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Compton scattering, positron annihilation, and the electronic properties of quantum dots
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In this work we study electronic properties of quantum dots relevant to Compton scattering and positron
annihilation. The system is modeled by an electron gas confined by a spherical potential of given radius and
depth. Electron-electron correlations are not considered in this study. We find that the broadening of the
electronic momentum density around a suitably defined Fermi momentum scales with dot radius as 1/R. The
Compton profiles tend to the homogeneous electron gas~HEG! form for high electron densities and large dot
radius. The broadening of the electron-positron annihilation probability as a function of total momentum also
scales as 1/R, but the positron increases the broadening by around 20% with respect to the electronic momen-
tum density result. The Doppler profiles deviate more noticeably from the HEG form for small radius and low
electron densities. This is reflected well in the Doppler profile shape parameter. Also, positron lifetimes are
quite sensitive to electron density and dot radius. Positron lifetimes were calculated taking into account
positron-electron correlation through the local-density approximation and the generalized gradient approxima-
tion. Within these approximations, the positron lifetime dependence on radius is not monotonic. For large radii,
the lifetimes increase with radius toward the HEG values, converging more rapidly for higher electron densi-
ties. For a radius smaller than a certain value, however, the lifetime does not continue decreasing with radius
but starts to increase, reflecting the increasing spillout of the positron from the dot.
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I. INTRODUCTION

Interest in quantum dots has continued to increase in
past few years, fueled by the prospects of an ever increa
range of applications. Indeed, to the promising progress
ready made toward, e.g., optical devices, quantum com
nications, and quantum computing,1 one can now add the
recent advances toward biological imaging and cell biolo
studies.2 Needless to say, a thorough understanding of
physical and chemical properties of these systems is of p
mount importance for further progress in related fields.
this end, the study of a quantum dot’s electronic propertie
of central interest because of the key role these play in
termining its overall properties, and many efforts have be
made in this direction.3 In this regard, Compton scatterin
and positron annihilation have long been known as powe
experimental techniques, yielding complementary inform
tion in many respects.4,5 Positron annihilation, for instance
is being used with great success to investigate different na
structured systems, like vacancies and embedded particl6,7

The distinctive feature of positron annihilation is that
many cases the positron wave function can select the in
esting regions of a system due to its repulsion with the
clei. It is hence of interest to consider the use of these te
niques in the study of quantum dots specifically.

In Compton scattering, measuring the energy and ang
distribution of scattered radiation yields what is known a
Compton profile, giving us information on the~ground-state!
electronic momentum distribution of the system under stu
0163-1829/2002/65~24!/245310~7!/$20.00 65 2453
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Of particular interest is the so-called momentum broaden
which in crystals measures the width of the region ov
which the momentum density of valence electrons falls
zero around the Fermi momentum, and which is directly
lated to the so-called HOMO-LUMO gap~from the chemists’
highest occupied molecular-orbital–lowest unoccup
molecular-orbital gap!.8 This gap plays a fundamental role i
important optical properties, such as fluorescence. It is t
important to know the characteristics of quantum dots fr
this point of view. In positron annihilation, on the other han
two of the basic measurements that can be made are
so-called Doppler profile and the positron lifetime. Th
shape of the Doppler profile can be characterized in term
a shape parameterS, which measures the fraction of annih
lations within a certain momentum range. Since annihilat
probability is expected to change with dot size and electro
density, this must be reflected in the value of the shape
rameter. The same observation applies, of course, to pos
lifetimes. Actually, Compton scattering can be viewed a
limiting case of positron scattering, namely when the po
tron wave function can be considered constant. This can
understood from the fact that the scattering cross sectio
represented essentially by the same Feynman diagram
both cases, albeit Compton scattering involves an elec
only.9 Thus it is of interest to study both techniques at t
same time. Theoretical studies of Compton scattering or p
itron annihilation in quantum dots, however, do not appea
have been presented previously. Because an interpretatio
experiment based solely on bulk matter results will undou
©2002 The American Physical Society10-1
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edly be of limited value, even qualitatively, it is important
count on the light shed by, at least, a model calculation
these matters. In this work we study the predictions o
simple quantum dot model regarding the quantities discus
above, namely that of an electron gas confined by a sphe
potential well of given radius and constant depth. We
dress, in particular, the effect of dot size and electronic d
sity on the properties studied. In the case of positron l
times, electron-positron correlation is taken into acco
through some approximations.

This paper is organized as follows. In Sec. II we pres
our model and recall the definitions of the quantities studi
Section III is devoted to presenting and discussing our
sults. Finally, Sec. IV summarizes our main conclusions.

II. THEORY

As indicated in the Introduction, the quantum dot electr
system is represented by an electron gas confined by a
tential of the formV(r )52V0 ,r ,R and V(r )50 other-
wise. Solving the Schro¨dinger equation for an electron i
such a potential yields the single-particle energies and w
functions. The latter are written

wnlm~r ,u,f!5Ylm~u,f!3H Anl j l~knlr !, r ,R

Dnlkl~ k̃nlr !, r>R,
~1!

where thej l are the spherical Bessel functions of the fi
kind and thekl denote here the modified spherical Bes
functions of the third kind,10 with knl

2 52m(enl1V0)/\2

and k̃nl
2 522menl /\

2. The energy levels enl , l
50,1,2, . . . ,l max, n51,2, . . . ,nl are the roots of the ei
genvalue equation

k̃ j l~kR!kl8~ k̃R!2k j l8~kR!kl~ k̃R!50 ~2!

resulting from the wave function continuity conditions at t
dot surface. The normalization constants are given byAnl
5$2enl /@R3V0 j l 11(knlR) j l 21(knlR)#%1/2 and Dnl

5Anl j l(knlR)/kl(k̃nlR). If the potential well depth is too
shallow, such thatkR&p/2, then there are no bound solu
tions. To give an idea of the dependence of the energy le
on n and l, we consider the casekR&8p.11 We plot them in
Fig. 1. The energy level structure is quite typical, showi
the same pattern for other radii and well depths. On the rig
hand side of Fig. 1 we show the energy levels in a colum
Clearly, the level spacing can be very small on the scale
V0, many levels being quasidegenerate. Level splitting
to, e.g., exchange interaction can make the spectrum e
more intriguing. This could be relevant to the energy-le
splitting found recently in metallic nanoparticles.12

A. Compton scattering

In Compton scattering one measures the intensity of s
tered photons in the deep inelastic regime, using eitherg or
x rays as the primary photon source. A basic quantity in th
experiments is the electronic momentum density, which
quite generally defined by
24531
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n~p!5E
2`

` dv

2p
nF~v!A~p,v!, ~3!

wherenF is the Fermi function andA is the spectral function
A(p,v)522 ImGR(p,v) ~frequencies measured with re
spect to the chemical potential!. The retarded Green’s func
tion GR is obtained by analytic continuation from the singl
particle Matsubara Green’s function in frequency spa
obtained fromG(p,t)52^Tt@cp(t)cp

†(0)#&. As we shall see
later on, the momentum density does not vary wildly for lo
momenta, but then decreases more or less steeply to
around a value we can identify with a ‘‘Fermi momentum
The width of the interval over which the electronic mome
tum density falls to zero, known as the broadening or sme
ing Dp, can be quantified from the width of the radial d
rivative ]n(p)/]p. Indeed,Dp can be defined as the fu
width at half minimum of the pronounced, broad minimu
exhibited by this function.13 This minimum also allows us to
define a Fermi momentum for the dot. For small gaps,Dp
should be proportional to the HOMO-LUMO gap.

The Compton profile is the projection of the electron
momentum density onto the scattering vector. Thus if
denote byq the projection of the initial electron momentum
onto the scattering wave vector, then the Compton profile
given by

J~q!5E dpn~p!dS p•
q

q
2qD . ~4!

In this first approach, when calculating the electron mom
tum density we do not consider electron-electron corre
tions. The noninteracting Green’s function is written,
terms of our basis, G 0(p,vn)52(nlmuwnlm(p)u2@ ivn
2(enl2m)/\#21. Thus, at zero temperature, the momentu
density reduces to the expected formn(p)
52(nlmenl<eF

uwnlm(p)u2. Of course, due to rotational sym

metry, one hasn5n(p), wherep is the momentum magni
tude.

FIG. 1. Electron energy levels for a potential well such th
kR&8p ~see main text!. The energy spectrum at the right fails t
disclose the monotonic distribution of levels as a function ofl or n.
Also, many states are quasidegenerate.
0-2
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B. Positron annihilation

The measurement of the Doppler-shifted positron ann
lation spectrum gives information on the annihilation pro
ability r as a function of the total momentum of the annih
lating pair. Following Ref. 15 we define

r~p!5
1

~2p!3E drdr 8e2 ip•(r2r8)G~rt,rt;r 8t1,r 8t1!,

~5!

where the two-particle electron-positron Matsubara Gree
function is defined by

G~r1t1 ,r2t2 ;r18t18 ,r28t28!

5^Tt@c~r1t1!c1~r2t2!c1
† ~r28t28!c†~r18t18!#&,

~6!

wherec and c1 denote the electron and positron field o
erators, respectively. The definition of the Doppler profile
similar to that of the Compton profile, i.e., it is a on
dimensional projection of the annihilation probability. Thu
given a projection vectorq, one has

D~q!5E dpr~p!dS p•
q

q
2qD . ~7!

We also introduce the Doppler profileS shape parameter
which we define as

S5E
q<pF

dqD~q!, ~8!

i.e., it is the fraction of annihilations with momentumq
<pF . We note that other authors defineSwith other integra-
tion limits, more appropriate for the cases they a
considering.16

The annihilation probability can be written in simp
closed form assuming no electron-electron or electr
positron correlations. Indeed, in the noninteracting limit
have

G 0~r1t1 ,r2t2 ;r18t18 ,r28t28!5G 0~r1t1 ,r18t18!G 1
0 ~r2t2 ,r28t28!.

~9!

Given G 0(rt,r 8t1)5(nlmswnlm(r )wnlm* (r 8) f nlms , where f
is the thermal occupation number, and a similar express
for the positron Green’s function, it is readily shown that

r~p!5 (
nlms

(
nlms8

f nlms f nlms8

3U E dkwnlms~k!fnlms8~p2k!U2

, ~10!

where the Greek letters index the positron wave functionsf.
In our case, of course, the sum over positron states reduc
one term. We point out here that, in the present approach
suppose that the positron does not change significantly
electronic states. This amounts to saying that the neutral
siparticle formed by the positron and its electronic clo
does not affect the remaining electronic system. This
24531
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proximation has been shown to be valid in two-compon
density-functional theory calculations of positron annihi
tion in vacancies.17

The positron lifetimet is the inverse of the positron tota
annihilation rate, which is given by

l5pr e
2cE dpr~p!, ~11!

with r e the classical electron radius andc the speed of light
in vacuum. Given the expression forr in Eq. ~10!, it is
straightforward to show that

E dpr~p!5E drn~r !n1~r !, ~12!

wheren(r ) is the electron density andn1(r ) is the positron
density, so that the annihilation ratel can be calculated in
terms of the real-space wave functions. The above exp
sion forl is known as the independent particle model res
~IPM!, since it does not take into account electron-positr
interaction. A more general expression, taking into acco
this interaction, is

l5pr e
2cE drn~r !n1~r !g~r !, ~13!

whereg is known as the enhancement factor and descri
the enhanced electron density seen by the positron bec
of the screening cloud around it.14

For an inhomogeneous electron gas~HEG!, the local-
density approximation~LDA ! of density-functional theory
produces an enhancement factor,g0, depending only on the
local electron density. Expressing the electron densityn in
terms of r s @with r s5(3/4pn)1/3#, the enhancement facto
can be parametrized as g05111.23r s20.0742r s

2

1r s
3/6 (r s in atomic units!.15,18 Positron lifetimes, however

are known to be underestimated in the LDA approximation19

A better approximation is given by the generalized gradi
approximation~GGA!, which attempts to take into accoun
the nonuniformity of the electron density in an improve
manner. One has15

g511~g021!exp~2ae!, ~14!

wherea is a constant and

e5u¹nu2/~nqTF!2, ~15!

with qTF the local Thomas-Fermi screening length.e is ba-
sically the lowest-order gradient correction to the LDA co
relation hole~see Ref. 15!.

III. RESULTS AND DISCUSSION

In the following, we consider quantum dots with avera
electron densities given byr s52 –5. Also, the dot radii con-
sidered, from 10 to 25 Å, are within the range of the expe
mental values found in the literature.20,21The well depth can
be calculated fromWe52V01EF , whereWe is the work
function of the material andEF is the Fermi energy of the
electrons in the dot. We takeWe56.62 eV, which is the
0-3
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work function of CdSe,22 a material widely used in quantum
dot experiments~see Ref. 21 and references therein!. To es-
timateV0 we then use forEF the HEG value correspondin
to the givenr s . As we shall see later, the quantum dot Fer
level is fairly well represented by the HEG value, partic
larly for high electron densities. We should note that in o
study all occupiedl shells are completely filled~including
spin degeneracy!.

Let us consider first the influence of the dot radius on
electronic momentum density profile. In Fig. 2~a! we show
the case of a quantum dot with an electron densityr s53 and
radii varying from 10 to 25 Å. In this plot, the density
normalized to the HEG density, andpF stands for the HEG
value as well. The density profile clearly tends to the e
pected HEG step function limit with increasing radius. T
structure of the profile increases for smaller radii. We ha
observed that for radii smaller than, say, 5 Å, the atomicl
form of the wave functions becomes evident, particularly
low electron densities, because the electron density invo
few wave functions. The departure from a step function,
broadening, aroundpF is better illustrated by]n(p)/]p,
which is shown in Fig. 2~b!. One can see that the quantu
dot Fermi momentum is fairly well represented by the HE
value, if we interpret the minimum of]n(p)/]p as indicat-
ing the Fermi momentum of the system. The accord tend
be better for higher densities. For dots smaller than 10

FIG. 2. ~a! Electron momentum density profilesn(p) par vari-
ous quantum dot radii and for an electron densityr s53. Profiles
become more HEG-like with increasing dot radius.~b! Radial de-
rivative of the electron momentum density profiles for the sa
parameter values. Clearly, the location of the minimum tends to
HEG pF with increasing radius.
24531
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and lower densities, however, departures from the HEG
ture are strong, and one cannot even estimate reliably
potential well depth as we did or attempt to define a Fe
momentum.

Let us look more closely at the dependence ofDp on R.
For an electron gas confined to a finite volume one can
pect Dp;1/R. Indeed,Dp;DEgap/p. But, in a finite vol-
umeDEgap;1/R2 andp;1/R. ThusDp;1/R. In Fig. 3 we
have a graph ofDp/pF vs R for several electronic densities
The fit Dp/pF50.93r s /R represents rather well most value
In spite of the small deviations in some cases, it is qu
remarkable that a single constant works so well, yielding
good scaling law. This seems to be at odds, however, w
what is observed in semiconductor quantum dots,23 where
the smearing points to a more complicated 1/Rn behavior. It
is possible that the latter results are due to lattice effe
Indeed, in a crystal, for example, near the Brillouin-zo
boundaryp;1/a, wherea is the lattice constant. This would
give a a/R2 dependence because thenDp;aDEgap, and
Egap;1/R2 as we have mentioned before. The main dev
tions from the fit in Fig. 3 reflect again the fact that for sm
radius and low density our picture tends to be less appro
ate.

Let us consider now Compton profiles. Note that due
rotational symmetry, all directions for the scattering wa
vector are equivalent. In Fig. 4 we show the Compton p
files for r s53 and the same dot radii considered as in Fig
@the profiles are normalized so that*dpn(p)51#. We see
that the Compton profiles tend to differ more from the HE
curve for low electron density and small radius. Deviatio
from the HEG behavior, however, are still small in all cas
This appears to indicate that in quantum dots with a not
small density of electrons and in which lattice effects a
negligible, the Compton profile is not sensitive to dot size

We now turn our attention to positron annihilation. Th
positron eigenstates were determined as follows. The po
tial well depth seen by the positron is given by its wo
functionWp5A2We , whereA is the positron affinity.24 For
a positron in CdSe,A59 eV,25 so that, given the electron
work function value indicated above, one hasWp
52.38 eV. We should point out here that there is a criti

e
e

FIG. 3. The calculated broadeningDp/pF compared to a
0.93r s /R fit. All values are reasonably well reproduced, except
low densityr s and small radius.
0-4
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COMPTON SCATTERING, POSITRON ANNIHILATION, . . . PHYSICAL REVIEW B 65 245310
dot radius below which there is no bound state for the po
tron. An estimate of this radius is given byRc53.068/AWp
~where the work function is in eV and the radius in Å).26,27

In our case this yields roughlyRc52 Å, which falls below
the range of radii we considered. All the following calcul
tions were performed for the positron in its ground state.
our model, the minimum energy required to excite the po
tron above its ground state ranges from around 0.06 eV f
R525-Å dot to around 0.31 eV for aR510-Å dot. Tem-
perature effects are thus negligible. In Fig. 5~a! we show the
annihilation probability profiles for the parameter valu
considered for the electron momentum density profile in F
2, i.e., r s53 and dot radii ranging from 10 to 25 Å. Th
annihilation probability is normalized so that its integral ov
momentum space is unity. As in the case of the momen
density profile, curves tend to the HEG step function
larger dots. Compared to the momentum density profiles,
annihilation probability profiles show no structure for lo
momenta. This is because, for the positron in its grou
state,r(p) is essentially the convolution of the electron m
mentum density with the positron momentum density. T
latter has a spread which is generally larger than the struc
in the former, so that the convolution leavesr(p) with an
extremely weak structure away for the Fermi momentum.
also studied more closely the smearing of the annihilat
probability aroundpF , to see the effect of the positron. A
before, we define the broadeningDp as the full width at half
maximum~FWHM! of 2]r(p)/]p nearpF . We have found
that the broadening still shows a 1/R behavior for radii
*15 Å, but that it is more than 20% larger than in the ca
of the momentum density, with a scaling law given
Dp/pF51.13r s /R. This is shown in Fig. 5~b!. Again the val-
ues for the lowest density (r s55) tend to comply less to the
scaling law. Compared to that of the electronic moment
density, the annihilation probability broadening is larger a
its deviation from a 1/R behavior for small dots is stronge

In Fig. 6 we show the Doppler profiles for the differe
radii considered before and an electron density given byr s
53. One can see that the dot size effects are more impo
than for the Compton profiles. The size effects are be
illustrated by the change of the shape parameterS with dot
radius. The results are given in Table I, where we can see

FIG. 4. Compton profiles for an electron densityr s53. The
effect of dots size is more evident around the Fermi moment
and is stronger for lower density.
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change with electron density as well. The shape parame
are normalized to the HEG value. The values tend to 1 fr
below for increasing radius, as expected from Fig. 6. Al
values decrease monotonically with electron density, wh
implies that the annihilation probability is more broadly di

,

FIG. 5. ~a! Positron annihilation probability as a function o
momentumr(p) for an electron densityr s53. Oscillations are very
little, even for low densities and small radii, as opposed to the c
of the momentum density@cf. Fig. 2~a!#. ~b! The broadeningDp/pF

of the annihilation probability as a function ofR compared to a fit
1.13r s /R. The positron enhances the broadening compared to
momentum density case. Though the fit is good for large radii
high densities, deviations from a 1/R law are stronger than in the
case of the broadening of the momentum density~cf. Fig. 4!.

FIG. 6. Doppler profiles for the same parameter values as in
4. The size effect seem to be more important for the Doppler pro
than for the Compton profile.
0-5
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tributed for lower densities, as occurs with the moment
density. Before proceeding, let us just note the following.
Sec. II B we introduced an enhancement factorg to take into
account the electron-positron correlation when defining
annihilation ratel. For the annihilation probabilityr(p),
however, this correlation is not so crucial because it does
affect its shape significantly.15

Let us consider, finally, positron lifetimes. In Table II w
present the results for the two approximations discussed
lier for the calculation of the total annihilation rate, the LD
~enhancement factorg0), and the GGA@enhancement facto
given by Eq.~14!#. In the latter case we should indicate th
a is taken to be 0.22, which is the value for which calcula
lifetimes agree with the observed values in many materi
As in the case of bulk calculations, the IPM lifetimes a
much too large, and it is necessary to take into acco
electron-positron correlations. An interesting feature of o
results is that the the lifetime behavior with radius is n
monotonic. Indeed, one can see in Table II that in both ca
the lifetimes tend to the HEG values for a large dot radi
although the GGA values tend more rapidly to this lim
However, if one goes toward smaller radius, lifetimes do
continue decreasing indefinitely. After reaching a minimu
value for a certain radius, a lifetime will start increasin
again as the radius decreases further. This is because for
small dot sizes, the positron wave function starts to spill
the dot and the electron-positron overlap starts to beco
smaller. Both LDA and GGA results show this trend, a
though the radii for which the lifetime attains its minimu
are much larger in the GGA than in the LDA, particularly f
low electron densities.28 The difference between the LDA
and the GGA values is smaller for larger dots, which me

TABLE I. Doppler profile shape parameter normalized to t
HEG valueS/SHEG for several electronic densities and radii. Th
dot radii are given in Å.

r s 5 4 3 2

R510 0.951 0.966 0.980 0.986
R515 0.971 0.978 0.984 0.990
R520 0.978 0.983 0.988 0.991
R525 0.983 0.987 0.990 0.991
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that for large dots both approximations tend to be equivale
as one would expect.

IV. CONCLUSIONS

We have calculated the electronic properties of quant
dots, modeled by an electron gas confined by a spher
potential of constant depth, as seen through Compton s
tering and positron annihilation studies. We find that t
broadening of the electronic momentum around the Fe
momentum scales as 1/R for the range of quantum dot rad
studied. This points to an important role played by latti
effects in semiconductor quantum dots in determining
HOMO-LUMO gap. Compton profiles are not very sensiti
to the dot radius, particularly for high electron densities, e
cept around the Fermi momentum. The broadening of
electron-positron annihilation probability around the Fer
momentum is around 20% larger than that of the electro
momentum density, but still follows a 1/R scaling law,
though the deviations from this behavior for small dots
stronger in the latter case. Doppler profiles appear to be m
sensitive to dot size than Compton profiles. Thus one can
that the positron wave function amplifies the dot size effe
in this regard. The Doppler shape parameterS tends to de-
crease with dot size and, particularly so, with electron d
sity, deviating increasingly from the HEG values. Finally, t
positron lifetimes increase with dot size and decrease w
electron density, both in the LDA and GGA approximation
As in bulk studies, the IPM results are unrealistic, with LD
and GGA giving lifetimes much closer to the values o
served in different materials.5 Our LDA and GGA results are
closer to the HEG values for high electron densities (r s52
or less! and large radius. The lifetime values tend initially
decrease with radius, but after reaching a minimum fo
radius that depends on the density, they increase again a
electron-positron overlap decreases for smaller radius
would be interesting to see if this effect is detectable exp
mentally, particularly in metallic quantum dots, which o
model suits perhaps best.

To make further progress in this area, electron-elect
correlations must be taken into account. These are of co
expected to have important effects on the profiles, allow
for a better description particularly in the case of low den
sity

59
48
54
58
61
62

83
TABLE II. Positron lifetimes~ns! for the two approximations described in the text, i.e., the local-den
approximation~LDA !, and the generalized gradient approximation~GGA!. The dot radii are given in Å.

LDA GGA
r s 5 4 3 2 5 4 3 2

R55 0.3748 0.3140 0.2570 0.1491 0.4345 0.3506 0.2792 0.15
R510 0.3789 0.3268 0.2541 0.1438 0.3902 0.3337 0.2576 0.14
R515 0.3853 0.3311 0.2543 0.1451 0.3893 0.3335 0.2554 0.14
R520 0.3857 0.3350 0.2571 0.1456 0.3874 0.3361 0.2577 0.14
R525 0.3879 0.3378 0.2580 0.1460 0.3888 0.3383 0.2583 0.14
R530 0.3911 0.3386 0.2588 0.1462 0.3916 0.3390 0.2589 0.14

HEG 0.3987 0.3463 0.2640 0.1483 0.3987 0.3463 0.2640 0.14
0-6
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ties and small dot radii. It would also be important to veri
if the form of the potential well has relevant qualitative co
sequences. For a more detailed study of the information
vided by positron annihilation in quantum dots it would b
desirable to have a lessad hoc description of electron-
positron correlations. Moreover, electrons in a quantum
can interact with lattice vibrations and defects, which c
modify strongly its electronic properties. These aspects
currently under study.
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