a high enough Landau level ind&k a stripe phase soft that coupling to them destroys all coherent single-
can be shown to be a reasonable ground state of the 2DE@&ectron motion, even at temperature-0. Indeed, we find
for filling factors close to half-filling of the partially filled that the electron Green functio&(x,y,t) is highly aniso-
Landau leveP~" Here, the stripes are the result of a compe-tropic. It falls off more slowly than an exponential, but more
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A essentially equivalent to the theory for the quantum hall
A smectic that we introduce and discuss in this paper.
N N+ N N+l N However, we find that the picture of the quantum Hall
smectic as an array of coupled Luttinger liquids in fact can
obscure the underlying physics of this state. This picture sug-
v y gests that some sort of quasi-one-dimensional low-energy
VA a-v)r A aA=vr| A theory can explain the physics of this state and in particular
that it can be used to analyze its stability. Thus, on the basis
Y of this analysis, it was argued in Refs. 9 and 12 that even
beyond Hartree-Fock theory the smectic phase would always
unstable to crystallization. While this approach is reasonable
o(y) in the case in which the internal edges are pinned by an
‘ ’ ‘ ‘ Ey-u ’ external, periodic potential, we will see, below, that this sta-
bility analysis based on a (d1)-dimensional scaling may
‘ ‘ ‘ ‘ ‘ ‘ Y  not be safe in the absence of explicit symmetry breaking.

The physical reason is that the Goldstone modes of the smec-
tic are so soft that they dominate the low-energy physics, and

FIG. 1. Schematic representation of the stripe solution. TopN® resulting fixed point is a strongly anisotropic
panel: the chiral edge states of each stripe; eendN+ 1 label (2+1)-dimensional system.
the number of filled Landau levels in each regiaris the period of In fact, recently, Fertig and co-workets?®**have car-
the stripe(wavelength, and v is the effective filling factor of the ried out numerical time-dependent Hartree-Fock calcula-
partially filled Landau level. Bottom panel: effective poteniigly) ~ tions, and showed that their numerical results can be de-
for the stripe solutiony is the coordinate perpendicular to the scribed qualitatively by a quantum smectic with essentially
stripe, 1 is the chemical potential, arféy is the energy of Landau the same properties that we find here. In particular, they find
level N. that the unpinned quantum Hall smectic state can be stable.

In addition, Cde and Fertig have analyzed their time-

rapidly than any power law as a function of tirner distance  dependent Hartree-Fock results in terms of an effective elas-
along a stripe; it falls at least exponentially as a function of tic theory similar to ours. Recently, Fogler and Vinokur stud-
displacement perpendicular to the strigegor instance, for ied the classical hydrodynamics at finite temperature of the
zero spatial separatios(0,0t) ~exd —AIn%(t/ty)], which  Hall smectic?®> These conflicting results, and our earlier
implies a strong pseudogap in the local density of statesargument® of a first-order transition for the smectic-crystal
Despite this, for a system with short range interactions, theransition in the absence of pinning and of a second-order
specific heat at lowl, due to the soft Goldstone modes, is transitiort® in the presence of pinning, show that this subject
Cy~TIn(T,/T)—there are even more low energy modes thans still open. We will not resolve the issue of the stability of
in a Fermi liquid. For the case of Coulomb interactions wethe QH smectic against crystallization in this paper, as it

find instead aT linear law. turns out to be very subtle, but we will discuss the present
A smectic statéguantum or classicals a state with spon- status of this problem.
taneously broken continuous symmetrié€® In the zeroth While this paper was being completed we became aware

order description, given by the Hartree-Fock theory, theof the recent work by Lopatnikova and co-workérsvho
sample is spontaneously divided into strips with filling fac- have derived an effective low-energy theory for the quantum
tors that alternate between two successive inteljeasd N Hall smectic which is essentially equivalent to the one we
+1, as shown in Fig. 1. At this level, the high density re- present in this paper. Although, for the most part, the results
gions are separated from the low density regiongsinaigh} of the present paper, as well as those of our microscopic
edge states with alternating chirality. As the filling factor of theory which will be discussed elsewhéfare in agreement
the partially filled level changes the width and period ofwith the results of Ref. 23, there are differences in the analy-
these strips changes, which implies that this state is consis of the consequences of the effective low-energy theory.
pressible. As a consequence, the Hall conductivity varies lin- This paper is organized as follows. In Sec. |, we present a
early as the filling factor varies across the partially filled simple, phenomenological derivation of the quantum Hall
Landau level. smectic fixed point Hamiltonian. In Sec. Il we use this effec-
It is tempting to think of the smectic as an array of chiral, tive field theory to compute the correlation functions of the
one-dimensional wireginternal edge statgsinteracting by quantum Hall smectic, including the electron propagator.
some(possibly complicatedeffective interaction induced by Since the fixed-point Hamiltonian is formally scale invariant,
the fact that the edges are self-consistently generated, amshe generally expects these correlation functions to be power
hence fluctuating. This approach was advocated in some d&ws, with exponents determined by the scaling dimension of
our recent papers® It was also advocated in an insightful the fields; this expectation is met, in large measure, but there
paper by MacDonald and Fistéwho proposed an effective are various logarithms that appear in certain limits which
theory for a system of coupled chiral Luttinger liquids com- violate scaling. This is the origin of the subtleties in the
patible with rotational invariance, as required for a truestability analysis. In Sec. Ill we repeat the previous calcula-
smectic state. In fact, the theory of MacDonald and Fisher igions in the presence of unscreened Coulomb interactions. In
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Sec. IV we discuss the low-temperature thermodynamiwery small, and indeed, we will ignore it for now, and then
properties of the QH smectic and in particular we computeassess its perturbative relevance, below.

the specific heat. In Sec. V we discuss the issue of the sta- The final termZ;, consists of all remaining, higher order
bility of the quantum Hall smectic towards crystallization. terms which, as we will see, are irrelevant at the quantum

Finally, in Sec. VI we present our conclusions. Hall smectic fixed point. We have explicitly exhibited three
of the most interesting of these—inertial terms, which can be
|. EEFECTIVE FIELD THEORY neglected at low energies and large magnetic fields, and the

leading geometric coupling between the stripe geometry and

Consider a stripe crystal in a large magnetic field. In thethe density wave order along the stripe, which plays a key
classical ground state, there is a charge density wave withole®!° in determining the stability of the smectic phase in
fixed wavelength running along each stripe and the stripethe absence of a magnetic field.
(labeled by an index) are spaced by distance and are If we take the continuum limit of this action, then the
straight and parallel; without loss of generality they can beeading order terms irCg, have the interpretation as the
taken to run in thex direction. Smooth deformations of this fixed point action for the quantum Hall smectic. This limit is
state can be described in terms of the local displacement afotained by replacing\X;— fdy, u;(xX)—u(x,y), ¢;(x)
the charge-density wav€CDW) along the stripe direction — ¢(X,y), and Lgyi— L,
#;i(x) and the transverse displacement of the stripe from its
classic ground state positianj(x). In terms of these vari- . I , Ko , Q 5
ables, the action describing the dynamics of this systemis ~ Lsm= 3 U= (9xh)" =5 (dyu)"— 5 (dw)".

1.9
SI)‘; fdtdx{ﬁsm“L Liockt Lirt 1.1 In a separate publicatithwe give a detailed microscopic

derivation of this effective action.
This action is a scale invariant fixed point action with

£Sm:%3uj&t¢j _g((pxd,j)? respect to the anisotropic transformation
2 3
Ky (U= U g 2. Q - X—=TIX, y—=rey, t—r-,
i B —E(axuj) , (1.2
u—rtu, 6—6, ¢—r2¢, (1.5
Liock=Vc0og a(dj— ¢j11) + Bdxul, (1.3 Wwhered is the dual field defined below, in E¢L.14. Thus,

the effective space-time dimension is 6. All the operators
included in the fixed point Lagrangiady, are marginal
since they have scaling dimension 6.
_ o If we then perform a standard scaling analysis, all
where we have used that the current onjtfiestripe isdi¢; . operators with dimension larger than 6 are irrelevant while
The first term,j - A in the gaugeA=ByXx, gives rise to the operators with dimension smaller than 6 are relevant. It
Lorentz force lawx, are the various elastic constants &d would then be straightforward to assess the perturbative rel-
is the bending stiffness of a stripe. evance ofSy; in the continuum limit, we can approxi-
The term which tends to lock the relative phases of themate 1-cog a(¢;— ;1) + Boul=(\"a?/2)(0,p+ du)*+ - - -,
CDW'’s on neighboring stripe€, is the principal term  from which we deduce that this term is the energy associated
which distinguishes the crystal from the smectic—it vanisheswith a shear deformation. By power counting, at the smectic
in a smectic phasex ! is the wavelength of the CDW in fixed point this operator is a combination of operators with
appropriate units an@= X\« is necessary to insure that the dimensions 4, 6, and 8, respectively. The operafu)? is
system is rotationally invariarit. This term has been omitted relevant according to this scaling analysis, suggesting that
in the published literature on this problem, but its necessitythe smectic is unstable to formation of an unpinned crystal-
can be seen readily. Consider a rotated version of the clasdine state. The higher order terms can be easily seen to have
cal stripe crystal ground state:uj=xsin(d)+jA\[1 higher dimension. Similar analysis leads to the conclusion

1 . .
EirrZE[Ml(uj)z'l' M2(¢’j)2]+ 7((9x¢j)(axuj)2+ Tt

—cos(@)]/cos) and ¢;=—jAsin(¢). Since this is also a that the explicit terms inCy, have dimensions 8M,), 10
classical ground state, it must be tt&0. The effective (M), and 7 (y), respectively.
action we have considered, with the stated valueBpfis It is easy to see that external periodic potentig@s.,

invariant under this transformation far sufficiently small  lattice pinning are relevant: an operator of the form
that we can ignore the nonlinear terms, idl  cos(2ru/\) has scaling dimension 2 and is strongly relevant,
—cos@)]/cos@)~0. To insure rotational invariance under while operators of the form co8¢) (whereg is a constant
large rotations, we would have to include additional nonlin-have dimension 4 and are also relevant. Finally, an explicit
ear terms in the fields, as is well knoWrin the classical term of the form ¢,u)? (as opposed to the one generated by
liquid-crystal literature; however, these terms do not affectexpandingZ,,,) has scaling dimension 4 and is also rel-
any results of the present paper.t€and Fertig® have ex- evant. Such terms break rotational invariance explicitly and
plicitly shown, in the Hartree-Fock approximation, thats  can be generated for instance by an in-plane magnetic field
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(or by any other perturbation that generates an anisotropic A P N K A
effective mass for the electrons v Q(&§H1)2+—;(H1—HH1)Z +TH(O-,X¢1)2_
The Lagrangian as written is even undgr— —u; and 2(eB) A
B— —B (related to particle-hole symmeijnthere is another 1.9
5 . .

operatof® that should appear iifsy that we have not in- This formulation is convenient for studying the effect of
cluded, namely, 1~ U;)dx¢—N(dyu)(dyp). HOWeVer, gingie particle(fermionic) excitations in the smectic state.

its effect is equivalent to a renormalization of the elastic  giandard method®of bosonization for the 1DEG permit
constants. Although by power counting it is marginal, we g {4 reconstruct the electron operators forjthestripe from
treat it as a redundant operator and will ignore it. the collective bosonic fields. The operators that create an

_Another issue, raised originally by MacDonald and giectron on thejth stripe are related to the left and right
Fisher, is whether there are two distinct sets of IOW'e”erg¥noving fields,i-. ((x,t) in the usual manner
] t’] )

degrees of freedom or not. Clearly, since the dynamical term
in the action linearly couples and ¢, they are mixed, so _ikix Ziklx

there is only one low energy mode, not two. Formally, this Vi) =e"y, j(x,O+e Ty (x. ). (110
means that we can integrate out one set of degrees of fregng right and left moving Fermi fields have the bosonized
dom, leaving an action with a quadratic kinetic energy ingyrm in terms of the fieldp; on each stripe

terms of the other. For example, if we Fourier transform the ’ !

effective action, and then integrate out the shape modes, we

- u, = -

are left with L (X, 1) = ——e T8 (x) = ¢ (x.)] 1.11)
l;b,,J( ) \/ﬁ (
k2 . : . :
sgmzl > I [w?— 2(K)]| b7 )2 (1.  wherea=1 is the short distance cutoff. Here the dual fiéld
2w €(K) ' is defined by
where «
) 0,-(x,t)=f_wdx’Hj(x’,t) (1.12

K[ QK+ k, k2] 1.7

. A
e’(k)= K||( °B .
and the operator§; are the Klein factors

which is the dispersion relation of the Goldstone modes. No-

tice that it has a line of values &f= (0ky) with zero energy. U= II € Vf Z dxay (1) (1.13

However, the price we have to pay for integrating out the i<

Goldstone modes, is a singular dependence of the actionon ) ) T ,
- . . ) which satisfy the relationsl| 6,(x)U;= 6 (x) +i V75, and
o andk, reflecting the presence of highly nonlocal mterac-gu_ U1=[U: . b:]=0 j
i Ml (R

tions. It is a matter of convenience, then, whether we trea It is simple to check thaW (x,t) constructed in this wa
the problem in terms of a nonlocal action with a minimal ___. fi pie K | anti SN lati f ¢ Y
number of degrees of freedom, or a local action with twice a .alt:js 1es ganggma anrt:commutat;]on relations for a ermu;nlc
many degrees of freedom; we feel that the latter represent 1€1d, an q Ha s’lta charge tod t t'e iystelrn. Btec.al;];e the d
tion makes the basic physics clearer. In any case, the effe _olsr?nlzerz] s.m' onla}_n IS q(;Ja ratic, | |sr?so|s raig (é)rwar
tive action we obtain here is equivalent to that of MacDonald alt 9”9_ a .'t comp_lcate 0 compute the e ectr_on reen
and Fishet? In summary, we conclude that the displacement]tlun(t:t'op' this is done in Sec.ﬂl:. thehmafrkab_Iy, wg find t?at tthe
field u, representing the fluctuations of the shape of thef;fsugf;ogi Zrefusnoctisgxe(r)? imz ingr eimlcema@rg()azeinc lon
stripe, and the Luttinger fileeh, representing the charge fluc- ANt hich is faster th ginary | ith P h
tuations on each stripe, are canonically conjugate variabl "], which is aster than any power law, aithoug
and thus are not independent degrees of freedom, in agreg_ower than exponential. As exponential fall-off implies a

ment with the arguments of MacDonald and FistfeFhis gap in the spectrum, thi_s _behavior implies _a_ strong
discussion corrects some of the arguments given earlier seud_ogap with a charapterlstlc energy scale. Th@whe.
two of us in Ref. 9. ehavior one observes in a set of coupled one-dimensional

Another way to look at the effective action is as a phase_Luttmger liquids, i.e., in a pinned smectic. This is discussed

: S further in Sec. Il.
space path integral—in this casg, and It is useful to find an effective Lagrangian for the dual

=—eBy (1.8 field 0. This can be done straightforwardly by noting that the
! dual field # and the displacement field are related by

are interpreted as a field and its conjugate momentum,

[ ¢;(X,), I (X", 1) ]=i 8k 8(x—x"). (This reflects the well eB

known Landau level physics, in which the different compo- Ix0=— U (1.14
nents of the position operator become canonically conjugate

variables, and so fail to commué@Me can thus express the Thus, upon integrating out thé fields in Eq.(1.4), we find
same physics in terms of(discretized Hamiltonian density  that the dynamics of the dual fielilis governed by the local
operatorH=ZX;H;, where effective Lagrangian
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1 K \2 Q)2 albeit anisotropic power laws. We will show in the next sec-
L[0]= Z_(ata)z—%(é’x&ye)z— 5 (030)%. tion that this is(almosy true for the correlation functions of
K 2e°B 2e°B the displacement fields, but that the Luttinger fields and

(119 the dual fieldd develop logarithmic singularities along the

Since ¢ is dimensionless, all three terms in this effective Stripe direction. In fact the correlation functions are not only
Lagrangian correctly have scaling dimension 6. In Fouriefhighly anisotropic but have also a complex singularity struc-

space the Lagrangian takes the form ture, determined by both rotational invariance and by the
sliding symmetry. In Sec. V we will argue what this struc-
d’k 1 R R ture, and in particular the existence of a divergent number of
S[G]ZJ (27 2_1(H[w2_ e(K)1[6(k,w)[>. (1.16  |ow-energy degrees of freedom, raises questions concerning

the validity of naive scaling, and calls for a more careful

This result shows that it is the dual fieldl that can most renormalization group analysis than we have attempted in

naturally be related with the collective modes of the quantunihis paper.

Hall smectic phase. We conclude this section with a few

observations concerning the properties of the smectic fixed

point. IIl. CORRELATION FUNCTIONS OF THE QUANTUM

SymmetriesThere is a peculiar “semilocal” sliding sym- HALL SMECTIC

metry of the effeqtive field theory. Becaqsg the Hamiltonian | his section, we use the effective field theory to com-

has no terms which depend on the variationgoin they 16 the correlation functions of the displacement fiald

direction, L, is invariant under the transformation (which is the Goldstone boson of the smegtimd of the

Luttinger fields¢ and 6, which directly represent the charge

PY.D= B0y DY), (1.17 fluctuations on each stripe. We will see that the correlation

wheref(y) is an arbitrary function of thécontinuun stripe  functions can be written in a scaling form which explicitly

index y. This symmetry corresponds to the independendisplays the scaling laws dictated by the fixed point.

translations or shifts along each strideSuperficially this We define the imaginary time correlators

symmetry is similar to a local gauge symmetry. However,

since it is not truly local, as the allowed transformations

depend only on thg coordinate, this symmetry can be com-

pletely broken by a suitable choice of boundary conditions,

e.g., open boundary conditiong contrast to a genuine (and analogously for» and 6), and we will denote the sub-

gauge invariance which requires gauge fijyinghere is an tracted correlators by

analogous sliding symmetry for the fields. Nevertheless,

this semilocal sliding symmetry has profound consequences 1

on the behavior of both thé and 6 correlation functions = __ - _ 2

which are infrared divergent for+# 0. We shall also see that Colxy, U= 2([¢(x,y,t) ¢(00019. 22

there are a number of striking additional features of the cor-

relation functions which stem from this symmetiiThe We will find below that due to the smectic symmetry the

locking  term Liog " if relevant, breaks this symmeyAl- . unsubtracted propagator of operators that are not invariant
though the smectic state spontaneously breaks translatlon&l]der the shift symmetry of Eq1.17) are infrared divergent

SYTTE e} aecton, ne Urering SYIELY OF 1 n i .0 andt.20 i e, Wi s o 1
true in any theory with gapless excitations, these infrared
u(x,y,t)—u(x,y,t) +a. (1.18 divergences are particularly important due to the feature of
o ) ) ) . the dispersion relatioa(k) which vanishes ak,=0 for all
S|m!larly,. the underlying rotational symmetry is reflected in ky, Thus, the propagators of the Luttinger fiefdand of the
the invariance ofs under dual field # need to be subtracted. In contrast, the propagator
of the Goldstone modes needs no subtraction in the ther-
modynamic limit since the fields are invariant under shifts.
b— b 0y. (1.19 :[A_\mong other things, this implies that the quantum fluctua-
ions ofu are bounded, and so do not necessarily destroy the
Finally, absent the redundant term, ¢) (dyu), the action is  smectic order. However, the semi-local symmetry of the
invariant under the particle-hole transformatior;: —u and  smectic results in expressions f0r, andC, which diverge
B— —B. in the thermodynamic limit; only the subtracted version of
Coulomb interactionsln the present discussion, we have these correlators, which are invariant under this symmetry,
assumed all interactions are short-rang&ee Sec. Il for the are well defined. Notice, however, that the subtraction of Eq.
effects of Coulomb interactions. (2.2) only removes the uniform shift and not the semilocal
Breakdown of the scaling assumptioRinally we note  shifts. Thus, even the subtracted propagatorgfand 6 will
that the scaling analysis implied by E(lL.5 assumes that become infrared divergent in the limit—0, t—0, with y
the correlation functions of the fields ¢ andu obey simple  fixed. We will deal explicitly with this issue below.

Cu(x,y,t)={u(x,y,t)u(0,0,0)) (2.1

u—u-+ 0x,
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A. The dual field correlation function x—0 andt—0. This infrared divergence is a manifestation
We will begin by calculating the subtracted propagator of0f the shift invariance, Eq(1.17), of the quantum smectic.
the dual fieldd in imaginary time It would be natural then to further subtract thisvergeni
contribution from the scaling function which would now be
B 2 K| L infrared finite everywhere. However, in order to keep things
Cyx,y,t)= J —Zf[e_|t‘€(k)+'k'x—l]. (2.3  simple, we will refrain from doing this but we will keep in
(2m)° 2€(Kk) mind the existence of these divergent contributions. Thus, we
In principle this integral must be done with finite ultraviolet S€€ that for generic values &fand the correlation function
cutoffs in bothk, andk,, which we can take to bd, the is a finite scale-invariant function only @f and ». Notice
large momentum cutoff of the edge modes, and Wherex that fixing bpthg and » generally corresponds to a curve in
is the wavelength of the stripe state, typically a number offPace and time.

the order of a few magnetic lengths. Also, for a finite system We Will now discuss the three special regimes.
of linear sizeL,=L,=L, 1/L will be the infrared low mo- (@) x=0, t fixed andy—0: The autocorrelation function

mentum cutoff. However, it turns out that this subtractedof the dual fieldd has a strong logarithmic infrared singular-
propagator is finite in the thermodynamic linit> except 1Y @s (x,y,t)—(0,0,0),

in the regimex—0 andt—0 with y fixed. This infrared

divergence is a consequence of the local shift invaridonce C,4(0,0,0= i ﬂ?" /ﬂmz
sliding symmetry of the quantum Hall smectic phase. In (NS 472 N Vi,
addition, the subtracted propagator has a finite limitAas
—oo and\—0, for all space-time pointsx(y,t) except on
the axes(which will be discussed belowThus, for generic
values of §,y,t) the subtracted propagator is faithfully de- F,(0,7)—In7. 2.9
scribed by the scaling form ’

L
X» 2.7)

This regime corresponds to settigg-0 and takingn— oo,
where the scaling functiok , takes the limiting form

Hence, the subtracted correlation functi©op(x,y,t) is infra-

~ 1 Kk eB red finite and has the leading long time behavior
Chxy =\ Fy&m), (24 97ong
2 Ky N
2001 = - 2B\ /Sy 2.9
whereF 4(&,7) is the scaling function o(0, I)_sz » Vi, n AR (2.9
F(6m)= 1%f°cduf°° dz where
O A PT —wy1+2° x| 3201 B
N == —=—. 2.1
X[efnu3\1+zz+|§u+|u22_1]_ (2.5 0 (\/Z) \/K—” A (2.10
Here ¢ and 7 are the scaling variables Notice thatt,—0 as the UV cutoff iny vanishes,\ —0
(naturally, this is done only inside the cutoff factor which
kY4 carries the 3/2 power, and not in the dimensional factor
= 6 \/ﬂ eB/\). Thus a finite but smally acts as a short distance
y cutoff for the time correlation function.
N |y (b) t=0, x fixed andy—0: In this regime,»=0 and¢
_ | KL , Where the scaling function behaves as
7]_e_B KjkL 6) |y|3/2' (2.6 o g
Fo(£,00—In*¢ (2.11)

Notice that the correlation functio@,(x,y,t) depends on its
arguments only through the scaling variabfeand » of Eq.
(2.6), which are scale invariant according to the rules of Sec
I, Eq. (1.5). This feature follows from the scaling properties

asé— oo, Hence, the equal-time subtracted correlation func-
tion “on the same stripefi.e., asy—0), has the long dis-
tance behavior

of the dual fieldd which, according to Eq(1.5), is invariant 1 eB /= IX|

under scale transformations. Gy(x,0,0)= —— — il 2(—) , (2.12
It is direct consequence of scaling, and of the arguments 2m® N VK, Xo

presented above, thadt,(&,7) is a smooth differentiable where

function for all values of the scaling variablésand 7, ex-

cept close to £, 7) =(0,0) (i.e.,x—0 andt— 0 with y fixed) A2Q\ V4

where the subtracted propagator becomes infrared divergent, Xo= ( 4’&) (213

and foré—o (i.e.,y—0 with x fixed) or —~ (i.e.,y—0
with t fixed) where the scaling function develops branch cutNotice that here too a small but finiteacts as a short dis-
singularities. These branch cuts will show up in the form oftance cutoff for thex correlator.

logarithmic dependences onandt for y—0. The scaling (c) x=t=0 andy fixed: In this regime bot¥—0 and»
function has also an infrared divergence as a functionad —0 and the scaling function develops an infrared diver-
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gence. We find that the equal-tinmibtractedcorrelation
function on different stripes has the behavior

(2.19

where once agaiib is the linear size of the system. This
correlation function is also infrared divergent as a conse
guence of the local sliding symmetry of tigefield.

1 eB
8m2 A

2
K| m [Qly|
Vi '”2<7 P

Cy(0y,0= L2

B. The displacement field correlation function

We will analyze the propagator of the displacement field
along the same lines used above for theorrelator. The
propagator of the displacement fialdat space-time separa-
tion x=(x,y,t), wheret is imaginary time is given by

Calyst)= f
(2.15

The same line of argument used for tHecorrelator now
implies that the propagator of the displacement fieléor
finite (x,y,t) has the scaling form in the limit df -, and,
after removing all the ultraviolet cutoffs, we get

d2k 2 K2

a2

I

N ik-1—[t| e(K)
eB '

e

2€(K)

1

2-2€eB

K|

Cu(x,y,t)= |y|

Fué&m), (216

whereF (¢, 7) is the scaling function

Fu(g,n)=%iﬁ f:du uJ:
(2.17

which converges provided and 7, defined in Eq(2.6), are

Xe~ pudV1+Z22+igu+iu?z

dz
J1+72

finite. Hence, consistent with the predictions of the scaling

laws of Eq.(1.5), the full propagator is the product of the
universal scaling functiofr ,(¢,7) and the power law factor
of 1/]y|, i.e.,u scales as t/and its propagator asr®/(where
r is the scale factor

(a) The auto correlation functiarin the regimex— 0 and
y—0 with t fixed, i.e., =0 and »—, we find that the
propagator has the asymptotic behavior

A
Cu(o,ox)=——|t|2,3, (2.18
where
1 (ras)\? a7 219
“en2| 228 | |eBQ® '

This behavior is consistent with the scaling laws.

(b) The equal-time correlation functiomhe equal-time
correlation functionC,(x,0,0) for the displacement field has
the asymptotic behavior

PHYSICAL REVIEW B 65 245319

C,(x,0,0)= (2.20

which is also consistent with scaling. The constégtis
given by

1
22

A
Kk, eB’

K

A= (2.2)

This result can also be obtained by differentiating twice the
scaling function for thed field with respect tok, at =0.

(c) Equal-time correlation on different stripeBnlike the
6 field correlation function, discussed in Sec. Il A and the
Luttinger field correlator to be discussed below, the equal-
time correlation function for the displacement fielen dif-
ferent stripes,C,(0,y,0) is infrared finite and has the ex-
pected scaling form

A
C,(0y,0=— ﬁ (2.22
where
A :i L al (2.23
Y 8mreBVQ’ '

The infrared finiteness of the correlator is required by the
smectic symmetry since thefields are the Goldstone bosons
of the symmetries broken spontaneously by the quantum
Hall smectic state.

C. The Luttinger field correlation function

We now turn to the(subtracted propagator of the Lut-
tinger field ¢. In imaginary time and for finitex,y,t), the
subtracted propagator of the Luttinger field is given by

6¢(X!yvt) = f
(2.29

Once again, we will write this propagator in scaling form

d%k (k)

|kr [t]e(k) _ 1
(2m)? 2K”k2[ I

1

2 2

A 1
K| eB y2

which is consistent with scaling. The scaling function

Fy(€,m) is

Fa(&,m) ——SRJ dou dz\1+72

X[efnusvmzﬂfuﬂuzz_l]_ (226}
This scaling function is well defined for all values and »
except near (0,0jnamely, forx—0 andt—0 with y fixed)
where it develops infrared singularities, and b~ (y
—0 with x fixed) or »—o (y—0 with t fixed) where it too
develops branch cut singularities. We will consider now the
following three regimes.
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(8 x=0 y—0 with t fixed. The autocorrelation function spectrum. However, the connection between this problem
of the Luttinger field¢ has a logarithmic infrared divergence and Luttinger models suggests that it may be possible to find
ast—0, a behavior akin to an array of quasi-one-dimensional systems

in which the electron fractionalizes into a set of suitably
T4l n (Ve \ 7L defined solitons. In fact, if the displacement fields were to be
2 eBliy3 |”(_)v (2.27) gapped out, say by lattice commensurability effects, this is
472 eBl)\ K| Xo ; . ) .
indeed what it may well happen as discussed in Refs. 19 and
where L is the linear size of the system. In contrast, the28. Thus, instead of a Luttinger-like power law behavior, we
subtracted autocorrelation function is infrared finite and hasvill find that the autocorrelation function of the electron, and
the asymptotic behavior fdt|>|y|®?, the associated spectral function, vanishes as a function of
either|x| or [t| faster than any power but more slowly than
r(4/3) n (\/Z) 2 an exponential. This “pseudogap” behavior is indicative of a
2 eB| \ — pronounced suppression of final states for electron tunneling
3w A (2.29 in the quantum Hall smectic phase. In the remainder of this

' section we will derive this result.
low that this results also follows from the scaling function. gjectron operators as defined in Sec. I. In this section we will

(b) t=0 andy—0 with x fixed. By direct evaluation of se the results of Sec. Il to compute the fermion Green func-
the scaling functior= ,(£,0) we find that ag— < it behaves  tjon directly in the continuum limit along thg direction.
as Thus, from now on, we will replace the discrete stripe Igbel

. by the continuum coordinatey. Due to the smectic
Fy(£,0)—ci(§)=Ing, (229 symmetry!®?"29Eq. (1.17), of the effective Lagrangian of
where cig) is the cosine integral. Thus, for largethe scal-  EQ. (1.4), the (continuum fermion propagator
ing function has a logarithmic term similar to the one dis-
cussed above. Hence, the equal-time subtracted correlation G(x,y,t;x’,y’,t’)z(T\If(x,y,t)\IfT(x’,y’,t’))

C,(0,00=

t

In|—
to

C,(0,01)=—

function of the Luttinger fieldp has the|x|> \y behavior (2.32
~ 6 1 K, \ X vanishes identically foy#y’. Thus it is sufficient to com-
Cox00=-—= =\ =g pute the propagator on a single stripe, i.e.|@s-y|—0.
TN\ K| Xo : :
Below we will compute the propagator for the right movers.
3 Q N The propagator for the left movers follows trivially from it.
— _—(_)_ (2.30 Using the bosonization formulas, the propagator for the
2% Kk, K| eB/x* right moving fermions at fixed (i.e., on the same stripe

Hence we see that, for arbitrary finite values of the scaling’h(x’y’t) IS
variablesé~ |x|/\]y| and ~|t|/|y|®? the subtracted propa-
gator of the Luttinger field obeys strictly the scaling laws,
and it develops a logarithmic singularity as either tloe the
X axes are approached.

(c) x=0 andt=0 with y fixed. The equal-time correlation where, for imaginary timé¢>0 andx>0, we find
function for ¢ on different stripes is also strongly infrared
divergent ad.—oe. In particular, since it can be seen that in TR =
this case lim_oC,(y)=0, there is no need to subtract the ©. (%) J[nO[Cg(x,y,t)+C¢(x,y,t)], (2.34
correlation function. Thus the correlation function is

1
(I 0y, 0T (0y,0)= 5 e ™0, (233

5 where we have dropped the contributions from the cross cor-
C,(0y,0)= L(L) 1 (L) In 2.31) relations betweeld and ¢. The only role of these terms is to
S 272\ eB m lyl ' insure the correct anticommutation relations on the fermion
_ ) ) o operator, i.e., that the fermion propagator is an odd, antipe-
which diverges in the thermodynamic limit—<. The rjpdic in time, function of the coordinates. It is straightfor-
phy3|cal_ origin of this infrared d.|verge.nce is, once again, theyard to check that these conditions are met.
local shift symmetry of the Luttinger field on each stripe. Elsewhere in this section we showed that the correlator of

the dual fieldf:a is always more singular than the propagator

of the Luttinger field§¢. Using these results we find that, at
In this subsection we will use the fixed point theory to equal(imaginary times and ay =0, the functiond®, (x,0t)

reconstruct the electron operator. We are interested in findingas the has the asymptotic behavior for lajgle

out several things. To begin with, we would like to know if

the quantum smectic state does support sharp excitations 1 eB /= M

with the quantum numbers of the electron. At the Hartree- ®, (x,0,00=— — —In2<—

Fock level there clearly are electronlike excitations in the 2w A KL Xo

Xol Y

D. The electron propagator in the smectic phase

+---. (2.39
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We can easily see that this asymptotic behavior is due to theestigated the quantum Hall smectic state in a 2DEG with
equal-time correlation function of the dual fiel@,(x) of ~ Coulomb interactions, and found that the dispersion relation

Eg. (2.12. Consequently, the equal-time fermion correlation©f the collective modes is modified. In this section we will

function behaves as investigate how these changes modify the picture of the fixed
point developed above.
G.(x,0,0)sgnx) ef(1/2w)(eB/M\/Ku7nln2<|x|/xO>, Rather than reworking the mean field theory we have used

(2.39 for the short range case, we will work directly with the ef-
fective Lagrangian of Eq(1.4) and modify it to reflect the
effects of Coulomb interactions. There is a simple and direct
way to account for their effects at the level of the effective
theory. First of all, the term%K”(anb)2 represents short-
range density-density interactiofrecall that in bosonization
the forward scattering part of the electron local density is
given by d, ). Thus long-range interactions lead to a non-
local term in theaction LetV(E) be the Fourier transform of
the two-dimensional Coulomb interaction, i.8/(k)>1/K].

G, (0,0t)ce” ™+(0.0 (237 In momentum space this amounts to modiky by a

. . .. momentum-dependent factor
whose long time behavior, at zero temperature and as finite

where the sgrx) factor shows that it is a correlation function
of afermion This correlation function exhibits the same ana-
lytic behavior as the structure factor in DNA-lipid
complexes>® Notice that it decaysasterthan any power
but more slowlythat an exponential decay.

Conversely, the fermion autocorrelation functidin
imaginary time is, fort>0, and on the same stripg£0) is
given by

temperature, is once again dominateda:g(t), the autocor- R ;H
relation function of the dual field. Hence, we find that the K| — K| (K) =", (3.0
fermion autocorrelation function has the long time behavior ki

— (L2 (eBIN) (K TR |2 where k is an effective coupling constant. Similarly, long-

G+ (0.0n)xe” WETEE M In*([ti/to)  (2.39 range Coulomb interactionz V\%" also modify they elasgt]ic

with the samé, defined above in this section. modulusk, along the direction perpendicular to the stripes.

The fermion Green function on different stripes can beHence,x, will also have to be changed in a similar fashion,

found by similar means. Using these methods, the equal-time
Green function on different stripeg# 0, is found to vanish:

7
KLHKl(k):TL. (3.2

G, (0y.0)xe ™00 (239 K

Thus the effective low-energy theory of the quantum Hall

~ ~ smectic with Coulomb interactions is obtained by replacin
gence in botiC4(0yy,0) and inC,4(0,y,0), which are both a e . I I ! I y repiacing

consequence of the sliding symmetry of the quantum Half<I— %|(K) and x, —«, (k) at the level of the effective ac-
smectic state. tion, in Fourier space. The new dispersion relation is

The behavior of the electron auto-correlation function of = =
Eq. (2.38 clearly sh_ows the strong suppre§sion of ele_ctron e(K) = L ﬂ| K, /QkiﬂL K%kz. 3.3
states at low energies. It implies a dramatic suppression of eB VK| K| Y
thetunneling density of statder electrons into the quantum
Hall smectic. Notice that this is a much more dramatic effectThus, the dispersion relation is nonlocal. However, we will
than the power law behavior of one-dimensional Luttingershow below that for the analysis of the infrared behavior of
liquids. It is due to the strong fluctuations of the shape of th¢he displacement fields correlators it is sufficient to use an
StripeS, a hallmark of a guantum Sme(?tikt_easy to see that apprOXimate, SimPler, version of the diSperSion relation ob-
in the presence of a periodic pinning potential along the ditained by settingk|~|k,|. In this limit, the dispersion rela-
rection perpendicular to the stripes, this behavior is supertion becomes
seded by a conventional Luttinger picture. This is expected
since the resulting state is equivalent to the smectic metal of - A \/7—
Ref. 19. Similarly, it is easy to see that at conventional Lut- e(k)zeTg\/":H Qlkx|5+"ik§' (3.4
tinger behavior is recovered at short times once irrelevant
operators which lead to a linear dispersion relation are inln particular, atk,=0, we find e(k,,0)>|k,|>? a result first
cluded. obtained by Cte'and Fertig?®
The dispersion relation of E¢3.4) shows that the dimen-
Ill. THE COULOMB FIXED POINT sional counting for the case of Coulomb interactionsofs
~k§~k)5(, which suggests new scaling transformations, with
In the previous sections we have discussed in detail thecale factor, of the form

properties of the quantum Hall smectic phase for a 2DEG

in the thermodynamic limit. —« due to the infrared diver-

with short-range interactions. Here we will consider the ef- X—rx, y—r?%, t—r%%,
fects of long range Coulomb interactions. Using a time-
dependent Hartree-Fock approacht&€and Fertig® have in- u—r-tu, ¢—r2¢p, 6—0. (3.5
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Hence, in the case of Coulomb interactions the effective di- 1 P 215 4

mension isD =1+ 5/2+5/2=6. Note that the same caveats Cux,yt)y=— — :(i —F3(&,7),

that were raised about the short range scaling laws also apply 272 €B V4, | Q |y|4’5

here. (3.9
However, unlike the short range case, k=0 this ap- whereFS(&, 7) is the scaling function

proximate dispersion relation now vanishes onlykat0, .

rather than on the entire ling=0 as it is the case for the

1 o » dz
exact dispersion relation as a consequence of the sliding Fﬁ(g,n)zzRef du uf >
symmetry. However, this is not a problem for the calculation 0 —=y1ltz
of the correlator of the displacement field since this field is e nu5’2m+igu+iu5’%l (3.10

invariant under the sliding symmetry. For the same reason
this approximation cannot be used to calculate the corraltorg, limiting cases we find the asymptotic behaviors
of the Luttinger and the dual fields since these are not invari-

ant under the sliding symmetry. In(|x))
We have computed explicitly the behavior of the low en- C,(x,0,0)=—A, >
ergy and long distance behavior of the correlation functions. x|

We found the following results.

A. The dual field propagator
We computed the subtracted correlator of the dual fteld

for the Coulomb case. Fot y andt close to the axes we find A
the following. Cu(0,01)= _|t|5’2 (3.1
(1) Fort=y=0, the(subtracteg correlation function has
the behavior which, up to logarithms, clearly obey the scaling laws of Eq.
(3.5). Here we have set
~ 5 eB [k _ —
Cy(x,0,0)0=— — \/;Inz[(mcL 1QN2) x| ]. 5 K|
8m2 N Vg, A== \V="
(36) 8 e K|
A /
(2) In the regimex=0, y—0 andt finite, we get =4k, 1Q)*",
~ (v5-1) K|(\eB)?
= 2 eB [k N s A =—— (25T (1101 (4/5) ————
Cy(0,0t)=— 52 N Zlnz(tﬁ K”KLA) , Y o0n2 (e, Q4210
3. _
3.7 ReCOHNIE 1o g |4
where A is the UV cutoffs, which we took to be the same A= 572 |eB Z 220\Q] 312

along thex andy directions for simplicity. Here we have kept
only the Irft terms. ThusC,(t) and C,(x) have a similar Hence, even in the presence of Coulomb interactions the
infrared behavior. propagator of the displacement fiaidbbeys scaling. Notice
(3) In contrast, forx=t=0 we find instead the infrared that here too this propagator is free of the infrared singulari-
divergent behavior ties that we find in both thé and in the¢ correlators. Once
again this feature is dictated by the smectic symmetry.

eB [«

I C. The propagator for the Luttinger field
1672 N Vi,

C,(0y,0)= In?

y

T 5/2 Q
Ve

Ky The subtracted propagator of the Luttinger field does not
have a simple scaling form in the Coulomb case. We will
o : . only consider the limiting regimes.

similar to what we found for the case of short-range interac (1) Fort=0 andy=0, the subtracted correlation function

tions.
becomes

(3.9

+ ...

B. The propagator of the displacement field 1 1 K, A (|X|

We verified that for the calculation of the infrared behav- Co(x00= 82 \2 THe_B "%,

ior of the correlation functions of the displacement field it is (3.13
correct to replace the full dispersion by the approximate one. .

We find that the propagator of the displacement field where x,=(Q/«,)Y*\?®. This behavior is similar to what
takes the scaling form we found in the short range case.
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(2) Forx=y=0, we find that the subtracted correlator hasat low temperatures now obeys a pdre law (without the

the behavior logarithm), and that the specific heat hag dinear behavior
c(M)~T.
Cy(0,08)=——2\ ———= AtV A+,
eB K| 47 eB V. IS THE QUANTUM HALL SMECTIC PHASE STABLE?

3.1
319 We have shown that, although the Goldstone modes of the
whereA=A—x=A is the UV cutoff. Thus, the subtracted smectic are very soft, the quantum zero-point fluctuations of

autocorrelation function has atlbehavior. the long-wavelength modes do not destroy the stripe order.
(3) For =0 and¢(—0, we now find This is not a trivial issue—at finite temperature, the har-
monic analysis would lead to a linearly diverging mean-
- 5 \ Kk, 1 _ square stripe displacemestu®> ~TL. Of course, what this
Cy(0y,00=— — —=\/ = IN[(QNx ) V2L]. really means is that there is no smectic phase at finite tem-
8m? B N «y peratures
(3.19 It is a much more subtle issue whether the smectic phase
Hence, here this propagator is infrared divergent too. is unstable to the formation of a stripe crystal, i.e., whether

(4) The strong multiplicative infrared divergences that wethere is inevitably translation symmetry breaking along the
found inC 4(t) imply that, for Coulomb interactions too, the stripe direction. There are two sorts of analysis that have
fermion propagator vanishes fgr=0. However, just as in been applied to answer this question, although we feel there
the case of short-range interactions, yat0 the fermion are possible flaws with both.
propagator is dominated by the contribution of the correlator In Sec. | we defined a scale invariant smectic fixed point
of the dual fieldd, which here too behaves asdnor In%.  Lagrangian. Treating this Lagrangian as one would in study-
Hence, also in the case of Coulomb interactions, the fermiofng critical phenomena, one can assess the relevance of vari-
autocorrelation function has the same “pseudogap” behavioPus physically allowed perturbations using standard dimen-

found for the case of short-range interactions, i.e., exgional analysis. By this analysis, there is one operator, which
[—AIn¥(t/ty)] (whereA is a constant originates from the shear piece of the locking term in the

stripe crystal Lagrangian, which is apparently relevant. One
might conclude from this that the smectic is unstable to crys-
tallization. A bizarre aspect of this analysis, which causes us
to have reservations concerning its validity, is that the differ-

The quantum Hall smectic phase has remarkable thermant pieces of the locking term, whose relative strength is
dynamic properties. These can be deduced directly from theltimately determined by rotational symmetry, have different

IV. THERMODYNAMIC PROPERTIES
OF THE QUANTUM HALL SMECTIC

effective low-energy theory. scaling dimensions. This analysis was generalized for the
It is an elementary exercise in statistical mechanics ta@ase of Coulomb interactions in Sec. lll; the stability analy-
show that the internal energy densityis sis yields the same answer. The basic assumption behind the
scaling analysis is that the correlation functions have a
d%k  e(k) simple analytic structure reflecting the scaling laws, although
= f PECRT TR (4.)  x, v, andt enter with different effective exponents, in just the

same way that space and time can enter differently in quan-
We will apply this formula for both cases, short-range andtum critical phenomena. _
Coulomb interactions. For short-range interactions we find However, in Secs. Il and Iil we found that while the Gold-
that the internal energy density at low temperatures has th&fone boson field: follows the scaling lawsup to a multi-

behavior plicative logarithmic correction the Luttinger field¢ and
the dual fieldd have a much more complex singularity struc-

1N [k To ture. In particular the correlation functions of the fields

UM=5eB ZTZM(?) +ey (4.2 and @ for space-time points on the same stripleat is, for

equaly coordinateps have the leading equal-time behavior

where To=1/,. Hence, the low-temperature specific heatIn(X//x;) and If(|x|/xo), respectively(and an analogous be-

C(T) of the quantum Hall smectic phase obeys the law havior as a function of time Along other directions th@s
and @ are finite only when properly subtracted. Otherwise

To 3 they exhibit infrared divergences, as a consequence of the
¢(T)TIn—+O(T,T7InT). (4.3 sliding symmetry. The consequent breakdown of scaling is
“weak”—it only involves logarithms. However, the RG
Hence, for short-range interactions, the low-temperature spexnalysis, although based on examining lowest order pertur-
cific heat of the 2DEG in the quantum Hall smectic phase idation theory in the additional couplings, is ultimately non-
larger than the specific heat of either Fermi or Luttinger lig-perturbative; it is based on the assumption that the correla-
uid phasegboth being linear tion functions scale. Without a careful analysis of the
Coulomb interactions modify the above laws only singularity structures that occur in higher order perturbation
slightly. In particular we find that the internal energy densitytheory, it is not possible to determine whether the breakdown
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of scaling is significant or not. Indeed, the length and timecharge-conjugation symmetry is respected, then the CDW
scalesx, andt, discussed in Sec. Il appear in various corre-lock-in interactions are always relevant and the QH smectic
lation functions—for instance, the fermion propagator has as ultimately unstable to crystallization. This is in apparent
“pseudogap” behavior exp-const Irf(t|/ty)], instead of the ~contradiction with the results obtained by Fertig and
familiar power law of Luttinger liquids. These properties Co-workers“**?! (using the same method of analysis
seemingly imply that, unlike arrays of Luttinger liquids, the which numerical solutions of the time-dependent Hartree-
QH smectic is not a critical state. Instead it behaves muclrock equations were used to compute the valuds(éf). It
more similar to a stable state of matter, characterized by th# important to remember that, in this case, the scaling analy-
finite length and time scales. sis performed in Sec. | cannot be used to discard a variety of
The second approach is based on the observation that tigélditional operators from the fixed-point Hamiltonian. In
on-stripe pure logarithmic behavior of the correlator is  Particular, there is an infinite number of marginal operators,
reminiscent of that encountered in weakly coupled Luttingerepresenting forward scattering density-density interactions,
liquids. This singularity has been used to suggest that thwhich affect the scaling propertié3.The analysis of Mac-
locking perturbations may ultimately drive the QH smecticDonald and Fishéf could in principle be reconciled with
state to a crystalline staté>?*Moreover, if the structure of these results if the assumption of monotonicity of the Lut-
lowest order perturbation theory in tii.. is examined, itis ~ tinger function on the transverse momentum is dropped. It is
found to be dominated by large valueskgf, so the charac- apparent that these neglected terms could, in principal, do
teristic two-dimensional dispersion of the smectic Goldstondhis.
modes does not significantly affect the results.
When the_ stripes are pinndde., if the transverse Gold- VI. CONCLUSIONS AND OPEN PROBLEMS
stone behavior is suppresgede have no doubt of the va-
lidity of this approach. In such a state the Goldstone bosons In this paper we presented an effective theory for the low
are gapped and can be integrated out. Their net effect is tenergy degrees of freedom of the quantum smectic or stripe
induce and renormalize the interstripe and intrastripe forwargphase of the 2DEG in a large magnetic field. In the quantum
scattering interactions. Hence, the pinned smectic reduces tdall smectic phase the 2DEG spontaneously breaks both
an array of Luttinger liquids. On a technical level, this ap-translational(in the direction perpendicular to the stripes
proach actually treats the system as a distinct Luttinger liquicknd rotational invariance. We showed that the form of the
for each value ok,. Consequently, instead of a Luttinger effective theory is dictated by very general principles: the
parameter and Fermi velocity, there is a “Luttinger function” native symmetries of the smectic state and the Lorentz force
K(ky) and a velocity functiomg(k,). The phase diagram of law. We determined the spectrum of collective modes which
such systems was considered recently by*°uby Vish-  exhaust the low-energy degrees of freedom. For a 2DEG
wanath and Carpentiéf,and by Sondhi and Yar}.It was ~ With short range(screenefl interaction, these Goldstone
found that as the parameters of the Luttinger function argnodes have a dispersion which is exceedingly soft, vanish-
changed, there is a complex phase diagram which includesg ase~kS at ky=0 and with a whole line of zero-energy
both crystalline and smectic metallic phases. states ak,=0 andk,# 0. These Goldstone bosons should be
However, there is reason to worry about the validity of detectable in Raman scattering experiments in 2DEG in het-
this approach for the unpinned smectic. Specifically, thiserostructures. A tangible reflection of how soft these Gold-
analysis is completely insensitive to the smigllbehavior of ~ stone modes are is seen from the temperature dependence of
the Luttinger and velocity functions. But the Goldstone be-the specific heat, ~ T|In(T/Ty)| at low T. This is larger than
havior of the smectic implies a vanishing Fermi velocity asthat of a Fermi liquid. In contrast, we found that for long-
k,—0. This pathology has no consequences in lowest orderange Coulomb interactions the Goldstone bosons behave as
perturbation theory, which is why it does not affect the scal-e~ ki”z at k,=0. Nevertheless, the specific heat obeys the
ing analysis that is based on it. However, it is responsible fofamiliar T linear law.
the the form of the low temperature specific heat and the We also used the fixed point theory to compute the elec-
non-Luttinger-liquid(pseudogapform of the fermion propa- tron propagator. We found that for short-range interactions
gator in the quantum smectic state. It seems too good to bgaere should be a pseudogap in the single particle density of
true that this salient physics should have no affect on thatates, as deduced from the tunneling conductance at low
stability of the state. Again, it is only by an analysis of the temperatures. For Coulomb interactions we found a similar
structure of higher order perturbation thedwyhich we do  behavior.
not attempk that it can be determined whether the patholo- The question of the stability of the stripe state has been a
gies associated with smakl, are truly unimportant for this matter of discussion and controversy for some tffé?We
purpose, or whether they become more important in highehave shown here that although it is true that by a suitable
order terms. parametrization of the degrees of freedom it is possible to
Leaving this issue aside, we can approach the stabilityvrite the effective theory in terms of what looks similar to an
question from the viewpoint of coupled Luttinger liquids. array of coupled Luttinger liquids, this is not a true quasi-
MacDonald and Fishéf showed that rotational invariance one-dimensional system. Instead, it is a strongly anisotropic,
constrains the Luttinger functions to reach simple limitingfully two-dimensional system whose the symmetries force an
values as a function df, . They further argued that if these anisotropic form of scaling described in Sec. I.
functions are monotonically increasing witk,, and if Nevertheless, clearly the quantum Hall smectic has very
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unusual scaling properties. For instance, although the corrderm of the effective action for the dual field, Eq. (1.15),
lation functions obey scaling, as shown in great detail inbears a close formal resemblance to the free energy for the
Secs. Il and I1l, the scaling functions are not analytic every-sliding columnar phase of DNA-lipid complex&s3937-38|n
where in the plane defined by the scaling varialdesd 7, momentum space the free energy of the sliding columnar
and develop singularities in the extreme reginges> or (SO phase is given
n—o. However, these are very soft, logarithmic, integrable
singularities on a set of measure zero of the space-time co- d3q
ordinates. Thus, when the effects of any typical perturbation Fsc=f
is considered, for instance, the coupling of the CDW order
parameters on different stripes, it may well be that these . .
additional singularities may not affect the scaling analysis agherey is the direction normal to the layers,is the direc-
they do not lead to true singular behavior of a true two-tion normal to the DNA strandsi, is the displacement field
dimensional system. In any case a more careful renormaliz#f the DNA strands parallel to the lipid layers, aBdK, and
tion group analysis is required to reach a definitive concluK, are effective elastic constants. Although the effective
sion. However, if either translation invariance is brokenelastic theory are quite similar, the coordinateg, andz do
explicitly (say by an external periodic potential in the direc-not scale as the coordinatesy, andt of the quantum smec-
tion perpendicular to the stripeshe behavior will indeed tic. While in the case of the quantum hall smectic the effec-
cross over to a quasi-one-dimensional regime quite similar téve dimension isD=6, in the sliding columnar phase it is
what was discussed in Ref. 19. In other words, a pinnind®=5. A direct consequence of these scaling properties is
potential changes the properties of this state substantially arilat the nonlinear corrections to the elastic strain tensor in-
in fact it enhances the effects of fluctuations whose mairiroduce additional interactions which are marginally relevant
effect is to make it more unstable to crystallization. It hasin the sliding columnar phasé,but are irrelevant in the
also been suggested receftlyhat the pinned stripe state quantum Hall smectic phase. Remarkably, although the de-
may also be unstable to a quantum Hall state. tails of the models are different, some of the correlation
An open and very interesting question is the possible exfunctions in the quantum Hall smectic phase that we dis-
istence of a quantum nematic state of the 2DEG in largeussed in Secs. Il and Il have the same behavior as certain
magnetic fields at zero temperature. This is an importangorrelation functions in the sliding columnar phases.
guestion both conceptually and experimentally as it appears
to be consistent with the experimental d&t&ecently some
of us'® developed a theory of a quantum nematic Fermi fluid
at zero external magnetic field in the proximity of an isotro- We thank A. Dorsey, H. Fertig, M. P. A. Fisher, T. C.
pic Fermi liquid phase. It will be particularly interesting to Lubensky, and A. H. MacDonald for useful discussions, and
construct a theory of the quantum melting of the smectic byin particular for helping us to achieve our current state of
a dislocation unbinding mechanistn. confusion concerning the stability issue. E.F. thanks J. Cardy
It is also intriguing to explore the relation of the quantum for useful comments on RG in anisotropic theories. We also
Hall smectic with other phases of the quantum Hall systemthank Bert Halperin for an insightful exchange about rota-
There is some evidence from exact diagonalization studies itional symmetry and for bringing to our attention the impor-
small system+3* of a direct transition to a paired quantum tance of the shear straify¢+ ,u in a rotationally invariant
Hall state®>® We would expect such a transition, if it oc- system. This work was supported in part by grants of the
curs, to be first order. More exciting is the possibility of a National Science Foundation Grant Nos. DMR98-08685
relation between the quantum Hall smectic and the other wellS.A.K.) and DMR98-17941(E.F). D. G. B. was partially
known compressible state of a half-filled Landau level. supported by the University of the State of Rio de Janeiro,
Finally it is interesting to note that the imaginary time Brazil and by the Brazilian agency CNPq.
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