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Theory of the quantum Hall Smectic Phase. I. Low-energy properties of the quantum Hall smectic
fixed point
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We develop an effective low-energy theory of the quantum Hall~QH! smectic or stripe phase of a two-
dimensional electron gas in a large magnetic field in terms of its Goldstone modes and of the charge fluctua-
tions on each stripe. This liquid-crystal phase corresponds to a fixed point that is explicitly demonstrated to be
stable against quantum fluctuations at long wavelengths. This fixed-point theory also allows an unambiguous
reconstruction of the electron operator. We find that quantum fluctuations are so severe that the electron Green
function decays faster than any power law, although slower than exponentially, and that consequently there is
a deep pseudo-gap in the quasiparticle spectrum. We discuss, but do not resolve, the stability of the quantum
Hall smectic to crystallization. Finally, the role of Coulomb interactions and the low-temperature thermody-
namics of the QH smectic state are analyzed.
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Recent experiments on extremely high mobility tw
dimensional electron gases~2DEG’s! in large magnetic fields
by Lilly and co-workers1 and by Du and co-workers,2 have
revealed an unusually large and strongly temperatu
dependent anisotropy in the transport properties. These,
subsequent experiments,3 have made it clear that this aniso
ropy is an intrinsic property of a new, anisotropic metal
phase of the 2DEG. The anisotropic metal, rather than
fractional quantum Hall effect, apparently dominates
physics of all partially filled Landau levels~LL’s ! with LL
index N>2.

Motivated by these experiments and theoretical work
Hartree-Fock states with stripe order,4–7 and exploiting an
analogy with the stripe related phases of other strongly c
related electron systems,8 two of us proposed9 that the
ground states of quantum Hall systems with partially fill
Landau levels withN>2 are predominantly electronic liqui
crystalline. These phases, with broken rotation and so
times translation symmetry, are intermediate between the
tropic quantum fluid and the quasiclassical electronic crys
In particular, we argued for the existence of quantum H
smectic, nematic, and hexatic phases.

The simplest liquid-crystalline phase to visualize is t
smectic or stripe ordered phase, which breaks transla
symmetry in one direction, but is nonetheless a fluid in
sense that there is no gap to current carrying states and
is a noninteger number of electrons per magnetic unit c
As mentioned above, early Hartree-Fock calculations s
gested that the ground state of the 2DEG in large magn
fields is a unidirectional charge density wave~CDW!.4 These
results are manifestly incorrect in the lowest Landau lev
where the fractional quantum Hall effect occurs, and
ground state is, to good approximation, the Laughlin stat10

But, for a high enough Landau level indexN, a stripe phase
can be shown to be a reasonable ground state of the 2D
for filling factors close to half-filling of the partially filled
Landau level.5–7 Here, the stripes are the result of a comp
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tition betweeneffective attractive short-range forcesand the
familiar ~long range! Coulomb interactions. We will see be
low that these mean field pictures of the stripe state ar
good starting point for a description of a quantum Hall sm
tic. However, at Hartree-Fock level, the smectic phase
easily be seen9,11,12to be unstable to crystallization, that is t
the occurrence of a charge-density wave along the stripe
rection which breaks translational symmetry and produces
insulating state which can be thought of as an anisotro
Wigner crystal.

In the present paper, we will develop a theory of the u
pinned quantum Hall smectic phase, and investigate its
energy properties. Based on our earlier work,9,13 it is our
belief that it is the quantum Hall nematic state, not the sm
tic, that is the most experimentally important phase. Ho
ever, these are new phases of matter, and their precise
acterization is important in its own right, and for possib
relevance to future experiments. Moreover, a mean-fi
theory of the quantum Hall nematic, to serve as a start
point for a similar analysis, has not yet been developed
though important progress in this direction has been mad14

Serious progress has also been made towards understa
the nematic Fermi fluid in zero external magnetic field.15

The central result of this paper is an effective low-ener
theory for the QH smectic which can be expressed in te
of two canonically conjugate sets of degrees of freedom:
displacement fields of the stripes, i.e., the Goldstone mod
the spontaneously broken translational symmetry, and
chiral edge modes of each stripe. In a separate publicati16

two of us we will give a microscopic derivation of this e
fective low-energy theory.

The quantum smectic is also interesting from a broa
conceptual point of view, in that the Goldstone modes are
soft that coupling to them destroys all coherent sing
electron motion, even at temperatureT50. Indeed, we find
that the electron Green functionG(x,y,t) is highly aniso-
tropic. It falls off more slowly than an exponential, but mo
©2002 The American Physical Society19-1
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rapidly than any power law as a function of timet or distance
along a stripex; it falls at least exponentially as a function o
displacement perpendicular to the stripesy. For instance, for
zero spatial separationG(0,0,t);exp@2Aln2(t/t0)#, which
implies a strong pseudogap in the local density of sta
Despite this, for a system with short range interactions,
specific heat at lowT, due to the soft Goldstone modes,
CV;Tln(T0 /T)—there are even more low energy modes th
in a Fermi liquid. For the case of Coulomb interactions
find instead aT linear law.

A smectic state~quantum or classical! is a state with spon-
taneously broken continuous symmetries.17,18 In the zeroth
order description, given by the Hartree-Fock theory,
sample is spontaneously divided into strips with filling fa
tors that alternate between two successive integersN andN
11, as shown in Fig. 1. At this level, the high density r
gions are separated from the low density regions by~straight!
edge states with alternating chirality. As the filling factor
the partially filled level changes the width and period
these strips changes, which implies that this state is c
pressible. As a consequence, the Hall conductivity varies
early as the filling factor varies across the partially fill
Landau level.

It is tempting to think of the smectic as an array of chir
one-dimensional wires~internal edge states!, interacting by
some~possibly complicated! effective interaction induced by
the fact that the edges are self-consistently generated,
hence fluctuating. This approach was advocated in som
our recent papers.9,19 It was also advocated in an insightfu
paper by MacDonald and Fisher12 who proposed an effective
theory for a system of coupled chiral Luttinger liquids com
patible with rotational invariance, as required for a tr
smectic state. In fact, the theory of MacDonald and Fishe

FIG. 1. Schematic representation of the stripe solution. T
panel: the chiral edge states of each stripe; hereN andN11 label
the number of filled Landau levels in each region,l is the period of
the stripe~wavelength!, andn is the effective filling factor of the
partially filled Landau level. Bottom panel: effective potentialf(y)
for the stripe solution;y is the coordinate perpendicular to th
stripe,m is the chemical potential, andEN is the energy of Landau
level N.
24531
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essentially equivalent to the theory for the quantum h
smectic that we introduce and discuss in this paper.

However, we find that the picture of the quantum H
smectic as an array of coupled Luttinger liquids in fact c
obscure the underlying physics of this state. This picture s
gests that some sort of quasi-one-dimensional low-ene
theory can explain the physics of this state and in particu
that it can be used to analyze its stability. Thus, on the b
of this analysis, it was argued in Refs. 9 and 12 that e
beyond Hartree-Fock theory the smectic phase would alw
unstable to crystallization. While this approach is reasona
in the case in which the internal edges are pinned by
external, periodic potential, we will see, below, that this s
bility analysis based on a (111)-dimensional scaling may
not be safe in the absence of explicit symmetry breaki
The physical reason is that the Goldstone modes of the sm
tic are so soft that they dominate the low-energy physics,
the resulting fixed point is a strongly anisotrop
(211)-dimensional system.

In fact, recently, Fertig and co-workers,11,20,21 have car-
ried out numerical time-dependent Hartree-Fock calcu
tions, and showed that their numerical results can be
scribed qualitatively by a quantum smectic with essentia
the same properties that we find here. In particular, they
that the unpinned quantum Hall smectic state can be sta
In addition, Côté and Fertig have analyzed their time
dependent Hartree-Fock results in terms of an effective e
tic theory similar to ours. Recently, Fogler and Vinokur stu
ied the classical hydrodynamics at finite temperature of
Hall smectic.22 These conflicting results, and our earli
arguments8 of a first-order transition for the smectic-cryst
transition in the absence of pinning and of a second-or
transition19 in the presence of pinning, show that this subje
is still open. We will not resolve the issue of the stability
the QH smectic against crystallization in this paper, as
turns out to be very subtle, but we will discuss the pres
status of this problem.

While this paper was being completed we became aw
of the recent work by Lopatnikova and co-workers23 who
have derived an effective low-energy theory for the quant
Hall smectic which is essentially equivalent to the one
present in this paper. Although, for the most part, the res
of the present paper, as well as those of our microsco
theory which will be discussed elsewhere,16 are in agreemen
with the results of Ref. 23, there are differences in the ana
sis of the consequences of the effective low-energy theo

This paper is organized as follows. In Sec. I, we presen
simple, phenomenological derivation of the quantum H
smectic fixed point Hamiltonian. In Sec. II we use this effe
tive field theory to compute the correlation functions of t
quantum Hall smectic, including the electron propaga
Since the fixed-point Hamiltonian is formally scale invarian
one generally expects these correlation functions to be po
laws, with exponents determined by the scaling dimension
the fields; this expectation is met, in large measure, but th
are various logarithms that appear in certain limits wh
violate scaling. This is the origin of the subtleties in th
stability analysis. In Sec. III we repeat the previous calcu
tions in the presence of unscreened Coulomb interactions

p

9-2
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THEORY OF THE QUANTUM HALL . . . . I. . . . PHYSICAL REVIEW B 65 245319
Sec. IV we discuss the low-temperature thermodyna
properties of the QH smectic and in particular we comp
the specific heat. In Sec. V we discuss the issue of the
bility of the quantum Hall smectic towards crystallizatio
Finally, in Sec. VI we present our conclusions.

I. EFFECTIVE FIELD THEORY

Consider a stripe crystal in a large magnetic field. In
classical ground state, there is a charge density wave
fixed wavelength running along each stripe and the stri
~labeled by an indexj ) are spaced by distancel and are
straight and parallel; without loss of generality they can
taken to run in thex̂ direction. Smooth deformations of thi
state can be described in terms of the local displacemen
the charge-density wave~CDW! along the stripe direction
f j (x) and the transverse displacement of the stripe from
classic ground state positionuj (x). In terms of these vari-
ables, the action describing the dynamics of this system

S5l(
j
E dtdx$Lsm1Llock1Lirr%, ~1.1!

Lsm5
eB

l
uj] tf j2

k i

2
~]xf j !

2

2
k'

2 S uj2uj 11

l D 2

2
Q

2
~]x

2uj !
2, ~1.2!

Llock5Vcos@a~f j2f j 11!1b]xu#, ~1.3!

Lirr5
1

2
@M1~ u̇ j !

21M2~ḟ j !
2#1g~]xf j !~]xuj !

21•••,

where we have used that the current on thej th stripe is] tf j .
The first term,jW•AW in the gaugeAW 5Byx̂, gives rise to the
Lorentz force law.ka are the various elastic constants andQ
is the bending stiffness of a stripe.

The term which tends to lock the relative phases of
CDW’s on neighboring stripesLlock is the principal term
which distinguishes the crystal from the smectic—it vanish
in a smectic phase.a21 is the wavelength of the CDW in
appropriate units andb5la is necessary to insure that th
system is rotationally invariant.24 This term has been omitte
in the published literature on this problem, but its neces
can be seen readily. Consider a rotated version of the cla
cal stripe crystal ground state:uj5x sin(u)1jl@1
2cos(u)#/cos(u) and f j52 j lsin(u). Since this is also a
classical ground state, it must be thatS50. The effective
action we have considered, with the stated value ofb, is
invariant under this transformation foru sufficiently small
that we can ignore the nonlinear terms, i.e.,@1
2cos(u)#/cos(u)'0. To insure rotational invariance unde
large rotations, we would have to include additional nonl
ear terms in the fields, as is well known18 in the classical
liquid-crystal literature; however, these terms do not aff
any results of the present paper. Coˆté and Fertig20 have ex-
plicitly shown, in the Hartree-Fock approximation, thatV is
24531
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very small, and indeed, we will ignore it for now, and the
assess its perturbative relevance, below.

The final termLirr consists of all remaining, higher orde
terms which, as we will see, are irrelevant at the quant
Hall smectic fixed point. We have explicitly exhibited thre
of the most interesting of these—inertial terms, which can
neglected at low energies and large magnetic fields, and
leading geometric coupling between the stripe geometry
the density wave order along the stripe, which plays a k
role8,19 in determining the stability of the smectic phase
the absence of a magnetic field.

If we take the continuum limit of this action, then th
leading order terms inLsm have the interpretation as th
fixed point action for the quantum Hall smectic. This limit
obtained by replacingl( j→*dy, uj (x)→u(x,y), f j (x)
→f(x,y), andLsm→Lsm* :

Lsm* 5
eB

l
u] tf2

k i

2
~]xf!22

k'

2
~]yu!22

Q

2
~]x

2u!2.

~1.4!

In a separate publication16 we give a detailed microscopi
derivation of this effective action.

This action is a scale invariant fixed point action wi
respect to the anisotropic transformation

x→rx, y→r 2y, t→r 3t,

u→r 21u, u→u, f→r 22f, ~1.5!

whereu is the dual field defined below, in Eq.~1.14!. Thus,
the effective space-time dimension is 6. All the operat
included in the fixed point LagrangianLsm* are marginal
since they have scaling dimension 6.

If we then perform a standard scaling analysis,
operators with dimension larger than 6 are irrelevant wh
operators with dimension smaller than 6 are relevant
would then be straightforward to assess the perturbative
evance ofSlock ; in the continuum limit, we can approxi
mate 12cos@a(fj2fj11)1b]xu#5(l2a2/2)(]yf1]xu)21•••,
from which we deduce that this term is the energy associa
with a shear deformation. By power counting, at the sme
fixed point this operator is a combination of operators w
dimensions 4, 6, and 8, respectively. The operator (]xu)2 is
relevant, according to this scaling analysis, suggesting t
the smectic is unstable to formation of an unpinned crys
line state. The higher order terms can be easily seen to h
higher dimension. Similar analysis leads to the conclus
that the explicit terms inLirr have dimensions 8 (M1), 10
(M2), and 7 (g), respectively.

It is easy to see that external periodic potentials~e.g.,
lattice pinning! are relevant: an operator of the form
cos(2pu/l) has scaling dimension 2 and is strongly releva
while operators of the form cos(bf) ~whereb is a constant!
have dimension 4 and are also relevant. Finally, an exp
term of the form (]xu)2 ~as opposed to the one generated
expandingLlock) has scaling dimension 4 and is also re
evant. Such terms break rotational invariance explicitly a
can be generated for instance by an in-plane magnetic
9-3
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~or by any other perturbation that generates an anisotr
effective mass for the electrons!.

The Lagrangian as written is even underuj→2uj and
B→2B ~related to particle-hole symmetry!; there is another
operator25 that should appear inLsm that we have not in-
cluded, namely, (uj 112uj )]xf→l(]yu)(]xf). However,
its effect is equivalent to a renormalization of the elas
constants. Although by power counting it is marginal, w
treat it as a redundant operator and will ignore it.

Another issue, raised originally by MacDonald an
Fisher, is whether there are two distinct sets of low-ene
degrees of freedom or not. Clearly, since the dynamical t
in the action linearly couplesu and f, they are mixed, so
there is only one low energy mode, not two. Formally, th
means that we can integrate out one set of degrees of
dom, leaving an action with a quadratic kinetic energy
terms of the other. For example, if we Fourier transform
effective action, and then integrate out the shape modes
are left with

Ssm* 5
1

2 (
kW ,v

k ikx
2

e2~kW !
@v22e2~kW !#ufkW ,vu2, ~1.6!

where

e2~kW !5k iS l

eBD 2

kx
2@Qkx

41k'ky
2# ~1.7!

which is the dispersion relation of the Goldstone modes. N
tice that it has a line of values ofkW5(0,ky) with zero energy.

However, the price we have to pay for integrating out t
Goldstone modesu, is a singular dependence of the action
v andkW , reflecting the presence of highly nonlocal intera
tions. It is a matter of convenience, then, whether we tr
the problem in terms of a nonlocal action with a minim
number of degrees of freedom, or a local action with twice
many degrees of freedom; we feel that the latter represe
tion makes the basic physics clearer. In any case, the e
tive action we obtain here is equivalent to that of MacDon
and Fisher.12 In summary, we conclude that the displaceme
field u, representing the fluctuations of the shape of
stripe, and the Luttinger filedf, representing the charge fluc
tuations on each stripe, are canonically conjugate varia
and thus are not independent degrees of freedom, in ag
ment with the arguments of MacDonald and Fisher.12 This
discussion corrects some of the arguments given earlie
two of us in Ref. 9.

Another way to look at the effective action is as a pha
space path integral—in this case,f j and

P j[2eBuj ~1.8!

are interpreted as a field and its conjugate moment
@f j (x,t),Pk(x8,t)#5 id jkd(x2x8). ~This reflects the well
known Landau level physics, in which the different comp
nents of the position operator become canonically conjug
variables, and so fail to commute.! We can thus express th
same physics in terms of a~discretized! Hamiltonian density
operatorH5( jHj , where
24531
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Hj5
l

2~eB!2 FQ~]x
2P̂ j !

21
k'

l2
~P̂ j2P̂ j 11!2G1

lk i

2
~]xf̂ j !

2.

~1.9!

This formulation is convenient for studying the effect
single particle~fermionic! excitations in the smectic state.

Standard methods26 of bosonization for the 1DEG permi
us to reconstruct the electron operators for thej th stripe from
the collective bosonic fields. The operators that create
electron on thej th stripe are related to the left and righ
moving fields,c6, j (x,t) in the usual manner

C j~x,t !5eikF
j xc1, j~x,t !1e2 ikF

j xc2, j~x,t !. ~1.10!

The right and left moving Fermi fields have the bosoniz
form, in terms of the fieldf j on each stripe

c6, j~x,t !5
Uj

A2pa
eiAp[u j (x,t)6f j (x,t)] , ~1.11!

wherea5 l is the short distance cutoff. Here the dual fieldu j
is defined by

u j~x,t !5E
2`

x

dx8P j~x8,t ! ~1.12!

and the operatorsU j are the Klein factors

U j5)
i , j

eiAp*2`
` dx]xf j (x,t) ~1.13!

which satisfy the relationsU j
†uk(x)U j5uk(x)1 iApd jk and

@Ui ,U j #5@Ui ,f j #50.
It is simple to check thatC j (x,t) constructed in this way

satisfies canonical anticommutation relations for a fermio
field, and adds a chargee to the system. Because th
bosonized Hamiltonian is quadratic, it is also straightforwa
~although a bit complicated! to compute the electron Gree
function; this is done in Sec. II. Remarkably, we find that t
fluctuations are so severe that the fermion Green func
falls off as a function of imaginary time asG(t);exp
@2Aln2(t)#, which is faster than any power law, althoug
slower than exponential. As exponential fall-off implies
gap in the spectrum, this behavior implies a stro
pseudogap with a characteristic energy scale. This isnot the
behavior one observes in a set of coupled one-dimensi
Luttinger liquids, i.e., in a pinned smectic. This is discuss
further in Sec. II.

It is useful to find an effective Lagrangian for the du
field u. This can be done straightforwardly by noting that t
dual fieldu and the displacement fieldu are related by

]xu52
eB

l
u. ~1.14!

Thus, upon integrating out thef fields in Eq.~1.4!, we find
that the dynamics of the dual fieldu is governed by the loca
effective Lagrangian
9-4
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L@u#5
1

2k i
~] tu!22

k'l2

2e2B2
~]x]yu!22

Ql2

2e2B2
~]x

3u!2.

~1.15!

Since u is dimensionless, all three terms in this effecti
Lagrangian correctly have scaling dimension 6. In Four
space the Lagrangian takes the form

S@u#5E d3k

~2p!3

1

2k i
@v22e2~kW !#uu~kW ,v!u2. ~1.16!

This result shows that it is the dual fieldu that can most
naturally be related with the collective modes of the quant
Hall smectic phase. We conclude this section with a f
observations concerning the properties of the smectic fi
point.

Symmetries:There is a peculiar ‘‘semilocal’’ sliding sym
metry of the effective field theory. Because the Hamilton
has no terms which depend on the variation off in the y
direction,Lsm is invariant under the transformation

f~x,y,t !→f~x,y,t !1 f ~y!, ~1.17!

wheref (y) is an arbitrary function of the~continuum! stripe
index y. This symmetry corresponds to the independ
translations or shifts along each stripe.27 Superficially this
symmetry is similar to a local gauge symmetry. Howev
since it is not truly local, as the allowed transformatio
depend only on they coordinate, this symmetry can be com
pletely broken by a suitable choice of boundary conditio
e.g., open boundary conditions~in contrast to a genuine
gauge invariance which requires gauge fixing!. There is an
analogous sliding symmetry for theu fields. Nevertheless
this semilocal sliding symmetry has profound consequen
on the behavior of both thef and u correlation functions
which are infrared divergent foryÞ0. We shall also see tha
there are a number of striking additional features of the c
relation functions which stem from this symmetry.~The
locking termLlock , if relevant, breaks this symmetry.! Al-
though the smectic state spontaneously breaks translat
symmetry in they direction, the underlying symmetry o
space is reflected in the invariance ofS under

u~x,y,t !→u~x,y,t !1a. ~1.18!

Similarly, the underlying rotational symmetry is reflected
the invariance ofS under

u→u1ux,

f→f2uy. ~1.19!

Finally, absent the redundant term (]xf)(]yu), the action is
invariant under the particle-hole transformation,u→2u and
B→2B.

Coulomb interactions:In the present discussion, we hav
assumed all interactions are short-ranged.~See Sec. II for the
effects of Coulomb interactions.!

Breakdown of the scaling assumption:Finally we note
that the scaling analysis implied by Eq.~1.5! assumes tha
the correlation functions of the fieldsu, f andu obey simple
24531
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albeit anisotropic power laws. We will show in the next se
tion that this is~almost! true for the correlation functions o
the displacement fieldsu, but that the Luttinger fieldf and
the dual fieldu develop logarithmic singularities along th
stripe direction. In fact the correlation functions are not on
highly anisotropic but have also a complex singularity stru
ture, determined by both rotational invariance and by
sliding symmetry. In Sec. V we will argue what this stru
ture, and in particular the existence of a divergent numbe
low-energy degrees of freedom, raises questions concer
the validity of naive scaling, and calls for a more care
renormalization group analysis than we have attempted
this paper.

II. CORRELATION FUNCTIONS OF THE QUANTUM
HALL SMECTIC

In this section, we use the effective field theory to co
pute the correlation functions of the displacement fieldu
~which is the Goldstone boson of the smectic! and of the
Luttinger fieldsf andu, which directly represent the charg
fluctuations on each stripe. We will see that the correlat
functions can be written in a scaling form which explicit
displays the scaling laws dictated by the fixed point.

We define the imaginary time correlators

Cu~x,y,t ![^u~x,y,t !u~0,0,0!& ~2.1!

~and analogously forf andu), and we will denote the sub
tracted correlators by

C̃f~x,y,t ![2
1

2
^@f~x,y,t !2f~0,0,0!#2&. ~2.2!

We will find below that due to the smectic symmetry th
unsubtracted propagator of operators that are not invar
under the shift symmetry of Eq.~1.17! are infrared divergent
in the limit x→0 and t→0 with y fixed. While this fact is
true in any theory with gapless excitations, these infra
divergences are particularly important due to the feature
the dispersion relatione(kW ) which vanishes atkx50 for all
ky , Thus, the propagators of the Luttinger fieldf and of the
dual fieldu need to be subtracted. In contrast, the propaga
of the Goldstone modesu needs no subtraction in the the
modynamic limit since theu fields are invariant under shifts
Among other things, this implies that the quantum fluctu
tions ofu are bounded, and so do not necessarily destroy
smectic order. However, the semi-local symmetry of t
smectic results in expressions forCf andCu which diverge
in the thermodynamic limit; only the subtracted version
these correlators, which are invariant under this symme
are well defined. Notice, however, that the subtraction of
~2.2! only removes the uniform shift and not the semiloc
shifts. Thus, even the subtracted propagators forf andu will
become infrared divergent in the limitx→0, t→0, with y
fixed. We will deal explicitly with this issue below.
9-5
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A. The dual field correlation function

We will begin by calculating the subtracted propagator
the dual fieldu in imaginary time

C̃u~x,y,t !5E d2k

~2p!2

k i

2e~kW !
@e2utue(kW )1 ikW•xW21#. ~2.3!

In principle this integral must be done with finite ultraviol
cutoffs in bothkx and ky , which we can take to beL, the
large momentum cutoff of the edge modes, and 1/l, wherel
is the wavelength of the stripe state, typically a number
the order of a few magnetic lengths. Also, for a finite syst
of linear sizeLx5Ly5L, 1/L will be the infrared low mo-
mentum cutoff. However, it turns out that this subtract
propagator is finite in the thermodynamic limitL→` except
in the regimex→0 and t→0 with y fixed. This infrared
divergence is a consequence of the local shift invariance~or
sliding symmetry! of the quantum Hall smectic phase.
addition, the subtracted propagator has a finite limit asL
→` and l→0, for all space-time points (x,y,t) except on
the axes~which will be discussed below!. Thus, for generic
values of (x,y,t) the subtracted propagator is faithfully d
scribed by the scaling form

C̃u~x,y,t !5
1

2p2
Ak i

k'

eB

l
Fu~j,h!, ~2.4!

whereFu(j,h) is the scaling function

Fu~j,h!5
1

2
R E

0

`du

u E
2`

` dz

A11z2

3@e2hu3A11z21 i ju1 iu2z21#. ~2.5!

Herej andh are the scaling variables

j5S k'

Q D 1/4 uxu

Auyu
,

h5
l

eB
Ak ik'S k'

Q D 1/4 utu

uyu3/2
. ~2.6!

Notice that the correlation functionC̃u(x,y,t) depends on its
arguments only through the scaling variablesj andh of Eq.
~2.6!, which are scale invariant according to the rules of S
I, Eq. ~1.5!. This feature follows from the scaling propertie
of the dual fieldu which, according to Eq.~1.5!, is invariant
under scale transformations.

It is direct consequence of scaling, and of the argume
presented above, thatFu(j,h) is a smooth differentiable
function for all values of the scaling variablesj andh, ex-
cept close to (j,h)5(0,0) ~i.e.,x→0 andt→0 with y fixed!
where the subtracted propagator becomes infrared diverg
and forj→` ~i.e., y→0 with x fixed! or h→` ~i.e., y→0
with t fixed! where the scaling function develops branch c
singularities. These branch cuts will show up in the form
logarithmic dependences onx and t for y→0. The scaling
function has also an infrared divergence as a function ofy as
24531
f
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x→0 andt→0. This infrared divergence is a manifestatio
of the shift invariance, Eq.~1.17!, of the quantum smectic.

It would be natural then to further subtract this~divergent!
contribution from the scaling function which would now b
infrared finite everywhere. However, in order to keep thin
simple, we will refrain from doing this but we will keep in
mind the existence of these divergent contributions. Thus,
see that for generic values ofj andh the correlation function
is a finite scale-invariant function only ofj and h. Notice
that fixing bothj andh generally corresponds to a curve
space and time.

We will now discuss the three special regimes.
~a! x50, t fixed andy→0: The autocorrelation function

of the dual fieldu has a strong logarithmic infrared singula
ity as (x,y,t)→(0,0,0),

Cu~0,0,0!5
3

4p2

eB

l
Ak i

k'

ln2S L

l D . ~2.7!

This regime corresponds to settingj50 and takingh→`,
where the scaling functionFu takes the limiting form

Fu~0,h!→ ln2h. ~2.8!

Hence, the subtracted correlation functionC̃u(x,y,t) is infra-
red finite and has the leading long time behavior

C̃u~0,0,t !5
1

2p2

eB

l
Ak i

k'

ln2S utu
t0

D •••, ~2.9!

where

t05S l

Ak'

D 3/2
Q1/4

Ak i

eB

l
. ~2.10!

Notice that t0→0 as the UV cutoff iny vanishes,l→0
~naturally, this is done only inside the cutoff factor whic
carries the 3/2 power, and not in the dimensional fac
eB/l). Thus a finite but smally acts as a short distanc
cutoff for the time correlation function.

~b! t50, x fixed andy→0: In this regime,h50 andj
→`, where the scaling function behaves as

Fu~j,0!→ ln2j ~2.11!

asj→`. Hence, the equal-time subtracted correlation fu
tion ‘‘on the same stripe’’~i.e., asy→0), has the long dis-
tance behavior

G̃u~x,0,0!5
1

2p2

eB

l
Ak i

k'

ln2S uxu
x0

D , ~2.12!

where

x05S l2Q

4k'
D 1/4

. ~2.13!

Notice that here too a small but finitey acts as a short dis
tance cutoff for thex correlator.

~c! x5t50 andy fixed: In this regime bothj→0 andh
→0 and the scaling function develops an infrared div
9-6
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gence. We find that the equal-timesubtractedcorrelation
function on different stripes has the behavior

C̃u~0,y,0!5
1

8p2

eB

l
Ak i

k'

ln2S p2

2
AQ

k'

uyu

L2 D 1•••,

~2.14!

where once againL is the linear size of the system. Th
correlation function is also infrared divergent as a con
quence of the local sliding symmetry of theu field.

B. The displacement field correlation function

We will analyze the propagator of the displacement fi
along the same lines used above for theu correlator. The
propagator of the displacement fieldu at space-time separa
tion x5(x,y,t), wheret is imaginary time, is given by

Cu~x,y,t !5E d2k

~2p!2
k iS l

eBD 2 kx
2

2e~kW !
eikW•rW2utue(kW ).

~2.15!

The same line of argument used for theu correlator now
implies that the propagator of the displacement fieldu for
finite (x,y,t) has the scaling form in the limit ofL→`, and,
after removing all the ultraviolet cutoffs, we get

Cu~x,y,t !5
1

2p2

l

eB
Ak i

Q

1

uyu
Fu~j,h!, ~2.16!

whereFu(j,h) is the scaling function

Fu~j,h!5
1

2
R E

0

`

du uE
2`

` dz

A11z2
3e2hu3A11z21 i ju1 iu2z

~2.17!

which converges providedj andh, defined in Eq.~2.6!, are
finite. Hence, consistent with the predictions of the scal
laws of Eq.~1.5!, the full propagator is the product of th
universal scaling functionFu(j,h) and the power law facto
of 1/uyu, i.e.,u scales as 1/r and its propagator as 1/r 2 ~where
r is the scale factor!.

~a! The auto correlation function: In the regimex→0 and
y→0 with t fixed, i.e., j50 and h→`, we find that the
propagator has the asymptotic behavior

Cu~0,0,t !52
At

utu2/3
, ~2.18!

where

At5
1

6p2 S G~1/3!

22/3 D 2S l

eBQ4D 1/3

. ~2.19!

This behavior is consistent with the scaling laws.
~b! The equal-time correlation function: The equal-time

correlation functionCu(x,0,0) for the displacement field ha
the asymptotic behavior
24531
-

g

Cu~x,0,0!52
Ax

uxu2
lnS x0

uxu D ~2.20!

which is also consistent with scaling. The constantAx is
given by

Ax5
1

2p2
A k

k'

l

eB
. ~2.21!

This result can also be obtained by differentiating twice
scaling function for theu field with respect tox, at h50.

~c! Equal-time correlation on different stripes: Unlike the
u field correlation function, discussed in Sec. II A and t
Luttinger field correlator to be discussed below, the equ
time correlation function for the displacement fieldu on dif-
ferent stripes,Cu(0,y,0) is infrared finite and has the ex
pected scaling form

Cu~0,y,0!52
Ay

uyu
, ~2.22!

where

Ay5
1

8p

l

eB
Ak i

Q
. ~2.23!

The infrared finiteness of theu correlator is required by the
smectic symmetry since theu fields are the Goldstone boson
of the symmetries broken spontaneously by the quan
Hall smectic state.

C. The Luttinger field correlation function

We now turn to the~subtracted! propagator of the Lut-
tinger field f. In imaginary time and for finite (x,y,t), the
subtracted propagator of the Luttinger field is given by

C̃f~x,y,t !5E d2k

~2p!2

e~kW !

2k ikx
2 @eikW•rW2utue(kW )21#.

~2.24!

Once again, we will write this propagator in scaling form

C̃f~x,y,t !5
1

2p2
Ak'

k i

l

eB

1

y2
Ff~j,h! ~2.25!

which is consistent with scaling. The scaling functio
Ff(j,h) is

Ff~j,h!5
1

2
R E

0

`

du u3E
2`

`

dzA11z2

3@e2hu3A11z21 i ju1 iu2z21#. ~2.26!

This scaling function is well defined for all values ofj andh
except near (0,0)~namely, forx→0 andt→0 with y fixed!
where it develops infrared singularities, and forj→` (y
→0 with x fixed! or h→` (y→0 with t fixed! where it too
develops branch cut singularities. We will consider now t
following three regimes.
9-7
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~a! x50 y→0 with t fixed. The autocorrelation function
of the Luttinger fieldf has a logarithmic infrared divergenc
as t→0,

Cf~0,0,0!5
G~4/3!

4p2

l

eBS Ak'

l3k i
D 1/2

lnS L

x0
D , ~2.27!

where L is the linear size of the system. In contrast, t
subtracted autocorrelation function is infrared finite and
the asymptotic behavior forutu@uyu3/2,

C̃f~0,0,t !52
G~4/3!

3p2

l

eBSAk'

l D 3/2 1

Ak ik'

lnU t

t0
U
~2.28!

which seemingly violates scaling. However we will see b
low that this results also follows from the scaling function

~b! t50 andy→0 with x fixed. By direct evaluation of
the scaling functionFf(j,0) we find that asj→` it behaves
as

Ff~j,0!→ci~j!2 lnj, ~2.29!

where ci(j) is the cosine integral. Thus, for largej the scal-
ing function has a logarithmic term similar to the one d
cussed above. Hence, the equal-time subtracted correl
function of the Luttinger fieldf has theuxu@Ay behavior

C̃f~x,0,0!52
6

p2

1

l2
Ak̄'

k̄ i

l

eB
lnU x

x0
U

2
3

2p2

Q

Ak'k i
S l

eBD 1

x4
1•••. ~2.30!

Hence we see that, for arbitrary finite values of the scal
variablesj;uxu/Auyu andh;utu/uyu3/2, the subtracted propa
gator of the Luttinger field obeys strictly the scaling law
and it develops a logarithmic singularity as either thet or the
x axes are approached.

~c! x50 andt50 with y fixed. The equal-time correlation
function for f on different stripes is also strongly infrare
divergent asL→`. In particular, since it can be seen that
this case limy→0Cf(y)50, there is no need to subtract th
correlation function. Thus the correlation function is

Cf~0,y,0!5
1

2p2 S l

eBD 1

Ak'k i
S l

uyu D
2

lnF lL

x0uyuG ~2.31!

which diverges in the thermodynamic limitL→`. The
physical origin of this infrared divergence is, once again,
local shift symmetry of the Luttinger field on each stripe.

D. The electron propagator in the smectic phase

In this subsection we will use the fixed point theory
reconstruct the electron operator. We are interested in find
out several things. To begin with, we would like to know
the quantum smectic state does support sharp excita
with the quantum numbers of the electron. At the Hartr
Fock level there clearly are electronlike excitations in t
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spectrum. However, the connection between this prob
and Luttinger models suggests that it may be possible to
a behavior akin to an array of quasi-one-dimensional syst
in which the electron fractionalizes into a set of suitab
defined solitons. In fact, if the displacement fields were to
gapped out, say by lattice commensurability effects, this
indeed what it may well happen as discussed in Refs. 19
28. Thus, instead of a Luttinger-like power law behavior, w
will find that the autocorrelation function of the electron, a
the associated spectral function, vanishes as a functio
either uxu or utu faster than any power but more slowly tha
an exponential. This ‘‘pseudogap’’ behavior is indicative o
pronounced suppression of final states for electron tunne
in the quantum Hall smectic phase. In the remainder of t
section we will derive this result.

We are interested in computing the Green function of
electron operators as defined in Sec. I. In this section we
use the results of Sec. II to compute the fermion Green fu
tion directly in the continuum limit along they direction.
Thus, from now on, we will replace the discrete stripe labej
by the continuum coordinatey. Due to the smectic
symmetry,19,27,29 Eq. ~1.17!, of the effective Lagrangian o
Eq. ~1.4!, the ~continuum! fermion propagator

G~x,y,t;x8,y8,t8!5^TC~x,y,t !C†~x8,y8,t8!&
~2.32!

vanishes identically foryÞy8. Thus it is sufficient to com-
pute the propagator on a single stripe, i.e., asuy82yu→0.
Below we will compute the propagator for the right move
The propagator for the left movers follows trivially from it

Using the bosonization formulas, the propagator for
right moving fermions at fixedy ~i.e., on the same stripe!
c1(x,y,t) is

^c1~x,y,t !†c1~0,y,0!&5
1

2pa
e2pF1(x,t), ~2.33!

where, for imaginary timet.0 andx.0, we find

F1~x,t !5 lim
y→0

@C̃u~x,y,t !1C̃f~x,y,t !#, ~2.34!

where we have dropped the contributions from the cross
relations betweenu andf. The only role of these terms is t
insure the correct anticommutation relations on the ferm
operator, i.e., that the fermion propagator is an odd, ant
riodic in time, function of the coordinates. It is straightfo
ward to check that these conditions are met.

Elsewhere in this section we showed that the correlato
the dual fieldC̃u is always more singular than the propaga
of the Luttinger fieldC̃f . Using these results we find that,
equal~imaginary! times and aty50, the functionF1(x,0,t)
has the has the asymptotic behavior for largeuxu

F1~x,0,0!5
1

2p2

eB

l
Ak i

k'

ln2S uxu
x0

D1•••. ~2.35!
9-8
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We can easily see that this asymptotic behavior is due to
equal-time correlation function of the dual fieldsC̃u(x) of
Eq. ~2.12!. Consequently, the equal-time fermion correlati
function behaves as

G1~x,0,0!}sgn~x! e2~1/2p!~eB/l!Ak i /k' ln2~ uxu/x0!,
~2.36!

where the sgn(x) factor shows that it is a correlation functio
of a fermion. This correlation function exhibits the same an
lytic behavior as the structure factor in DNA-lipi
complexes.29,30 Notice that it decaysfaster than any power
but more slowlythat an exponential decay.

Conversely, the fermion autocorrelation function~in
imaginary time! is, for t.0, and on the same stripe (y50) is
given by

G1~0,0,t !}e2pF1(0,0,t) ~2.37!

whose long time behavior, at zero temperature and as fi
temperature, is once again dominated byC̃u(t), the autocor-
relation function of the dual field. Hence, we find that t
fermion autocorrelation function has the long time behav

G1~0,0,t !}e2(1/2p(eB/l)Ak i /k'ln2~ utu/t0! ~2.38!

with the samet0 defined above in this section.
The fermion Green function on different stripes can

found by similar means. Using these methods, the equal-
Green function on different stripes,yÞ0, is found to vanish:

G1~0,y,0!}e2pF1~0,y,0!→0 ~2.39!

in the thermodynamic limitL→` due to the infrared diver-
gence in bothC̃u(0,y,0) and inC̃f(0,y,0), which are both a
consequence of the sliding symmetry of the quantum H
smectic state.

The behavior of the electron auto-correlation function
Eq. ~2.38! clearly shows the strong suppression of elect
states at low energies. It implies a dramatic suppressio
the tunneling density of statesfor electrons into the quantum
Hall smectic. Notice that this is a much more dramatic eff
than the power law behavior of one-dimensional Lutting
liquids. It is due to the strong fluctuations of the shape of
stripes, a hallmark of a quantum smectic.8 It easy to see tha
in the presence of a periodic pinning potential along the
rection perpendicular to the stripes, this behavior is sup
seded by a conventional Luttinger picture. This is expec
since the resulting state is equivalent to the smectic meta
Ref. 19. Similarly, it is easy to see that at conventional L
tinger behavior is recovered at short times once irrelev
operators which lead to a linear dispersion relation are
cluded.

III. THE COULOMB FIXED POINT

In the previous sections we have discussed in detail
properties of the quantum Hall smectic phase for a 2D
with short-range interactions. Here we will consider the
fects of long range Coulomb interactions. Using a tim
dependent Hartree-Fock approach Coˆté and Fertig20 have in-
24531
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vestigated the quantum Hall smectic state in a 2DEG w
Coulomb interactions, and found that the dispersion relat
of the collective modes is modified. In this section we w
investigate how these changes modify the picture of the fi
point developed above.

Rather than reworking the mean field theory we have u
for the short range case, we will work directly with the e
fective Lagrangian of Eq.~1.4! and modify it to reflect the
effects of Coulomb interactions. There is a simple and dir
way to account for their effects at the level of the effecti
theory. First of all, the term1

2 k i(]xf)2 represents short
range density-density interactions~recall that in bosonization
the forward scattering part of the electron local density
given by ]xf). Thus long-range interactions lead to a no
local term in theaction. Let Ṽ(kW ) be the Fourier transform o
the two-dimensional Coulomb interaction, i.e.,Ṽ(kW )}1/ukW u.
In momentum space this amounts to modifyk i by a
momentum-dependent factor

k i→k i~kW !5
k̄ i

ukW u
, ~3.1!

where k̄ is an effective coupling constant. Similarly, long
range Coulomb interactions will also modify the elas
modulusk' along the direction perpendicular to the stripe
Hence,k' will also have to be changed in a similar fashio

k'→k'~kW !5
k̄'

ukW u
. ~3.2!

Thus the effective low-energy theory of the quantum H
smectic with Coulomb interactions is obtained by replac
k i→k i(kW ) and k'→k'(kW ) at the level of the effective ac
tion, in Fourier space. The new dispersion relation is

e~kW !5
l

eB
A k̄ i

ukW u
ukxuAQkx

41
k̄'

ukW u
ky

2. ~3.3!

Thus, the dispersion relation is nonlocal. However, we w
show below that for the analysis of the infrared behavior
the displacement fields correlators it is sufficient to use
approximate, simpler, version of the dispersion relation
tained by settingukW u'ukxu. In this limit, the dispersion rela-
tion becomes

e~kW ![
l

eB
Ak̄ iAQukxu51k̄'ky

2. ~3.4!

In particular, atky50, we finde(kx,0)}ukxu5/2, a result first
obtained by Coˆté and Fertig.20

The dispersion relation of Eq.~3.4! shows that the dimen
sional counting for the case of Coulomb interactions isv2

;ky
2;kx

5 , which suggests new scaling transformations, w
scale factorr, of the form

x→rx, y→r 5/2y, t→r 5/2t,

u→r 21u, f→r 25/2f, u→u. ~3.5!
9-9
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Hence, in the case of Coulomb interactions the effective
mension isD5115/215/256. Note that the same cavea
that were raised about the short range scaling laws also a
here.

However, unlike the short range case, forkx50 this ap-
proximate dispersion relation now vanishes only atky50,
rather than on the entire linekx50 as it is the case for the
exact dispersion relation as a consequence of the sli
symmetry. However, this is not a problem for the calculat
of the correlator of the displacement field since this field
invariant under the sliding symmetry. For the same rea
this approximation cannot be used to calculate the corral
of the Luttinger and the dual fields since these are not inv
ant under the sliding symmetry.

We have computed explicitly the behavior of the low e
ergy and long distance behavior of the correlation functio
We found the following results.

A. The dual field propagator

We computed the subtracted correlator of the dual fielu
for the Coulomb case. Forx, y andt close to the axes we find
the following.

~1! For t5y50, the~subtracted! correlation function has
the behavior

C̃u~x,0,0!5
5

8p2

eB

l
A k̄ i

k̄'

ln2@~4k̄' /Ql2!1/5uxu#.

~3.6!

~2! In the regimex50, y→0 andt finite, we get

C̃u~0,0,t !52
2

5p2

eB

l
A k̄ i

k̄'

ln2S t
l

eB
Ak̄ ik̄'L D ,

~3.7!

whereL is the UV cutoffs, which we took to be the sam
along thex andy directions for simplicity. Here we have kep
only the ln2t terms. ThusC̃u(t) and C̃u(x) have a similar
infrared behavior.

~3! In contrast, forx5t50 we find instead the infrared
divergent behavior

C̃u~0,y,0!5
1

16p2

eB

l
A k̄ i

k̄'

ln2F S p

L D 5/2AQ

k̄'

UyUG
~3.8!

similar to what we found for the case of short-range inter
tions.

B. The propagator of the displacement field

We verified that for the calculation of the infrared beha
ior of the correlation functions of the displacement field it
correct to replace the full dispersion by the approximate o

We find that the propagator of the displacement fieldu
takes the scaling form
24531
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C̃u~x,y,t !5
1

2p2

l

eB
A k̄ i

k̄'

S k̄'

Q
D 2/5

1

uyu4/5
Fu

c~j,h!,

~3.9!

whereFu
c(j,h) is the scaling function

Fu
c~j,h!5

1

2
ReE

0

`

du uE
2`

` dz

A11z2

3e2hu5/2A11z21 i ju1 iu5/2z. ~3.10!

In limiting cases we find the asymptotic behaviors

Cu~x,0,0!52Ax

ln~muxu!

uxu2
,

Cu~0,y,0!5
Ay

uyu5/2
,

Cu~0,0,t !5
At

utu5/2
~3.11!

which, up to logarithms, clearly obey the scaling laws of E
~3.5!. Here we have set

Ax5
5

8p2

l

eB
A k̄ i

k̄'

,

m5~4k̄' /Q!1/5,

Ay5
~A521!

20p2
G~2/5!G~1/10!G~4/5!

k̄ i~l/eB!2

~ k̄'Q4!2/10
,

At5
~G~2/5!!2

5p2 S l

eBD S k̄ i

k̄'

D 1/10S eB

2A2lQ
D 4/5

. ~3.12!

Hence, even in the presence of Coulomb interactions
propagator of the displacement fieldu obeys scaling. Notice
that here too this propagator is free of the infrared singul
ties that we find in both theu and in thef correlators. Once
again this feature is dictated by the smectic symmetry.

C. The propagator for the Luttinger field

The subtracted propagator of the Luttinger field does
have a simple scaling form in the Coulomb case. We w
only consider the limiting regimes.

~1! For t50 andy50, the subtracted correlation functio
becomes

C̃f~x,0,0!52
1

8p2

1

l2
Ak̄'

k̄ i

l

eB
lnS uxu

x0
D1•••,

~3.13!

where x05(Q/k̄')1/5l2/5. This behavior is similar to wha
we found in the short range case.
9-10
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~2! For x5y50, we find that the subtracted correlator h
the behavior

C̃f~0,0,t !52
l

eB
Ak̄'

k i

1

4p2
L2lnS t

l

eB
Ak̄ ik̄'L D1•••,

~3.14!

whereL5L2x5Ly is the UV cutoff. Thus, the subtracte
autocorrelation function has a lnt behavior.

~3! For h50 andj→0, we now find

C̃f~0,y,0!52
5

8p2

l

eB
Ak̄'

k̄ i

1

y2
ln@~Ql2/k̄'!1/5L#.

~3.15!

Hence, here this propagator is infrared divergent too.
~4! The strong multiplicative infrared divergences that w

found inCf(t) imply that, for Coulomb interactions too, th
fermion propagator vanishes foryÞ0. However, just as in
the case of short-range interactions, aty50 the fermion
propagator is dominated by the contribution of the correla
of the dual fieldu, which here too behaves as ln2x or ln2t.
Hence, also in the case of Coulomb interactions, the ferm
autocorrelation function has the same ‘‘pseudogap’’ beha
found for the case of short-range interactions, i.e., e
@2Aln2(t/t0)# ~whereA is a constant!.

IV. THERMODYNAMIC PROPERTIES
OF THE QUANTUM HALL SMECTIC

The quantum Hall smectic phase has remarkable ther
dynamic properties. These can be deduced directly from
effective low-energy theory.

It is an elementary exercise in statistical mechanics
show that the internal energy densityU is

U5E d2k

4p2

e~kW !

ee(kW )/T21
. ~4.1!

We will apply this formula for both cases, short-range a
Coulomb interactions. For short-range interactions we fi
that the internal energy density at low temperatures has
behavior

U~T!5
1

9

l

eB
Ak i

k'

T2lnS T0

T D1•••, ~4.2!

where T051/t0. Hence, the low-temperature specific he
c(T) of the quantum Hall smectic phase obeys the law

c~T!}Tln
T0

T
1O~T,T3lnT!. ~4.3!

Hence, for short-range interactions, the low-temperature
cific heat of the 2DEG in the quantum Hall smectic phase
larger than the specific heat of either Fermi or Luttinger l
uid phases~both being linear!.

Coulomb interactions modify the above laws on
slightly. In particular we find that the internal energy dens
24531
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at low temperatures now obeys a pureT2 law ~without the
logarithm!, and that the specific heat has aT linear behavior
c(T);T.

V. IS THE QUANTUM HALL SMECTIC PHASE STABLE?

We have shown that, although the Goldstone modes of
smectic are very soft, the quantum zero-point fluctuations
the long-wavelength modes do not destroy the stripe or
This is not a trivial issue—at finite temperature, the h
monic analysis would lead to a linearly diverging mea
square stripe displacement,u2.;TL. Of course, what this
really means is that there is no smectic phase at finite t
peratures.

It is a much more subtle issue whether the smectic ph
is unstable to the formation of a stripe crystal, i.e., whet
there is inevitably translation symmetry breaking along
stripe direction. There are two sorts of analysis that ha
been applied to answer this question, although we feel th
are possible flaws with both.

In Sec. I we defined a scale invariant smectic fixed po
Lagrangian. Treating this Lagrangian as one would in stu
ing critical phenomena, one can assess the relevance of
ous physically allowed perturbations using standard dim
sional analysis. By this analysis, there is one operator, wh
originates from the shear piece of the locking term in t
stripe crystal Lagrangian, which is apparently relevant. O
might conclude from this that the smectic is unstable to cr
tallization. A bizarre aspect of this analysis, which causes
to have reservations concerning its validity, is that the diff
ent pieces of the locking term, whose relative strength
ultimately determined by rotational symmetry, have differe
scaling dimensions. This analysis was generalized for
case of Coulomb interactions in Sec. III; the stability ana
sis yields the same answer. The basic assumption behind
scaling analysis is that the correlation functions have
simple analytic structure reflecting the scaling laws, althou
x, y, andt enter with different effective exponents, in just th
same way that space and time can enter differently in qu
tum critical phenomena.

However, in Secs. II and III we found that while the Gol
stone boson fieldu follows the scaling laws~up to a multi-
plicative logarithmic correction!, the Luttinger fieldf and
the dual fieldu have a much more complex singularity stru
ture. In particular the correlation functions of the fieldsf
and u for space-time points on the same stripe~that is, for
equal y coordinates! have the leading equal-time behavi
ln(uxu/x0) and ln2(uxu/x0), respectively~and an analogous be
havior as a function of time!. Along other directions thef
and u are finite only when properly subtracted. Otherwi
they exhibit infrared divergences, as a consequence of
sliding symmetry. The consequent breakdown of scaling
‘‘weak’’—it only involves logarithms. However, the RG
analysis, although based on examining lowest order per
bation theory in the additional couplings, is ultimately no
perturbative; it is based on the assumption that the corr
tion functions scale. Without a careful analysis of t
singularity structures that occur in higher order perturbat
theory, it is not possible to determine whether the breakdo
9-11
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of scaling is significant or not. Indeed, the length and ti
scalesx0 andt0 discussed in Sec. II appear in various cor
lation functions—for instance, the fermion propagator ha
‘‘pseudogap’’ behavior exp@2const ln2(utu/t0)#, instead of the
familiar power law of Luttinger liquids. These propertie
seemingly imply that, unlike arrays of Luttinger liquids, th
QH smectic is not a critical state. Instead it behaves m
more similar to a stable state of matter, characterized by
finite length and time scales.

The second approach is based on the observation tha
on-stripe pure logarithmic behavior of thef correlator is
reminiscent of that encountered in weakly coupled Luttin
liquids. This singularity has been used to suggest that
locking perturbations may ultimately drive the QH smec
state to a crystalline state.9,12,23Moreover, if the structure of
lowest order perturbation theory in theLlock is examined, it is
found to be dominated by large values ofky , so the charac-
teristic two-dimensional dispersion of the smectic Goldsto
modes does not significantly affect the results.

When the stripes are pinned~i.e., if the transverse Gold
stone behavior is suppressed!, we have no doubt of the va
lidity of this approach. In such a state the Goldstone bos
are gapped and can be integrated out. Their net effect
induce and renormalize the interstripe and intrastripe forw
scattering interactions. Hence, the pinned smectic reduce
an array of Luttinger liquids. On a technical level, this a
proach actually treats the system as a distinct Luttinger liq
for each value ofky . Consequently, instead of a Luttinge
parameter and Fermi velocity, there is a ‘‘Luttinger functio
K(ky) and a velocity functionvF(ky). The phase diagram o
such systems was considered recently by us,19 by Vish-
wanath and Carpentier,28 and by Sondhi and Yang.31 It was
found that as the parameters of the Luttinger function
changed, there is a complex phase diagram which inclu
both crystalline and smectic metallic phases.

However, there is reason to worry about the validity
this approach for the unpinned smectic. Specifically, t
analysis is completely insensitive to the smallky behavior of
the Luttinger and velocity functions. But the Goldstone b
havior of the smectic implies a vanishing Fermi velocity
ky→0. This pathology has no consequences in lowest o
perturbation theory, which is why it does not affect the sc
ing analysis that is based on it. However, it is responsible
the the form of the low temperature specific heat and
non-Luttinger-liquid~pseudogap! form of the fermion propa-
gator in the quantum smectic state. It seems too good to
true that this salient physics should have no affect on
stability of the state. Again, it is only by an analysis of t
structure of higher order perturbation theory~which we do
not attempt! that it can be determined whether the patho
gies associated with smallky are truly unimportant for this
purpose, or whether they become more important in hig
order terms.

Leaving this issue aside, we can approach the stab
question from the viewpoint of coupled Luttinger liquid
MacDonald and Fisher12 showed that rotational invarianc
constrains the Luttinger functions to reach simple limiti
values as a function ofky . They further argued that if thes
functions are monotonically increasing withky , and if
24531
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charge-conjugation symmetry is respected, then the C
lock-in interactions are always relevant and the QH sme
is ultimately unstable to crystallization. This is in appare
contradiction with the results obtained by Fertig a
co-workers11,20,21 ~using the same method of analysis! in
which numerical solutions of the time-dependent Hartr
Fock equations were used to compute the values ofK(ky). It
is important to remember that, in this case, the scaling an
sis performed in Sec. I cannot be used to discard a variet
additional operators from the fixed-point Hamiltonian.
particular, there is an infinite number of marginal operato
representing forward scattering density-density interactio
which affect the scaling properties.19 The analysis of Mac-
Donald and Fisher12 could in principle be reconciled with
these results if the assumption of monotonicity of the L
tinger function on the transverse momentum is dropped.
apparent that these neglected terms could, in principal,
this.

VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper we presented an effective theory for the l
energy degrees of freedom of the quantum smectic or st
phase of the 2DEG in a large magnetic field. In the quant
Hall smectic phase the 2DEG spontaneously breaks b
translational~in the direction perpendicular to the stripe!
and rotational invariance. We showed that the form of
effective theory is dictated by very general principles: t
native symmetries of the smectic state and the Lorentz fo
law. We determined the spectrum of collective modes wh
exhaust the low-energy degrees of freedom. For a 2D
with short range~screened! interaction, these Goldston
modes have a dispersion which is exceedingly soft, van
ing ase;kx

3 at ky50 and with a whole line of zero-energ
states atkx50 andkyÞ0. These Goldstone bosons should
detectable in Raman scattering experiments in 2DEG in
erostructures. A tangible reflection of how soft these Go
stone modes are is seen from the temperature dependen
the specific heatcV;Tu ln(T/T0)u at low T. This is larger than
that of a Fermi liquid. In contrast, we found that for lon
range Coulomb interactions the Goldstone bosons behav
e;kx

5/2 at ky50. Nevertheless, the specific heat obeys
familiar T linear law.

We also used the fixed point theory to compute the el
tron propagator. We found that for short-range interactio
there should be a pseudogap in the single particle densit
states, as deduced from the tunneling conductance at
temperatures. For Coulomb interactions we found a sim
behavior.

The question of the stability of the stripe state has bee
matter of discussion and controversy for some time.8,9,12We
have shown here that although it is true that by a suita
parametrization of the degrees of freedom it is possible
write the effective theory in terms of what looks similar to a
array of coupled Luttinger liquids, this is not a true qua
one-dimensional system. Instead, it is a strongly anisotro
fully two-dimensional system whose the symmetries force
anisotropic form of scaling described in Sec. I.

Nevertheless, clearly the quantum Hall smectic has v
9-12
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unusual scaling properties. For instance, although the co
lation functions obey scaling, as shown in great detail
Secs. II and III, the scaling functions are not analytic eve
where in the plane defined by the scaling variablesj andh,
and develop singularities in the extreme regimesj→` or
h→`. However, these are very soft, logarithmic, integrab
singularities on a set of measure zero of the space-time
ordinates. Thus, when the effects of any typical perturbat
is considered, for instance, the coupling of the CDW ord
parameters on different stripes, it may well be that the
additional singularities may not affect the scaling analysis
they do not lead to true singular behavior of a true tw
dimensional system. In any case a more careful renorma
tion group analysis is required to reach a definitive conc
sion. However, if either translation invariance is brok
explicitly ~say by an external periodic potential in the dire
tion perpendicular to the stripes! the behavior will indeed
cross over to a quasi-one-dimensional regime quite simila
what was discussed in Ref. 19. In other words, a pinn
potential changes the properties of this state substantially
in fact it enhances the effects of fluctuations whose m
effect is to make it more unstable to crystallization. It h
also been suggested recently31 that the pinned stripe stat
may also be unstable to a quantum Hall state.

An open and very interesting question is the possible
istence of a quantum nematic state of the 2DEG in la
magnetic fields at zero temperature. This is an import
question both conceptually and experimentally as it appe
to be consistent with the experimental data.13 Recently some
of us15 developed a theory of a quantum nematic Fermi flu
at zero external magnetic field in the proximity of an isotr
pic Fermi liquid phase. It will be particularly interesting t
construct a theory of the quantum melting of the smectic
a dislocation unbinding mechanism.32

It is also intriguing to explore the relation of the quantu
Hall smectic with other phases of the quantum Hall syste
There is some evidence from exact diagonalization studie
small systems33,34 of a direct transition to a paired quantu
Hall state.35,36 We would expect such a transition, if it oc
curs, to be first order. More exciting is the possibility of
relation between the quantum Hall smectic and the other w
known compressible state of a half-filled Landau level.

Finally it is interesting to note that the imaginary tim
e
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form of the effective action for the dual fieldu, Eq. ~1.15!,
bears a close formal resemblance to the free energy fo
sliding columnar phase of DNA-lipid complexes.29,30,37,38In
momentum space the free energy of the sliding colum
~SC! phase is given by38

FSC5E d3q

~2p!3
@Bqz

21Kqx
41Kyqx

2qy
2#uuz~qW !u2, ~6.1!

whereŷ is the direction normal to the layers,ẑ is the direc-
tion normal to the DNA strands,uz is the displacement field
of the DNA strands parallel to the lipid layers, andB, K, and
Ky are effective elastic constants. Although the effect
elastic theory are quite similar, the coordinatesx, y, andz do
not scale as the coordinatesx, y, andt of the quantum smec
tic. While in the case of the quantum hall smectic the eff
tive dimension isD56, in the sliding columnar phase it
D55. A direct consequence of these scaling propertie
that the nonlinear corrections to the elastic strain tensor
troduce additional interactions which are marginally relev
in the sliding columnar phase,37 but are irrelevant in the
quantum Hall smectic phase. Remarkably, although the
tails of the models are different, some of the correlat
functions in the quantum Hall smectic phase that we
cussed in Secs. II and III have the same behavior as ce
correlation functions in the sliding columnar phases.
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