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Effects of broken time-reversal symmetry on transmission zeros
in the Aharonov-Bohm interferometer
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In this paper, we study the behavior of the transmission zeros in the closed Aharonov-Bohm~AB! interfer-
ometer with an embedded scattering center in one arm and the corresponding change in the transmission phase
when the time-reversal symmetry is broken by magnetic fields. Specifically, we consider three embedded
scattering centers: one discrete energy level, a double-barrier well, and at stub. We find the following from our
model study:~i! The transmission zeros are real when the AB flux is an integer or a half integer multiple of the
flux quantum, and the transmission phase jumps byp at the zeros.~ii ! The transmission zeros become complex
or are shifted off the real-energy axis when the magnetic AB flux is not an integer or a half integer multiple of
the flux quantum, and the transmission phase evolves continuously.~iii ! The distance of the zeros from the
real-energy axis or the imaginary part of the transmission zeros is sinusoidal as a function of the magnetic AB
phase. We suggest the experimental setup which can test our results.

DOI: 10.1103/PhysRevB.65.245307 PACS number~s!: 73.23.2b, 73.50.Bk, 73.63.Nm
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I. INTRODUCTION

Recent advances in nanotechnology have made it pos
to measure the phase of electron wave function.1–5 In bulk
systems, phase coherence of electron wave functions ca
washed out by inelastic scattering processes. On the o
hand, the phase of electron wave function can be prese
in nanoscopic systems. Typical experimental tools, wh
can measure the electron’s phase, are the Aharonov-B
~AB! interferometers. To study the phase evolution due to
target system, the system is inserted in one of two arm
the AB interferometer. TheI -V curves are measured betwe
the external electrodes connected to the AB ring as func
of the AB magnetic flux while other control parameters, e
the Fermi energy level, are varied. The phase evolution
the electron wave functions in the target system is extrac
from the measuredI -V curves.

The closed AB interferometer in a two-terminal config
ration does not yield much information about the phase s
in the target system due to the phase locking effect.6,7 Mul-
tiple windings of the electron motion along the AB ring r
sult in the conductance which is even6,7 in the AB flux F or
G(2F)5G(F). This Onsager relation8 constrains the mea
sured phase to be either 0 orp. This phase locking effect ca
explain the observed phase jump byp at the conductance
peaks1 of the closed AB interferometer with an embedd
quantum dot. The same phase of the transmission ampli
was observed1 at successive Coulomb peaks. This means
an additional phase shift byp should occur in between two
successive Coulomb peaks. The existence of the transmis
zeros can also explain this feature.9,10
0163-1829/2002/65~24!/245307~13!/$20.00 65 2453
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In order to observe the phase evolution in the target s
tem, an open AB interferometer was devised by Schu
et al.,2 which is similar to the double-slit experiments. Su
pression of the backscattered electrons prevents the mul
windings along the AB ring so that the total transmissi
amplitude becomes the sum of two transmission amplitu
through the upper and lower arms,

t5t l1tueif. ~1!

Heref is the AB phase due to the magnetic flux. Measuri
the conductance which is proportional toutu2 as function of
the AB phase, the transmission phase of the target sys
can be directly obtained.

In a phase-coherent system, the two different phases
be defined. The Friedel phaseu f is defined as the argumen
of the determinant of the scatteringS matrix, e2iu f5detS.
The change in the Friedel phase is related to the densit
states via the Friedel sum rule,11 r(E)5p21du f /dE. The
measured phase in the open AB interferometers is in fact
transmission phase, the argument of the transmission am
tudes (t5utueiu t). Recent works9,12 made clear distinctions
between the two phases. In the absence of the transmis
zeros, the two phases are identical. The transmission p
jumps byp at the real transmission zeros and the two pha
differ by this amount.9,10,12In a time-reversal symmetric sys
tem, all the possible transmission zeros are proven to
real.9,13 For more details about the transmission phase in
time-reversal symmetric case, see the works of Lee9 and of
Taniguchi and Bu¨ttiker.12

In this paper, we address the following question: Wh
will happen to the transmission zeros and the transmiss
©2002 The American Physical Society07-1
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phase when the time-reversal symmetry is broken by the
ternal fields, e.g., the magnetic fields? Specifically we
swer this question by studying the closed AB ring~see Fig.
1! with an embedded scattering center in the presence o
magnetic AB flux. Since the AB ring provides the transm
sion zeros due to the destructive interference between
arms and the time-reversal symmetry can be broken by
plying the magnetic fields, the AB interferometer is an ide
system for our purpose. In connection to our work, we n
that the effects of brokenunitarity in the AB ring on the
phase locking were investigated by another group.14

In general, either one transmission pole or one transm
sion zero gives rise to the phase change byp as the Fermi
energy is scanned through the real part of the pole or z
The poles always lie in the lower half plane of the comple
energy plane due to the causality relation. On the other h
the zeros can be anywhere in the complex-energy plan
we will discuss below when the time-reversal symmetry
broken. Poles give the same contribution to the Friedel ph
u f and the transmission phaseu t . The energy scale ove
which the phase evolution occurs is determined by the im
nary part of the transmission poles. On the other hand, tr
mission zeros give an additional contributionuz only to the
transmission phase. The transmission phase can be writte
the sum of two:u t5u f1uz . Depending on the position o
zeros in the complex-energy plane, the behavior of the ph
evolution becomes quite different. When the transmission
ros lie on the real-energy axis, an abrupt phase jump byp is
observed. Varying the AB magnetic flux, the transmiss
zeros can be shifted off the real-energy axis. In this case
transmission phase evolution is continuous and occurs
the energy scale—the imaginary part of transmiss
zeros—as the Fermi energy is scanned. That is, the trans
sion phase becomes a discontinuous function of control
rameters when the transmission zeros hit the real-en
axis.

To summarize the results of our study, the transmiss
zeros oft ~the transmission amplitude of the closed AB ring!,
based on their position in the complex-energy plane, can
grouped into three different classes.

Class I: Transmission zeros lie on the real-energy a
The trajectory of the transmission amplitudet passes through
the origin and the transmission phaseu t jumps byp at the
transmission zero.

Class II: Poles and zeros lie in the same lower half-pla
of the two-dimensional~2D! complex-energy plane. The tra
jectory does not encircle the origin, and the evolution ofu t is

FIG. 1. Aharonov-Bohm ring with an embedded target syste
The scattering process in the target system is described by the
tering materixS0. The length of the upper and lower arms is d
noted byL. F is the magnetic Aharonov-Bohm~AB! flux threading
through the AB ring.
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continuous and its range is confined by two extreme po
of the trajectory when viewed from the origin. Each pole a
zero gives rise to the phase change byp, but the sign is
opposite. The combined effect of one pole and one zero
smooth evolution ofu t and the differenceDu t before and
after passing through one zero and one pole approaches
Du t50.

Class III: Poles~zeros! lie in the lower~upper! half plane,
respectively. The trajectory encircles the origin. One p
and one zero give the same sign of the phase evolution
Du t52p.

Trajectories of the transmission amplitudet and its phase
are schematically shown in Fig. 2 to help the readers to
derstand three different classes of transmission zerosZz . De-
pending on the nature of the scattering centers which
inserted into one arm of the AB interferometer, all thr
classes or some of them can be realized by varying magn
AB flux. We find from our study that the transmission zer
are real when the AB flux is an integer or a half integ
multiple of the flux quantum, and the transmission pha
jumps by p at the zeros. The transmission zeros beco
complex or shifted off the real-energy axis when the ma
netic AB flux is not an integer or a half integer multiple o
the flux quantum, and the transmission phase evolves c
tinuously. The distance of the zeros from the real-energy a
or the imaginary part of the transmission zeros are sinuso
as function of the magnetic AB phase.

A general formulation on theS matrix for the AB ring is
presented in Appendix A when scattering centers are pre
along the arms of the AB ring. These scattering centers
the accrued phase by the motion along the AB ring can
parametrized by the matricesR’s and T’s as described in
Appendix A. In this paper, we are interested in the AB ri
~see Fig. 1! when the target system is inserted in the low
arm. When the target system is described by the scatte

matrix S05( t0

r 0

r
08

t08 ), the matricesR’s andT’s are given by

the generic forms,

.
at-

FIG. 2. Schematic display of trajectories of the transmiss
amplitudet and its phase variation. In the panel~a!, the imaginary
part of the transmission zeroZz is null or ImZz50 ~class I!. In ~b!,
Im Zz,0 ~class II!, and in~c!, Im Zz.0 ~class III!.
7-2
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EFFECTS OF BROKEN TIME-REVERSAL SYMMETRY ON . . . PHYSICAL REVIEW B65 245307
R5zFS 0 0

0 r 0
D , T5zFS eif/2 0

0 t0e2 if/2D ,

R85zFS 0 0

0 r 08
D , T85zFS e2 if/2 0

0 t08e
if/2D . ~2!

Here f52pF•e/hc is the AB phase due to the magnet
flux F passing through the AB ring. Half of the AB phase
attached to each of the lower and the upper arms of the
ring. The trajectory oft depends on the chosen gauge or h
the AB phase is inserted into the scattering matrix.
course, the measurable quantities likeutu2 and Du t do not
depend on the gauge.zF5eikFL is the phase accrued by th
motion of electrons along either of two arms of lengthL.
Since we are interested in a phase-coherent system, w
strict our study toT50 K. The incident electrons will be
confined to the Fermi energy with the wave numberkF in our
study.

In subsequent sections, we illustrate the effects of bro
time-reversal symmetry on the transmission zeros in the
interferometer by studying three model systems. In Sec
we consider the AB interferometer with one discrete ene
level. This system is simple enough to obtain theSmatrix in
a closed form and allows one to study analytically the
havior of the transmission zero under the AB flux. In Se
III and IV, we study the AB ring when two different types o
multiresonant level systems are inserted in the lower arm
Sec. III, we study the transmission properties of the AB r
with an embedded double-barrier well. The double-bar
well provides multidiscrete energy levels through which t
resonant tunneling is realized, but the transmission proba
ity never becomes zero for this system. In Sec. IV, at stub
with the double barrier is inserted in the AB ring. In contra
to the double-barrier well, thet stub accommodates the tran
mission zeros as well as the multiresonant levels. Our st
is summarized in Sec. V.

II. AB INTERFEROMETER WITH AN EMBEDDED
RESONANT LEVEL

In this section, we consider the Aharonov-Bohm interf
ometer shown in Fig. 3. This model system may be the s
plest one which can accommodate the zero-pole pair in
transmission amplitude. This system contains both the di
tunneling between two leads and the resonant tunne
through one discrete energy level in the dot. The study of
simple model system helps us to analyze more realistic

FIG. 3. Schematic display of Aharonov-Bohm~AB! interferom-
eter with a quantum dot. The dot is modeled by one discrete en
level.
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complex systems to be discussed in the subsequent sec
The transmission amplitude of this system is characteri
with one pole and one zero. The pole is provided by
discrete level in the dot while the zero is the result of t
destructive interference in the AB ring geometry. Three d
ferent classes in the trajectories oft, summarized in the in-
troduction, can all be realized with the variation of the A
phase.

We can derive the scattering matrix of the AB interferom
eter using the t-matrix method with Si j 5d i j 22pd(Ei
2Ej )Ti j or the Green’s-function method,

Sring5S r LL tRL

tLR r RR
D , ~3!

where the reflection and transmission amplitudes are gi
by the equations

tRL52 iAT02ḠGd
r ~e!@AT01Agsinf

1 iAg~12T0!cosf#, ~4a!

tLR52 iAT02ḠGd
r ~e!@AT02Agsinf

1 iAg~12T0!cosf#, ~4b!

r LL5A12T02ḠGd
r ~e!F 2i

11g
22i

GR

G
1AgT0cosfG ,

~4c!

r RR5A12T02ḠGd
r ~e!F 2i

11g
22i

GL

G
1AgT0cosfG .

~4d!

The anglef is the Aharonov-Bohm phase 2pF/F0, where
F is the magnetic flux threading through the AB ring a
F05hc/e is the flux quantum. The gauge is chosen such t
the AB phasef is attached to the tunneling matrixVdR as
VdR5uVdRueif. T054g/(11g)2 is the direct tunneling
probability, whereg5p2NLNRuTLRu2. NL and NR are the
density of states~DOS! in the left and right leads, respec
tively. Other parameters are defined asGp5pNpuVdpu2 (p

5L,R), G5GL1GR , Ḡ5G/(11g), andg54GLGR /G2.
The S matrix satisfies the Onsager relation,Si j (f)

5Sji 3(2f), under the inversion of the magnetic flux. If th
system is mirror symmetric under the transformationL↔R
or the quantum dot is coupled symmetrically to the left a
right leads (GL5GR), we obtain the symmetric relationr LL
5r RR.

The discrete energy level in a dot is broadened with
linewidth G due to the coupling to the left and right lead
The direct tunneling between the two leads further renorm
izes the linewidth (Ḡ) and shifts the energy-level position
The retarded Green’s functionGd

r of a dot is given by the
equation

Gd
r ~e!5

1

e2ed~f!1 i Ḡ
. ~5!

gy
7-3
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Here ed(f)5ed2ḠAggcosf is the renormalized energ
level of a dot. The transmission probability can be read
calculated fromT(e)5utRLu2,

T~e!5T012ḠAgT0~12T0!cosf ReGd
r

1Ḡ@T02g~12T0cos2f!# Im Gd
r . ~6!

The transmission probabilityT(e,f) is an even function of
the AB phasef, satisfying the Onsager relation.

We may rewrite the elements of the scattering matrix
other forms,

tLR52 iGd
r ~e!@AT0~e2ed!1ḠAgeif#, ~7a!

tRL52 iGd
r ~e!@AT0~e2ed!1ḠAge2 if#, ~7b!

r LL5Gd
r ~e!@AR0~e2ed!2ḠAggcosf1 i ~ ḠR2ḠL!#,

~7c!

r RR5Gd
r ~e!@AR0~e2ed!2ḠAggcosf2 i ~ ḠR2ḠL!#.

~7d!

Here R0512T0 is the reflection probability of the direc
tunneling. Using the above expressions, we can show
unitarity of the S matrix, utLRu21ur LLu251 and r LLtLR*
1tRLr RR* 50.

The Friedel phaseu f can be found from the determinan
of Swhich can be written in terms of the Green’s function
a dot,

detS5
Gd

r

Gd
a

5
e2ed~f!2 i Ḡ

e2ed~f!1 i Ḡ
5e2iu f , ~8a!

u f5
p

2
1tan21

e2ed~f!

Ḡ
. ~8b!

Gd
a5@Gd

r #* is the advanced Green’s function of a dot. T
Friedel phase changes smoothly fromu f50 to u f5p as the
energy level of a dot is scanned through the Fermi energ

The transmission phaseu t is obtained from t5tRL
5utRLueiu t and is written as the sum of the Friedel phase a
the contribution from the zero. Equation~7b! can be written
as

t52 i
~e2ed!AT01ḠAgcosf2 i ḠAgsinf

e2ed1ḠAggcosf1 i Ḡ
. ~9!

The transmission amplitude at the Fermi energyt(e50) is
plotted in the 2D complex plane in Figs. 4~a! and ~d! as an
implicit function of ed while varying the AB phasef. All the
trajectories oft are circles. The position of a discrete ener
level ed , which can be shifted with the gate voltage capa
tatively coupled to the dot, is varied from the empty state
the filled state. That is, the value ofed is changed from̀ to
2`. Writing Z5e2ed , we can rewritet5tRL as
24530
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Z2Zz

Z2Zp
, ~10!

in terms of the poleZp and the zeroZz . This zero-pole pair
is given by the expressions

Zp52ḠAggcosf2 i Ḡ, ~11a!

Zz52ḠA g

T0
@cosf2 isinf#. ~11b!

Note that the imaginary part of the transmission zero is p
portional to sinf and vanishes whenf5np (n is an inte-
ger!.

When the magnetic AB flux is an integer or a half integ
multiple of the flux quantum, or whenf5np (n is an in-
teger!, the imaginary part ofZz vanishes and the transmis
sion zero lies on the real-energy axis. The trajectory ot
passes through the origin~the class I!. The analytic expres-
sion of the transmission phaseu t when f5np is given by
the equation

u t5u f1uz , ~12a!

uz5p2pQ„e2ed1~21!nḠAg/T0…. ~12b!

HereQ(x) is the step function.u f is the Friedel phase given
by Eq. ~8b! anduz is the contribution from the transmissio
zero. Since the transmission zero is real, the transmis
phase jumps abruptly byp as shown in Figs. 4~b! and ~e!.
The zero-pole pair leads to the typical Fano resonance
antiresonance structure in the transmission amplitudeT
5utu2 andT50 at the antiresonance@see Figs. 6~a! and~f!#.

When the magnetic AB flux is off an integer or a ha
integer multiple of the flux quantum, the imaginary part
the transmission zero is finite and is sinusoidal as function
the AB phasef @see Eq.~11b!#. That is, the zero oft is
shifted off the real-energy axis. When 0,f,p, the zeroZz
lies in the upper half plane of the complex-energy pla
while the poleZp lies in the lower half plane. The trajectorie
of t encircle the origin~the class III!. The analytic expression
of u t is

u t5u f1tan21
e2ed1ḠAg/T0cosf

ḠAg/T0sinf
. ~13!

The second term is the contribution from the zero. Since b
the zero and the pole contribute the same sign of the ph
by p to u t , u t evolves smoothly by the amount of 2p as
shown in Fig. 4~b!. The imaginary part of the zero is propo
tional to sinf and the zero moves away linearly with th
magnetic fieldB from the real-energy axis close tof5np.
The minimum value ofT ~deriving from the transmission
zero! shows this trend as displayed in Fig. 4~c!. As f is
increased from 0 top/2, the minimum value ofTmin is in-
creased and reaches the maximum atf5p/2. With further
increase off from p/2 to p, Tmin is reduced to zero.

When p,f,2p, the pole and the zero lie in the sam
lower half plane. The transmission amplitude, belonging
7-4
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FIG. 4. Behavior of the transmission amplitudet with varying the AB phasef for the AB interferometer with one discrete energy lev
Panels~a! and~d! display the trajectories oft as an implicit function of the discrete energy leveled . The evolution of the transmission phas
u t is shown in panels~b! and ~e!. The transmission probabilityT5utu2 is displayed in two panels~c! and ~f!. The AB phases are the sam
for the same lines either in the left column panels~a!, ~b!, and~c! or in the right column panels~d!, ~e!, and~f!.
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class II, delineates the closed orbit without encircling t
origin. The transmission phaseu t is given by the expression

u t5u f1p2tan21
e2ed1ḠAg/T0cosf

ḠAg/T0usinfu
. ~14!

Since the pole and zero contribute the phase byp but with
the opposite sign tou t , the phase evolution is limited to th
24530
enarrow range@see Fig. 4~e!# which is set by the two extreme
points in the trajectory oft viewed from the origin.

In summary, we found three different classes for the tra
mission zeros. Though the behaviors of the phase evolu
are different for the three classes, the transmission am
tudes remain in phase before and after the Fermi leve
scanned through the real part of the transmission pole
zero. The transmission probability satisfies the Onsager r
7-5
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tion, utRL(2f)u25utRL(f)u2 @see Figs. 4~c! and~f!#, even if
the trajectories in the complext plot are different. When the
magnetic fluxF is an integer or a half integer multiples o
the flux quantum, the transmission zero lies on the re
energy axis and the phase evolution ofu t is featured with the
abrupt jump byp at the zero. When the magnetic fluxF is
off from the integer values or the half integer multiples of t
flux quantum, the transmission zero lies off the real-ene
axis and the phase evolution ofu t becomes continuous ove
the energy scaleḠAgusinfu set by the magnetic fields. De
pending on the sign of the imaginary part of the transmiss
zero, the evolution ofu t shows different behavior. When th
zero lies in the upper half plane, the contributions to
transmission phase from the zero-pole pair add up leadin
the change of 2p over the zero-pole pair. On the other han
two contributions are canceled by each other leading to
net change of 0 in the transmission phase when the zero
in the lower half plane.

III. AB RING WITH AN EMBEDDED
DOUBLE-BARRIER WELL

In this section we study the scattering matrix of the A
ring when the double-barrier well~shown in Fig. 5! is in-
serted in the lower arm. The symmetric double-barrier w
can be described by the scattering matrixS0 whose elements
are given by the equations

r 05r 085
A12T0~12e2iKa!

12~12T0!e2iKa
, ~15a!

t05t085
2T0eiKa

12~12T0!e2iKa
. ~15b!

Here K5AkF
212meVg /\2 is the wave number inside th

double-barrier well,a is the distance between two barrier
and Vg is the gate voltage capacitatively coupled to t
double-barrier well. The position of the resonant energy l
els in the double-barrier well is controlled by the gate vo
age Vg . The incident electrons are confined to the Fer
level with the Fermi wave numberkF . Two barriers are as
sumed to be identical and to be described by the scatte
matrix

Sb5S A12T0 2 iAT0

2 iAT0 A12T0
D , ~16!

whereT0 is the tunneling probability through the barrier. Th
transmission poles oft0 ~double-barrier well! are easily iden-
tified as

Kpa5np2 iG, G[
1

2
ln

1

12T0
, ~17!

FIG. 5. Double-barrier well.
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wheren is a positive integer. If the barriers’ scattering matr
is of the form given by Eq.~20! in Sec. IV, the poles are
shifted byp/2. We note thatt0 can be expressed as the su
of simple poles,

t052 T0eiKaF1

2
1

i

2(n

1

Ka2np1 iGG . ~18!

The transmission probabilityut0u2 consists of a series o
evenly spaced peaks with the same linewidthG. Transmis-
sion zeros are absent in the double-barrier resonant tunne
system.

We now study the properties of the transmission am
tude for the AB ring with an embedded double-barrier we
Inserting the scattering matrixS0 of the double-barrier well
into the general expression of theS matrix of the AB ring
~Appendix A!, we compute the transmission amplitude n
merically. The results are displayed in Fig. 6. In the nume
cal works, we use the model parameters:kFL
55p/3(2p mod.); e51/2,l15l251 for the identical
three-way splitters at the right and left junctions;T050.2 for
the transmission probability of the double-barrier well. O
closed orbit in the complext plot is completed with the
variation of D(Ka)52p. In the double-barrier well,12 the
orbit of t is closed with the period 2p of Ka. Comparing our
results to the Fig. 1 in the work12 of Taniguchi and Bu¨ttiker,
the orbit of t for the AB ring is featured with an additiona
closed lobe. This lobe passes through the origin whenf
50 or p. But note that the lobe disappears int for some
range off. See the dotted line (f5135°) in Fig. 6~a! and
the long dashed line (f5315°) in Fig. 6~d!.

When f50 or p, the trajectory oft passes through the
origin twice to complete the closed orbit. The transmiss
phaseu t jumps byp at the transmission zeros@see the solid
line in Fig. 6~b! and the dot-dashed line in Fig. 6~e!# since
the transmission zeros are real. The phase increases byp at
one zero and decreases byp at the other zero. These two re
zeros are typical and behave differently whenfÞ0 or p, as
will be shown later. Each transmission pole of the doub
barrier well is paired with one transmission zero in the A
ring. The transmission zeros in the AB ring are the con
quence of the destructive interference between two arms
shown in Figs. 6~c! and~f!, the zero-pole pairs are develope
in the order zero-zero-pole-pole.

WhenfÞ0 or p, all trajectories oft encircle the origin.
These orbits can be considered as the combination of the
orbits: one~class III! encircles the origin while the othe
~class II! does not. Comparingutu2 and u t between Figs. 4
and 6, we can deduce that the transmission zeros are sh
off the real-energy axis. This point will be discussed late

Let us study the structure of the poles and the zeros
detail. We focus on the two consecutive zero-pole pairs:
nearKa52p and the other nearKa53p. These two zeros
are typical in the sense that others are the exact copie
these two in the physical properties. The nature of these
zeros is different since they behave in the opposite way
der the magnetic fields~see Fig. 7.! When f50, we can
deduce from Figs. 6~b! and ~c! that the zero-pole pairs ar
ordered in the sequence pole-zero-zero-pole. When 0,f
7-6
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FIG. 6. Behavior of the transmission amplitudet with varying the AB phasef for the AB ring with the double-barrier well. Pane
descriptions are the same as in Fig. 4. Model parameters are chosen askFL55p/3(mod. 2p), eL,R51/2, l15l251 andT050.2.
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,p, we conclude, using the results of Sec. II, for the ze
pole pair nearKa52p that the zero~pole! lies in the upper
~lower! half plane of the complex-energy plane, respective
On the other hand, the zero-pole pair nearKa53p is in the
lower half plane. This is the reason why the phase chang
2p over the first zero-pole pair and is 0 over the seco
zero-pole pair. Whenf5p, the zero-pole pairs appear in th
sequence zero-pole-pole-zero. Whenp,f,2p, the roles of
two aforementioned zero-pole pairs are interchanged c
pared to the case of 0,f,p.

We compute the traces of the transmission zerosZz(f) in
the complex-energy plane (z5Ka) as function of the mag-
netic AB phasef.
24530
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Zz~f!5Ez1z~f!. ~19!

HereEz is the transmission zero whenf50 andz(f) is the
shift of the zero in the presence of the magnetic AB flu
There are two distinct zeros in the AB ring with the doub
barrier well and the behavior of two zeros is different und
the magnetic AB flux. The real and the imaginary parts
z(f) are plotted in Fig. 7 for two zeros ofEz5Ka52p
@panel~a!# and ofEz5Ka'2.87753p @panel~b!#. The real
part of the first~second! zero is shifted downward~upward!
under the magnetic fields, respectively. The minimum inT
5utu2 @see Figs. 6~c! and~e!# shows this trend. The two zero
7-7
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show the opposite behavior in their imaginary parts under
magnetic fields, too. The zeroEz52p(2.87753p) lies in
the upper~lower! half plane when 0,f,p, and in the
lower ~upper! half plane whenp,f,2p, respectively. This
corroborates our conclusion in the previous paragraph. T
zeros are on the real-energy axis whenf5np with n being
an integer.

To summarize, there are two types of the transmiss
zeros which can be distinguished in their behavior un
magnetic fields. Since one pole is always paired with o
zero, the change in the transmission phase over the zero
pair is 0 or 2p depending on the position of the zero in th
complex-energy plane.

IV. AB INTERFEROMETER
WITH AN EMBEDDED T STUB

In this section, we consider the AB ring with the sid
branch or thet stub. Thet stub provides the different type o
resonant levels compared to the double-barrier well. In c
trast to the double-barrier well, thet stub itself provides the
transmission zeros as well as the transmission poles. In
work, we consider thet-stub structure with two tunneling
barriers which was previously studied in the literature.10,15

We use the most symmetric three-way splitter at the junc
with the parameters15 e54/9, l1521, and l251. The
double-barrier is assumed not to provide any resonant en
levels, or the distance between two barriers is so short
the energy-level spacing is much larger than any other in
esting energy scale in the problem. The introduction of t
additional barriers to thet stub enables us to control th
tunneling strength through thet-stub structure and to mimic

FIG. 7. Transmission zeros as function of the AB phasef in the
AB ring with the double-barrier well. The AB phase dependence
the zero atKa52p @2.87753p# is displayed in panel~a! @~b!#,
respectively. Solid~dashed! line is the real~imaginary! part of the
shifted zeroz(f), respectively. The transmission zero is rep
sented byZz(f)5Ez1z(f) where Ez is the transmission zero
whenf50 andz(f) is the shift of the zero in the presence of th
magnetic AB flux.
24530
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the quantum dot system. TheS matrix of the two barriers is
chosen to be

Sb5S iA12T0 AT0

AT0 iA12T0
D , ~20!

whereT0 is the tunneling probability through the barrier. W
have chosen the different overall phase forSb compared to
the double-barrier well in Sec. III. TheSmatrix of thet stub
with the double barriers is formulated in Appendix B~see
Fig. 8!.

To get some insights on the position of the transmiss
zeros and poles, we consider theS matrix of the simplet
stub. The incoming and outgoing current amplitudes can
matched at the junction of thet stub,

S OS

OL

OR

D 5S s t Ae t Ae t

Ae t at bt

Ae t bt at

D S I S

I L

I R

D . ~21!

HereI ’s andO’s are the incoming and outgoing current am
plitudes at the junction.s t52at2bt and at ,bt can be de-
termined to satisfy the unitarity of the scattering matrix,

at5
1

2
@l11l2A122e t#, ~22a!

bt5
1

2
@2l11l2A122e t#. ~22b!

There are four possible choices withl i561 (i 51,2). The
value ofe t is constrained: 0<e t<1/2. When there is an in-
finite potential wall at the end of the stub of lengtha, OS and
I S are related to each other byI S5OS ei (2Ka1p). The addi-
tional phasep guarantees the node of the wave function
the infinite wall. The wave numberK in the stub is given by
K5AkF

212meVg /\2. The quasibound-state energy levels
the stub can be shifted with the gate voltageVg ~capacita-
tively coupled to thet stub!. The effectiveS matrix of thet
stub can be readily derived,

S OL

OR
D 5S0S I L

I R
D , S05S r 0 t0

t0 r 0
D , ~23a!

t05bt2
e tz

11s tz
5

bt~11l1z!

12~at1bt!z
, ~23b!

r 05at2
e tz

11s tz
5

at~12l1z!

12~at1bt!z
. ~23c!

f

-

FIG. 8. t stub with the double barrier.
7-8
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FIG. 9. Behavior of the transmission amplitudet with varying the AB phasef for the AB ring with thet stub. Panel descriptions are th
same as in Fig. 4. Model parameters are chosen askFL5p/2; eL,R51/2, lL,R1521, andlL,R251; e t54/9, l t1521, andl t251; TL

5TR50.8.
r
r-
but
-

Here z5e2iKa. The first terms int0 and r 0 represent the
direct-scattering process and the second term comes from
multiple-scattering processes in the stub. The unitarity ofS0
can be proved by showing that

ur 0u21ut0u251, t0* r 01r 0* t050. ~24!

The transmission poles and zeros are located at

Zz5S n1
11l1

4 Dp, ~25a!
24530
the Zp5S n1
12l2

4 Dp2
i

2
ln

1

A122e t

, ~25b!

respectively. Heren is an integer. For our choice ofl1
521 andl251 for the t stub,Zz5np and ReZp5np.

The scattering matrix of thet stub with the double barrie
is derived in Appendix B. Note that addition of the two ba
riers to thet stub does not change the transmission zeros,
the poles are modulated byT0 in both the real and the imagi
nary parts.
7-9
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The transmission amplitudes of the whole AB ring a
computed numerically using the formulation detailed in A
pendixes A and B and are presented in Fig. 9. The mo
parameters are:e51/2, l1521, andl251 for the Shapiro
matrices at the left and right three-way junctions. The thr
way splitter for thet stub was chosen to be the most sy
metric one as noted above. The tunneling barriers for tht
stub are chosen asT050.8.

As can be deduced from Figs. 9~c! and ~f!, the zero-pole
pairs appear in the order zero-pole-zero-pole. All the traj
tories of t are circles and the closed orbit is completed w
DKa5p. Three different classes of orbits oft are realized
for this system varying the magnetic AB flux.

When f50 or f5p, the transmission zero lies on th
real-energy axis and the transmission phase jumps byp at
the zeros. Whenf50, u t nearKa52p drops byp at the
zero and increases smoothly by the amountp due to the
pole. For this zero-pole pair, the zero precedes the pol
shown in Figs. 9~b! and ~c!. Whenf5p, u t drops byp at
the zero and increases almost linearly due to the pole.
can deduce from the functional shape of theu t and T5utu2

@see Figs. 9~e! and ~f!# that the zeros and poles are almo
evenly interlaced.

When 0,f,p, the orbits oft encircle the origin and the
phase evolution ofu t is smooth and continuous. The orbi
move away from the origin with increasing the AB phas
This trend is clearly visible in Figs. 9~a! and ~c!. Since the
zeros lie in the upper half plane and the poles are in
lower half plane, two contributions tou t add up and lead to
the change ofu t by 2p over the zero-pole pair.

The orbits oft lie outside the origin whenp,f,2p. In
this case, the zeros and the poles lie in the same lower
plane. Their contributions to the transmission phase are
posite in sign, and the net change ofu t over the zero-pole
pair is zero. Since the phase decrease precedes the p
increase, the zero precedes the pole. The zero-pole pai
proaches each other as the value off is increased fromp to
2p.

The trace of one typical transmission zeroZz(f) in the
complex-energy plane (z5Ka) is computed and plotted in
Fig. 10 as function of the magnetic AB phasef.

Zz~f!5Ez1z~f!. ~26!

HereEz is the transmission zero whenf50 andz(f) is the
shift of the zero in the presence of the magnetic AB flux.

FIG. 10. Transmission zeros as a function of the AB phasef in
the AB ring with thet-stub system. Solid~dashed! line is the real
~imaginary! part of the shifted zeroz(f), respectively.
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contrast to the AB ring with the double-barrier well, the n
ture of all zeros is identical in the sense that their behavio
the same under the magnetic fields. The real and imagin
parts ofz(f) are plotted in Fig. 10 for the zero ofEz5Ka
'1.95653p. Note that this zero in the AB ring is shifte
from Ez52p of the t stub with the double barrier. As ex
pected from the shift of the minimum position ofT5utu2 @see
Figs. 9~c! and ~e!#, the real part of the zero is positivel
shifted in the presence of the magnetic fields. The imagin
part of the zero is sinusoidal as function of the AB phasef
and vanishes when the magnetic AB flux is an integer o
half integer multiple of the flux quantum.

V. SUMMARY AND CONCLUSION

In this paper, we studied the behavior of the transmiss
zeros and the corresponding changes in the transmis
phase when the time-reversal symmetry of the system is
ken by magnetic fields. For our study we considered
Aharonov-Bohm~AB! interferometers with one scatterin
center in the lower arm. Studied scattering centers incl
the system of one discrete energy level, the double-bar
well, and thet stub with the double barriers. Each resona
level in the scattering center gives rise to a transmission p
and is paired with a transmission zero in the AB ring. Due
the causality relation, the transmission pole always lies in
lower half plane of the complex-energy plane. On the ot
hand, the zero can be anywhere in the complex-energy p
and its position can be controlled by the magnetic AB flu
Depending on the position of the transmission zeros in
complex-energy plane, the trajectory and the phase of
transmission amplitude show different behaviors.

The transmission zeros lie on the real-energy axis w
the magnetic AB flux is an integer or a half integer multip
of the flux quantum. The transmission phase jumps byp at
the transmission zeros in this case.

The transmission zeros are shifted off the real-energy a
and can be either in the upper or in the lower half plane
the complex-energy plane, when the AB magnetic flux is
from the integer or the half integer multiples of the flu
quantum. The evolution of the transmission phase in t
case is continuous as the Fermi level is scanned through
real part of the transmission zeros.

When the zeros lie in the lower half plane, the orbits
the transmission amplitude lie outside the origin and
phase change is limited by the two extreme points of
orbit when viewed from the origin. Since the zero-pole p
contributes the opposite sign of the phase byp, the net
change in the transmission phase over the zero pole is z

The orbits of the transmission amplitude encircle the o
gin when the zeros lie in the upper half plane. In this ca
the zero-pole pair gives the same sign of the phase byp to
the transmission phase; the total accrued phase over
zero-pole pair is 2p. Though the zero-pole pair leads to
different phase evolution depending on the position of
zero in the complex-energy plane, the transmission ph
remains in phase after passing through the zero-pole pa

The modulation of the transmission zeros in the clos
AB ring may be tested in experiments using the followi
7-10
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setup. We may insert the closed AB ring into one arm of
larger AB ring. The larger AB ring should be the open sy
tem where the multiple windings of the electrons are p
vented. The evolution of the transmission phase in the clo
AB ring can be measured by making the period of the A
oscillation in the larger ring much shorter than that of t
closed AB ring.

Entin-Wohlmanet al.14 studied the effects of broken un
tarity on the phase locking. According to their study, t
phase jump at the Coulomb peaks can become smoot
breaking the unitarity of the AB ring. In our work, the pha
jump at the transmission zeros is shown to become cont
ous by breaking the time-reversal symmetry. Recently, Ko
yashi et al.16 studied experimentally the tuning of the Fan
effect in the AB ring with an embedded quantum dot. So
of their results might be relevant to our theoretical result
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APPENDIX A: S MATRIX OF AHARONOV-BOHM RING

In this appendix, we derive theS matrix of an AB ring in
a compact form when some scattering centers are prese
the AB ring and especially when the interesting target sys
is inserted in the lower arm of the AB ring as shown in F
1. The amplitudes of the incoming and outgoing waves at
left and right junctions are related to each other by the s
tering matrix,

S OL

x1

x2

D 5SLS I L

y1

y2

D ,S OR

v1

v2

D 5SRS I R

u1

u2

D , ~A1a!

Sp5S sp Aep Aep

Aep ap bp

Aep bp ap

D , p5L,R. ~A1b!

HereSL,R are the Shapiro matrices responsible for the sp
ting of the electron wave functions in three pathways. T
unitarity leads to four possible solutions,

sp52ap2bp , ~A2a!

ap5
1

2
@l1

p1l2
pA122ep#, ~A2b!

bp5
1

2
@2l1

p1l2
pA122ep#, ~A2c!

where l1
p ,l2

p561. To simplify the algebra, we introduc
new notations,
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Sp[S ap bp

bp ap
D , usp&[S Aep

Aep
D . ~A3!

SL,R is the 232 submatrix ofSL,R, respectively. The ampli-
tudes of waves at the left and right junctions are related
each other by the scattering matrix which is responsible
the scattering processes in the two arms,

S uy&
uu& D5S R T8

T R8
D S ux&

uv& D . ~A4!

The ket vectors are defined, e.g., asux&[(x2

x1). R andT are

the 232 matrices which contain the information of the sca
tering matrices in each arm and the phase accrued by
motion of electrons along the ring. These matrices are mo
specific and are discussed in the main text. We want to
the S matrix of the ring,

OL5sLI L1^sLuy&, ~A5a!

OR5sRI R1^sRuu&, ~A5b!

ux&5I LusL&1SLuy&, ~A5c!

uv&5I RusR&1SRuu&. ~A5d!

From the above equations, it is straightforward to derive
following results:

uy&5I L•@12R̄SL#21R̄usL&1I R•@12R̄SL#21T̄8usR&,
~A6a!

uu&5I L•@12R̄8SR#21T̄ usL&1I R•@12R̄8SR#21R̄8usR&,
~A6b!

where newly defined reflection and transmission matrices
given by the expressions

R̄5R1T 8@12SRR8#21SRT, ~A7a!

T̄5T @12SLR#21, ~A7b!

R̄85R81T @12SLR#21SLT8, ~A7c!

T̄85T 8@12SRR8#21. ~A7d!

After more algebra, we find theS matrix of the ring,

S OL

OR
D 5SringS I L

I R
D , ~A8a!

Sring5S r LL tLR

tRL r RR
D , ~A8b!

r LL5sL1^sLu@12R̄SL#21R̄usL&, ~A8c!

r RR5sR1^sRu@12R̄8SR#21R̄8usR&, ~A8d!

tLR5^sLu@12R̄SL#21T̄ 8usR&, ~A8e!
7-11
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tRL5^sRu@12R̄8SR#21T̄ usL&. ~A8f!

APPENDIX B: SCATTERING MATRIX OF THE t-STUB
WITH DOUBLE BARRIERS

We consider theS matrix of the t stub with the double
barriers~see Fig. 8!. The distance between two barriers
assumed to be too short to allow the resonant energy lev
or the energy-level spacing is very large compared to o
energy scales. But the length of the stuba is long enough to
allow the quantized energy levels in the isolated stub. In
case, the amplitude of the wave functions can be matche

S OS

x1

x2

D 5StS I S

y1

y2

D , St5S s Ae Ae

Ae a b

Ae b a
D , ~B1a!

S OL

y1
D 5SLS I L

x1
D , S OR

y2
D 5SRS I R

x2
D ,

Sp5S r p tp8

tp r p8
D , p5L,R. ~B1b!

We want to find theS matrix of the t stub with the double
barriers,

S OL

OR
D 5SS I L

I R
D . ~B2!

When there is an infinite potential wall at the end of the st
two amplitudes I s and Os are constrained asI s
5ei (2Ka1p)Os . We can rewrite the above relations betwe
the amplitudes as

Os5sI s1^stuy&, ~B3a!

ux&5I sust&1Stuy&, ~B3b!

uO&5RuI &1T8ux&, ~B3c!

uy&5TuI &1R8ux&. ~B3d!

New notations are introduced to simplify the algebra:

ux&5S x1

x2
D , uy&5S y1

y2
D , ~B4a!

uI &5S I L

I R
D , uO&5S OL

OR
D , ~B4b!

ust&5S Ae

Ae
D , St5S a b

b aD , ~B4c!
24530
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,

R5S r L 0

0 r R
D , T5S tL 0

0 tR
D ,

R85S r L8 0

0 r R8
D , T85S tL8 0

0 tR8
D . ~B4d!

From the relation betweenI s andOs , we find

I s52
1

s1e22iKa
^stuy&

52
^stu@12R8St#

21TuI &

s1e22iKa1^stu@12R8St#
21R8ust&

. ~B5!

After some algebra, we find theS matrix of the systemuO&
5S0uI &,

S05R1T8@12StR8#21StT

2
T8@12StR8#21ust&^stu@12R8St#

21T

s1e22iKa1^stu@12R8St#
21R8ust&

. ~B6!

Note that the transmission poles are determined by the z
of s1e22iKa1^stu@12R8St#

21R8ust&.
For the two identical barriers described by the scatter

matrix (R0512T0),

Sb5S iAR0 AT0

AT0 iAR0
D , ~B7!

the scattering matrix of thet stub with double barrier is given
by the equations

S05S r 0 t0

t0 r 0
D , ~B8a!

t05
T0b

~12 iAR0a!21R0b2

e22iKa1l1

e22iKa1
s1 iAR0

11 iAR0s

,

~B8b!

r 05 iAR01
T0

11 iAR0s
•Fa1 iAR0~b22a2!

12 iAR0~a2b!

2
e

~11 iAR0s!e22iKa1s1 iAR0
G . ~B8c!
7-12
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Note that the transmission zeros do not depend on or
not modified by the barriers’ tunneling strengthT0 @see
Eqs. ~23b! and ~25a!#, but the poles are modulated by th
value ofT0. The transmission poles (Zp) and zeros (Zz) are
located at

Zz5S n1
11l1

4 Dp, ~B9a!
s.

nd

nd

er

n,

24530
re
Zp5S n1

12l2

4 Dp1
l2

2 F tan21A R0

122e

2tan21AR0~122e!G2
i

2
lnA11R0~122e!

122e1R0
. ~B9b!

As expected, the linewidth of quasibound states in
stub ~or the imaginary part of poles! is reduced with the
reducedT0.
.
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