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Non-Rayleigh distribution of reflected speckle intensities from localized states inside the gap
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The field distributions of reflected speckles arising from localized states inside the gap of disordered pho-
tonic crystals in two dimensions were studied through numerical simulations using the multiple-scattering
method. The statistics of the Lyapunov exponent of the transmitted waves were also studied. Similar to the case
of disordered photonic crystals in one dimension, two types of localized states were found depending on the
degree of disorder and the frequency inside the gap. Our simulation results indicate that the reflection statistics
depend on whether or not the localized states are of the normal type. They also depend on whether the reflected
angles are in the Bragg direction or not. For the non-Bragg angles, we found that the intensity distribution
arising from the normal-type localized states follows Rayleigh statistics, in agreement with random matrix
theory. However, deviations from Rayleigh statistics were found for second type of localized states. The
crossover behavior from non-Rayleigh to Rayleigh statistics was studied as a function of the degree of disorder.
By separating the field into coherent and diffuse parts, we have studied the statistics of field and phase
distributions for both diffuse and total fields as well as their speckle contrasts. It is found that the crossover
behavior is very similar to behavior in ballistic to diffusive wave propagation for the transmitted waves and can
be described by the random-phasor-sum moBelS. For the Bragg angle, non-Rayleigh statistics were found
for both kinds of localized states. The statisics are sensitive to the degree of disorder. It is found that both the
RPS andK distribution have limited ranges of validity in this case.
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[. INTRODUCTION transmitted waves that appear at the surface have, in large
part, been mediated by some localized state located near the
In the past few years, the scattering of both classical angenter of the sample. These waves experience many recur-
quantum waves from random media has been the focus @ent scatterings around the localized state and have long path
intensive study.A wave undergoes multiple scatterings duelengths. Because of the large spatial intensity fluctuations of
to the presence of imhomogenieties or impurities as it propathe localized state, the transmitted speckles show large inten-
gates through a random medium. As a result, the scatteredity fluctuations, leading to a distribution that is very differ-
intensities become highly irregular. Those speckle patten§nt from Rayleigh statistics. However, the situation is differ-
should be described in statistical terms. There has been cofilt in the reflection case. Since the source is close to the
siderable study of the statistics of transmitted speckle inten’PUt surface(@ distance on the order of the scattering mean
sities in random medi&? It is well known that. in the ab- free path, the dominant contributions to the reflected speckle
sence of interference, transmitted speckle intensities foIIovi/ntenSItIeS actually come from waves that have shorter path
Rayleigh statisticsa negative exponential lawThe pres- engths. These multiply scattered waves do not self-intersect

£ interf I d I and, therefore, show no interference effects. Any waves with
ence of Interierence always produces an anomaious exponelra-nger path lengths that can probe a localized state through

tial tail.>* In a strong scattering medium, the distribution o rent scatterings now carry a much smaller weight in the
can cross over to lognormal behavior when waves becomgqected intensity. Thus, in the reflection geometry, the char-
localized*" Thus, a strong deviation from Rayleigh statistics gcteristics of localized states are completely overwhelmed by
is an indication of localization. the presence of nonintersecting paths and, therefore, cannot

Recently, interest has shifted to studying speckle intensitye captured in the reflection statistics.
distributions in reflection geometry. Contrary to the intensity  The |ocalized states discussed above are the normal-type
of transmitted speckles, random matrix theory has predictebcalized states, i.e., the Anderson localized states, which are
that, in a waveguide with large number of channels, the incaused by the interference effects in strongly scattering
tensity of reflected speckles follows Rayleigh statistics evenmedial However, it has been shown that there is another
in the localized regimé® In other words, the characteristics type of localized states lying inside the band gaps of disor-
of localized states present in a random medium are not caglered photonic crystafé:}?> Photonic crystals themselves
tured in reflection statistics. This result is rather interesting.have attracted a lot of attention in recent years® For fre-

The physical origin of these two distinct transmission andquencies inside a band gap, waves are evanescent and cannot
reflection behaviors may be understood in the following waypropagate in those crystals. When disorder is introduced, lo-
Consider a localized sample with a thickness larger than thealized states can appear inside a gap and, therefore, reduce
localization length. In the transmission case, since most adfhe size of the gaf*~® With the increase of the degree of
the incident waves are reflected due to wave localization, thdisorder, more localized states appear in the gap. When the
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density of states is sufficiently large, the gap may be described by the RPS. When the degree of randomness is re-
stroyed completely and the wave propagation may lose itguced, it is found that the RPS cannot describe the distribu-
evanescent nature for the entire gap. Thus, a disordered ph’en of both fields. However, the residual field can be
tonic crystal is a good system for studying strong localizatiordescribed byK distribution as a result of incomplete phase
states. Recent investigation of transport behavior in disorrandomizatiort® As the randomness is further reduced, we
dered photonic Crysta| in one dimension ShOWS that there Caﬂﬂd that e_VGI"K (;liStribution fails to describe the distribution
exist two types of localized states inside a band gdpin  ©of the residual field.

the case of large disorder, all the states inside the gap belong | "€ rest of this paper is arranged as follows. In Sec. II, we
to the normal-type localized states, satisfying the singledefine the system and introduce the method of numerical
parameter scaling theoty.However, when the disorder is simulation. T_he r_esu_lts and discussion are described in Sec.
small, the localized states well inside a gap do not satisfy thé!- A conclusion is given in Sec. V.

single-parameter scaling theory due to the residual evanes-

cent nature of the waves. The spatial extent of such localized Il. SYSTEM AND METHOD OF SIMULATION

states are, in general, smaller than that of the normal type.
Although the existence of two types of localized states isn e

O e I e mensor s expected it 112 acrouna. The cylinders have he same ratud -
9 ) ' gy electric constante=11.4. The Maxwell equation for the

states have been observed inside the gap of disordered pho- , To 5 o o>
tonic crystals in both two and three dimensidné® s-polarized waves takes the forfit “w”e(r)+ V7]E(r)

A natural question to ask is what would be the statistics of=0, whereE(r) is the electric field along the cylinder axis
the reflected speckles arising from the second type of localand ¢(r) is the position-dependent dielectric constant. It has
ized state? In order to answer this interesting question, in thiseen shown that complete gaps exist for a certain range of
work, by using the multiple-scattering method, we have carR/a, wherea is the lattice constarit
ried out extensive numerical simulations of the reflected Disordered photonic crystals were produced by random-
speckles which are produced by the localized states insidging an ordered one. The degree of randomness was con-
the gap of two-dimensional disordered photonic crystals. Inrolled. Consider two cases: small randomness and complete
order to establish the existence of two types of localizedandomness. For the case of complete randomness, the
states in two dimensions, we have also studied the statistigsample was produced by randomly altering the position of
of the Lyapunov exponent of the transmitted waves. Similaeach cylinder within a distancea 2R)/2. The procedure
to the case of one dimension, two types of localized stategas repeated 1000 times to ensure complete randomization.
were found depending on the degree of disorder and the frex move was forbidden if two cylinders overlapped. For the
quency position inside the gap. Indeed, our simulation resultsase of small randomness, each cylinder was moved ran-
of reflected speckles indicate that the reflection statistics dejomly, but only once within a range—dr,dr], wheredr
pend on whether or not the localized states are of the normat (a—2R)/2.
type. They also depend on whether or not the reflected angles The transmission, reflection, and scattering properties of
are in the Bragg direction. In non-Bragg angles, we foundhe disordered photonic crystals were calculated using the
that the intensity distribution arising from the normal-type multiple-scattering methotf. The multiple scattering method
localized states follows Rayleigh statistics, in agreements pest suited for a finite collection of cylinders with a con-
with random matrix theory” However, deviations from Ray- tinuous incident wave of fixed frequency. For circular cylin-
leigh statistics were found in the case of the second type ofiers, the scattering property of the individual cylinder can be
localized states. obtained analytically, relating the scattered fields to the inci-

In order to understand the crossover behavior from a nondent fields. The total field, which includes the incident plus
Rayleigh to Rayleigh statistics, we have studied the changghe multiple-scattered field, can then be obtained by solving
in statistics as a function of the degree of disorder at a fixe@ |inear system of equations, whose size is proportional to
frequency inside the band gap. By separating the field intghe number of cylinders in the system. Both near field and far
the averagécoherent and residualdiffuse) parts, we have field radiation patterns can be obtained straightforwardly. In
studied the statistics of field and phase distributions for bothwo dimensions, we note that there exist straight rows of
diffuse and total fields. It is found that their statistics can becylinders in both thec andy directions. The reflected inten-

described by a random-phasor-suRPS model" ™ We sities in the far field can be expressedis)=|f(8)|%/p,
have also studied the speckle contrdSC for both  \where

parts'”1°All these results indicate that the crossover behav-

ior from a non-Rayleigh to Rayleigh statistics is very similar > N M .

to that of ballistic to diffusive wave propagation in transmit- f(9)= \/—ke*'”"‘z > e ikopicos(6i—0)

ted waves. However, for the Bragg angle, only non-Rayleigh T 1=1m=-M

statistics were found for both types of localized states. This (—i)melm?B, (i). (1)

is a result of single mode exciation with a large coherent part

in the Bragg scattering angle. The reflection statisics are sefdere B,(i) represent the expansion coefficients of the radi-
sitive to the degree of disorder. At large randomness, thated waves at théth cylinder, which is determined by the
statistics of both the average and residual fields can be deelf-consistent equation described in Ref. Rg= w/c, and

The two-dimensional2D) photonic crystals considered
re consist of a square array of dielectric cylinders in an air
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10 There exist two gaps for frequencies beldw 0.6. Inside
these two gaps, the wave propagation is evanescent in nature.
When randomness is introduced, localized states may ap-
pear inside the gap and the gap size reduces accordingly. In
the case of small randomness with=0.2, the transmission
spectrum of one particular random configuration is shown as
a dashed line in Fig. 1. Inside each gap, there is a peak near
the lower band edge. This indicates the existence of some
: localized states at the peak frequencies. The presence of lo-
calized states reduces the size of a gap and, therefore, sup-
presses the evanescent nature of the waves inside the gap.

Transmission Coefficient
o

01 02 03 04 o5 06 In the case of complete randomness, the transmission
wa/2re spectrum of one particular random configuration is shown as

o o _ a dotted line in Fig. 1. In this case, more localized states
FIG. 1. Transmission coefficients for ordered and dlsordered(.ipp(_jar deeper inside the gap. As a result, the first gap is
photonic crystals represented by a square lattice with dielectric Cylfurther reduced, whereas the second gap is now completely

inders of radiuR=0.3a ande=11.4. The solid line is the ordered
case; the dashed line is the case of small randomness dwith
=0.2; dotted line is the case of complete randomness.

destroyed and the wave propagation loses its evanescent na-
ture.
A guantitative way to correlate the effects of randomness
R on the evanescence of waves is to study the statistics of the
pi=(pi,0;) denote the site coordinates of thih scatterer. Lyapunov exponentt A Lyapunov exponenk is defined as
M=o, N is the amount of scatterq;_z(p’g) specifies the the inverse of the decay length of the transmission ampli-
detected position in a two-dimensional plane. Thus, the staude. In the region where the density of states is zero, it is
tistics of reflected intensities at various angles can be detepduivalent to the inverse of the decay length of the evanes-
mined by the statistics df (6)|?> when properly normalized. cent waves. In a region where the density of states is non-
The source is prepared by passing a plane wave through &®ro, it is equivalent to the inverse of the localization length
open slit in front of the sample. The width of the slit is about Of the localized states. In general, the Lyapunov exponent
20% smaller than the sample width to avoid the scattering a§an be defined abcexp(—2LA\) at the limit of infiniteL. For
the sample edges. The position of the slit is about two latticé finite-sized sample, the Lyapunov exponent may fluctuate
constants in front of the sample. In this case the incident fieldrom sample to sample due to the random occurrence of lo-
can be obtained from the Kirchoff integral formula. For acalized states inside the gap. Thus, it is convenient to study
plane wave, exK), incident fromx<0, the diffracted the variance of the Lyapunov exponent, i.e., %3k (\?)
wave in the regiorx>0 arising from a slit centered at the —<)\>2-11
origin with an opening of widttw in they direction is given For the frequencies inside the two gaps shown in Fig. 1,
by we have simulated the Lyapunov exponents from a sample of
size 101x 12 with 5000 different configurations for each fre-
Ko\ (w2 X quency. The average and its variance as a function of fre-
Uinc(xiy):(Z)J dy’| Ho(kop') +1—Hi(kop") |, quency are plotted in Fig. 2 as circles and squares, respec-
w2 p tively. Figures 2a) and 2b) represent the results with small
2) randomness witldr=0.2 and complete randomness, respec-
wherep’ =X+ (y—y’)?, andH,, is the Hankel function of tively.
the first kind. Such a method is a very efficient way of han-  In the case of complete randomn¢bgy. 2(b)], localized
dling the scattering problem of a finite sample containingstates appear everywhere inside the two gaps, as is evident
cylinders of circular cross sections in an arbitrary arrangefrom the fact that vai) #0 inside the gaps. Inside the high
ment, and this method is easy to realize in experiments. Thiequency gap, the density of states is sufficiently large that
detailed description of this method has been given in Ref. 2ahe dip in vard) disappears completely. Thus, the waves
lose their evanesent nature completely. All the states inside
1. NUMERICAL RESULTS AND DISCUSSION this gap belong to normal-type localized states. In the low
frequency gap, a residual dip persists due to the insufficient
In our calculations, a sample was chosen of widttand  density of states. The presence of a dip in this case signifies
thicknessL, denoted asVXx L. The source was prepared by the presence of residual evanescent waves. In the case of
passing a plane wave through an open slit in front of thesmall randomnes§Fig. 2(@)], localized states appear only
sample. In order to ensure sufficient angular resolution fonear the band edges of the two gaps resulting in a nonzero
the study of reflected statistic¥V should be sufficiently var(\). For frequencies well inside the gap, the density of
large. In all the calculations discussed bel®was chosen states remains zero and the wave propagation is purely eva-
to be 10&. In an ordered system, the transmission coeffi-nescent, independent of the configuration. This is indicated
cient T as a function of the renormalized frequenéy by a vanishing va). Thus, as a function of frequency,
(=wal2wc), for a sample of size 1047 along thel'-X  var(\) exhibits a dip inside each gap with two maxima lo-
direction is plotted in Fig. 1 as a solid line f&®=0.3a. cated near the band edges. The presence of such a dip actu-
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FIG. 2. Lyapunov exponertircles and its variancésquares
in the frequency ranges of the band gaps in Fig. 1 for the case

small randomnes&) and complete randomne€fs).
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§' FIG. 3. The reflected intensity distribution as a function of scat-
o3 tered angles for ordered photonic crystals of a square lattice with

R=0.3a ande=11.4 atf =0.44. The solid line is the ordered case;
the dashed line is the case of small randomness &ith0.2; the
dotted line is the case of complete randomness.

teresting to study the speckle statistics for both the Bragg
and the non-Bragg angles.

We first discuss the case of the non-Bragg angles. For
c#ach configuration, we calculate the intensity at ten different
angles between 160° and 170°. The process was repeated for
5000 configurations. The results of our simulations indicate
that the normalized speckle intensity distributi®l/{l))

ally signifies the presence of residual evanescent waves ifhat arises from the normal-type localized states follows
the system. The localized states lying outside the dip belongayleigh statistics. To show this, in Fig(a} we plot the

to the normal type, whereas those lying inside the dip belongormalized speckle intensity distributid®(1/(1)), for the

to the second type. Since the second type of localized statésllowing four frequencies:(i) f=0.220 (upper triangles
appear well inside the gaps, they have much smaller locakii) f=0.430(squaresfor the case of small randomnesi,)
ization lengths. Our results shown in Fig. 2 are very similarf =0.250(lower triangle$, and(iv) f =0.480(circles for the

to those found in one-dimensional caskdt should be case of complete randomness. The straight solid line denotes
pointed out that even in the case of complete randomness,

the density of the localized states inside the gaps is not con- 1
stant. This is indicated by the presence of a peak imear

the center of each gap shown in FighR A peak in\ im-

plies a dip in the decay length, which in turn implies a dip in 2
the density of states. Thus, complete randomization does not
wash out all the underlying features of the photonic crystal.
This is due to the presence of hard core repulsions among the
scatterers. In other words, systems possess certain short- i
range order even when they have been completely random-
ized. As a result of such short-range order as well as the the
presence of Mie resonances, some variations in the density of

states still remain.

Before we present the simulation results of the speckle
statistics in the reflection geometry, we show in Fig. 3 a
typical reflected intensity distribution as a function of scat-
tered angles in the absence of disorder for a normally inci-
dent wave at some frequency inside the gap. The large inten-
sity at #=180° is a result of Bragg scattering. The existence
of small oscillations at the non-Bragg angles is due to wave
diffraction as a result of the finite beam width of the incident
wave. For frequencies inside a pass band, the reflected inten-

P(l/<I>)

P(l/<1>)

l/<I>

sity will be much reduced as most of the waves can propa-
gate through the sample. When randomness is introduced, FIG. 4. P(1/{l)) as a function ol /(1) arising from(a) normal
the scattered waves can appear at any angle. Thus, it is itype localized states an®) the second type localized states.
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a simple exponential decay. It is clear that all distributions
follow Rayleigh statistics. Frequencies(in—(iii ) are located
outside the three dips shown in Fig. 2, but close to the lower
band edges. Whereas, the frequency(iin lies near the
middle of the second gap. In this case, the gap is completely
filled by localized states and the evanescent nature of the gap
is lost entirely. These results are in good agreement with the
prediction of random matrix theory.However, we find that - /

the distribution ofP(1/(1)) that arises from the second type 0.4 - ’ ]
of localized states exhibits a non-Rayleigh statistics. To show 5~ y
this, we plot in Fig. 4b) the functionP(1/{1)) for the fol- ’ A /
lowing three frequenciesi) f=0.244 for the case of small 0 % 4 oo +
randomnesgsquarey (i) f=0.445 for the case of small o 005 01 015 02 025
randomnesscircles, and(iii) f=0.275 for the case of com- dr/a

plete randomnesdriangles. Each frequency lies inside the

dip of var(\) shown in Fig. 2, but close to the lower band  FIG. 5. Speckle contrassC), o, /(I), as a function of disorder
edges. Clearly, they all exhibit non-Rayleigh statistics. Thefegree. The solid lincircle) and The dashed lin@iamond are for
deviation from the Rayleigh distribution is the largest in thethe residual field and the total field in the Bragg direction; Dotted

first gap when the randomness is small. This is also the cadig€ (Squaré and long-dashed lindriangulaj for the residual field
where the evanescent waves predominate and the total field in non-Bragg direction. The corresponding filled

Here, the interesting question to ask is how the transitiory ©'Nts are for the complete random case.
from the non-Rayleigh to the Rayleigh distribution occurs Mindicates that the phase randomization is not complete and

the statistics of the reflected speckle intensities. In order t%peckles are not completely developed. In this case, the dis-

study the crossover behavior, we have chosen a fixed fr ribution function of the residual field should be governed by
uency, sayf =0.44, in the second gap, and we have studie T PP .
q distributions.” This situation is more likely to occur when

the field distribution as a functlon of the_ degrge of_ dl_sorcqer.,[he system is excited by a single mode. In this case, the
In the case of completely disorder, the intensity distribution . ) . . ;
phase fluctuations in the residual field are mainly due to

is of Rayleigh type as |n<i|cated n F!g(kg. However, at those from the incoming mode, therefore making phase ran-
small randomness witldr=0.2, the distribution becomes domization difficult!®1°
non-Rayleigh as indicated in Fig(& omization cifficutt. = : .

) In our work, we find it convenient to adopt the theoretical

. In fa_ct,_the_ transition from the non-Raer_lgh fo the Ray'.tools used in Refs. 18 and 19 to analyze our simulation data.
leigh distributions has been observed in microwave experis

. " . .~ Thus, we write the complex fiel&(6) as the sum of the

ments on the crossover region of the ballistic to d'ﬁus'veavera e and the residual fields
wave propagation of transmitted wavé&dn this study, the g
authors separated the field into the averéggherent and E(0)=(E(6))+ SE(0), (3)
the residual(diffuse) parts and studied the amplitude and
phase distributions of both the residual and total fields. Whewvhere the angle brackets represent the ensemble average
sample thickness is smaller than the scattering mean freeover different disorder realizations. The coherent and re-
path, the presence of the large coherent part in the transmisidual intensities can be written dg=|(E(6))|? and | ¢
ted waves makes the total intensity distribution non-=|3E(6)|?, being the averaged total intensity)= (I cg
Rayleigh. WhenL increases to a few scattering mean free+1.. In this work, we will discuss the statistical properties
paths, it is expected that the Rayleigh distribution will beof both E(6) and SE(6).
restored due to the negligible contribution of the coherent In order to study the transition from the non-Rayleigh to
intensity. The RPS that considers the wave field as a sum dhe Rayleigh distributions in the reflected speckle intensities,
a circular random phasor and a constant coherent part witve first study the behavior of SC as a function of the degree
results derived from two kinds of diagrams has been successf disorder. For the non-Bragg angles, we calculate the scat-
fully used to describe the change in statistics in suchtered intensities at 20 different angles between 155° and
transitions:®2! However, in the ballistic limit when the co- 175° for each configuration. The process is repeated for 8000
herent part dominates, the amplitude distribution of the totatonfigurations. The sample width in all the calculations pre-
field was found to deviate slightly from the the Gaussiansented below is taken as 8a. For both the residual intensity
distribution predicted by the RPS. Nevertheless, it was founfilSC(l .9 ] and the total intensitySC(l)], our simulation re-
that the distribution of the residual field is close to the Gausssults show very similar behavior as a function of the degree
ian distribution. of disorder for different angles. However, as a function

Another interesting statistical quantity to be mentioned isangle, there exist some oscillations in the values ofISG(
the speckle contrastSC), which is defined as SCY  and SC() due to the presence of oscillations in the coherent
=0, /(1) [with e?=var(l)].1"*When SC is one, the inten- part. Here, we only show the behavior of $(z) and SC()
sity distribution is of the Rayleigh type. Deviation from one for the case o®=174° in Fig. 5 by open squares and open
implies a non-Rayleigh distribution. It has been pointed outriangles, respectively. It should be pointed out that the filled
that in the case of the residual field, a deviation from=3C square and filled triangle represent the case of complete ran-
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0.8 . fields. The same symbols will be used in all other cases
discussed below. Very little difference in the amplitude dis-

0.6 i tributions of the residual and total fields indicates a negli-
gible coherent component in this case. If we use the param-
Z o4 1 eterk=|(E(6))|/a [or k*=2a/(1—a) with a=1./{l)] to
<o

represent the amount of the coherent component in the re-
flected field!® the value ofk in this case is 0.242 according

to the simulation result. Since the phase distribution of the
residual field[circles in Fig. §b)] is constant, indicating a
complete randomization of the phase, the RPS should give a
good description of these data. The analytical distribution
functions for the amplitude and phase obtained from RPS
are, respectively/8

0.2

AZ+K?
P(AK)=Aexp — —5—|1o(AK) (4)
and
Blok) 1 k?\ kcosg
(p.k)=5—expg -+ +ﬁ
012 I I 1 1 1
-3 -2 -1 0 1 2 3 (ksin<p)2
-0, X exp{ — T) erf(k cosgp), (5)

FIG. 6. Distributions of the normalized amplitu¢® and phase ) . . ) .
(b) of the total field(squares and the residual fieldcircle) in the wherel o(x) is a modified Bessel function of the first kind of

non-Bragg direction for the completely random case VRth0.3 ~ Z€r0 order, and erX) is an error function. By using th?
andf=0.44. Solid lines and dotted lines are the theoretical predicSimulated value ok=0.24 in the above equations we obtain

tions using the random-phasor-sum model. two Solid |ineS in FIgS &) and qb) Indeed, they OVerlap
well with the simulated data of the total field. By takikg
domness. They do not represent the casdrof0.25. It is =0 in the above equations, we obtain two dashed lines. They

interesting to point out that the monotonic increase ofI$C( &lso agree well with the simulated data of the residual field.
as a function of the degree of disorder is similar to what had he dashed line in Fig.(6) represents Rayleigh statistics.
been found in the SC of the speckle pattern as a function ofhe presence of a small coherent component makes the total
surface roughnesg Also in Fig. 5, we show the correspond- intensity distribution very close to the Rayleigh distribution
ing results at the Bragg angle, i.#=180°, by circles and as indicated in Fig. @). Although the intensity distribution
diamonds. The large differences in SC between the Brag§f the total field is close to the Rayleigh distribution, its
and non-Bragg angles are obvious. We have also performeehase distribution is not completely random due to _the pres-
the simulation with an oblique incidence with an incident €nce of & small coherent component. Such a sensitive depen-
angle 45° to the surface normal of the sample. Similar result§ence of the phase distribution of the total field on the pres-
have been found. We also plot these results as crosses afiice Of a small coherent part has been also been observed in
pluses in Fig. 5. They completely overlap with the results oftransmitted waves}*? .

normal incidence. Thus, the statistical properties of the re- For the case of small randomness with=0.2, the cor-
flected speckle intensities do not depend on the angle dsponding results are shown in Figsaj7and 7b). In this
incident. Since the behaviors of S¢(and SC(,) are very ~case, the value dfis 1.70. Again, the RPS gives a very good
different for the Bragg angle and the non-Bragg angles, théescription of the simulated data. Due to the presence of a
statistical properties in these two cases will also be very diflarger coherent pator higher value ok), the distribution of

ferent. Thus, we will discuss these two cases separately. the total field[squares and the solid line in FigiJ] is very
different from that of the residual fieldlicircles and the

dashed line in Fig. @)]. The latter again has the Rayleigh
distribution due to the complete phase randomizatarles

In the non-Bragg direction, we again find that the statis-and the dashed line in Fig(l]. Thus, we find a deviation
tical properties of( ) and SE(6) are very similar at differ-  from Rayleigh statistics in the total field when randomness is
ent angles. Here, we také=174 as an example. For the reduced as indicated in Fig(h).
case of complete disorder, the distribution functions of the When the randomness is further reduced, in Fi¢s). &nd
normalized amplitudeA=E(6)/o and the phase of the re- 8(b), we show the results of the cade=0.1 In this case the
flected field are presented in Figgapand @b), respectively. value ofk is increased to 4.17. Compared to Fig. 7, very
Here 20°=(|E(6)|?)—|(E(6))|?. The symbols “squares” similar behavior is observed in Fig. 8 except that there exists
and “circles” denote the results of the total and residuala small angular dependence in the phase distribution of the

A. Statistics of the reflected field in the non-Bragg angles
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FIG. 8. Distributions of the normalized amplitu@® and phase
(b) of the total field(squaresand the residual fieldcircle) in the
FIG. 7. Distributions of the normalized amplitud® and phase non-Bragg direction for a small random system with=0.1, R
(b) of the total field(squares and the residual fieldcircle) in the =0.3, andf=0.44. Solid lines and dotted lines are the theoretical
non-Bragg direction for small random system withi=0.2, R predictions using the random-phasor-sum model.
=0.3, andf=0.44. Solid lines and dotted lines are the theoretical
predictions using the random-phasor-sum model.

0.8 \

residual field circles in Fig. 8b)]. Even the phase of the the
residual field is not completely randomized, and the distribu- 0.4t
tion of the total field still follows the prediction of the RPS.
The amplitude distribution of the residual field still obeyes ,
Rayleigh statistics. The validity of the RPS in the presence of 04 P N .
a small nonuniformity in the phase distribution of the re- ! 5
sidual field has also been reported in the transmitted o2 L ,¢
waves!819 S @ - A
Thus, in the case of non-Bragg angles, the crossover be-
havior from the non-Rayleigh to Rayleigh distributions as a 0 1 P 3 g
function of the degree of disorder is very similar to that of A
ballistic to diffusive wave propagation in transmitted waves.
The reason for such a similarity is rather simple. In our sys-
tem, the increase in randomness actually increases the den-
sity of the localized states in the system, which, in turn,
suppresses the evanescent nature of the wave propagation
and, therefore, increases the effective sample thickness for
the wave propagtion. In fact, our Figs. 6—8 are very similar
to Figs. 2 and 3 of Ref. 18. When the randomness is further
reduced fromdr=0.1, the value of SQ{ is reduced. How-
ever, the value of SCf,) remains close to 1. This seems to
indicate that the RPS is still valid and the amplitude distri-
bution of the residual field is the Rayleigh type. Indeed, this
is what we have found. In Fig. 9, we show various distribu-  FiG. 9. Distributions of the normalized amplitué® and phase
tion functions for the case afr=0.03. They are very similar  (b) of the total field(squaresand the residual fieldcircle) in the
to the case ofir=0.1 shown in Fig. 8, except that the phasenon-Bragg direction for small random system wiin=0.03, R
distribution of the residual field is a little bit more nonuni- =0.3, andf =0.44. Solid lines and dotted lines are the theoretical
form. The value ok in this case is 14.03. predictions using the random-phasor-sum model.

P(A)

0.3

] 0.15

245115-7



XIANGDONG ZHANG AND ZHAO-QING ZHANG PHYSICAL REVIEW B 65 245115

0.8"'|"|"| LI — 0.8 —
0.8 B A
L (@2 r 4
0.6 0.6 "‘,-‘/1 @.:.\ — 0.6 F O i
G Lo NI - 0o
— — Q 5 o 04+ 4
< 04 Soar p : 1
& = 8, oz ]
i
I oy o
; N 0 =
0.2 02 4 @ N, 12 14 16 18
H ""-Q A
0 | I @@ﬂﬂ £
0 0 1 2 3 4 5
A
o5 ———r—7 77
04 (b)
1 =
> 03 . o
o
02 |
o - e -O- -G 15 G2 -0- G-y
01 .
0 1 1 1
i e, 0 1 2 3

o0, FIG. 11. Distributions of the normalized amplitude) and
phaseb) of the total field(squaresand the residual fiel¢circle) in
FIG. 10. Distributions of the normalized amplitude) and  the Bragg direction for small random system withi=0.2, R
phase(b) of the total field(squaresand the residual fiel(circle) in =0.3, andf=0.44. The results of the total field are presented in the
the Bragg direction for small random system with=0.2, R inset of (b). Solid lines and dotted lines are the theoretical predic-
=0.3, andf =0.44. The results of the total field are presented in thetions using the random-phasor-sum model.
inset of (b). Solid lines and dotted lines are the theoretical predic-
tions using the random-phasor-sum model. When the disorder is reduced, we see that the value of
SC(l 9 increases monotonously, whereas the value ofl 5C(
. . . ... decreases rapidlgFig. 5. Since SCl,.9>1, it is expected
Here, we would like to emphasize again that the validity,, . o 2 mpjitude distribution of theerS)esiduaI field will devi-
of the RPS shclan. n F|gs. 6_9.“88 |n.the cerFa|n degree o te from the Rayleigh distribution. This is indeed what we
phase randomization in the residual field. This can also bﬂave found. In Fig. 11, we show that results for the case of
seen from the closeness of the value of BG(to one as 4. _ > A clear deviation in the circles from the dashed line
indicated in Fig. S(squares This is also the reason that all i, Fig 11a) can be seen. This deviation is also reflected

the amplitude distributions of the residual fieldircles g0 the much larger nonuniformity in the phase distribution
found in Figs. 6a)-9(a) are close to the Rayleigh distribu- ¢ yhe residual field as indicated by the circles in Fig(t)d

tion (dashed ling However, this is not true for the Bragg gjmilar behavior has been seen in the transmitted waves and
angle. In Fig. 5, the values of SIi{J are much greater than s aitrinyted to the incomplete randomization of the phase in
one except in the case of complete randomness. Thus, it {§¢ yesidual field so that the speckle pattern is not completely
expected that the RPS will fail to describe the case of thgje,loped? In this case, the RPS cannot describe the statis-
Bragg angle when randomness is small. tical distribution of the total field. Indeed, in the inset of Fig.
11(a), we see large deviations between the simulated data
(squarep and the predication of Eq4) (the solid ling, al-
though certain agreement between the two in the phase dis-
In contrast to the case of the non-Bragg angle, the statigribution remains, i.e., the agreement between the squares
tical distributions in the Bragg angle are more complicatedand the solid line in Fig. I(b). The value ok in this case is
For the case of complete randomness, the results are shows.36, indicating a large coherent component in the total
in Fig. 10. It is clear that the RPS is still valid in this case.field. It is interesting to point out that the value &f
This is not surprising from the small values lof£2.07 and (=15.36) in this case is not very different from that in the
SC(le9=~1 (filled circles in Fig. 5. It is also clear that, even case of non-Bragg angles wittr=0.1, i.e.,k=14.03. Both
for the case of complete randomness, the amplitude distribieases show a large coherent part in the scattered intensities.
tion of the total field is not a Rayleigh distribution. This is However, their values of ST(J are very different. As will
due to the presence of a large coherent component in thge discussed later, the large value of §G) in the case of
total field, which also makes the value of 3Cémaller than the Bragg angle is due to the single mode excitation,
one as shown by the filled diamonds in Fig. 5. whereas, this is not the case for the non-Bragg angles.

B. Statistics of the reflected field in the Bragg angle
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The very different behaviors found in Figs. 5-12 between
the Bragg and the non-Bragg angles can be understood in the
following way. In the case of the Bragg angle, the coherent
part of the reflected field comes from the “mirror” reflection
of the incident wave. From Fig. 3, it is clear that the domi-
nant part of the incident wave is a plane wave. This is similar
to the case of the single-mode incoming wave discussed in
Ref. 19. For single mode incident, it has been pointed out
that the fluctuations of the field in the incident mode are
much larger than those of the other modes. As a result, a
departure from Rayleigh statistics in the intensity of the re-
sidual field would be expectéfl. Thus, large values of

8 ' ' 0.4 SC(l.9 have been found in the case of the Bragg angle.
(b) However, this is not true for the non-Bragg angles. In this

6 0 EJ O ——- 03 case the coherent part of the field is a result of wave diffrac-
—t tion due to the finite beam width of the incident wave. It

appears with small intensity and angular fluctuations in Fig.
3. Thus, for the non-Bragg angles, the phase randomization
of the residual field is very easily achieved even with the
presence of small randomness. This is why the value of
SC(l 9 is always close to one, independent of the random-
ness. Here, we would like to mention that, for the case of
complete randomness, the structure of the coherent back-
scattering cone has been studied receftfy.Since, in this

FIG. 12. Distributions of the normalized amplituc(a) and case, SGO is also close to one, the coherent part of the
phase(b) of the total field(squaresand the residual fieltcircle) in - jntensity becomes negligible in the scattered waves. A com-
the Bragg direction for small random system withi=0.1, R plete phase randomization without a coherent part indicates
=0.3, andf =0.44. The results of the total field are presented in thei ot the wave propagation near the input surface can be de-
ipset of(b). Solid lines and dotted lines are the theoretical predic'scribed by a diffusive propagation with the localization
tions using the random-phasor-sum model. length as the upper cutoff length. In fact, it has been shown
that such a simple description is capable of explaining the

It has been suggested that when=8T; one can us&  giyycture of the coherent backscattering cone obtained by nu-
distribution to describe the amplitude distribution of the re-yerical simulationg®

sidual field. When SC approaches one, the Rayleigh distribu-

tion is recovered. Th& distribution was derived to describe

the satistics of the partially developed speckle intensities and V. CONCLUSIONS
has the form”1°

By using the multiple-scattering method, we have studied
in detail the statistics of the reflected speckle intensities aris-

>N I
P(A)= 2y2M (MAZ . 2K (AV2M) 6) ing from the localized states inside the gap of disordered
rmm)\ 2 M-1 ’ photonic crystals in two dimensions. We have also studied

the statistics of the Lyapunov exponent of the transmitted
whereK ,(x) is the modified Bessel function of the second waves. Similar to the case of disordered photonic crystals in
kind of orderv and 2M =SC(l 92— 1. Using the value of one dimension, two types of localized states are found de-
SC(l,e9=1.18 in Eq.(6), we obtain theK distribution and  pending on the degree of disorder, and the frequency inside
plot it as the dotted line in Fig. 14). The excellent agree- the gap. Our simulation results indicate that the reflection
ment between the dotted line and the circles indicates thstatistics depend on whether or not the localized states are
validity of the K distribution. the normal type. They also depend on whether or not the
In Fig. 12, we show the results for the casedo=0.1. In  reflected angles are in the Bragg angle. For the non-Bragg
this case, SQ(.9=1.34. A clear deviation from th& dis-  angles, we found that the intensity distribution arising from
tribution is seen in Fig. 1@), in which the dotted line does the normal-type localized states follows Rayleigh statistics,
not overlap with the circles. In this case, the phase distribuin agreement with random matrix theory. However, the de-
tion of the residual field, i.e, the circles in Fig. (b2, is far  viations from Rayleigh statistics were found for the case of
from randomized and has two sharp peaks on each side thie second type of localized states.
the phase of the coherent field. It should be pointed out that The crossover behavior from non-Rayleigh to Rayleigh
the total field is predominated by the coherent wave and onlgtatistics were studied as a function of the degree of disorder
0.1% of the total intensity comes from the scattered fieldat some fixed frequency inside the gap. By separating the
Finally, we would like to point out we have repeated thefield into the coherent and diffuse parts, we have studied the
calculations for the case of oblique incidence. The results arstatistics of field and phase distributions for both diffuse and
similar to the case of normal incidence shown in Figs. 6—12total fields as well as their speckle contrasts. It is found that
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the crossover behavior is very similar to behavior ofdifferent behaviors between the Bragg and non-Bragg angles

ballistic-to-diffusive wave propagation for transmitted wavesare because the Bragg angle reflection is a result of single-

and can be described by the RPS. mode excitation, whereas, this is not true for true for non-
For the case of the Bragg scattering angle, the nonBragg angles.

Rayleigh statistics are found for both kinds of localized

states. Furthermore, the statisics are sensitive to the degree of

disorder. The RPS is valid only at large randomness. As the

randomness is reduced, thedistribution becomes a valid

description of the residual field. When the randomness is This work was supported by Hong Kong Research Grants

further reduced, even thédistribution becomes invalid. The Council Grant No. HKUST 6163/01P.
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