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In this paper, we study the behavior of the transmission zeros in the closed AharonovtBBhrimterfer-
ometer with an embedded scattering center in one arm and the corresponding change in the transmission phase
when the time-reversal symmetry is broken by magnetic fields. Specifically, we consider three embedded
scattering centers: one discrete energy level, a double-barrier well, testdta We find the following from our
model study{i) The transmission zeros are real when the AB flux is an integer or a half integer multiple of the
flux quantum, and the transmission phase jumpslat the zeros(ii) The transmission zeros become complex
or are shifted off the real-energy axis when the magnetic AB flux is not an integer or a half integer multiple of
the flux quantum, and the transmission phase evolves continudiiiglyrhe distance of the zeros from the
real-energy axis or the imaginary part of the transmission zeros is sinusoidal as a function of the magnetic AB
phase. We suggest the experimental setup which can test our results.
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I. INTRODUCTION In order to observe the phase evolution in the target sys-
tem, an open AB interferometer was devised by Schuster
Recent advances in nanotechnology have made it possib&s al,? which is similar to the double-slit experiments. Sup-
to measure the phase of electron wave functionin bulk  pression of the backscattered electrons prevents the multiple
systems, phase coherence of electron wave functions can Méndings along the AB ring so that the total transmission
washed out by inelastic scattering processes. On the oth@mplitude becomes the sum of two transmission amplitudes
hand, the phase of electron wave function can be preservéfrough the upper and lower arms,
in nanoscopic systems. Typical experimental tools, which .
can measure the electron’s phase, are the Aharonov-Bohm t=t+te'’. )
(AB) interferometers. To study the phase evolution due to th . . .
target system, the system is inserted in one of two arms 0?|ere¢ 'j the AB ph;':\_s?] QUe to the_ maglgnetlc ﬂlfJX' M_easufrlng
the AB interferometer. The-V curves are measured betweent e conductance which is proportional ftg” as function o

the external electrodes connected to the AB ring as functiorgfn 'EE girrlgcsti’/ g;)?ati:]a(\ar:jsmlssmn phase of the target system

of the AB magnetic flux while other control parameters, e.g., In a phase-coherent system, the two different phases can

the Fermi energy level, are varied. The phase evolution ofq jefined. The Friedel phage is defined as the argument
the electron wave functions in the target system is extracteds ihe determinant of the scatterirgmatrix, €2 r= detS.
from the measured¢-V curves. _ ~ The change in the Friedel phase is related to the density of
The closed AB interferometer in a two-terminal configu- states via the Friedel sum rutep(E)=="1d6;/dE. The
ration does not yield much information about the phase shiffneasured phase in the open AB interferometers is in fact the
in the target system due to the phase locking effédlul-  transmission phase, the argument of the transmission ampli-
tiple windings of the electron motion along the AB ring re- tudes ¢(=|t|e'"). Recent work$'? made clear distinctions
sult in the conductance which is eferin the AB flux® or  between the two phases. In the absence of the transmission
G(—®)=G(®). This Onsager relatidrconstrains the mea- zeros, the two phases are identical. The transmission phase
sured phase to be either O sr This phase locking effect can jumps by at the real transmission zeros and the two phases
explain the observed phase jump byat the conductance differ by this amounf*®'2|n a time-reversal symmetric sys-
peaks of the closed AB interferometer with an embeddedtem, all the possible transmission zeros are proven to be
quantum dot. The same phase of the transmission amplitudeal.>*® For more details about the transmission phase in the
was observeldat successive Coulomb peaks. This means thatime-reversal symmetric case, see the works of’lzel of
an additional phase shift by should occur in between two Taniguchi and Btiiker.*?
successive Coulomb peaks. The existence of the transmission In this paper, we address the following question: What
zeros can also explain this featdre will happen to the transmission zeros and the transmission
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noted byL. ® is the magnetic Aharonov-Boh(#AB) flux threading
through the AB ring.

6:
(@ Q Re ¢ /I/— B
FIG. 1. Aharonov-Bohm ring with an embedded target system. Im ¢ 9
The scattering process in the target system is described by the scat- :) !
tering materixS,. The length of the upper and lower arms is de- (b)y — Re ¢ -/\/—
6:

phase when the time-reversal symmetry is broken by the ex- I
ternal fields, e.g., the magnetic fields? Specifically we an-

swer this question by studying the closed AB rifsge Fig. © 4{
1) with an embedded scattering center in the presence of the
magnetlc AB flux. Since the AB. ring provides the transmis- FIG. 2. Schematic display of trajectories of the transmission
sion zeros due. to the destructive interference between twgmplituolet and its phase variation. In the par(@), the imaginary
arms and the tlmg-rgversal symmgtry can be bro_ken t_)y aQ)'art of the transmission ze#, is null or ImZ,=0 (class ). In (b),
plying the magnetic fields, the AB interferometer is an |deaI|mZZ<0 (class 1), and in(c), ImZ,>0 (class Il).

system for our purpose. In connection to our work, we note

that the effects of brokemnitarity in the AB ring on the continuous and its range is confined by two extreme points
phase locking were investigated by another griup. of the trajectory when viewed from the origin. Each pole and

In general, either one transmission pole or one transmiszero gives rise to the phase change by but the sign is
sion zero gives rise to the phase changenbgs the Fermi opposite. The combined effect of one pole and one zero is a
energy is scanned through the real part of the pole or zereamooth evolution off, and the difference\ 6, before and
The poles always lie in the lower half plane of the complex-after passing through one zero and one pole approaches 0 or
energy plane due to the causality relation. On the other hand 6,=0.
the zeros can be anywhere in the complex-energy plane as Class lll: Polegzerog lie in the lower(uppey half plane,
we will discuss below when the time-reversal symmetry isrespectively. The trajectory encircles the origin. One pole
broken. Poles give the same contribution to the Friedel phasand one zero give the same sign of the phase evolution and
0; and the transmission phasg. The energy scale over A#,=2.
which the phase evolution occurs is determined by the imagi- Trajectories of the transmission amplitutdand its phase
nary part of the transmission poles. On the other hand, transre schematically shown in Fig. 2 to help the readers to un-
mission zeros give an additional contributiénonly to the  derstand three different classes of transmission z&yo®e-
transmission phase. The transmission phase can be written psnding on the nature of the scattering centers which are
the sum of two:6,= 6;+ 6,. Depending on the position of inserted into one arm of the AB interferometer, all three
zeros in the complex-energy plane, the behavior of the phasd#asses or some of them can be realized by varying magnetic
evolution becomes quite different. When the transmission zeAB flux. We find from our study that the transmission zeros
ros lie on the real-energy axis, an abrupt phase jumglily  are real when the AB flux is an integer or a half integer
observed. Varying the AB magnetic flux, the transmissionmultiple of the flux quantum, and the transmission phase
zeros can be shifted off the real-energy axis. In this case, themps by 7 at the zeros. The transmission zeros become
transmission phase evolution is continuous and occurs overomplex or shifted off the real-energy axis when the mag-
the energy scale—the imaginary part of transmissiometic AB flux is not an integer or a half integer multiple of
zeros—as the Fermi energy is scanned. That is, the transmiiie flux quantum, and the transmission phase evolves con-
sion phase becomes a discontinuous function of control painuously. The distance of the zeros from the real-energy axis
rameters when the transmission zeros hit the real-energyr the imaginary part of the transmission zeros are sinusoidal
axis. as function of the magnetic AB phase.

To summarize the results of our study, the transmission A general formulation on th& matrix for the AB ring is
zeros oft (the transmission amplitude of the closed AB jing presented in Appendix A when scattering centers are present
based on their position in the complex-energy plane, can balong the arms of the AB ring. These scattering centers and
grouped into three different classes. the accrued phase by the motion along the AB ring can be

Class I: Transmission zeros lie on the real-energy axisparametrized by the matricéB’s and 7's as described in
The trajectory of the transmission amplitudgasses through Appendix A. In this paper, we are interested in the AB ring
the origin and the transmission phagejumps by 7 at the  (see Fig. 1 when the target system is inserted in the lower
transmission zero. arm. When the target system is described by the scattering

Class II: Poles and zeros lie in the same lower half-plane__. . . 1, 1t . , .
of the two-dimensional2D) complex-energy plane. The tra- matrix SO_(tg r(’))’ the matricesk’s and7s are given by
jectory does not encircle the origin, and the evolutio®os  the generic forms,

e

F
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T complex systems to be discussed in the subsequent sections.
LR The transmission amplitude of this system is characterized
/\ with one pole and one zero. The pole is provided by the
L (I) R discrete level in the dot while the zero is the result of the
\O/ destructive interference in the AB ring geometry. Three dif-
‘{i ‘é ferent classes in the trajectories tpfSummarized in the in-
Dot troduction, can all be realized with the variation of the AB
o _ phase.
FIG. 3. Schematic display of Aharonov-BohhB) interferom- We can derive the scattering matrix of the AB interferom-
eter with a quantum dot. The dot is modeled by one discrete energyter using thet-matrix method with S;=&;—278(E;
level. —E;)Tj; or the Green’s-function method,
0 0 e 0 o tee
R=1z , T=1z i , ing= ,
F<0 ro) F( 0 tee 'M) Stng (tLR rRR) &
0 0 e idl2 0 where the reflection and transmission amplitudes are given
R =7 ., T=z o 2 by the equations
F(O ré) F( 0 t(r)eu,bIZ) ( )
_ __ r .
Here ¢=27®d-e/hc is the AB phase due to the magnetic teu=—1VTo~TGy(e)[VTo+ Vgsine
flux @ passing through the AB ring. Half of the AB phase is +ig(1—Tg)cose], (48

attached to each of the lower and the upper arms of the AB
ring. The trajectory of depends on the chosen gauge or how

the AB phase is inserted into the scattering matrix. Of tir=—1To—TGy(e)[ VTo— Vgsine
course, the measurable quantities l{kg and A6, do not +iyg(1—Tg)cose], (4b)

depend on the gauge:=e'F- is the phase accrued by the
motion of electrons along either of two arms of lendth

Since we are interested in a phase-coherent system, we re-  — [1-T,—TGl(e) i—Zi E+ [9TocoSdb |,
strict our study toT=0 K. The incident electrons will be [ 1+y r ]
confined to the Fermi energy with the wave numkein our (40
study. o ]
In subsequent sections, we illustrate the effects of broken Tl 2i i
. ' e . =\1-Ty— — 2=+ .
time-reversal symmetry on the transmission zeros in the AB ' RR 1=To FGd(E)_lJr by 2l gTOCOS¢_
interferometer by studying three model systems. In Sec. I, (4d)

we consider the AB interferometer with one discrete energ

level. This system is simple enough to obtain Swatrix in @ is the magnetic flux threading through the AB ring and

a closed form and allows one to study analytically the beq) —hcleis the fi Th is ch hth
havior of the transmission zero under the AB flux. In Secs.>0~ "¢/€ S the flux quantum. The gauge Is chosen such that

lll and IV, we study the AB ring when two different types of € AB phais(?i) s 'ilttac/hed to the tup}nel(ijryg matriky lz;s
multiresonant level systems are inserted in the lower arm. IIYdR_N‘_’R|e : TO__A'72(1+ 7) '32 the direct -tunneling
Sec. Ill, we study the transmission properties of the AB ringProPability, wherey= NLNRITig/". Ni and Ng are the

with an embedded double-barrier well. The double-barriedensity of statesDOS) in the left and right leads, respec-

] 2
well provides multidiscrete energy levels through which thetively. Other parameters are defined las= Ny [V (p

resonant tunneling is realized, but the transmission probabil= L,R), =T +T'g, [=T/(1+ ), andg=4T" I'z/T?.

ity never becomes zero for this system. In Sec. I¥,stub The S matrix satisfies the Onsager relatio;(¢)
with the double barrier is inserted in the AB ring. In contrast = S;; X (— ¢), under the inversion of the magnetic flux. If the
to the double-barrier well, thiestub accommodates the trans- system is mirror symmetric under the transformatios R
mission zeros as well as the multiresonant levels. Our studgr the quantum dot is coupled symmetrically to the left and

yI'he angleg is the Aharonov-Bohm phasenZb/®, where

is summarized in Sec. V. right leads ' =I"g), we obtain the symmetric relatian |
=IRR-
Il. AB INTERFEROMETER WITH AN EMBEDDED The discrete energy level in a dot is broadened with the
RESONANT LEVEL linewidth I" due to the coupling to the left and right leads.

_ _ _ . The direct tunneling between the two leads further renormal-
In this section, we consider the Aharonov-Bohm interfer-jze the [inewidth ) and shifts the energy-level position.

ometer shown in Fig. 3. This model system may be the simyq (etarded Green's functiod’. of a dot is given by the
plest one which can accommodate the zero-pole pair in thSquation d
transmission amplitude. This system contains both the direct
tunneling between two leads and the resonant tunneling
through one discrete energy level in the dot. The study of this Gle)= ————.
simple model system helps us to analyze more realistic and e—eq(p)+ill

®)
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Here e4(¢) =e4—\gycose is the renormalized energy e zZ-Z,
level of a dot. The transmission probability can be readily t==iNTo z-z, (10

calculated fromT (€)= |tg,|?, _ . .
in terms of the pol&, and the zer&,. This zero-pole pair

T(e)=To+2F 9To(1—To)cos¢ ReG), is given by the expressions
+T[To—g(1-Tocodd)] IMGY.  (6) Z,=-T\Jgycosp—iT, (113
The transmission probability (e, ¢) is an even function of — /g o
the AB phases, satisfying the Onsager relation. Z=-T T_O[C°5¢_'S'”¢]- (11b
We may rewrite the elements of the scattering matrix in
other forms, Note that the imaginary part of the transmission zero is pro-

portional to sing and vanishes whesh=n= (n is an inte-
t r=—iG (€)[VTo(e—€q) + T ge?], 7 gen.
LR ol )[\/—O( @ \/a | (73 When the magnetic AB flux is an integer or a half integer
) — - multiple of the flux quantum, or whegp=n= (n is an in-
tri=—1G () VTo(€e—€q) +TJge 4], (7B tegey, the imaginary part oZ, vanishes and the transmis-
o o sion zero lies on the real-energy axis. The trajectoryt of
rL=GY(e)[ VRo(e—eg) —T\gycosp+i(Tr—T )], passes through the origithe class ). The analytic expres-
(70 sion of the transmission phagk when ¢=nsr is given by
the equation

—r _ T Ci(T-—T.
rrr=Gy(e)[ VRo(€— €g) ~T'Vgycos—i(Tr m](.?d) b= 0,4 6, (124
Here Ry=1—T, is the reflection probability of the direct 0,=m— w0 (e— g+ (—1)"T g/ Ty). (12b

tunneling. Using the above expressions, we can show the ) ] ) ) )
unitarity of the S matrix, |t q/2+|r  |2=1 and r  t' Here®(x) is the step functionds is the Friedel phase given

Ftorto=0 by Eq.(8b) and 6, is the contribution from the transmission
RL'RR™ Y-

The Friedel phas#; can be found from the determinant zero. Since the transmission zero is real, the transmission

of Swhich can be written in terms of the Green'’s function of phase jumps abe’P“y by as shown_ in Figs. @) and (e).
a dot, The zero-pole pair leads to the typical Fano resonance and

antiresonance structure in the transmission amplitiide
; — =|t|> andT=0 at the antiresonandgeee Figs. @) and(f)].
detS= %: € fd(d’)_'iz o210 (8a) When the magnetic AB flux is off an integer or a half
Gy e—eq(p)+il integer multiple of the flux quantum, the imaginary part of
the transmission zero is finite and is sinusoidal as function of
- e—eg(b) the AB phase¢ [see Eq.(11b)]. That is, the zero of is
an i (8b)  shifted off the real-energy axis. Wher<Gp<, the zeroZ,
2 r lies in the upper half plane of the complex-energy plane
while the poleZ,, lies in the lower half plane. The trajectories

a=[Gql" is the advanced Green’s function of a dot. The ot ¢ encircle the origir(the class I1). The analytic expression
Friedel phase changes smoothly fréi=0 to 6;=m as the  f 6, is

energy level of a dot is scanned through the Fermi energy.

The transmission phasé#; is obtained fromt=tg_ e— ed+F\/ﬁcos¢
=|tg.|€'? and is written as the sum of the Friedel phase and 0= 0;+tan 1 —— : (13
the contribution from the zero. Equatigiib) can be written I'Ng/Tosing
as

The second term is the contribution from the zero. Since both
_ — the zero and the pole contribute the same sign of the phase
i (e~ ea)\To+T Jgcosg—iT gsin¢ by 7 to 6,, 6, evolves smoothly by the amount ofr2as

e—eg+ T \Jgycosp+il ' shown in Fig. 4b). The imaginary part of the zero is propor-

tional to sing and the zero moves away linearly with the

The transmission amplitude at the Fermi ener(y=0) is  magnetic fieldB from the real-energy axis close tb=nnr.
plotted in the 2D complex plane in Figs(a# and(d) as an  The minimum value ofT (deriving from the transmission
implicit function of €4 while varying the AB phase. Allthe ~ zerg shows this trend as displayed in Figch As ¢ is
trajectories ot are circles. The position of a discrete energyincreased from 0 tar/2, the minimum value off ;, is in-
level e4, which can be shifted with the gate voltage capaci-creased and reaches the maximumpat /2. With further
tatively coupled to the dot, is varied from the empty state toincrease of¢ from /2 to 7, T, IS reduced to zero.
the filled state. That is, the value ef is changed frome to When m< ¢<27r, the pole and the zero lie in the same
—oo, Writing Z=e— ¢4, We can rewrited=tg, as lower half plane. The transmission amplitude, belonging to

©)
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FIG. 4. Behavior of the transmission amplitudeith varying the AB phasep for the AB interferometer with one discrete energy level.
Panelqa) and(d) display the trajectories dfas an implicit function of the discrete energy le¥gl The evolution of the transmission phase
6, is shown in panel¢b) and(e). The transmission probability=|t|2 is displayed in two panel&) and(f). The AB phases are the same
for the same lines either in the left column pan@ys (b), and(c) or in the right column panel&), (e), and(f).

class Il, delineates the closed orbit without encircling thenarrow rangdsee Fig. 4e)] which is set by the two extreme
origin. The transmission phasgg is given by the expression points in the trajectory of viewed from the origin.

o In summary, we found three different classes for the trans-
e—eqt+1'\a/Tycose mission zeros. Though the behaviors of the phase evolution
F\/g/_TO|sin¢| (14 are different for the three classes, the transmission ampli-
tudes remain in phase before and after the Fermi level is
Since the pole and zero contribute the phaserblyut with  scanned through the real part of the transmission pole and
the opposite sign t@,, the phase evolution is limited to the zero. The transmission probability satisfies the Onsager rela-

0,= 0;+ w—tan !
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M M wheren is a positive integer. If the barriers’ scattering matrix
L L is of the form given by Eq(20) in Sec. IV, the poles are
shifted by#/2. We note that, can be expressed as the sum
FIG. 5. Double-barrier well. of simple poles,
tion, |tr (— ¢)|?=|trL(#)|? [see Figs. &) and(f)], even if a1 1
the trajectories in the complexplot are different. When the to=— Toe §+§§n: Ka—nm+il | (18

magnetic flux® is an integer or a half integer multiples of

the flux quantum, the transmission zero lies on the realThe transmission probabilityto|?> consists of a series of
energy axis and the phase evolutiongpfs featured with the  evenly spaced peaks with the same linewiithTransmis-
abrupt jump bys at the zero. When the magnetic fldxis  sion zeros are absent in the double-barrier resonant tunneling
off from the integer values or the half integer multiples of thesystem.

flux quantum, the transmission zero lies off the real-energy We now study the properties of the transmission ampli-
axis and the phase evolution 6f becomes continuous over tude for the AB ring with an embedded double-barrier well.
the energy scal& \Jg|sin¢| set by the magnetic fields. De- Inserting the scattering matri&, of the double-barrier well
pending on the sign of the imaginary part of the transmissiorinto the general expression of ti&matrix of the AB ring
zero, the evolution of, shows different behavior. When the (Appendix A), we compute the transmission amplitude nu-
zero lies in the upper half plane, the contributions to themerically. The results are displayed in Fig. 6. In the numeri-
transmission phase from the zero-pole pair add up leading teal works, we use the model parameterkeglL

the change of 2 over the zero-pole pair. On the other hand, =57/3(27 mod.); e=1/2\;=A,=1 for the identical
two contributions are canceled by each other leading to théree-way splitters at the right and left junctiofig= 0.2 for
net change of 0 in the transmission phase when the zero lighe transmission probability of the double-barrier well. One

in the lower half plane. closed orbit in the complex plot is completed with the
variation of A(Ka)=2. In the double-barrier wef? the

IIl. AB RING WITH AN EMBEDDED orbit of t is closed with the period 2 of Ka. Comparing our
DOUBLE-BARRIER WELL results to the Fig. 1 in the wotkof Taniguchi and Bttiker,

the orbit oft for the AB ring is featured with an additional

In this section we study the scattering matrix of the AB closed lobe. This lobe passes through the origin wken
ring when the double-barrier we(shown in Fig. 3 is in- =0 or 7. But note that the lobe disappearstifior some
serted in the lower arm. The symmetric double-barrier wellkrange of¢. See the dotted lineg=135°) in Fig. §a) and

can be described by the scattering magjwhose elements the long dashed lineg=315°) in Fig. &d).
are given by the equations When ¢=0 or m, the trajectory oft passes through the
A origin twice to complete the closed orbit. The transmission
, N1-To(1—e?"®) phased, jumps by at the transmission zergsee the solid

om0 T Ty ek (158 jine in Fig. 8b) and the dot-dashed line in Fig(ed] since
the transmission zeros are real. The phase increasesaty
—Toelka one zero and decreases hyat the other zero. These two real
to=tp=—————. (15b)  zeros are typical and behave differently whg# 0 or 7, as
1-(1-Toe* will be shown later. Each transmission pole of the double-

barrier well is paired with one transmission zero in the AB
ring. The transmission zeros in the AB ring are the conse-
quence of the destructive interference between two arms. As
shown in Figs. &) and(f), the zero-pole pairs are developed
in the order zero-zero-pole-pole.

When ¢#0 or 7, all trajectories ot encircle the origin.

Here K= \/kZFJere\/g/h2 is the wave number inside the

double-barrier wella is the distance between two barriers,
and Vg, is the gate voltage capacitatively coupled to the
double-barrier well. The position of the resonant energy lev
els in the double-barrier well is controlled by the gate volt-

;elge IVG.' hThhe |nC|de_nt electronsbgre confltr;ed_to the FermlThese orbits can be considered as the combination of the two
evel with the Fermi wave numbe; . Two barriers are as- o hie. one(class Il) encircles the origin while the other

sumed to be identical and to be described by the scatterin@:laSS I) does not. Comparin{t|? and 6, between Figs. 4

matrix and 6, we can deduce that the transmission zeros are shifted
=T, —iVT, off the real-energy axis. This point will be discussed later.
:< 0 0) (16) Let us study the structure of the poles and the zeros in
—iNT, V1-To/' detail. We focus on the two consecutive zero-pole pairs: one

) ) . ) nearKa=2 and the other neaa= 3. These two zeros
whereTg is the tunneling probability through the barrier. The ;.o typical in the sense that others are the exact copies of
transmission poles df (double-barrier wejlare easily iden-  these two in the physical properties. The nature of these two
tified as zeros is different since they behave in the opposite way un-

der the magnetic field¢see Fig. 7. When ¢=0, we can
, (17) deduce from Figs. 6b) and (c) that the zero-pole pairs are
1-To ordered in the sequence pole-zero-zero-pole. Whenp0

1
Kpa=nm—ill, TI'= zln
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1.0

Im(t)

e
4 —A RN G

15 2.0 25 3.0 35 4.0 45 . 3.0 35 40 45
Ka/n Ka/w

FIG. 6. Behavior of the transmission amplitutlevith varying the AB phasep for the AB ring with the double-barrier well. Panel
descriptions are the same as in Fig. 4. Model parameters are chokgh=as§w/3(mod. 27), €, g=1/2, \;=\,=1 andT(=0.2.

<, we conclude, using the results of Sec. Il, for the zero- Z(P)=E,+ (). (19
pole pair neaKa= 2 that the zerdpole) lies in the upper

(lower) half plane of the complex-energy plane, respectively. . o .

On the other hand, the zero-pole pair n@=3 is in the  HereE, is the transmission zero whef—=0 and{(¢) is the
lower half plane. This is the reason why the phase change ghift of the zero in the presence of the magnetic AB flux.
27 over the first zero-pole pair and is O over the secondl here are two distinct zeros in the AB ring with the double-
zero-pole pair. Wherp= 7, the zero-pole pairs appear in the barrier well and the behavior of two zeros is different under
sequence zero-pole-pole-zero. Whett <27, the roles of ~ the magnetic AB flux. The real and the imaginary parts of
two aforementioned zero-pole pairs are interchanged comé(¢) are plotted in Fig. 7 for two zeros d&,=Ka=2w
pared to the case ofQ¢p<r. [panel(a)] and of E,=Ka~2.8775< 7 [panel(b)]. The real

We compute the traces of the transmission z&g%) in  part of the first(second zero is shifted downwar@upward

the complex-energy plane€Ka) as function of the mag- under the magnetic fields, respectively. The minimunin
netic AB phasep.

=|t|? [see Figs. &) and(e)] shows this trend. The two zeros
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02 PNy ' ' AN
" pd (a) L LI
£ 00 3
p . .
g0z i .

FIG. 8. t stub with the double barrier.
0.4 L L
04 . . the quantum dot system. Tt®matrix of the two barriers is
(b) chosen to be

p

02 | N, . )
= o (NI .
&£ 00 k- N VTo  iV1-T,/'

L . . whereT, is the tunneling probability through the barrier. We
0275 05 10 15 20 have chosen the different overall phase $rcompared to
o/ the double-barrier well in Sec. Ill. Th®@ matrix of thet stub

with the double barriers is formulated in Appendix (Bee
FIG. 7. Transmission zeros as function of the AB phasa the Fig. 8.
AB ring with the double-barrier well. The AB phase dependence of To get some insights on the position of the transmission
the zero atka=2m [2.8775< 7] is displayed in pane{a) [(b)], ~ zeros and poles, we consider tBematrix of the simplet
respectively. Soliddashed line is the realimaginary part of the  stub. The incoming and outgoing current amplitudes can be

shifted zero{(#), respectively. The transmission zero is repre- matched at the junction of thestub,
sented byZ,(¢)=E,+{(¢$) where E, is the transmission zero

when ¢f0 and{(¢) is the shift of the zero in the presence of the Os oy \/G_t \/:t I
magnetic AB flux.

O |=| Ve a b ||I]. (21
show the opposite behavior in their imaginary parts under the Or \/6—1 b, & Ir

magnetic fields, too. The zerfg,=27(2.8775< ) lies in ] ) ]
the upper(lowen half plane when & ¢<r, and in the Herel's andO’s_ are Fhe incoming and outgoing current am-
lower (uppej half plane whenr < ¢< 2, respectively. This  Plitudes at the junctiono = —a;—b; anda,,b, can be de-
corroborates our conclusion in the previous paragraph. Twérmined to satisfy the unitarity of the scattering matrix,
zeros are on the real-energy axis whga na with n being 1
an integer. _ .

To s%mmarize, there are two types of the transmission at_ZD\lH\Z 1-26d, (229
zeros which can be distinguished in their behavior under

magnetic fields. Since one pole is always paired with one 1

zero, the change in the transmission phase over the zero-pole be=5[= A+ rav1-2¢€]. (22b)
pair is 0 or 27 depending on the position of the zero in the

complex-energy plane. There are four possible choices with==1 (i=1,2). The

value of ¢, is constrained: & e,<1/2. When there is an in-
finite potential wall at the end of the stub of lengthOg and
IV. AB INTERFEROMETER |5 are related to each other by=0g €'(?*2* ™ The addi-
WITH AN EMBEDDED T STUB tional phaser guarantees the node of the wave function at
In this section, we consider the AB ring with the side the infinite wall. The wave numbé in the stub is given by
branch or the stub. Thet stub provides the different type of K= Vkg+2me\V/%°. The quasibound-state energy levels in
resonant levels compared to the double-barrier well. In conthe stub can be shifted with the gate voltagg (capacita-
trast to the double-barrier well, thestub itself provides the tively coupled to the stub. The effectiveS matrix of thet
transmission zeros as well as the transmission poles. In thiub can be readily derived,
work, we consider thd-stub structure with two tunneling

barriers which was previously studied in the literatth&> OL I ro to

We use the most symmetric three-way splitter at the junction Or - I’ So= ty o)’ (233
with the parametets e=4/9, \;=—1, and A\,=1. The

double-barrier is assumed not to provide any resonant energy €z by(14\,2)

levels, or the distance between two barriers is so short that to=b— = , (23b)
the energy-level spacing is much larger than any other inter- 1+oz 1-(atbyz

esting energy scale in the problem. The introduction of two

additional barriers to the stub enables us to control the fo=a— &z  a(l-N\2) (230

tunneling strength through thestub structure and to mimic 1+o,z 1—(a+by)z’
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1.0

(d) T

R=g-g-g<g
[N

05

A

25 3.0

Ka/w

35

FIG. 9. Behavior of the transmission amplitudeith varying the AB phaseb for the AB ring with thet stub. Panel descriptions are the

same as in Fig. 4. Model parameters are chosek:bs= 7/2; € g=1/2, N\| gg=—1, @and\| go=1; €=4/9, \y=—1, andr,=1; T,
=Tg=0.8.

Here z=e?X2, The first terms int, and r, represent the
direct-scattering process and the second term comes from the Z,=

multiple-scattering processes in the stub. The unitarit$pof
can be proved by showing that

(25b)

respectively. Heren is an integer. For our choice of;
=—1 andA,=1 for thet stub,Z,=nm and R&Z,=n.

The scattering matrix of thestub with the double barrier
is derived in Appendix B. Note that addition of the two bar-
riers to thet stub does not change the transmission zeros, but

|I’0|2+|t0|2:1, t3r0+r3t0:0 (24)

The transmission poles and zeros are located at

1+,

ZZ=(n+

4

T,

the poles are modulated By, in both the real and the imagi-
nary parts.

(253
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' ' ' contrast to the AB ring with the double-barrier well, the na-
ture of all zeros is identical in the sense that their behavior is
the same under the magnetic fields. The real and imaginary
parts of{(¢) are plotted in Fig. 10 for the zero &,=Ka
~1.9565< 7r. Note that this zero in the AB ring is shifted
from E,=27 of thet stub with the double barrier. As ex-
pected from the shift of the minimum position Bt |t|? [see
0.0 05 1.0 15 2.0 Figs. 9c) and (g)], the real part of the zero is positively
o/t shifted in the presence of the magnetic fields. The imaginary
part of the zero is sinusoidal as function of the AB phdse
FIG. 10. Transmission zeros as a function of the AB phase  and vanishes when the magnetic AB flux is an integer or a

the AB ring with thet-stub System. SOli(ddaSheﬁi line is the real half |nteger mu|t|p|e of the flux quantum
(imaginary part of the shifted zerd(¢), respectively.

The transmission amplitudes of the whole AB ring are V. SUMMARY AND CONCLUSION

computed numerically using the formulation detailed in Ap- . . . .
pendixes A and B and are presented in Fig. 9. The model In this paper, we studied the behavior of the transmission

parameters are=1/2, \;= 1, and\,=1 for the Shapiro zeros and the corresponding changes in the transmission
=1/2,\;=—1, ,=

matrices at the left and right three-way junctions. The threephase when the time-reversal symmetry of the system is bro-

viay Sptter or e tub was chosen t b he most sym- 7, B PSRN Toe, T o sy e sonsdece e
metric one as noted above. The tunneling barriers fortthe 9

stub are chosen &= 0.8. center in the lower arm. Studied scattering centers include

As can be deduced from Figs(c® and (f), the zero-pole the system of one discrete energy level, the double-barrier

pairs appear in the order zero-pole-zero-pole. Al the trajeCyvell, and thet stub with the double barriers. Each resonant

tories oft are circles and the closed orbit is completed withlevel. n th'e scat'termg cente_r gives nse.to a transmlssmn pole
AKa= . Three different classes of orbits bfare realized and is paired with a transmission zero in the AB ring. Due to
for this s. stem varving the maanetic AB flux the causality relation, the transmission pole always lies in the
When%ﬁzo or <Z=?T the tr:gnsmission ze.ro lies on the lower half plane of the complex-energy plane. On the other
real-eneray axis and th’e transmission phase jumps bt hand, the zero can be anywhere in the complex-energy plane
the zerosgyWher¢—O 0. nearKa=2 dpro < bJ Fa)\t the and its position can be controlled by the magnetic AB flux.
ser nd.in ] - mt thiv b _thw mp ﬂyw o th Depending on the position of the transmission zeros in the
ero a creases smoothly by the amountiue fo the complex-energy plane, the trajectory and the phase of the
pole. Fpr th's zero-pole pair, the zero precedes the pole &Fansmission amplitude show different behaviors.
tsr?own n F'%S: &) and (C).I Wh?r}.‘ﬁzﬁ’ %t drct)psthbyw ?t W The transmission zeros lie on the real-energy axis when
€ Z€ro and Increases aimost finearly gue to the poze. the magnetic AB flux is an integer or a half integer multiple
can deduce from the functional shape of theand T= tl of the flux quantum. The transmission phase jumpsmbat
[see Figs. &) and (f)] that the zeros and poles are almostthe transmission zeros in this case
evenly interlaced. i

. . . The transmission zeros are shifted off the real-energy axis
When 0< ¢<<r, the orbits oft encircle the origin and the 9y

h luti o i th and i Th bit and can be either in the upper or in the lower half plane of
phase evoiution ob; 1S Smooth and continuous. ‘The oroits y,q complex-energy plane, when the AB magnetic flux is off
move away from the origin with increasing the AB phase.

! . S \ from the integer or the half integer multiples of the flux
This ”‘?”d_ is clearly visible in Figs.(§) and (c). Since the guantum. The evolution of the transmission phase in this
zeros lie in the upper half plane and the poles are in th

L %ase is continuous as the Fermi level is scanned through the
lower half plane, two contributions t6, add up and lead to

he ch by 2 h | ; real part of the transmission zeros.

the change ob, by 2 over the zero-pole pair. When the zeros lie in the lower half plane, the orbits of
_The orbits oft lie outside the orign vyhenr< ¢<2m.In he transmission amplitude lie outside the origin and the

this case, the zeros and the poles lie in the same lower h

I hei o h o h hase change is limited by the two extreme points of the
plane. Their contributions to the transmission phase are o5t when viewed from the origin. Since the zero-pole pair

posite in sign, and the net change @fover the zero-pole  ohyihytes the opposite sign of the phase by the net

pair 1s zerﬁ. Since the phasi decrleaseh precedesl the _ph%nge in the transmission phase over the zero pole is zero.
increase, the zero precedes the pole. The zero-pole pair ap- the orhjts of the transmission amplitude encircle the ori-

proaches each other as the valuefos increased fromr 10 i \when the zeros lie in the upper half plane. In this case,
2. the zero-pole pair gives the same sign of the phaser Ity

The trace of one typical transmission ze&tg(¢) in the e ransmission phase; the total accrued phase over this
complex-energy planez{=Ka) is computed and plotted in ;er6.nole pair is 2. Though the zero-pole pair leads to a

Fig. 10 as function of the magnetic AB phage different phase evolution depending on the position of the
_ zero in the complex-energy plane, the transmission phase
=E,+ . o : .
Z{$)=E+{(P) (26) remains in phase after passing through the zero-pole pair.
HereE, is the transmission zero whef=0 and{(¢) is the The modulation of the transmission zeros in the closed

shift of the zero in the presence of the magnetic AB flux. INAB ring may be tested in experiments using the following
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setup. We may insert the closed AB ring into one arm of the a b [e

: . _[% Pp _ P
larger AB ring. The larger AB ring should be the open sys- Sp=( ) |Sp) = . (A3)
tem where the multiple windings of the electrons are pre- by, ap V€p

vented. The evolution of the transmission phase in the closed _ s the 2<2 submatrix ofS-R, respectively. The ampli-
AB ring can be measured by making the period of the ABydes of waves at the left and right junctions are related to
oscillation in the larger ring much shorter than that of theeach other by the scattering matrix which is responsible for

closed AB ring. _ _ the scattering processes in the two arms,
Entin-WohIimanet al!* studied the effects of broken uni-
M _(R T
) o)) A

tarity on the phase locking. According to their study, the

phase jump at the Coulomb peaks can become smooth by T R

breaking the unitarity of the AB ring. In our work, the phase

jump at the t_ransmis_sion zeros is shown to become continuFhe ket vectors are defined, e.g.,|a$z(2). R and T are

ous by bre%klng the time-reversal symmetry. Recently, Kobag,q 55 5 matrices which contain the information of the scat-

yashlgt al: stud!ed e>'<per|mentally the tuning of the Fano tering matrices in each arm and the phase accrued by the

effect_ln the AB rng with an embedded quantum dot. Somemotion of electrons along the ring. These matrices are model

of their results might be relevant to our theoretical results. specific and are discussed in the main text. We want to find
the S matrix of the ring,
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APPENDIX A: S MATRIX OF AHARONOV-BOHM RING From the above equations, it is straightforward to derive the

In this appendix, we derive th& matrix of an AB ring in following resuits:

a compact form when some scattering centers are present on
the AB ring and especially when the interesting target system
is inserted in the lower arm of the AB ring as shown in Fig.

1. The amplitudes of the incoming and outgoing waves at the — — _ _
left and right junctions are related to each other by the scat- [U)=11-[1=R'Sgl " '7T [s.)+1r-[1-R'Sg] 'R'[sg),

|y>=IL'[l_ﬁSL]ilﬂSQ_"IR'[l_ﬁSL]71?|SR>!
(A6a)

tering matrix, (A6b)
where newly defined reflection and transmission matrices are
O, I Or IR given by the expressions
X1 | =S| y1|,| vi | =S¥ us |, (Ala) — 1
R=R+7T'[1-SkR'] 'SkT7, (A7a)
X2 Y2 U2 Uz
T=T[1-S.R] %, (A7b)
Op \/f—p \/f—p
= Ve, @ by |, p=LLR  (Alb) R'=R'+T[1-SR] ST, (A7c)
Jeo by @ _
T=T[1-SgR']" L. (A7d)

Here S-R are the Shapiro matrices responsible for the split- i ) ,
ting of the electron wave functions in three pathways. The/\[ter more algebra, we find th& matrix of the ring,

unitarity leads to four possible solutions, 0, I,
o,=—2a,—bp, (A2a) (OR) mg( IR
1 e br
a,=5 NP+ 18V1-2¢p], (A2b) Sing={y poo) (A8D)
1 re=oL+(s./[[1-RS.] 'R]s.), (A8c)
by=5[— AP+ NBV1-26,], (A20) B B
rrr=0r+(SRI[1-R'Sg] 'R’ |sg), (A8d)
where \} \8=*=1. To simplify the algebra, we introduce o _
new notations, t r=(s|[1- RS ] *7"|sRr), (A8e)
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tau=(Srl[1~R'Se] 7 |sy). (A8f) R=(“ 0) -
0 rg)’

t, 0
0 tg)’

APPENDIX B: SCATTERING MATRIX OF THE t-STUB
WITH DOUBLE BARRIERS

r. 0 tt O
We consider theS matrix of thet stub with the double R'I( 0 ! ) T':( 0t ) (B4d)
barriers(see Fig. 8 The distance between two barriers is R R

assumed to be too short to allow the resonant energy levels,

or the energy-level spacing is very large compared to otheFrom the relation betweehn andOg, we find

energy scales. But the length of the stuls long enough to

allow the quantized energy levels in the isolated stub. In this

case, the amplitude of the wave functions can be matched as 1
==k (sdy)
O | o \/E \/E e
g I o T I ___ (sin-rsgTn @5
X1 | =8| VY1], S= € a ' (Bla) 0,+e72iKa+<St|[l_Rrs[]flR/|St>'
X2 Y2 Je b a
After some algebra, we find th® matrix of the systemO)
(OL):SL(IL), (OR>:SR(IR), =S|1),
Y1 X1 Y2 X2
So=R+T'[1-SR'] ST
ro t , o S
sp:(tp ‘f), p=L.R. (B1b) _ T'[1-SR'] Ys(sl[1-R'S]'T (86)
v e e (s[[1-R'S]R']s)
We want to find theS matrix of thet stub with the double
barriers, Note that the transmission poles are determined by the zeros

of o+e 2K+ (s|[1-R'S] 'R'|s,).
(OL) —S( IL)_ (B2) For the two identical barriers described by the scattering

Or N Ir matrix (Rg=1—"T),

When there is an infinite potential wall at the end of the stub,

two amplitudes I and Og are constrained aslg iVR, To
=¢'(?Ka*mQo_ We can rewrite the above relations between S= T iR (B7)
the amplitudes as To  1VRo
Os=oal+(sy), (B3a)  the scattering matrix of thiestub with double barrier is given
by the equations
[x)=14[s)+Sily), (B3b)
ro to
|OY=RII)+T'|x), (B30 So={, | (B8a
0 0
ly)=TI[1)+R’[x). (B3d)
New notations are introduced to simplify the algebra: t = Tob e e+,
T A-iVRe) Ry, o +ivR ]
e —
[ % et 1+iyRgor
|X>_(x2>’ |y>_(y2)’ (B4a) (B8b)
I OL T a+iVRg(b?—a?
= b VRS S i (1 T
Ir Or 1+|\/R—Ocr 1—|\/R_0(a—b)
Ve a b €
|SI> (\/E S b a)’ (B4o) (1+i\/R—00')672|Ka+0'+i\/R—0 ( )
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Note that the transmission zeros do not depend on or are 1-X, Ay R,
not modified by the barriers’ tunneling strengify [see Z,=|n+ 2 7r+? tan * 1 oe
Egs. (23b and (253], but the poles are modulated by the
value of T,. The transmission pole<() and zeros Z,) are i 1+ Ro(1—2€)
Ctan YWVRA1—2e) | — —ln [0~ 2%
located at tan “VRy(1—2e) 2In 1-2¢1Ry | (B9Db)
B 1+N, As expected, the linewidth of quasibound states in the
Z;=|n+ 4 | ™ (B93) stub (or the imaginary part of polgésis reduced with the
reducedT,.
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