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Compton scattering, positron annihilation, and the electronic properties of quantum dots

R. Saniz
Departamento de Ciencias Exactas, Universidad GedoBoliviana, Casilla #5381, Cochabamba, Bolivia

B. Barbiellini
Physics Department, Northeastern University, Boston, Massachusetts 02115

A. Denisorf
Idaho National Engineering and Environmental Laboratory, 525 Fremont Avenue, Idaho Falls, Idaho 83415
(Received 7 February 2002; published 11 June 2002

In this work we study electronic properties of quantum dots relevant to Compton scattering and positron
annihilation. The system is modeled by an electron gas confined by a spherical potential of given radius and
depth. Electron-electron correlations are not considered in this study. We find that the broadening of the
electronic momentum density around a suitably defined Fermi momentum scales with dot radirs Beel/
Compton profiles tend to the homogeneous electron(lg&s) form for high electron densities and large dot
radius. The broadening of the electron-positron annihilation probability as a function of total momentum also
scales as R, but the positron increases the broadening by around 20% with respect to the electronic momen-
tum density result. The Doppler profiles deviate more noticeably from the HEG form for small radius and low
electron densities. This is reflected well in the Doppler profile shape parameter. Also, positron lifetimes are
quite sensitive to electron density and dot radius. Positron lifetimes were calculated taking into account
positron-electron correlation through the local-density approximation and the generalized gradient approxima-
tion. Within these approximations, the positron lifetime dependence on radius is not monotonic. For large radii,
the lifetimes increase with radius toward the HEG values, converging more rapidly for higher electron densi-
ties. For a radius smaller than a certain value, however, the lifetime does not continue decreasing with radius
but starts to increase, reflecting the increasing spillout of the positron from the dot.
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[. INTRODUCTION Of particular interest is the so-called momentum broadening,
which in crystals measures the width of the region over
Interest in quantum dots has continued to increase in thevhich the momentum density of valence electrons falls to
past few years, fueled by the prospects of an ever increasiregro around the Fermi momentum, and which is directly re-
range of applications. Indeed, to the promising progress allated to the so-called HOMO-LUMO gdfrom the chemists’
ready made toward, e.g., optical devices, quantum commuiighest occupied molecular-orbital-lowest unoccupied
nications, and quantum computihgyne can now add the molecular-orbital gap® This gap plays a fundamental role in
recent advances toward biological imaging and cell biologyimportant optical properties, such as fluorescence. It is thus
studies’ Needless to say, a thorough understanding of thémportant to know the characteristics of quantum dots from
physical and chemical properties of these systems is of pardhis point of view. In positron annihilation, on the other hand,
mount importance for further progress in related fields. Tatwo of the basic measurements that can be made are the
this end, the study of a quantum dot’s electronic properties iso-called Doppler profile and the positron lifetime. The
of central interest because of the key role these play in deshape of the Doppler profile can be characterized in terms of
termining its overall properties, and many efforts have beera shape paramet& which measures the fraction of annihi-
made in this direction.In this regard, Compton scattering lations within a certain momentum range. Since annihilation
and positron annihilation have long been known as powerfuprobability is expected to change with dot size and electronic
experimental techniques, yielding complementary informa-density, this must be reflected in the value of the shape pa-
tion in many respects® Positron annihilation, for instance, rameter. The same observation applies, of course, to positron
is being used with great success to investigate different nandifetimes. Actually, Compton scattering can be viewed as a
structured systems, like vacancies and embedded pafitles.limiting case of positron scattering, namely when the posi-
The distinctive feature of positron annihilation is that in tron wave function can be considered constant. This can be
many cases the positron wave function can select the intexnderstood from the fact that the scattering cross section is
esting regions of a system due to its repulsion with the nurepresented essentially by the same Feynman diagram in
clei. It is hence of interest to consider the use of these techsoth cases, albeit Compton scattering involves an electron
nigues in the study of quantum dots specifically. only® Thus it is of interest to study both techniques at the
In Compton scattering, measuring the energy and angulasame time. Theoretical studies of Compton scattering or pos-
distribution of scattered radiation yields what is known as atron annihilation in quantum dots, however, do not appear to
Compton profile, giving us information on tliground-state  have been presented previously. Because an interpretation of
electronic momentum distribution of the system under studyexperiment based solely on bulk matter results will undoubt-
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edly be of limited value, even qualitatively, it is important to 0T . F F T
count on the light shed by, at least, a model calculation on  -01p+ + L . + + + +
these matters. In this work we study the predictions of a  -02F + + o, + + N +
simple quantum dot model regarding the quantities discussec  -03f+ + o, + + +
above, namely that of an electron gas confined by a spherica _ -4} + . toy + +
potential well of given radius and constant depth. We ad-<. .05+ + 4 L + + *
dress, in particular, the effect of dot size and electronic den-* o5 + + oy 7
sity on the properties studied. In the case of positron life- 5 N + + Lo + Lt
times, electron-positron correlation is taken into account |+ + L.t Lt
through some approximations. oo bt : +t T

This paper is organized as follows. In Sec. Il we present G LE+T N 1 ! !
our model and recall the definitions of the quantities studied. 0 5 10 15 20

Section Ill is devoted to presenting and discussing our re- !

sults. Finally, Sec. IV summarizes our main conclusions. FIG. 1. Electron energy levels for a potential well such that

xkR=<87 (see main tejt The energy spectrum at the right fails to
Il. THEORY disclose the monotonic distribution of levels as a functioh @f n.

N . . Al i .
As indicated in the Introduction, the quantum dot electron S0, many states are quasidegenerate

system is represented by an electron gas confined by a po-

tential of the formV(r)=—V,,r<R and V(r)=0 other- » do

wise. Solving the Schdinger equation for an electron in n(p)=leZn,:(w)A(p,w), )
such a potential yields the single-particle energies and wave

functions. The latter are written . . . . .
whereng is the Fermi function and is the spectral function

Anji(kyt), <R A(p,»)=—2ImGR(p,w) (frequencies measured with re-
Enim(T,0,)=Y,m( 0, $) X " Nn ’ (1) spect to the chemical potentialThe retarded Green'’s func-
Dniki(knif), =R, tion GR is obtained by analytic continuation from the single-

particle Matsubara Green’s function in frequency space,
obtained fromg(p, )= — (T [c,(7)c}(0)]). As we shall see
later on, the momentum density does not vary wildly for low
momenta, but then decreases more or less steeply to zero

where thej, are the spherical Bessel functions of the first
kind and thek, denote here the modified spherical Bessel
functions of the third kind® with «2,=2m(e, +Vo)/%?

and ky=-—2me, /h%. The energy levels e,, |  around a value we can identify with a “Fermi momentum.”

=0,12... lmax, N=12,...pn are the roots of the ei- The width of the interval over which the electronic momen-

genvalue equation tum density falls to zero, known as the broadening or smear-
_ _ _ ing Ap, can be quantified from the width of the radial de-
kj | (kR)Kk{ (kR)— kj| (kR)k (kR)=0 (2)  rivative on(p)/dp. Indeed,Ap can be defined as the full

) . o . width at half minimum of the pronounced, broad minimum
resulting from the wave function continuity conditions at the expibited by this functiod® This minimum also allows us to

dot surface. The normalization constants are giverAQy  define a Fermi momentum for the dot. For small gapp,
:{2en|/[R3V0j|+~1(Kn,R)j|,1(Kn,R)]}1’2 and D) should be proportional to the HOMO-LUMO gap.
=Anii(knR)/K (kR). If the potential well depth is too The Compton profile is the projection of the electronic
shallow, such thakR= /2, then there are no bound solu- momentum density onto the scattering vector. Thus if we
tions. To give an idea of the dependence of the energy leveldenote byg the projection of the initial electron momentum
onn andl, we consider the caseR<87.1 We plot them in  onto the scattering wave vector, then the Compton profile is
Fig. 1. The energy level structure is quite typical, showinggiven by

the same pattern for other radii and well depths. On the right-

hand side of Fig. 1 we show the energy levels in a column.

Clearly, the level spacing can be very small on the scale of ‘](q):f dpn(p) 5( p- ﬂ_q). (4)

Vo, many levels being quasidegenerate. Level splitting due q

to, e.g., exchange interaction can make the spectrum even

more intriguing. This could be relevant to the energy-level|, this first approach, when calculating the electron momen-

splitting found recently in metallic nanoparticl&s. tum density we do not consider electron-electron correla-
tions. The noninteracting Green’s function is written, in
A. Compton scattering terms of our basis, Go(p,wn) =22 niml @nim(P) |4i @,

_ _ -1
In Compton scattering one measures the intensity of scatd (6"_' ﬂ)/h:(lj . Thus, at zer:o temperaturs, th? momentum
tered photons in the deep inelastic regime, using effjher ~ JeNSIty  reduces to the  expecte ormn(p)

— 2 7
X rays as the primary photon source. A basic quantity in these’ zzn'memgeJ‘P"'m(pn . Of course, due to rotational sym-
experiments is the electronic momentum density, which isnetry, one hasmi=n(p), wherep is the momentum magni-
quite generally defined by tude.
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B. Positron annihilation proximation has been shown to be valid in two-component

The measurement of the Doppler-shifted positron annihidensity-functional theory calculations of positron annihila-

. . . 7
lation spectrum gives information on the annihilation prob-tIon in vace_mmeé_. _ _ . .
ability p as a function of the total momentum of the annihi- _ 11€ positron lifetimer is the inverse of the positron total
lating pair. Following Ref. 15 we define annihilation rate, which is given by

1 . , .2
p(p):(zﬂ-)sj drdrref|p.(rfr )g(rT,rT;r,T+,r,T+), X—WreCJ dpp(p), (11)

(5)  with r the classical electron radius andhe speed of light

where the two-particle electron-positron Matsubara Green’d) vacuum. Given the expression fer in Eg. (10), it is
function is defined by straightforward to show that

Gram.ramiN71.r2m) f dpp<p>=f drn(rn. (r), (12
=(T,[(r r T rom) et (rie)1),

(TP g (Fm) Y5 (12m2) ¥ (11 ]) wheren(r) is the electron density anal" (r) is the positron

(6)  density, so that the annihilation rakecan be calculated in

where ¢ and ¢, denote the electron and positron field op- terms of the real-space wave functions. The above expres-

erators, respectively. The definition of the Doppler profile isSion for\ is known as the independent particle model result
similar to that of the Compton profile, i.e., it is a one- (IPM), since it does not take into account electron-positron

dimensional projection of the annihilation probability. Thus, interaction. A more general expression, taking into account

given a projection vectog, one has this interaction, is

D(q)=j dpp(p)é(p-g—q>. 7) )\=wr§cJ drn(r)n..(r)y(r), (13
We also introduce the Doppler profite shape parameter, Wherey is known as the enhancement factor and describes
which we define as the enhanced electron density seen by the positron because

of the screening cloud aroundft.
For an inhomogeneous electron gd$EG), the local-
S= qup daD(a), (8)  density approximationLDA) of density-functional theory
F produces an enhancement factgg, depending only on the
i.e., it is the fraction of annihilations with momentum local electron density. Expressing the electron densiip
<pg. We note that other authors defiBavith other integra-  terms of rg [with rS:(3/47Tn)1/3], the enhancement factor
tion limits, more appropriate for the cases they arecan be parametrized asy,=1+ 1_235_0_0742§
considering® » o +r36 (rgin atomic unit3.™>*® Positron lifetimes, however,
The annihilation probability can be written in simple are known to be underestimated in the LDA approximatbn.
closed form assuming no electron-electron or electrona petter approximation is given by the generalized gradient
positron correlations. Indeed, in the noninteracting limit Weapproximation(GGA), which attempts to take into account
have the nonuniformity of the electron density in an improved
GOry7y,Fomair 171,157 =GO(ram r 7G5 (o7, 7)) manner. One has
©) y=1+(yo—1)exp — ae), (14)

Given G(r7,r' 7)== nimg@niml") @pim(r ) frime . Wheret  \hereq is a constant and
is the thermal occupation number, and a similar expression

for the positron Green’s function, it is readily shown that e=|Vn|?/(nare)?, (15
with qrg the local Thomas-Fermi screening lengéhis ba-
p(p)= lE > Taimof o sically the lowest-order gradient correction to the LDA cor-
NMT vhuo relation hole(see Ref. 15
2
x| dkenimo(K) dunpuer (P=K)| , (10) lll. RESULTS AND DISCUSSION
where the Greek letters index the positron wave functigns In the following, we consider quantum dots with average

In our case, of course, the sum over positron states reduces &ectron densities given by=2-5. Also, the dot radii con-
one term. We point out here that, in the present approach, wgdered, from 10 to 25 A, are within the range of the experi-
suppose that the positron does not change significantly theaental values found in the literatuf&? The well depth can
electronic states. This amounts to saying that the neutral qué&e calculated fromW,= —Vy+Eg, whereW, is the work
siparticle formed by the positron and its electronic cloudfunction of the material anér is the Fermi energy of the
does not affect the remaining electronic system. This apelectrons in the dot. We také/,=6.62 eV, which is the
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0 b FIG. 3. The calculated broadeningp/ps compared to a
peeEETE :
0.93 /R fit. All values are reasonably well reproduced, except for
_oir low densityr and small radius.
= b
S
x 6 and lower densities, however, departures from the HEG pic-
T sk ture are strong, and one cannot even estimate reliably the
SIS N potential well depth as we did or attempt to define a Fermi
T R=104 T momentum.
w12 TR= gg% e Let us look more closely at the dependenceA@f on R.
S — L L L L L L For an electron gas confined to a finite volume one can ex-
0 0.2 0.4 0.6 0.8 1 1.2 1.4

pect Ap~1/R. Indeed,Ap~AEy,,/p. But, in a finite vol-
umeAE g~ 1/R? andp~1/R. ThusAp~1/R. In Fig. 3 we

FIG. 2. (a) Electron momentum density profilegp) par vari-  have a graph ofAp/pg vs R for several electronic densities.
ous quantum dot radii and for an electron density: 3. Profiles  The fit Ap/pe=0.93 /R represents rather well most values.
become more HEG-like with increasing dot radids. Radial de- In spite of the small deviations in some cases, it is quite
rivative of the electron momentum density profiles for the sameremarkable that a single constant works so well, yielding a
parameter values. Clearly, the location of the minimum tends to thggood scaling law. This seems to be at odds, however, with
HEG pg with increasing radius. what is observed in semiconductor quantum ddtehere

the smearing points to a more complicateR™behavior. It
work function of CdSé? a material widely used in quantum is possible that the latter results are due to lattice effects.
dot experimentgsee Ref. 21 and references thejeifo es-  Indeed, in a crystal, for example, near the Brillouin-zone
timate Vo we then use foEr the HEG value corresponding boundaryp~ 1/a, wherea is the lattice constant. This would
to the giverrg. As we shall see later, the quantum dot Fermigive a a/R?> dependence because thAp~aA Egap, and
level is fairly well represented by the HEG value, particu- Eq,;~ 1/R? as we have mentioned before. The main devia-
larly for high electron densities. We should note that in ourtions from the fit in Fig. 3 reflect again the fact that for small
study all occupied shells are completely filledincluding  radius and low density our picture tends to be less appropri-
spin degeneragy ate.

Let us consider first the influence of the dot radius on the Let us consider now Compton profiles. Note that due to
electronic momentum density profile. In Figia2we show  rotational symmetry, all directions for the scattering wave
the case of a quantum dot with an electron densjty3 and  vector are equivalent. In Fig. 4 we show the Compton pro-
radii varying from 10 to 25 A. In this plot, the density is files forr,=3 and the same dot radii considered as in Fig. 2
normalized to the HEG density, anit stands for the HEG [the profiles are normalized so thadpn(p)=1]. We see
value as well. The density profile clearly tends to the ex-that the Compton profiles tend to differ more from the HEG
pected HEG step function limit with increasing radius. Thecurve for low electron density and small radius. Deviations
structure of the profile increases for smaller radii. We havdrom the HEG behavior, however, are still small in all cases.
observed that for radii smaller than, say, 5 A, the atomiclikeThis appears to indicate that in quantum dots with a not too
form of the wave functions becomes evident, particularly forsmall density of electrons and in which lattice effects are
low electron densities, because the electron density involvesegligible, the Compton profile is not sensitive to dot size.
few wave functions. The departure from a step function, or We now turn our attention to positron annihilation. The
broadening, aroungg is better illustrated bydn(p)/dp, positron eigenstates were determined as follows. The poten-
which is shown in Fig. &). One can see that the quantum tial well depth seen by the positron is given by its work
dot Fermi momentum is fairly well represented by the HEGfunctionW,=A—W,, whereA is the positron affinity For
value, if we interpret the minimum afn(p)/dp as indicat- a positron in CdSeA=9 eV? so that, given the electron
ing the Fermi momentum of the system. The accord tends twork function value indicated above, one ha#/,
be better for higher densities. For dots smaller than 10 A=2.38 eV. We should point out here that there is a critical

p/oF
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FIG. 4. Compton profiles for an electron density=3. The re=8 o
effect of dots size is more evident around the Fermi momentum, 0.6 :s z5 :1 ]
and is stronger for lower density. n=2 b
05 1.137,/R .

dot radius below which there is no bound state for the posi-
tron. An estimate of this radius is given .= 3.0684/W,,
(where the work function is in eV and the radius in %)207

In our case this yields roughiR.=2 A, which falls below
the range of radii we considered. All the following calcula-
tions were performed for the positron in its ground state. In
our model, the minimum energy required to excite the posi- 0 ! L L !
tron above its ground state ranges from around 0.06 eV for a 10 15 20 25
R=25-A dot to around 0.31 eV for &= 10-A dot. Tem- RA)

perature effects are thus negligible. In Figa)5we show the

annihilation probability profiles for the parameter V,aluesmomenturrp(p) for an electron density;=3. Oscillations are very
COIjSIdered for the eleCtrO_n momentum density profile in F'giittle, even for low densities and small radii, as opposed to the case
2, i.e.,rs=3 and dot radii ranging from 10 to 25 A. The of the momentum densiticf. Fig. 2a)]. (b) The broadening\ p/pg
annihilation probability is normalized so that its integral over of the annihilation probability as a function & compared to a fit
momentum space is unity. As in the case of the momentum 13 /R. The positron enhances the broadening compared to the
density profile, curves tend to the HEG step function formomentum density case. Though the fit is good for large radii and
larger dots. Compared to the momentum density profiles, thgigh densities, deviations from aRllaw are stronger than in the
annihilation probability profiles show no structure for low case of the broadening of the momentum dengify Fig. 4).
momenta. This is because, for the positron in its ground

state,p(p) is essentially the convolution of the electron mo- o, ange with electron density as well. The shape parameters
mentum density with the positron momentum density. The,re normalized to the HEG value. The values tend to 1 from
latter has a spread which is generally larger than the structuligs|ow for increasing radius, as expected from Fig. 6. Also

in the former, so that the convolution leavegp) with an \51yes decrease monotonically with electron density, which
extremely weak structure away for the Fermi momentum. Wennpies that the annihilation probability is more broadly dis-
also studied more closely the smearing of the annihilation

probability aroundpg, to see the effect of the positron. As

Ap/pr

FIG. 5. (@) Positron annihilation probability as a function of

before, we define the broadenidg as the full width at half " _ ' ' ' R=10 A —
maximum(FWHM) of — dp(p)/dp nearpg. We have found 0.7 P Sy gzggﬁ I
that the broadening still shows aRl/behavior for radii 0.6 R=25é ————— .

=15 A, but that it is more than 20% larger than in the case
of the momentum density, with a scaling law given by _
Ap/pe=1.13¢/R. This is shown in Fig. ). Again the val- & %4
ues for the lowest density {=5) tend to comply less to the 0.3
scaling law. Compared to that of the electronic momentum
density, the annihilation probability broadening is larger and
its deviation from a IR behavior for small dots is stronger.
In Fig. 6 we show the Doppler profiles for the different 0
radii considered before and an electron density givem by 0
=3. One can see that the dot size effects are more important
than for the Compton profiles. The size effects are better FIG. 6. Doppler profiles for the same parameter values as in Fig.
illustrated by the change of the shape param8teisith dot 4. The size effect seem to be more important for the Doppler profile
radius. The results are given in Table I, where we can see thian for the Compton profile.

] T
0.2 0.4 0.6 0.8 1 1.2
4/
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TABLE I. Doppler profile shape parameter normalized to thethat for large dots both approximations tend to be equivalent,
HEG valueS/S,g for several electronic densities and radii. The as one would expect.
dot radii are given in A.

r's 5 4 3 2 IV. CONCLUSIONS

R=10 0.951 0.966 0.980 0.986 We have calculated the electronic properties of quantum
R=15 0.971 0.978 0.984 0.990  dots, modeled by an electron gas confined by a spherical
R=20 0.978 0.983 0.988 0.991  potential of constant depth, as seen through Compton scat-
R=25 0.983 0.987 0.990 0.991  tering and positron annihilation studies. We find that the

broadening of the electronic momentum around the Fermi
momentum scales asR.for the range of quantum dot radii
tributed for lower densities, as occurs with the momenturstudied. This points to an important role played by lattice
density. Before proceeding, let us just note the following. Ineffects in semiconductor quantum dots in determining the
Sec. Il B we introduced an enhancement fagtdo take into HOMO-LUMO gap. Compton profiles are not very sensitive
account the electron-positron correlation when defining theo the dot radius, particularly for high electron densities, ex-
annihilation ratex. For the annihilation probability(p), cept around the Fermi momentum. The broadening of the
however, this correlation is not so crucial because it does natlectron-positron annihilation probability around the Fermi
affect its shape significantfy. momentum is around 20% larger than that of the electronic
Let us consider, finally, positron lifetimes. In Table Il we momentum density, but still follows a R/ scaling law,
present the results for the two approximations discussed eathough the deviations from this behavior for small dots is
lier for the calculation of the total annihilation rate, the LDA stronger in the latter case. Doppler profiles appear to be more
(enhancement factoy,), and the GGAenhancement factor sensitive to dot size than Compton profiles. Thus one can say
given by Eq.(14)]. In the latter case we should indicate that that the positron wave function amplifies the dot size effects
«a is taken to be 0.22, which is the value for which calculatedin this regard. The Doppler shape parameddends to de-
lifetimes agree with the observed values in many materialscrease with dot size and, particularly so, with electron den-
As in the case of bulk calculations, the IPM lifetimes aresity, deviating increasingly from the HEG values. Finally, the
much too large, and it is necessary to take into accounpositron lifetimes increase with dot size and decrease with
electron-positron correlations. An interesting feature of ourelectron density, both in the LDA and GGA approximations.
results is that the the lifetime behavior with radius is notAs in bulk studies, the IPM results are unrealistic, with LDA
monotonic. Indeed, one can see in Table Il that in both casesnd GGA giving lifetimes much closer to the values ob-
the lifetimes tend to the HEG values for a large dot radiusserved in different materialOur LDA and GGA results are
although the GGA values tend more rapidly to this limit. closer to the HEG values for high electron densities=2
However, if one goes toward smaller radius, lifetimes do nofor lesg and large radius. The lifetime values tend initially to
continue decreasing indefinitely. After reaching a minimumdecrease with radius, but after reaching a minimum for a
value for a certain radius, a lifetime will start increasing radius that depends on the density, they increase again as the
again as the radius decreases further. This is because for veslectron-positron overlap decreases for smaller radius. It
small dot sizes, the positron wave function starts to spill outvould be interesting to see if this effect is detectable experi-
the dot and the electron-positron overlap starts to becommentally, particularly in metallic quantum dots, which our
smaller. Both LDA and GGA results show this trend, al- model suits perhaps best.
though the radii for which the lifetime attains its minimum  To make further progress in this area, electron-electron
are much larger in the GGA than in the LDA, particularly for correlations must be taken into account. These are of course
low electron densitie® The difference between the LDA expected to have important effects on the profiles, allowing
and the GGA values is smaller for larger dots, which meansor a better description particularly in the case of low densi-

TABLE Il. Positron lifetimes(ns) for the two approximations described in the text, i.e., the local-density
approximation(LDA), and the generalized gradient approximati@GA). The dot radii are given in A.

LDA GGA

rs 5 4 3 2 5 4 3 2

R=5 0.3748 0.3140 0.2570 0.1491 0.4345 0.3506 0.2792 0.1559
R=10 0.3789 0.3268 0.2541 0.1438 0.3902 0.3337 0.2576  0.1448
R=15 0.3853 0.3311 0.2543 0.1451 0.3893 0.3335 0.2554 0.1454
R=20 0.3857 0.3350 0.2571 0.1456 0.3874 0.3361 0.2577  0.1458
R=25 0.3879 0.3378 0.2580  0.1460 0.3888 0.3383 0.2583 0.1461
R=30 0.3911 0.3386 0.2588 0.1462 0.3916 0.3390 0.2589 0.1462
HEG 0.3987 0.3463 0.2640 0.1483 0.3987 0.3463 0.2640 0.1483
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