PHYSICAL REVIEW B, VOLUME 65, 245313

Tunneling and time-dependent magnetic phase transitions in a bilayer electron system
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In this work, we have numerically integrated in space and time the effective-mass nonlineadiSpdro
equation for an electron wave packet in a bilayer electron system. Considering a time-dependent magnetic
phase transition from the usual unpolarized ground state to spin-polarized one, we have calculated the tunnel-
ing dynamics between the two quantum wells when an external bias is applied. Due to the nonlinear effective-
mass equation, it is found that the charge dynamically trapped in both wells produces a reaction field that
modifies the system resonant condition. In this way, we have shown the possibility of having another kind of
tunneling oscillations between both quantum wells after an optical excitation of the sample.
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[. INTRODUCTION spin polarization results in a directed motion of free carriers
in the plane of a quantum well perpendicular to the direction
The search for systems that exhibit unusual spin instabiliof light propagatior?.
ties is an area of active research. These instabilities illustrate The tunneling rate values between two parallel 2D elec-
the qualitatively improved state of matter that may result intron gases have been recently investigated as a function of
simple systems through the presence of electron-electron irthe carrier density and temperatdrin such an experiment,
teractions. In addition, they lead to interesting phases witlthe carrier densities in both semiconductor layers were inde-
unique potentially useful properties. One class of systempendently controlled by two different applied biases. From a
considered for serious exploration has been single antheoretical point of view, the electron dynamics between par-
double quantum well structures at low electronic densityallel two-dimensional electron gases has been studied in a
These low-dimensional structures restrict the phase spaamupled quantum well systefrConsidering a Hartree poten-
available for electron-electron scattering enhancing the potial, and using a time-dependent wave function for the charge
tential for interesting phase transitions. Recently, Das Sarmdensity in the semiconductor growth direction, the tunnelling
and Tamborenézahave predicted an antiferromagnetic phaserate values between the two quantum wells have been ob-
transition to occur in double quantum well heterostructurestained at different electron sheet densities. Due to nonlinear
They studied the magnetic instabilities of semiconductoreffects, there is a possibility of having a suppression of the
quantum wells within the local-density approximation to tunneling current in a bilayer electron systém.
both density-functional and Hartree-Fock theories. However, we know that the Hartree theory neglects con-
From an experimental point of view, we note that at leastributions to the energy beyond the exchange term and is
an experimental group has investigated the possibility of atherefore expected to overestimate the electron-electron po-
antiferromagnetic phase transition by performing resonantential value in a quantum well systehOne of the most
inelastic light-scattering measurements on double quantunmportant approaches to the electron many-body problem is
well structures. In addition to this, tunneling experiments in the local-density approximatiofLDA) of the density-
low-dimensional systems have demonstrated a capability tiunctional theory® The LDA formalism is based on the self-
probe electron-electron interactions. Recently, it was founatonsistent solution of the Kohn-Sham equation coupled with
that tunneling of electrons into two-dimension@D) sys- the Poisson equation and a local exchange-correlation poten-
tems in a magnetic field displays characteristics of aial. In order to study the different populations of the spin
pseudogap created by Coulomb interactions amongrientations on double quantum wells, a generalization of the
electrons’ local-density approximation has been recently introddced.
In addition, and given the spin properties of quantum HallThe local-spin-density approximatigh SDA) is also based
systems, Chaet al* explored whether tunneling could also on the self-consistent solution of the Sctiirger-like Kohn-
prove useful for revealing effects of electronic spins. ForSham equation. The main technical difference between
spin-polarized quantum Hall states, they described that turl=SDA and LDA is that the effective exchange-correlation
neling from a 3D electrode occurs at two distinct rates thapotential in LSDA depends on the local spin polarization as
differ by up to two orders of magnitude. The dependence ofvell as the electron density.
the two rates on temperature suggested that slow in-plane In view of the above comments and from a theoretical
spin relaxation creates a bottleneck for tunneling of elecpoint of view, in this work we shall study the time-dependent
trons. Considering Skyrmion excitations, a theory of tunnel-evolution of an electron wave packet considering the LSDA
ing between a metal and a partially spin-polarized two-in a coupled quantum well system. The method of calcula-
dimensional electron system has been recently presented tigpn will be based on the discretization of space and time for
McDonald® Recently, a nonequilibrium population of the carrier wave functions. We have considered time-
spin-up and spin-down states in quantum well structures hagdependent magnetic phase transitions, from the usual unpo-
been achieved applying circularly polarized radiation. Thelarized ground state to a spin-polarized one and vice versa,
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generated by an external pulsed electromagnetic radiation. In In our model, we have considered an external pulsed elec-
such a case, we shall show that the system resonant conditicromagnetic radiation with a certain peridd,,. It is well

can be strongly modified due to effective spin-dependenknown that spin-polarized electrons can be generated by po-
exchange-correlation potential. Consequently, the possiblirized light. We have considered a periodic magnetic transi-
effects of electronic spins in a two-dimensional electron systion as a function of the external pulsed radiation pefigg

tem could be also investigated by performing tunnelling curin a coupled double quantum well system. Then, the time-
rent measurements. dependent exchange-correlation potential is

1. MODEL Vi) =9() Ve +[1-g(t) VL, (4)

In order to study the charge-density dynamics in the strucwhere theg(t) function is given by
ture growth direction, we need to solve the time-dependent
Schralinger equation associated to an electron in a double Tem Tem
quantum well potential. Assuming translation symmetry of 9(t)= > 6(t—n7> —6<t—m7”
the system in thety plane perpendicular to the growth direc- =135 m=240.. )
tion z the wave functiony will be given by the nonlinear
Schralinger equatioht O being the Heaviside function. We should point out that if
5 52 2 i ) ) :iz:'(l)'zncljr;)rhmTen{Z in Eqg. (5) a magnetic phase transi-
I at wzb) [ 2m* r?_ZerVH(W| ) Vxll91) Now we discretize time by a superscript and spatial
position by a subscrigt Thus,— z,bj‘?. The various values
P(z,t) (1) becomejéz in the conduction band, wheréz is the mesh
width. Similarly, the time variable takes the valuésst,
where 6t is the time step. In this way, and to treat the time
development, we have used a unitary propagation scheme for
|1|t_1e evolution operator obtaining a tridiagonal linear system
that can be solved by Crank-Nicholson methd@he wave-
npacket propagatce ' is replaced by the rational approxi-
Hwation (1—istH)/(1+i6tH). In the Cranck-Nicholson ap-
proach, it is difficult to estimate the minimum value &f
52 e?n, required to guarantee a specified accuracy. In addition, we
—Vy(z,t)=— —|(z,1)|?, (2)  have checked our results by using the split-step method. In
0z & the split-step approach, the wave packet is advanced in time

wheree is the GaAs dielectric constant and is the carrier Stf"igglz ﬁtbw ff‘g}z enough that the  algorithm
sheet density. In the exchange-correlation potentfalfor € e '““e '™ can be applied to the generatdrand
our calculations we use the parametrization of¥ifepoten- U are the Hamiltonian kinetic and potential terms. In each

. . time step 6t, the algorithm propagates the wave packet
tial for the 3D electron gas obtained by Ceperley and Adler freely for 6t/2, applies the full potential interaction, then

propagates freely for the remainidty2. The split-step algo-

TVau(2)

wherem* is the GaAs electron effective mass avig(2) is
the double quantum well potential. Thg andV, terms are
the self-consistent Hartree and exchange-correlation pote
tials, respectively. Th& term is the potential given by the
electron-electron interaction in the heterostructure regio
Such a many-body potential is given by the Poisson equatio

7 4
g 1+ 5,3'1\/V_S+ §B'er rithm is stable and norm preserving and it is well suited to
JERY . : ' 3) time-dependent Hamiltonian probleffsHowever, execu-
“Cors T (14 Bt Bhrg)? tion of this algorithm requires relatively long times and large

storage. In addition, we have also solved the Poisson equa-
wherei=U (unpolarizedi or i =P (polarized. The param-  tion associated to/,; using another tridiagonal numerical
eters in the previous expressions, as used by Radtke, Tambgrethod for each valuel3
renea, and Dar Sarnfaare d"=—1.2218,d"= —1.5393, In the tunneling experimentsthe carrier densities in both
yY=-0.1423, y"=-0.0843, {=1.0529, B7=1.3981, semiconductor layers were independently controlled by two
B5=0.3334, andB5=0.2611. This parametrization of the different applied biases. Taking this into account, we have
exchange-correlation potential for the uniform electron gagaken two Gaussian wave packets centred in both quantum
in three dimensions does not depend on the widths andells as our initial wave function. In our model, we have an
heights of the potential barriers. However, the LSDA caninitial symmetric wave function, i.e., both Gaussian wave
describe the inhomogeneous electron gas that exists insigeckets are identical. In practice, we will not have a perfectly
guantum well structures. Thi¥,. potential has been em- symmetrical double well potential in absence of an external
ployed to study spin instabilities in coupled quantum wellsapplied bias. We have also assumed a slightly asymmetric
and spin effects in parabolic quantum wells. Finally, wewave function that is created in the center of both quantum
should point out that in Eq1) the Vy and theV,. potentials  wells att=0. The obtained dynamical evolutions of the dif-
are wave-dependent quantities. Such a result is given by Eqgerent initial wave packets are identical. If an interlayer volt-
(2) and (3), where bothV, and V,. depend on the wave- ageV is applied, the bottom of both quantum wells are
function form. shifted a quantity equal to eV.
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FIG. 1. Conduction-band potential and wave function. We have 014
taken an initial 2D electron sheet density equal ng=6.0 )
X 10" em™2,
. . 2 00 T T
Figure 1 shows the amplitude of the wave functign
0.0 0.5 1.0 15

and the conduction-band potential. The unpolarized ground )
state has been considered. We have numerically integrated time (ps)
Egs.(1)—(3) using an initial 2D electron sheet density equal
to ng=6.0x 10' cm™ 2 for both quantum wells. In Fig. 1, we i or th \arized q df o .
nave taken an appied voftage equal 10 15 m. Then, tng% e o he unpolarizedgrownd see nd o e magrete
equations are numerically solved using a spatial mesh size gﬁeet densi(tr;né;ual MS):'G 0x 101 cm-2

0.5 A and a time mesh size of 0.2 a.u. and a finite EHO0 ' '

A) large enough as to neglect border effects. We have con- _ ,

sidered a GaAs/Ga,Al,As double quantum well system certain valu_e of the_ applied voltad€ig. 3). Such a result
that consists of two 100-A-wide GaAs quantum wells sepa—can be easily explained as follqws. The electron energy lev-
rated by a barrier of thickness equal to 20 A. The barrie€!S Of both wells are exactly aligned ®t=0. Therefore, if
height is taken to be 220 meV. A0, we have assumed a V~0 the charge density will oscillate between both wells

symmetric wave function that is created in the center of bot{Vith @ certain tunneling period. ¥ is increased, the ampli-
quantum wells. tude of the oscillations will also be increased due to the

field-induced tunneling process. However, we know that if
the potential difference between both wells is higher than the
level splitting, the resonant condition is not obtained, and

The numerical integration in time allows us to obtain thethen the tunneling process is not allowed. Such an effect is
probability of finding the charge densif, ,, inside a quan- clearly shown in the numerical data plotted in Fig. 3. We

FIG. 2. Probability density in the left quantum welP () ver-

IIl. RESULTS AND DISCUSSION

tum well region[a,b] at any timet have found the existence of oscillations up to a certain value
b ) 0.6
Papt)= | dzuznl, ©®)
a ’,ns=1.0x1011cm'2
where[a,b] are the quantum well limits. In Fig. 2, we have 0.5 1 n =6.0x10'"em™
plotted the probability densitR, ,, in left quantum well ver- n =20.0x10 o2
sus time. The total probability density in both quantum wells 0.4 - v
has been taken to be 1. In our calculations, the unpolarized S
ground state and periodic magnetic transitions from the usual g 03 4
unpolarized ground state to a spin-polarized one,q,( g— '
=100 fs) have been considered. We have taken an initial 2D <
electron sheet density equal tlg=6.0x 10" cm™2 and an 021
applied bias equal to 14 mV. The existence of tunneling os-
cillations between the two quantum wells is clearly shown in 0.1
Fig. 2.
In Fig. 2, we can notice that an averaged value for the 0.0 : : : :

amplitude of the tunneling oscillations can easily be calcu-
lated. In Fig. 3, we have plotted the averaged amplitude 0 10 A Iizgd Biago(mV) 40 50

value of the tunneling oscillations versusfor different spin PP

polarizations and electron densities. We have considered the FiG. 3. Amplitude of the tunneling oscillations versiis We
unpolarized ground state and a periodic magnetic transitioRave taken different spin polarizations and a 2D electron sheet den-
as a function of an external period {,=100 fs). For both sity equal ton,=6.0x 10* cm™2. Crosses: the unpolarized ground
magnetic phases we have found that the amplitude of thetate. Circles: time-dependent spin-polarized magnetic pHBse (
tunneling oscillations is increased as we incredsep to a =100 fs).
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FIG. 4. Resonan¥ versusT,, at different sheet density values. 06
We have also plotted the unpolarized resonamialues(horizontal (b)
lines). 0.5 -

2

of the applied voltagéresonant) for both unpolarized and g 0.4 -
time-dependent spin-polarized phases. g

In Fig. 4, we have plotted the position of the tunnelling 203
peaks(resonan¥) versusT g, at different electron sheet den- =
sity values. We have considered periodic magnetic transition <
as a function of the external pulsed radiation period at dif- '§ 0.2 4
ferent electron sheet density values. Up to a certain value of Q-
Tem=100 fs, we have found that th¢ curve has a mini- 0.1 v
mum. In contrast, and in the caseTf,,>100 fs, it is found
that the amplitude peak position is increased if we increase 0.0
Tem- Such a result can be easily explained as follows. In Fig. : oot T T
3, it is clearly shown that the time-dependent exchange- 00 05 1.0 1.5 20 25 3.0 35 4.0 45
correlation potentialV,.(t), determines the dynamical evo- time (ps)

lution of our electron wave function. Increasing tfig,, bability density in the left P

value, the time-dependent potential filling up in both quan- FIG. 5. Probability density in the left quantum we Lp) ver-
tum wells is also modified. As a result, the amplitude peak'Sus time atv=14mV. We hagﬁ takfzn an initial 2D electron sheet
position is also increased. In addition to this, we know thaOIenSIty equal 1ons=6.0<10"cm = (@ Ten=0.2. (B) Tem

the initial symmetric charge density will oscillate betweenzl'O ps.

both wells with ar=0.5 ps tunneling period in the absence exchange-correlation potential becomes important and the
of an external electromagnetic radiation. If the electromagwave-function dynamics is given by two different competing

netic radiation period is much smaller than the tunnelingpotentials. In such a case, an important shift in the amplitude
oscillation period(in our case,Te,<17/5), the obtained dy- peak position has been obtained.
namical evolutions of different electron wave packets are |n Fig. 5, we have plotted the amplitude of the tunneling
identical. In such a case, the amplitude peak position has gscillations versusatn,=6.0x 10'* cm~2 (Fig. 5). We have
near constant value. considered a periodic magnetic transition as a function of the
In Flg 4, we note the existence of the studied effect. TthxternaJ pulsed radiation peric(d'em: 0.2 and 1.0 pﬁ The
shift in the amplitude peak position at high and low electronragdiation period is of the same order of magnitude as the
densities is smaller than in tmg=6.0x 10" cm™? case. We  tunneling oscillation period. Then, we have obtained a time-
shall explain this result considering both Hartree andvarying probability density with an amplitude which is also
exchange-correlation effects on the carrier dynamics. Thescillating with time. The amplitude period is given by the
dynamics of an electron that is localized in our double quanelectromagnetic radiation period. In this way, we have shown
tum well system is determined by two different competingthe possibility of having another kind of tunneling oscilla-
potentialsVy andV,.. At high electron densities, the Hartree tions between both quantum wells after an optical excitation
potential dominates and bott}, and V}, potentials can of the sample.
be neglected. At low electronic densities the exchange- In summary, in this work we have numerically integrated
correlation potential can also be neglected,,—0. in space and time a nonlinear effective-mass Sdimger
At 1.0x10"<ng<20.0x10" cm 2, the time-dependent equation in a bilayer electron system. Electron-electron inter-
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action effects have been considered in our model through & also oscillating with time. Consequently, we have shown
Hartree potential and the local spin-density approximationthe possibility of having another kind of tunneling oscilla-
We have considered time-dependent magnetic phase transiens between both quantum wells after an optical excitation
tions, from the usual unpolarized ground state to a spinef the sample. In this way, the possible effects of electronic
polarized one and vice versa, generated by an external pulsegins in a two-dimensional electron system could be also
electromagnetic radiation. As a result, a shift in the positiorinvestigated by performing tunneling current measurements.
of the tunneling peak has been obtained due to the time-
dependent potential form of the local-spin-density approxi-
mation. In addition to this, and at certain charge-density val-
ues and electromagnetic radiation periods, we have obtained This work was supported, in part, bgobierno de
a time-varying probability density with an amplitude which Canarias
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