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Non-Rayleigh distribution of reflected speckle intensities from localized states inside the gap
of disordered photonic crystals
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The field distributions of reflected speckles arising from localized states inside the gap of disordered pho-
tonic crystals in two dimensions were studied through numerical simulations using the multiple-scattering
method. The statistics of the Lyapunov exponent of the transmitted waves were also studied. Similar to the case
of disordered photonic crystals in one dimension, two types of localized states were found depending on the
degree of disorder and the frequency inside the gap. Our simulation results indicate that the reflection statistics
depend on whether or not the localized states are of the normal type. They also depend on whether the reflected
angles are in the Bragg direction or not. For the non-Bragg angles, we found that the intensity distribution
arising from the normal-type localized states follows Rayleigh statistics, in agreement with random matrix
theory. However, deviations from Rayleigh statistics were found for second type of localized states. The
crossover behavior from non-Rayleigh to Rayleigh statistics was studied as a function of the degree of disorder.
By separating the field into coherent and diffuse parts, we have studied the statistics of field and phase
distributions for both diffuse and total fields as well as their speckle contrasts. It is found that the crossover
behavior is very similar to behavior in ballistic to diffusive wave propagation for the transmitted waves and can
be described by the random-phasor-sum model~RPS!. For the Bragg angle, non-Rayleigh statistics were found
for both kinds of localized states. The statisics are sensitive to the degree of disorder. It is found that both the
RPS andK distribution have limited ranges of validity in this case.

DOI: 10.1103/PhysRevB.65.245115 PACS number~s!: 42.25.Bs, 72.15.Rn, 42.25.Dd
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I. INTRODUCTION

In the past few years, the scattering of both classical
quantum waves from random media has been the focu
intensive study.1 A wave undergoes multiple scatterings d
to the presence of imhomogenieties or impurities as it pro
gates through a random medium. As a result, the scatt
intensities become highly irregular. Those speckle patt
should be described in statistical terms. There has been
siderable study of the statistics of transmitted speckle in
sities in random media.1–9 It is well known that, in the ab-
sence of interference, transmitted speckle intensities fol
Rayleigh statistics~a negative exponential law!. The pres-
ence of interference always produces an anomalous expo
tial tail.3–5 In a strong scattering medium, the distributio
can cross over to lognormal behavior when waves beco
localized.8,9 Thus, a strong deviation from Rayleigh statisti
is an indication of localization.

Recently, interest has shifted to studying speckle inten
distributions in reflection geometry. Contrary to the intens
of transmitted speckles, random matrix theory has predic
that, in a waveguide with large number of channels, the
tensity of reflected speckles follows Rayleigh statistics e
in the localized regime.10 In other words, the characteristic
of localized states present in a random medium are not
tured in reflection statistics. This result is rather interestin

The physical origin of these two distinct transmission a
reflection behaviors may be understood in the following w
Consider a localized sample with a thickness larger than
localization length. In the transmission case, since mos
the incident waves are reflected due to wave localization,
0163-1829/2002/65~24!/245115~10!/$20.00 65 2451
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transmitted waves that appear at the surface have, in l
part, been mediated by some localized state located nea
center of the sample. These waves experience many re
rent scatterings around the localized state and have long
lengths. Because of the large spatial intensity fluctuation
the localized state, the transmitted speckles show large in
sity fluctuations, leading to a distribution that is very diffe
ent from Rayleigh statistics. However, the situation is diffe
ent in the reflection case. Since the source is close to
input surface~a distance on the order of the scattering me
free path!, the dominant contributions to the reflected spec
intensities actually come from waves that have shorter p
lengths. These multiply scattered waves do not self-inters
and, therefore, show no interference effects. Any waves w
longer path lengths that can probe a localized state thro
recurrent scatterings now carry a much smaller weight in
reflected intensity. Thus, in the reflection geometry, the ch
acteristics of localized states are completely overwhelmed
the presence of nonintersecting paths and, therefore, ca
be captured in the reflection statistics.

The localized states discussed above are the normal-
localized states, i.e., the Anderson localized states, which
caused by the interference effects in strongly scatter
media.1 However, it has been shown that there is anot
type of localized states lying inside the band gaps of dis
dered photonic crystals.11,12 Photonic crystals themselve
have attracted a lot of attention in recent years.11–16 For fre-
quencies inside a band gap, waves are evanescent and c
propagate in those crystals. When disorder is introduced
calized states can appear inside a gap and, therefore, re
the size of the gap.14–16 With the increase of the degree o
disorder, more localized states appear in the gap. When
©2002 The American Physical Society15-1
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XIANGDONG ZHANG AND ZHAO-QING ZHANG PHYSICAL REVIEW B 65 245115
density of states is sufficiently large, the gap may be
stroyed completely and the wave propagation may lose
evanescent nature for the entire gap. Thus, a disordered
tonic crystal is a good system for studying strong localizat
states. Recent investigation of transport behavior in dis
dered photonic crystal in one dimension shows that there
exist two types of localized states inside a band gap.11,12 In
the case of large disorder, all the states inside the gap be
to the normal-type localized states, satisfying the sing
parameter scaling theory.13 However, when the disorder i
small, the localized states well inside a gap do not satisfy
single-parameter scaling theory due to the residual eva
cent nature of the waves. The spatial extent of such local
states are, in general, smaller than that of the normal ty
Although the existence of two types of localized states
only established in one dimension, it is expected that thi
also true in higher dimensions. In fact, the strongly localiz
states have been observed inside the gap of disordered
tonic crystals in both two and three dimensions.15,16

A natural question to ask is what would be the statistics
the reflected speckles arising from the second type of lo
ized state? In order to answer this interesting question, in
work, by using the multiple-scattering method, we have c
ried out extensive numerical simulations of the reflec
speckles which are produced by the localized states in
the gap of two-dimensional disordered photonic crystals
order to establish the existence of two types of localiz
states in two dimensions, we have also studied the stati
of the Lyapunov exponent of the transmitted waves. Sim
to the case of one dimension, two types of localized sta
were found depending on the degree of disorder and the
quency position inside the gap. Indeed, our simulation res
of reflected speckles indicate that the reflection statistics
pend on whether or not the localized states are of the nor
type. They also depend on whether or not the reflected an
are in the Bragg direction. In non-Bragg angles, we fou
that the intensity distribution arising from the normal-ty
localized states follows Rayleigh statistics, in agreem
with random matrix theory.10 However, deviations from Ray
leigh statistics were found in the case of the second typ
localized states.

In order to understand the crossover behavior from a n
Rayleigh to Rayleigh statistics, we have studied the cha
in statistics as a function of the degree of disorder at a fi
frequency inside the band gap. By separating the field
the average~coherent! and residual~diffuse! parts, we have
studied the statistics of field and phase distributions for b
diffuse and total fields. It is found that their statistics can
described by a random-phasor-sum~RPS! model.17–19 We
have also studied the speckle contrast~SC! for both
parts.17,19All these results indicate that the crossover beh
ior from a non-Rayleigh to Rayleigh statistics is very simi
to that of ballistic to diffusive wave propagation in transm
ted waves. However, for the Bragg angle, only non-Rayle
statistics were found for both types of localized states. T
is a result of single mode exciation with a large coherent p
in the Bragg scattering angle. The reflection statisics are
sitive to the degree of disorder. At large randomness,
statistics of both the average and residual fields can be
24511
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scribed by the RPS. When the degree of randomness is
duced, it is found that the RPS cannot describe the distr
tion of both fields. However, the residual field can
described byK distribution as a result of incomplete pha
randomization.19 As the randomness is further reduced, w
find that evenK distribution fails to describe the distributio
of the residual field.

The rest of this paper is arranged as follows. In Sec. II,
define the system and introduce the method of numer
simulation. The results and discussion are described in
III. A conclusion is given in Sec. IV.

II. SYSTEM AND METHOD OF SIMULATION

The two-dimensional~2D! photonic crystals considere
here consist of a square array of dielectric cylinders in an
background. The cylinders have the same radiusR and di-
electric constante511.4. The Maxwell equation for the
s-polarized waves takes the form@c22v2e(rW)1¹2#E(rW)
50, whereE(rW) is the electric field along the cylinder axi
ande(rW) is the position-dependent dielectric constant. It h
been shown that complete gaps exist for a certain rang
R/a, wherea is the lattice constant.13

Disordered photonic crystals were produced by rando
izing an ordered one. The degree of randomness was
trolled. Consider two cases: small randomness and comp
randomness. For the case of complete randomness,
sample was produced by randomly altering the position
each cylinder within a distance (a22R)/2. The procedure
was repeated 1000 times to ensure complete randomiza
A move was forbidden if two cylinders overlapped. For t
case of small randomness, each cylinder was moved
domly, but only once within a range@2dr,dr#, wheredr
,(a22R)/2.

The transmission, reflection, and scattering properties
the disordered photonic crystals were calculated using
multiple-scattering method.20 The multiple scattering method
is best suited for a finite collection of cylinders with a co
tinuous incident wave of fixed frequency. For circular cyli
ders, the scattering property of the individual cylinder can
obtained analytically, relating the scattered fields to the in
dent fields. The total field, which includes the incident pl
the multiple-scattered field, can then be obtained by solv
a linear system of equations, whose size is proportiona
the number of cylinders in the system. Both near field and
field radiation patterns can be obtained straightforwardly.
two dimensions, we note that there exist straight rows
cylinders in both thex andy directions. The reflected inten
sities in the far field can be expressed asI (u)5u f (u)u2/r,
where

f ~u!5A 2

pk0
e2 ip/4(

i 51

N

(
m52M

M

e2 ik0r i cos(u i2u)

~2 i !meimuBm~ i !. ~1!

HereBm( i ) represent the expansion coefficients of the ra
ated waves at thei th cylinder, which is determined by th
self-consistent equation described in Ref. 20.k05v/c, and
5-2
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NON-RAYLEIGH DISTRIBUTION OF REFLECTED . . . PHYSICAL REVIEW B65 245115
rW i5(r i ,u i) denote the site coordinates of thei th scatterer.

M5`, N is the amount of scatterer.rW [(r,u) specifies the
detected position in a two-dimensional plane. Thus, the
tistics of reflected intensities at various angles can be de
mined by the statistics ofu f (u)u2 when properly normalized
The source is prepared by passing a plane wave throug
open slit in front of the sample. The width of the slit is abo
20% smaller than the sample width to avoid the scatterin
the sample edges. The position of the slit is about two lat
constants in front of the sample. In this case the incident fi
can be obtained from the Kirchoff integral formula. For
plane wave, exp(ik0x), incident from x,0, the diffracted
wave in the regionx.0 arising from a slit centered at th
origin with an opening of widthw in they direction is given
by

uinc~x,y!5S k0

4 D E
2w/2

w/2

dy8FH0~k0r8!1 i
x

r8
H1~k0r8!G ,

~2!

wherer85Ax21(y2y8)2, andHm is the Hankel function of
the first kind. Such a method is a very efficient way of ha
dling the scattering problem of a finite sample contain
cylinders of circular cross sections in an arbitrary arran
ment, and this method is easy to realize in experiments.
detailed description of this method has been given in Ref.

III. NUMERICAL RESULTS AND DISCUSSION

In our calculations, a sample was chosen of widthW and
thicknessL, denoted asW3L. The source was prepared b
passing a plane wave through an open slit in front of
sample. In order to ensure sufficient angular resolution
the study of reflected statistics,W should be sufficiently
large. In all the calculations discussed below,W was chosen
to be 101a. In an ordered system, the transmission coe
cient T as a function of the renormalized frequencyf
(5va/2pc), for a sample of size 10137 along theG-X
direction is plotted in Fig. 1 as a solid line forR50.3a.

FIG. 1. Transmission coefficients for ordered and disorde
photonic crystals represented by a square lattice with dielectric
inders of radiusR50.3a ande511.4. The solid line is the ordere
case; the dashed line is the case of small randomness withdr
50.2; dotted line is the case of complete randomness.
24511
a-
r-

an
t
at
e
ld

-

-
e

0.

e
r

-

There exist two gaps for frequencies belowf 50.6. Inside
these two gaps, the wave propagation is evanescent in na

When randomness is introduced, localized states may
pear inside the gap and the gap size reduces accordingl
the case of small randomness withdr50.2, the transmission
spectrum of one particular random configuration is shown
a dashed line in Fig. 1. Inside each gap, there is a peak
the lower band edge. This indicates the existence of so
localized states at the peak frequencies. The presence o
calized states reduces the size of a gap and, therefore,
presses the evanescent nature of the waves inside the g

In the case of complete randomness, the transmis
spectrum of one particular random configuration is shown
a dotted line in Fig. 1. In this case, more localized sta
appear deeper inside the gap. As a result, the first ga
further reduced, whereas the second gap is now comple
destroyed and the wave propagation loses its evanescen
ture.

A quantitative way to correlate the effects of randomne
on the evanescence of waves is to study the statistics o
Lyapunov exponent.11 A Lyapunov exponentl is defined as
the inverse of the decay length of the transmission am
tude. In the region where the density of states is zero, i
equivalent to the inverse of the decay length of the evan
cent waves. In a region where the density of states is n
zero, it is equivalent to the inverse of the localization leng
of the localized states. In general, the Lyapunov expon
can be defined asT}exp(22Ll) at the limit of infiniteL. For
a finite-sized sample, the Lyapunov exponent may fluctu
from sample to sample due to the random occurrence of
calized states inside the gap. Thus, it is convenient to st
the variance of the Lyapunov exponent, i.e., var(l)5^l2&
2^l&2.11

For the frequencies inside the two gaps shown in Fig
we have simulated the Lyapunov exponents from a sampl
size 101312 with 5000 different configurations for each fre
quency. The averagel and its variance as a function of fre
quency are plotted in Fig. 2 as circles and squares, res
tively. Figures 2~a! and 2~b! represent the results with sma
randomness withdr50.2 and complete randomness, resp
tively.

In the case of complete randomness@Fig. 2~b!#, localized
states appear everywhere inside the two gaps, as is ev
from the fact that var(l)Þ0 inside the gaps. Inside the hig
frequency gap, the density of states is sufficiently large t
the dip in var(l) disappears completely. Thus, the wav
lose their evanesent nature completely. All the states ins
this gap belong to normal-type localized states. In the l
frequency gap, a residual dip persists due to the insuffic
density of states. The presence of a dip in this case sign
the presence of residual evanescent waves. In the cas
small randomness@Fig. 2~a!#, localized states appear onl
near the band edges of the two gaps resulting in a non
var(l). For frequencies well inside the gap, the density
states remains zero and the wave propagation is purely
nescent, independent of the configuration. This is indica
by a vanishing var(l). Thus, as a function of frequency
var(l) exhibits a dip inside each gap with two maxima l
cated near the band edges. The presence of such a dip

d
l-
5-3
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XIANGDONG ZHANG AND ZHAO-QING ZHANG PHYSICAL REVIEW B 65 245115
ally signifies the presence of residual evanescent wave
the system. The localized states lying outside the dip bel
to the normal type, whereas those lying inside the dip bel
to the second type. Since the second type of localized st
appear well inside the gaps, they have much smaller lo
ization lengths. Our results shown in Fig. 2 are very sim
to those found in one-dimensional cases.11 It should be
pointed out that even in the case of complete randomn
the density of the localized states inside the gaps is not c
stant. This is indicated by the presence of a peak inl near
the center of each gap shown in Fig. 2~b!. A peak inl im-
plies a dip in the decay length, which in turn implies a dip
the density of states. Thus, complete randomization does
wash out all the underlying features of the photonic crys
This is due to the presence of hard core repulsions among
scatterers. In other words, systems possess certain s
range order even when they have been completely rand
ized. As a result of such short-range order as well as the
presence of Mie resonances, some variations in the densi
states still remain.

Before we present the simulation results of the spec
statistics in the reflection geometry, we show in Fig. 3
typical reflected intensity distribution as a function of sc
tered angles in the absence of disorder for a normally in
dent wave at some frequency inside the gap. The large in
sity atu5180° is a result of Bragg scattering. The existen
of small oscillations at the non-Bragg angles is due to w
diffraction as a result of the finite beam width of the incide
wave. For frequencies inside a pass band, the reflected in
sity will be much reduced as most of the waves can pro
gate through the sample. When randomness is introdu
the scattered waves can appear at any angle. Thus, it i

FIG. 2. Lyapunov exponent~circles! and its variance~squares!
in the frequency ranges of the band gaps in Fig. 1 for the cas
small randomness~a! and complete randomness~b!.
24511
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teresting to study the speckle statistics for both the Bra
and the non-Bragg angles.

We first discuss the case of the non-Bragg angles.
each configuration, we calculate the intensity at ten differ
angles between 160° and 170°. The process was repeate
5000 configurations. The results of our simulations indic
that the normalized speckle intensity distributionP(I /^I &)
that arises from the normal-type localized states follo
Rayleigh statistics. To show this, in Fig. 4~a!, we plot the
normalized speckle intensity distributionP(I /^I &), for the
following four frequencies:~i! f 50.220 ~upper triangles!,
~ii ! f 50.430~squares! for the case of small randomness,~iii !
f 50.250~lower triangles!, and~iv! f 50.480~circles! for the
case of complete randomness. The straight solid line den

of

FIG. 3. The reflected intensity distribution as a function of sc
tered angles for ordered photonic crystals of a square lattice
R50.3a ande511.4 atf 50.44. The solid line is the ordered cas
the dashed line is the case of small randomness withdr50.2; the
dotted line is the case of complete randomness.

FIG. 4. P(I /^I &) as a function ofI /^I & arising from~a! normal
type localized states and~b! the second type localized states.
5-4
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NON-RAYLEIGH DISTRIBUTION OF REFLECTED . . . PHYSICAL REVIEW B65 245115
a simple exponential decay. It is clear that all distributio
follow Rayleigh statistics. Frequencies in~i!–~iii ! are located
outside the three dips shown in Fig. 2, but close to the lo
band edges. Whereas, the frequency in~iv! lies near the
middle of the second gap. In this case, the gap is comple
filled by localized states and the evanescent nature of the
is lost entirely. These results are in good agreement with
prediction of random matrix theory.10 However, we find that
the distribution ofP(I /^I &) that arises from the second typ
of localized states exhibits a non-Rayleigh statistics. To sh
this, we plot in Fig. 4~b! the functionP(I /^I &) for the fol-
lowing three frequencies:~i! f 50.244 for the case of sma
randomness~squares!, ~ii ! f 50.445 for the case of sma
randomness~circles!, and~iii ! f 50.275 for the case of com
plete randomness~triangles!. Each frequency lies inside th
dip of var(l) shown in Fig. 2, but close to the lower ban
edges. Clearly, they all exhibit non-Rayleigh statistics. T
deviation from the Rayleigh distribution is the largest in t
first gap when the randomness is small. This is also the c
where the evanescent waves predominate.

Here, the interesting question to ask is how the transit
from the non-Rayleigh to the Rayleigh distribution occurs
the statistics of the reflected speckle intensities. In orde
study the crossover behavior, we have chosen a fixed
quency, sayf 50.44, in the second gap, and we have stud
the field distribution as a function of the degree of disord
In the case of completely disorder, the intensity distribut
is of Rayleigh type as indicated in Fig. 2~b!. However, at
small randomness withdr50.2, the distribution become
non-Rayleigh as indicated in Fig. 2~a!.

In fact, the transition from the non-Rayleigh to the Ra
leigh distributions has been observed in microwave exp
ments on the crossover region of the ballistic to diffus
wave propagation of transmitted waves.18 In this study, the
authors separated the field into the average~coherent! and
the residual~diffuse! parts and studied the amplitude an
phase distributions of both the residual and total fields. W
sample thicknessL is smaller than the scattering mean fr
path, the presence of the large coherent part in the trans
ted waves makes the total intensity distribution no
Rayleigh. WhenL increases to a few scattering mean fr
paths, it is expected that the Rayleigh distribution will
restored due to the negligible contribution of the coher
intensity. The RPS that considers the wave field as a sum
a circular random phasor and a constant coherent part
results derived from two kinds of diagrams has been succ
fully used to describe the change in statistics in su
transitions.18,21 However, in the ballistic limit when the co
herent part dominates, the amplitude distribution of the to
field was found to deviate slightly from the the Gauss
distribution predicted by the RPS. Nevertheless, it was fo
that the distribution of the residual field is close to the Gau
ian distribution.

Another interesting statistical quantity to be mentioned
the speckle contrast~SC!, which is defined as SC(I )
5s I /^I & @with s I

2[var(I )].17,19 When SC is one, the inten
sity distribution is of the Rayleigh type. Deviation from on
implies a non-Rayleigh distribution. It has been pointed
that in the case of the residual field, a deviation from SC51
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indicates that the phase randomization is not complete
speckles are not completely developed. In this case, the
tribution function of the residual field should be governed
K distributions.19 This situation is more likely to occur whe
the system is excited by a single mode. In this case,
phase fluctuations in the residual field are mainly due
those from the incoming mode, therefore making phase r
domization difficult.18,19

In our work, we find it convenient to adopt the theoretic
tools used in Refs. 18 and 19 to analyze our simulation d
Thus, we write the complex fieldE(u) as the sum of the
average and the residual fields

E~u!5^E~u!&1dE~u!, ~3!

where the angle brackets represent the ensemble ave
over different disorder realizations. The coherent and
sidual intensities can be written asI c5u^E(u)&u2 and I res
5udE(u)u2, being the averaged total intensity^I &5^I res&
1I c . In this work, we will discuss the statistical propertie
of both E(u) anddE(u).

In order to study the transition from the non-Rayleigh
the Rayleigh distributions in the reflected speckle intensit
we first study the behavior of SC as a function of the deg
of disorder. For the non-Bragg angles, we calculate the s
tered intensities at 20 different angles between 155°
175° for each configuration. The process is repeated for 8
configurations. The sample width in all the calculations p
sented below is taken as 8a. For both the residual inten
@SC(I res)# and the total intensity@SC(I )#, our simulation re-
sults show very similar behavior as a function of the deg
of disorder for different angles. However, as a functi
angle, there exist some oscillations in the values of SC(I res)
and SC(I ) due to the presence of oscillations in the coher
part. Here, we only show the behavior of SC(I res) and SC(I )
for the case ofu5174° in Fig. 5 by open squares and op
triangles, respectively. It should be pointed out that the fil
square and filled triangle represent the case of complete

FIG. 5. Speckle contrast~SC!, s I /^I &, as a function of disorder
degree. The solid line~circle! and The dashed line~diamond! are for
the residual field and the total field in the Bragg direction; Dott
line ~square! and long-dashed line~triangular! for the residual field
and the total field in non-Bragg direction. The corresponding fil
points are for the complete random case.
5-5
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XIANGDONG ZHANG AND ZHAO-QING ZHANG PHYSICAL REVIEW B 65 245115
domness. They do not represent the case ofdr50.25. It is
interesting to point out that the monotonic increase of SCI )
as a function of the degree of disorder is similar to what
been found in the SC of the speckle pattern as a functio
surface roughness.17 Also in Fig. 5, we show the correspond
ing results at the Bragg angle, i.e.,u5180°, by circles and
diamonds. The large differences in SC between the Br
and non-Bragg angles are obvious. We have also perfor
the simulation with an oblique incidence with an incide
angle 45° to the surface normal of the sample. Similar res
have been found. We also plot these results as crosses
pluses in Fig. 5. They completely overlap with the results
normal incidence. Thus, the statistical properties of the
flected speckle intensities do not depend on the angle
incident. Since the behaviors of SC(I ) and SC(I res) are very
different for the Bragg angle and the non-Bragg angles,
statistical properties in these two cases will also be very
ferent. Thus, we will discuss these two cases separately

A. Statistics of the reflected field in the non-Bragg angles

In the non-Bragg direction, we again find that the sta
tical properties ofE(u) anddE(u) are very similar at differ-
ent angles. Here, we takeu51740 as an example. For th
case of complete disorder, the distribution functions of
normalized amplitudeA5E(u)/s and the phase of the re
flected field are presented in Figs. 6~a! and 6~b!, respectively.
Here 2s25^uE(u)u2&2u^E(u)&u2. The symbols ‘‘squares’
and ‘‘circles’’ denote the results of the total and residu

FIG. 6. Distributions of the normalized amplitude~a! and phase
~b! of the total field~squares! and the residual field~circle! in the
non-Bragg direction for the completely random case withR50.3
and f 50.44. Solid lines and dotted lines are the theoretical pre
tions using the random-phasor-sum model.
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fields. The same symbols will be used in all other ca
discussed below. Very little difference in the amplitude d
tributions of the residual and total fields indicates a neg
gible coherent component in this case. If we use the par
eter k5u^E(u)&u/s @or k252a/(12a) with a5I c /^I &] to
represent the amount of the coherent component in the
flected field,18 the value ofk in this case is 0.242 accordin
to the simulation result. Since the phase distribution of
residual field@circles in Fig. 6~b!# is constant, indicating a
complete randomization of the phase, the RPS should gi
good description of these data. The analytical distribut
functions for the amplitude and phase obtained from R
are, respectively,17,18

P~A,k!5A expS 2
A21k2

2 D I 0~Ak! ~4!

and

P~w,k!5
1

2p
expS 2

k2

2 D1
k cosw

A2p

3expS 2
~k sinw!2

2 Derf~k cosw!, ~5!

whereI 0(x) is a modified Bessel function of the first kind o
zero order, and erf(x) is an error function. By using the
simulated value ofk50.24 in the above equations we obta
two solid lines in Figs. 6~a! and 6~b!. Indeed, they overlap
well with the simulated data of the total field. By takingk
50 in the above equations, we obtain two dashed lines. T
also agree well with the simulated data of the residual fie
The dashed line in Fig. 6~a! represents Rayleigh statistic
The presence of a small coherent component makes the
intensity distribution very close to the Rayleigh distributio
as indicated in Fig. 4~a!. Although the intensity distribution
of the total field is close to the Rayleigh distribution, i
phase distribution is not completely random due to the pr
ence of a small coherent component. Such a sensitive de
dence of the phase distribution of the total field on the pr
ence of a small coherent part has been also been observ
transmitted waves.18,19

For the case of small randomness withdr50.2, the cor-
responding results are shown in Figs. 7~a! and 7~b!. In this
case, the value ofk is 1.70. Again, the RPS gives a very goo
description of the simulated data. Due to the presence
larger coherent part~or higher value ofk), the distribution of
the total field@squares and the solid line in Fig. 7~a!# is very
different from that of the residual field@circles and the
dashed line in Fig. 7~a!#. The latter again has the Rayleig
distribution due to the complete phase randomization@circles
and the dashed line in Fig. 7~b!#. Thus, we find a deviation
from Rayleigh statistics in the total field when randomnes
reduced as indicated in Fig. 4~b!.

When the randomness is further reduced, in Figs. 8~a! and
8~b!, we show the results of the casedr50.1 In this case the
value of k is increased to 4.17. Compared to Fig. 7, ve
similar behavior is observed in Fig. 8 except that there ex
a small angular dependence in the phase distribution of

-
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residual field@circles in Fig. 8~b!#. Even the phase of the th
residual field is not completely randomized, and the distri
tion of the total field still follows the prediction of the RPS
The amplitude distribution of the residual field still obey
Rayleigh statistics. The validity of the RPS in the presence
a small nonuniformity in the phase distribution of the r
sidual field has also been reported in the transmit
waves.18,19

Thus, in the case of non-Bragg angles, the crossover
havior from the non-Rayleigh to Rayleigh distributions as
function of the degree of disorder is very similar to that
ballistic to diffusive wave propagation in transmitted wave
The reason for such a similarity is rather simple. In our s
tem, the increase in randomness actually increases the
sity of the localized states in the system, which, in tu
suppresses the evanescent nature of the wave propag
and, therefore, increases the effective sample thickness
the wave propagtion. In fact, our Figs. 6–8 are very sim
to Figs. 2 and 3 of Ref. 18. When the randomness is furt
reduced fromdr50.1, the value of SC(I ) is reduced. How-
ever, the value of SC(I res) remains close to 1. This seems
indicate that the RPS is still valid and the amplitude dis
bution of the residual field is the Rayleigh type. Indeed, t
is what we have found. In Fig. 9, we show various distrib
tion functions for the case ofdr50.03. They are very simila
to the case ofdr50.1 shown in Fig. 8, except that the pha
distribution of the residual field is a little bit more nonun
form. The value ofk in this case is 14.03.

FIG. 7. Distributions of the normalized amplitude~a! and phase
~b! of the total field~squares! and the residual field~circle! in the
non-Bragg direction for small random system withdr50.2, R
50.3, andf 50.44. Solid lines and dotted lines are the theoreti
predictions using the random-phasor-sum model.
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FIG. 8. Distributions of the normalized amplitude~a! and phase
~b! of the total field~squares! and the residual field~circle! in the
non-Bragg direction for a small random system withdr50.1, R
50.3, andf 50.44. Solid lines and dotted lines are the theoreti
predictions using the random-phasor-sum model.

FIG. 9. Distributions of the normalized amplitude~a! and phase
~b! of the total field~squares! and the residual field~circle! in the
non-Bragg direction for small random system withdr50.03, R
50.3, andf 50.44. Solid lines and dotted lines are the theoreti
predictions using the random-phasor-sum model.
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Here, we would like to emphasize again that the valid
of the RPS shown in Figs. 6–9 lies in the certain degree
phase randomization in the residual field. This can also
seen from the closeness of the value of SC(I res) to one as
indicated in Fig. 5~squares!. This is also the reason that a
the amplitude distributions of the residual field~circles!
found in Figs. 6~a!–9~a! are close to the Rayleigh distribu
tion ~dashed line!. However, this is not true for the Brag
angle. In Fig. 5, the values of SC(I res) are much greater tha
one except in the case of complete randomness. Thus,
expected that the RPS will fail to describe the case of
Bragg angle when randomness is small.

B. Statistics of the reflected field in the Bragg angle

In contrast to the case of the non-Bragg angle, the sta
tical distributions in the Bragg angle are more complicat
For the case of complete randomness, the results are sh
in Fig. 10. It is clear that the RPS is still valid in this cas
This is not surprising from the small values ofk52.07 and
SC(I res)'1 ~filled circles in Fig. 5!. It is also clear that, even
for the case of complete randomness, the amplitude distr
tion of the total field is not a Rayleigh distribution. This
due to the presence of a large coherent component in
total field, which also makes the value of SC(I ) smaller than
one as shown by the filled diamonds in Fig. 5.

FIG. 10. Distributions of the normalized amplitude~a! and
phase~b! of the total field~squares! and the residual field~circle! in
the Bragg direction for small random system withdr50.2, R
50.3, andf 50.44. The results of the total field are presented in
inset of ~b!. Solid lines and dotted lines are the theoretical pred
tions using the random-phasor-sum model.
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When the disorder is reduced, we see that the value
SC(I res) increases monotonously, whereas the value of SCI )
decreases rapidly~Fig. 5!. Since SC(I res).1, it is expected
that the amplitude distribution of the residual field will dev
ate from the Rayleigh distribution. This is indeed what w
have found. In Fig. 11, we show that results for the case
dr50.2. A clear deviation in the circles from the dashed li
in Fig. 11~a! can be seen. This deviation is also reflect
from the much larger nonuniformity in the phase distributi
of the residual field as indicated by the circles in Fig. 11~b!.
Similar behavior has been seen in the transmitted waves
is attributed to the incomplete randomization of the phase
the residual field so that the speckle pattern is not comple
devoloped.19 In this case, the RPS cannot describe the sta
tical distribution of the total field. Indeed, in the inset of Fi
11~a!, we see large deviations between the simulated d
~squares! and the predication of Eq.~4! ~the solid line!, al-
though certain agreement between the two in the phase
tribution remains, i.e., the agreement between the squ
and the solid line in Fig. 11~b!. The value ofk in this case is
15.36, indicating a large coherent component in the to
field. It is interesting to point out that the value ofk
(515.36) in this case is not very different from that in th
case of non-Bragg angles withdr50.1, i.e.,k514.03. Both
cases show a large coherent part in the scattered intens
However, their values of SC(I res) are very different. As will
be discussed later, the large value of SC(I res) in the case of
the Bragg angle is due to the single mode excitati
whereas, this is not the case for the non-Bragg angles.

e
-

FIG. 11. Distributions of the normalized amplitude~a! and
phase~b! of the total field~squares! and the residual field~circle! in
the Bragg direction for small random system withdr50.2, R
50.3, andf 50.44. The results of the total field are presented in
inset of ~b!. Solid lines and dotted lines are the theoretical pred
tions using the random-phasor-sum model.
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It has been suggested that when SC.1, one can useK
distribution to describe the amplitude distribution of the
sidual field. When SC approaches one, the Rayleigh distr
tion is recovered. TheK distribution was derived to describ
the satistics of the partially developed speckle intensities
has the form17,19

P~A!5
2A2M

G~M ! S MA2

2 D M /2

KM21~AA2M !, ~6!

whereKn(x) is the modified Bessel function of the seco
kind of ordern and 2/M5SC(I res)

221. Using the value of
SC(I res)51.18 in Eq.~6!, we obtain theK distribution and
plot it as the dotted line in Fig. 11~a!. The excellent agree
ment between the dotted line and the circles indicates
validity of the K distribution.

In Fig. 12, we show the results for the case ofdr50.1. In
this case, SC(I res)51.34. A clear deviation from theK dis-
tribution is seen in Fig. 12~a!, in which the dotted line does
not overlap with the circles. In this case, the phase distri
tion of the residual field, i.e, the circles in Fig. 12~b!, is far
from randomized and has two sharp peaks on each sid
the phase of the coherent field. It should be pointed out
the total field is predominated by the coherent wave and o
0.1% of the total intensity comes from the scattered fie
Finally, we would like to point out we have repeated t
calculations for the case of oblique incidence. The results
similar to the case of normal incidence shown in Figs. 6–

FIG. 12. Distributions of the normalized amplitude~a! and
phase~b! of the total field~squares! and the residual field~circle! in
the Bragg direction for small random system withdr50.1, R
50.3, andf 50.44. The results of the total field are presented in
inset of ~b!. Solid lines and dotted lines are the theoretical pred
tions using the random-phasor-sum model.
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The very different behaviors found in Figs. 5-12 betwe
the Bragg and the non-Bragg angles can be understood in
following way. In the case of the Bragg angle, the coher
part of the reflected field comes from the ‘‘mirror’’ reflectio
of the incident wave. From Fig. 3, it is clear that the dom
nant part of the incident wave is a plane wave. This is sim
to the case of the single-mode incoming wave discusse
Ref. 19. For single mode incident, it has been pointed
that the fluctuations of the field in the incident mode a
much larger than those of the other modes. As a resu
departure from Rayleigh statistics in the intensity of the
sidual field would be expected.18 Thus, large values of
SC(I res) have been found in the case of the Bragg ang
However, this is not true for the non-Bragg angles. In t
case the coherent part of the field is a result of wave diffr
tion due to the finite beam width of the incident wave.
appears with small intensity and angular fluctuations in F
3. Thus, for the non-Bragg angles, the phase randomiza
of the residual field is very easily achieved even with t
presence of small randomness. This is why the value
SC(I res) is always close to one, independent of the rando
ness. Here, we would like to mention that, for the case
complete randomness, the structure of the coherent b
scattering cone has been studied recently.22,23 Since, in this
case, SC(I ) is also close to one, the coherent part of t
intensity becomes negligible in the scattered waves. A co
plete phase randomization without a coherent part indica
that the wave propagation near the input surface can be
scribed by a diffusive propagation with the localizatio
length as the upper cutoff length. In fact, it has been sho
that such a simple description is capable of explaining
structure of the coherent backscattering cone obtained by
merical simulations.23

IV. CONCLUSIONS

By using the multiple-scattering method, we have stud
in detail the statistics of the reflected speckle intensities a
ing from the localized states inside the gap of disorde
photonic crystals in two dimensions. We have also stud
the statistics of the Lyapunov exponent of the transmit
waves. Similar to the case of disordered photonic crystal
one dimension, two types of localized states are found
pending on the degree of disorder, and the frequency in
the gap. Our simulation results indicate that the reflect
statistics depend on whether or not the localized states
the normal type. They also depend on whether or not
reflected angles are in the Bragg angle. For the non-Br
angles, we found that the intensity distribution arising fro
the normal-type localized states follows Rayleigh statisti
in agreement with random matrix theory. However, the d
viations from Rayleigh statistics were found for the case
the second type of localized states.

The crossover behavior from non-Rayleigh to Raylei
statistics were studied as a function of the degree of diso
at some fixed frequency inside the gap. By separating
field into the coherent and diffuse parts, we have studied
statistics of field and phase distributions for both diffuse a
total fields as well as their speckle contrasts. It is found t
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the crossover behavior is very similar to behavior
ballistic-to-diffusive wave propagation for transmitted wav
and can be described by the RPS.

For the case of the Bragg scattering angle, the n
Rayleigh statistics are found for both kinds of localiz
states. Furthermore, the statisics are sensitive to the degr
disorder. The RPS is valid only at large randomness. As
randomness is reduced, theK distribution becomes a valid
description of the residual field. When the randomness
further reduced, even theK distribution becomes invalid. The
n

s

,

v

-

v

y

-
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different behaviors between the Bragg and non-Bragg an
are because the Bragg angle reflection is a result of sin
mode excitation, whereas, this is not true for true for no
Bragg angles.
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