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Theory of subgap photoemission in one-dimensional electron-phonon systems:
An instanton approach to pseudogaps
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For a one-dimensional electron-phonon system we consider photon absorption involving electronic excita-
tions within the pseudogap energy range. Within the adiabatic approximation for the electron-phonon interac-
tions these processes are described by nonlinear configurations of an instanton type. The one-parameter ansatz
for the extremal instanton trajectory allows one to span a wide spectral rang providing qualitatively correct
limits. We calculate intensities of the photoemission spectroscopy~PES! including momentum-resolved or
angle-resolved PES~ARPES!, and supplement known results for the optical subgap absorption. We start with
the generic case of a one-dimensional semiconductor with a pronounced polaronic effect. We consider in
details the Peierls model for a half-filled band of electrons coupled to a lattice which describes the polyaceth-
ylene and some commensurate charge-density waves. Particular attention was required to study the momentum
dependences for the ARPES, where we face an intriguing interference between the time evolution and the
translational motion of the instantons.
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I. INTRODUCTION

This paper is devoted to the theory of pseudogaps in e
tronic spectra as they can be observed by means of ph
electron spectrography~PES! or angle-resolved photoelec
tron spectroscopy~ARPES!. The notion of a pseudogap~PG!
refers to various systems where a gapEg in their bare elec-
tronic spectra is partly filled showing subgap tails. The b
known examples are the tails in the density of states~DOS!
due to disorder1 or the Urbach tails in the subgap optic
absorption due to thermal fluctuations.2 But the PG is espe
cially pronounced in cases where the bare gap is ope
spontaneously as a symmetry-breaking effect which was
subject of detailed experimental studies.3–7 In quasi-one-
dimensional ~1D! conductors it is known as the Peierl
Fröhlich instability leading to the charge-density wa
~CDW! formation, as well as to analogous spin Peierls a
spin-density-wave states.8 Here the picture of the PG ha
been suggested theoretically9 in relation to absence of th
long-range order~LRO! in 1D CDW’s. Similarly, in high-Tc

materials gap opening mechanisms~still of disputable ori-
gin!, which are not yet stabilized by the LRO, are cons
ered. They are supposed to be responsible for the pseud
which opens at a higher-energy scale than the sharp gap
pearing below the transition temperature to the superc
ducting state.10 We shall consider generic 1D semiconducto
and concentrate on systems with the dimerized ground s
like the well-known polyacethylene (CH)x ,11,12 or some
CDW’s with the a twofold commensurability like NbS3.6

Properties of incommensurate CDW’s~blue bronzes, trichal-
cogenides, and tetrachalcogenides of transition metals!8 are
further complicated by interference of the gapless collec
mode and we shall consider them separately.

For 1D systems with only a discrete symmetry an abse
of the LRO is not drastically important at low enough tem
peratures. At finite temperature there is a remnant concen
0163-1829/2002/65~24!/245108~13!/$20.00 65 2451
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tion ns;exp@2Es/T# of topological solitons~kinks with the
energyEs) commuting different domains of the order param
eter ;6D0. The midgap electronic states associated w
these solitons create a finite DOS of;ns at the former Fermi
level E50, and originate related optical features~see Refs.
11 and 12 for a review and Ref. 14 for a systematic theo!;
hence there is no true gap at finiteT. Neglecting this expo-
nentially freezing contribution, we are left, at first sight, wi
a sharp electronic gapEg

05D0. But what happens instead i
that, even atT50, rather smeared edges appear at6D0

while the spectrum extends deeply inward of the gap. T
effect is particularly pronounced in one dimension beca
of the edge singularity;(E2Eg

0)21/2 at E'Eg
0 in the bare

DOS which smearing is considered to be the most evid
signature of the PG formation belowEg . In the Peierls state
the PG effect is further enhanced by strong electron-pho
(e-ph! interactions between electrons and quantum fluct
tions of the gap amplituded5D(x,t)2D0. Stationary exci-
tations ~eigenstates of the totale-ph system! are now the
selftrapped states, polarons or solitons, which energiesWp or
Ws are fractions ofD0; see Ref. 15. States close to the ba
electron edgeD0 can be observed only via instantaneo
measurements like optical or x-ray absorptions or tunneli
The spectra of these nonstationary states fill the rangeD0
.E.Wp for single electronic~PES! or 2D0.v.2Ws for
e-h ~optic! processes. Particularly nearD0 the states re-
semble free electrons in the field of uncorrelated quant
fluctuations of the lattice.16 Here the self-trapping does no
have enough time to develop. But approaching the ex
threshold they evolve toward eigenstates which are s
trapped states accompanied by excitations of their dress.
picture describes coexistence of the PG regionD0.uEu
.Wp ,Ws and the exact gapuEu,Wp ,Ws in a similarity with
the high-Tc superconductors.

It should be stressed in this respect that therecannot be a
common PGfor processes characterized by different tim
©2002 The American Physical Society08-1
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scales. We should distinguish~as stated in Ref. 17 and als
stressed also in several reviews, e.g., Ref. 15! between short-
living states observed in optical, PES~and maybe tunneling!
experiments and long-living states~amplitude solitons, phas
solitons! contributing to the spin susceptibility, NMR relax
ation, heat capacitance, conductivity, etc. States forming
optical PG are created instantaneously, over times which
shorter than the inverse phonon frequenciestopt;\/Eg

,vph
21 and many orders of magnitude beyond the lifetim

required for current carriers, and even much longer times
thermodynamic contributions. It then follows that the ana
sis of different groups of experimental data within the sa
model18 must be reevaluated.

While experimental techniques of PES and ARPES
still less accurate than the traditional optics, their very f
progress through the last decade will allow one to rely up
a required accuracy today or in the near future. An appa
advantage of the ARPES is its access to the momentum
tributions of spectral densities. Another particular feature
both PES and its ARPES version in our applications is
decoupling from the final-state Coulomb interactions wh
drastically affect the optical intergap absorption. In this
spect the PES also differs from traditional spectroscopy
internal absorption from a core level; there the final-st
interaction between the band particle and the remnant
cases a seminal problem of the x-ray edge singularity
metals.19

A theory of the subgap absorption in optics has been
veloped for a general type of polaronic semiconductor2 with
an emphasis on long-range Coulomb effects, and for a o
dimensional Peierls-type system with an emphasis an so
nic processes11,21—the last work is closest to our target
Here we shall address the PES and ARPES in 1D syste
Methodologically all these studies deal with quantum tran
tions between distant field configurations which genera
the WKB method for a single degree of freedom. These c
sically forbidden nonlinear processes, well localized in sp
and time, are described by extremal trajectories called ins
tons. The methods of optimal trajectories in the functio
space have been initiated by the problem of quantum de
of a metastable state20 ~that is of a ’’false vacuum’’22! and for
quantization of solitons23 ~see the Ref. 24 for a review!. A
relevant paper on this line25 was devoted to self-trappin
barriers for transformation of a bare electron to the pola
in 3D systems.

The plan of our paper is the following. In Sec. II w
describe a general scheme for calculating the ARPES p
abilities within the adiabatic approximations, that is based
the smallness of typical phonon frequencies with respec
the energies of electron transitions. In Sec. III we expl
applications to particular models. In Sec. III A we conside
tutorial zero-dimensional model for an electron coupled t
single oscillator mode, and show that results of the adiab
approximation coincide with exact calculations. In Sec. II
we study the transition rate for shallow subgap states in a
system, both near the bare gap and at the polaronic thres
In Sec. III C we consider in detail the Peierls model in t
half-filled band case. In Sec. III D we present the ARP
theory for this model. Beyond the PES, in Sec. III E we a
24510
e
re

s
r

-
e

e
t
n
nt
is-
f
s

-
y
e
le
n

e-

e-
o-

s.
i-
e
s-
e
n-
l
ay

n

b-
n
to
e

a
ic

D
ld.

o

extend earlier calculations26,21 for the intragap optical ab-
sorption related to creation of kinks pairs. In Sec. III F w
explore another approach of the instantaneous quantum
order valid near the free edge. In Sec. IV A we compa
various results and discuss the validity of our main appro
mations. Finally, Sec. IV B is devoted to general conclusio

II. GENERAL RELATIONS

A. Adiabatic approximation

ARPES~Ref. 5! means an absorption of a high energyV0
photon taking off an electron from the crystal which is th
analyzed in energyEout and momentumPout . Thus one ob-
tains information about the spectral density of the hole
behind. The transition rateI (V,P), whereV5V02Eout and
P52Pout , is proportional to the imaginary part of th
single-electron retarded Green function

I ~P,V!}ImE dxe2 iPxE
0

`

dTeiVTG~x,T,0,0!. ~1!

~Since from now on we shall omit all constant factors a
take the Planck constant\51, V will be measured with
respect to a convenient level: the band edge or the middl
the gap.! The simple PES nonresolved in momenta measu
the integrated absorption intensityI (V)5*dpI(p,V).

We shall use the adiabatic~Born-Oppenheimer! approxi-
mation. Electrons move in the slowly varying phonon pote
tial, e.g.Q(x,t), so that at any instancet their energiesEj (t)
and wave functionsc j (x,t) are defined from the stationar
Schrödinger equation for the instantaneous lattice configu
tion, and they depend on time only parametrically. The
tensity can be written in the form of a functional integr
D@Q(x,t)# over lattice configurationsQ(x,t):

I ~V,P!}E dxe2 iPxE
0

`

dTE D@Q~x,t !#C0~x,T;@Q# !

3C0* ~0,0;@Q# !exp~2S@Q# !. ~2!

This equation is already written in the Euclidean spacei t
→t which is adequate for studies of classically forbidd
processes.2,24,25 Here C0(x,t;@Q#) is the wave function of
the added (N11)th particle in the instantaneous fieldQ(x,t)
which corresponds to the energy levelE0(t)5E0@Q(x,t)#
inside the gap. The effective actionS5S@Q(x,t)# is ex-
pressed via LagrangianL j as

S5 È0

dtL01E
0

T

dt~L12V!1E
T

`

dtL0 , ~3!

where indicesj 51 and 0 label systems with and without th
additional particle state~actually the hole!. Their typical
structure is

L j5E dx
m

2
~] tQ!21Vj~Q!, m5const;v0

22 , ~4!

wherev0 is a bare phonon frequency~implying the disper-
sionless phonon branch!. A nature of the fieldQ, its poten-
8-2
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THEORY OF SUBGAP PHOTOEMISSION IN . . . PHYSICAL REVIEW B65 245108
tials Vj (Q), and the action upon electrons differ for vario
models as described in Sec. III. Usually

Vj@Q~x,t !#5E dx
Q2

2g2
1e j@Q#, mg25v0

22 , ~5!

which contains the bare harmonic term;Q2 and the adia-
batic contribution from the energy of the electron system
the j th excited state. The electronic termsj 50,1 correspond
to adiabatic ground states ofN and N21 electrons in the
instantaneous fieldQ(x). For calculations of subgap pro
cesses only lowest localized statesj 50 and 1 are relevant
while other states belong to the continuum spectrum ab
the gap. ThenC in Eq. ~2! is the wave functionC0 of the
split off singly filled electronic state with the energy levelE0
inside the gap andV15V01E0.

Within the PG region the main contribution toI comes
from the saddle points of the actionS: dS/dQ50]S/]T
50; the last equation determines the valueT5T(V) as

L1~T!2L0~T!5E0~T!5V. ~6!

@The same relation holds at the pointt50 if one substitutes
0,T→t,t1T in Eq. ~3! and finds the minimum overt.! We
shall find also, in Sec. IIID devoted to particularities of t
ARPES, circumstances when the extremum must be de
mined for the whole expression under the integral in defi
tion ~2!, including the wave functions in the prefactor of E
~2!. Any nonzero contribution for a finite action requiresS0
,`, which selects configurationsQ(x,t) deviating from the
ground state only within a finite space-time region. Su
extremal solutions with finite actions are called t
instantons,24 their trajectories correspond to tunneling in t
real time.

B. Translational mode

Within the saddle-point approximation the transition ra
is given by

I ~p,V!5I 0exp~2S0!. ~7!

The prefactorI 05I TI X . . . comes from integration over de
viations dQ and dT around the extremal solution. That i
the factorI T5(]2S/]T2)21/25AdT/dV comes from the in-
tegration overT. Usually it can be taken after the extremal
determined. But there are cases whenI 0 should be deter-
mined self-consistently, as in statistical physics looking
the minimum of a free energy, rather then simply of an e
ergy. This option appears naturally in comparison of PES
ARPES, where it comes from a treatment of the translatio
invariance. Aparently an essential contribution to the act
from the ‘‘quantum entropy’’dS52 log I0 may come only
from an integration over particular zero modes appearing
cause of continuous degeneracy. The contribution of us
nondegenerate modes must be small by definition in a w
defined extremum.

The extremal solution can be written asQ0(x2X,t),
C0(x2X,t) where the collective coordinateX of the instan-
ton corresponds to the translational invariance which is
24510
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the saddle-point solution. We expand the fieldQ(x,t) in the
vicinity of the instanton solution as

Q~x,t !5Q0@x2X~ t !,t#1h@x2X~ t !,t#, ~8!

with the orthogonality condition*dxQ0h50, whereh(x,t)
contains only nonzero modes. Integrating over the zero m
is carried out by means of the Faddeev-Popov27 method, in-
serting the identities

15E D@X~ t !#dS E dxh0@x2X~ t !,t#Q~x,t ! D J,

J5)
t
E dx]xh0@x2X~ t !,t#Q~x,t !, ~9!

whereh05]xQ0(x2X(t),t)/A*(]xQ)2dx is the normalized
zero-mode eigenfunction. The integration overX(t) can be
done exactly. Taking into account only terms containi
X(t), we rewrite Eq.~2! as

I X}E dxe2 iPxE
0

`E D@X~ t !#JC0~x2X~T!,T;@Q# !

3C0* ~2X~0!,0;@Q# !expF2
1

2E dtM~ t !Ẋ2~ t !G ,
~10!

whereJ5) t i
AM (t i), andM (t) is the translational effective

mass of the instanton at a given momentt:

M ~ t !5mE dx~]xQ!2.

Introducing the integration overX15X(0) and X25X(T),
one obtains

I X}E dX1

AM ~0!

dX2

AM ~T!
E dxe2 iPxE

0

`E D@Q~x,t !#C0~x

2X~T!,T;@Q# !C0* ~2X~0!,0;@Q# !I 1I 2I 3 , ~11!

where

I 15E
X(2`)50

X(0)5X1
D@X~ t !# )

t iP(2`,0)
AM ~ t i !e

2*2`
0 dtMẊ2/2,

I 25E
X(0)5X1

X(T)5X2
D@X~ t !# )

t iP(0,T)
AM ~ t i !e

2*0
TdtMẊ2/2,

I 35E
X(T)5x2

X(`)50

D@X~ t !# )
t iP(T,`)

AM ~ t i !e
2*T

`dtMẊ2/2.

Each integralI i is easy calculated, after the transformati
MẊ25Ẏ2, with the help of the result23

E
x(0)5x1

x(T)5x2
D@x~ t !#e2*0

T( ẋ21V(x))dt5U ]2S0

]x1]x2
U1/2

e2S0,
8-3
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whereS0 is the saddle-point action. After simple integratio
over dx, dX1, anddX2, we arrive at

I X}uCP~T!u2expF2E
0

T

dt
P2

2M ~ t !G , ~12!

whereCp is the Fourier transform of the wave functionC0.
Contrary to stationary solutions, the solitons~polarons,

kinks!, hereM (t) depends on time along the instanton tr
jectory Q0(x,t). The exponential term in Eq.~12! gives a
contribution to the total action which is important at ve
largeP, because generally it is of the order ofM 21;v0

2. It
provides an important, sometimes leading, effect upon
edge shape: it is singular along the instanton term withM
vanishing at largeutu when the space localization is week a
M 21(t) diverges.

C. Zero-dimensional reduction

As a rule the space-time differential nonlinear equatio
for extremals are not solvable, hence one is bound to va
tional procedures. We shall use the following ansatz whic
actually a one-parameter reduction of the functional spa
The instanton trajectory must satisfy condition~6!, which
means that there is an electron levelE05V at timest50,T.
It seems reasonable that the trajectory with only one lo
level inside the gap will be a good approximation for t
extremal action. There is also a special advantage tha
models considered below we know exact solutions of
stationary problemQ0(x,a) depending on some continuou
parametera with the local levelE0(a) inside the gap. There
fore, we shall search the instanton~time-dependent! solution
in the form Q0@x,a(t)#. After integration around saddl
point Da(t) for the ARPES intensity we find finally

I ~P,V!}AdT

dV
uCp~aT!u2e2S0, ~13!

where S0 is the instanton action which is extremum ov
T,a(t), of

S5E
2`

`

dtF f (a)ȧ21
P2

2M ~a~ t !!
1V[a(t)] G , ~14!

where

FIG. 1. PotentialsV0 andV12V.
24510
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m

2E dxS ]Qa~x,t !

]a~ t ! D 2

~15!

is the variable effective mass,V@a(t)#5V1@a(t)#2V for
P@0,T#, or V@a(t)#5V0@a(t)# otherwise.

In some cases the form factorCP
2 gives the main contri-

bution to the functionI (P,V). Then we must find the ex
tremal solution for a modified actionS→S2 loguCPu2. Such a
possibility will be considered in details in Sec. III D.

Since the PES intensity is obtained simply by integrat
of the ARPES one, we obtain

I ~V!}S E dp

2p
e2p2l 2/4ucp~T!u2DAdT

dV
exp@2S0#,

~16!

where

l 25E
0

T dt

M @a~ t !#
,

and S0 is the extremum of action~14! without the kinetic
term P2/2M . The form factor F5*dPucp(T)u2
3exp(2P2l2/2) in Eq. ~16! provides a kind of Debye-Walle
reduction of the intensity. Thus for smalll in compare to the
localization lengthj of C ~short times near the free edge!
F'1 while for large l @j ~long timesT near the absolute
threshold! F;uCP50(T)u2;j/ l with j being the polaronic
width. In our examples typically it will holdl !j.

For typical potentialsV(a) ~see Figs. 1–4 below! the ex-
tremum solution with a finite action exists only in some r
gion of V where the potential curveV1(a)2V @or V1(a)
,2V1P2/2M (a) for the case of ARPES# crosses both
curvesV0(a) andV50. It takes place if the minimum of the

FIG. 2. PotentialsV0 andV12V.

FIG. 3. Plots ofVn(a) for n50,1 and 2.
8-4
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THEORY OF SUBGAP PHOTOEMISSION IN . . . PHYSICAL REVIEW B65 245108
potentialV12V ~ or V12V1P2/2M ) is placed below the
minimum of the potentialV0 ~min V050). If aT is the point
where

V0~aT!5V1~aT!2V ~PES!,

V0~aT!5V1~aT!2V1P2/2M ~aT! ~ARPES!, ~17!

andaf is the solution of

V1~af !2V50 ~PES!,

V1~af !2V1P2/2M ~af !50 ~ARPES!; ~18!

then the extremal solution is the closed trajectory, descri
by the equation

f ~a!ȧ25Ṽ~a!, ~19!

where Ṽ5V0(a), aP@0,aT#, and Ṽ5V1(a)2V
1P2/2M (a)%, aP(aT ,af # for ARPES, or the same expres
sion without the kinetic potentialP2/2M for PES. Equation
~17! is a consequence of Eq.~6!, it implies a continuity of the
velocity ȧ at the pointaT . Equation~18! reads that the ve
locity ȧ50 at the pointaf .

The instanton equation~19! describes the motion of som
particle of zero energy with variable mass 2f (a) in the in-
verted potential2Ṽ. The trajectory starts att52` from the
point a50, reaches the pointsaT at t50, af at t5T/2, after
which the particle moves back across the pointaT at t5T to
the initial point a50 at t→`. The instanton action~for
ARPES! can be expressed as

S054E
0

qT
dqAf V014E

qT

qf
dqAf @V12V1P2/2M ~a!#.

~20!

III. RESULTS FOR ABSORPTION INTENSITIES

A. Zero-dimensional case

We shall start with a tutorial example where the gene
approximate scheme can be compared with exact calc
tions. Consider a particle interacting with a single quant
oscillator at zero temperature. Physically it can be a prob
of the Jahn-Teller center or a zero order approximation
the small radius polaron. The total Lagrangian is

FIG. 4. Plots ofV0(a) andV11P2/2M (a)2V.
24510
d

l
la-

m
r

L5
m

2
q̇22

m

2
v0

2q22gqN, ~21!

whereq is the oscillator coordinate,m is its mass,g is the
interaction constant, andN is the electron’s occupation num
ber. The potentialsV0 andV1,

V05
mv0

2

2
q2,

V15
mv0

2

2
q22gq5

mv0
2

2
~q2q0!22W0 ,

q05
g

mv0
2

, W05
g2

2mv0
2

are shown in Fig. 1. In comparison toN50, for N51 the
oscillator statesn are shifted byq0 in coordinate and by
2W0 in energy. Adiabatically allowed transitions take pla
only at the givenq that is they explore the regionq50, V
50. Taking into account the quantum character of the co
dinateq, the transitions are found to the lower energies do
to W0. The region 0.V.2W0 corresponds to pseudogap
in more complex systems.

The solutions of Eqs.~17! and ~18! read

qT52V/g, qf52g/~mv0
2!.

The instanton action is easy calculated, and for the abs
tion rate we arrive at

I ~V!}
1

AV1W0

expS 2
W0

v0
DexpFV1W0

v0
log

eW0

~V1W0!G .
~22!

Expanding the exponent near the extremum pointV50, we
obtain

I ~V!} expF2
V2

2W0v0
G , ~23!

which describes smearing of the adiabatically allowed el
tronic edge. This is the Gaussian with the widthdV
5AW0v0@v0 which justifies the adiabatic approximation
At the lower boundaryV52W0 of the exact spectrum the
probability has a finite exponentially small value which
approached with an infinite slope.

For this simple exampleW(V) can be calculated exactl
in the representations of eigenstates. Indeed,

I ~V!5(
n

u^n,1uC1u0,0&u2d~V2En1E0!, ~24!

where u0,0& is the ground state of the system without
electron with the energyE05\v0/2, and un,1& is the nth
excited state (n50,1, . . . ) with one electron and the energ
En5\v0(n11/2)2W0. The wave functions are the ones fo
the harmonic oscillator which are centered atq50 for u0,0&
and at q5q0 for un,1&. In the limits v0→0 and n5(V
1W0)/v0@1 we find
8-5
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I ~V!5
exp@2(dy)2/2#

A2pnv0

expFn log
e~dy!2

2n G , ~25!

wheredy5g/Amv0
3. This equation reproduces result~22!.

B. Shallow states in a 1D system

Consider the electron~hole! states in a 1D dielectric nea
an edge of a conducting~valence! band. We shall take into
account a dispersionless phonon fieldQ(x,t) with a bare
frequencyv0 which interacts locally with the electron vi
the deformation potential with a couplingg. Within the adia-
batic approximation the action has the form~again at imagi-
nary time!

S5E dxH E
2`

1`

dtF 1

2v0
2 S ]Q

]t D 2

1
1

2
Q2G

1E
0

T

dtS 1

2mU]C

]x U
2

1gQC†C2V D J , ~26!

It is well known that the stationary (Q̇50) extremum ofS
corresponds to the self-trapped state~the polaron!.33 We ar-
rive directly at Eqs.~4! and~5! with E andC as solutions of
the Schro¨dinger equation:

2
1

2m

d2C

dx2
1gQC5EC, E5E~ t !. ~27!

The minimum of the initial potential minV050 is achieved at
the uniform configurationQ50. The minimum ofV1 takes
place at the polaron state minV15Wp52W052mg2/24. The
minimum ofV12V must be lower than the minimum ofV0;
hence2W0,V,0.

Since the exact solution of the complete time depend
extremal equations is not known, we shall follow a var
tional approach. We will search for the instanton solution
a form which simulates the stationary solution but with
variable time-dependent parameterB(t) which we chose as
the inverse localization length:

Q~x,t !52
B2~ t !

mg

1

cosh2B~ t !x
,

C5AB~ t !

2

1

coshB~ t !x
, E~ t !52

B2

2m
. ~28!

The stationary solution corresponds toB(t)5B05mg2/2. In
terms ofb(t)5B(t)/B0, the Lagrangians become

L05W0FC0

v0
2

bḃ212b3G , L15W0FC0

v0
2

bḃ212b323b2G ,

~29!

where C05412p2/15'5.3. The instanton equation de
scribes the motion of a zero-energy particle, with a coor
nateb and with a variable massf ;b, in the inverted poten-
tials
24510
nt
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V05W02b3 and V12V5W0@2b323b2#2V,

which are shown in Fig. 2. The valuebT5AuV/E0u, the
valuebf at the turning point is determined by the conditio
V1(bf)2V50.

For the PES the action is

S0'4AC0

W0

v0
F E

0

bTA2b2db

1E
bT

bfAS 2b323b22
V

W0
Db dbG ,

and we arrive at the following results. Near the free ele
tronic edgeV50 we have

I ~V!}uVu21/4expF2
8

9
AC0

6

~2V!3/2

v0W0
1/2 G . ~30!

The characteristic width of the edge isdV;(v0
2W0)1/3

@v0, which justifies the adiabatic approximation.
In the vicinity of the absolute edgeV'2W0 we obtain

I ~V!}
1

AV1W0

expF22
W0

v0
G

3expF2AC0

3

V1W0

v0
log

e~A321!2W0

~V1W0!
G . ~31!

In this limit the probability is finite, exponentially small in
the adiabatic parameterW0 /v0 and it shows a weak singu
larity in its derivative. The prefactors in above formula
come fromI T;(d2S/dV2)1/2. The form factor isF'1 ac-
cording to Sec. II. Indeed, in spite of a formal divergence
l, within limits of the adiabatic approximation (uVu@v0 or
(V1W0)@v0) it stays below the localization lengthj. Thus
l /j;(v0 /V)1/2!1 for small V and l /j;„v0log@W0 /(V
1W0)#…

1/2 for V'2W0. Peculiarities of the ARPES will be
studied in Sec. III C within a richer Peierls model.

C. Peierls model

We now consider the PES absorption spectrum in the
region for a half-filled Peierls model. In the ground state t
electron spectrum has the formE25vF

2p21D0
2 , and from

now on we shall set the Fermi velocity atvF51. The gap
2D0;eFexp@21/l# is opened as a result of symmetr
breaking lattice deformations. We shall consider the case
dimerization ~trans-polyacethylene, spin-Peierls system!
which is described by a model with a real order parameterD,
taking equilibrium values6D0. The excited states are sol
tons ~kinks!, polarons and bisolitons~kink-antikink pairs!
which are characterized by electron levels localized dee
within the gap~see Ref. 15!. The adiabatic approximation i
valid when the electron transition energies are much lar
than the phonon frequencyv0!uEi2Ej u. For characteristic
uEi2Ej u;D0 this constraint coincides with the applicabilit
condition for the Peierls model in general.16 Away from the
ground state the fieldD(x,t) extends the role of the fieldQ
8-6
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from Sec. III B. The first difference is thatDÞ0 already in
the ground state. The second one is that the whole se
electrons at E,2D0 contributes to the self-trappin
energy15 and to the instanton terms.

The effective Euclidean actionS consists of kinetic and
bare potential lattice energies and of the sum over filled e
tron levelsEa ,

S$D~x,t !%5E dxLjdt, L j5E dx
Ḋ2

plvph
2

1Vj@D~x,t !#,

wherevph5Alv0 is the bare frequency of the phonon r
sponsible for the dimerization whilev0 is the amplitude
mode frequency in the dimerized stateDÞ0. The indexj
characterizes perturbations in the set$a j% of filled electronic
states in the fieldD. The potential energy in thej th elec-
tronic state is

Vj@D~x,t !#5E dx
D2

pl
1(

a j

Ea j
$D~x,t !%2Wgs ,

which we have defined relative to the ground state ene
Wgs at D(x,t)5D0 for a system ofN5Na electrons (Na is
the number of sites in the chain!.

The PES absorption adds one particle~hole! to the sys-
tem; then the polaron state is formed by local deformati
of the field D(x) which originate the pair of split off elec
tronic levels 6E0 localized deeply in the gap. In optica
absorption21 an electron is excited across the gap; then a p
of distant kinks is formed with electron level placed exac
in the center of the gap (E050). The crossover solution
describing the states with just one pair of localized electro
levels6E0 is known:30,31

Ds~x!5D0H 12tanhaF tanhS D0xtanha1
a

2D
2tanhS D0x tanha2

a

2D G J . ~32!

Depending on the parametera it describes the evolution from
the shallow polaron ata→0 to the pair of kinks ata→`. In
the first case the parametera!1 becomes equivalent tob
from Sec. III B. In the second casea@1 becomes a distanc
between divergent kinks. For configuration~32! the potential
energy functionalV and the energy of the local levelE0 are
given by

Vn~a!5nE01
4

p
AD0

22E0
22

4

p
E0cos21

E0

D0
, E05

D0

cosha
,

~33!

where n50,1,2 is the number of particles~electrons and
holes! added to the system. The wave function of the
tragap state can be written as28 C0(x)}AD0

22Ds(x)2.
The casen50 describes the state which evolves from t

ground one without perturbing the occupation numbers:
level 2E0 is doubly filled while the levelE0 is empty. Natu-
rally the minimum ofV0 corresponds to the uniform configu
rationD(x)5D0 at a50 without a split-off level. The func-
24510
of

c-

y

s

ir

ic

-

e

tion V0(a) monotonically increases fromV0(0)50 to
V0(`)52Ws , (Ws52/pD0 is the total soliton energy!, with
the asymptotic behaviors

V0~a!'
4

3p
D0a3, a→0,

V0~a!'2Ws22E0~a!, a→`. ~34!

For the polaronn51 ~either one electron atE0 or one
hole at 2E0) the equilibrium state corresponding to th
minimum of V is achieved ata5a0 where

sinha051, minV15V~a0!5Wp523/2D0 /p,

E05D0 /A2.

The limiting values ofV1(a) are V1(0)5D0 and V1(`)
52Ws .

The casen52 corresponds to either an exciton~one elec-
tron and one whole at6E that is each of these levels i
singly occupied! or to electron or hole bipolarons~all states
6E are either filled or empty!. The excitonic state plays a
principal role in the subgap optical absorption problem.21,26

The equilibrium state is achieved ata5` where V52Ws
and E050. The functionV2(a) decreases monotonicall
from V2(0)52D0 to V2(`)52Ws . The dependencies
Vn(a) are shown in Fig. 3.

The abovea- dependent family of solutions is the onl
one which provides exactly one pair of discrete levels in
gap. Its perturbations originate only shallow levels loca
near the edges6D0 which are not important for the de
scribed processes. Therefore we will choose the config
tion D(x,t)5Ds@x,a(t)# of Eq. ~32!, taken with the time-
dependent parametera. The kinetic term in the Lagrangian
becomesf (a)ȧ2, with

f ~a~ t !!5
1

pv0
2E dxS ]Ds

]a D 2

. ~35!

The function f (a) increases fromf (0)50, reaching the
maximum valuef '1.55D0 /(plv0

2) at a'0.78, and then
decreases with asymptotics,

f ~a!'
2

3

C0

p

D0a

v0
2

, a→0, f ~a0!'
1.53D0

pv0
2

,

f ~`!5
2

3

D0

pv0
2

. ~36!

with the same coefficientC0 as in Sec. III B.
The translational mass becomes

M ~a!5
2

pv0
2E dxS ]D

]x D 2

5
8D0

3

g2v0
2 F tan3a

3
2

a cosha2sinha

cosh3a
G . ~37!
8-7
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The functionM (a) monotonically increases with asympto
ics:

M ~a!'CM

D0
3

v0
2

a5, CM5
32

15
, a→0,

M ~a0!'0.49
D0

3

pv0
2

, M ~`!5
16

3p

D0
3

v0
2

. ~38!

Following the prescriptions of Sec. II, we can now d
scribe the PG regionWp,V,D0. In the limiting cases the
results are qualitatively similar to the ones for the shall
polaron.

Near the free edgeV'D0, we find

I ~V!;~D02V!21/4expF2
32AC0

9p

~D02V!3/2

v0AD0
G , ~39!

with the same coefficientC0 as in Eq.~29!.
Near the polaronic energyV'Wp we find

I ~V!5const
1

AV2Wp

expF2C1

D0

v0
G

3expFC2

~V2Wp!

v0
log

C3D0

~V2Wp!G . ~40!

Here the numerical coefficientsC150.34, C255.2, andC3
50.1.

D. ARPES intensities

For case of ARPES the potentialV1 acquires an additiona
term P2/2M , according to the general scheme of the S
II C. Now the closed trajectory is allowed in the regio
(V,P) where~see Fig. 4!

Ṽ1~am!5V1~am!1P2/2M ~am!2V,0, dṼ1 /daua5am
50
~41!

Here the valueam is the point of a minimum of the potentia
Ṽ1(a), which exists for any value of the momentumP. In the
limit P50 we haveam5a0. For otherV andP there are no
solutions with a finite action so that the transition rate
zero. In contrast to the PES case, the closed trajectory e
for any frequencyV.Wp in the region of the momentumP
satisfying condition~41!.

For the ARPES intensities we must, in principle, min
mize the total expression of Eq.~2! with the prefactor term
uCPu2, since in some cases this term gives a main contri
tion to the exponent. Then the action is changed as

S→S2 loguCPu2.

The extremal solution, as before, satisfies Eq.~19!. The turn-
ing point a f is not changed, and is defined by Eq.~18!, but
the equation defining the pointaT becomes more compli
cated. Instead of Eq.~17!, we obtain
24510
.

sts

-

V0~aT!2Ṽ1~aT!5
1

2

] loguCPu
]a

SAV0

f
1AṼ1

f
D U

a5aT

.

~42!

This equation leads to a discontinuity of the potentialṼ at
the pointaT and, due to the equation of motion~19!, also
leads to the discontinuity of the ‘‘velocity’’ȧ. The expression
for the ARPES intensity has the same form~19! with the
action ~20!. The only difference is the shift of the pointaT
due to Eq.~42! which happens to be small in all importan
cases. That is, Eq.~46! below acquires the additional term
;Pv0 /aT which is found to be neglecting in compare wi
other. Consider the most important cases where an analy
solution can be found.

~A! In the vicinity of the absolute edgeV'Wp the ab-
sorption appears atV>V1(am)1P2/2M (am)[W̃p . Here,
near the polaron edge, the translational mass is almost
stant staying nearM (am) hence the momentum appears sim
ply through the shiftV⇒V2P2/2M (am),

I ~P,V!}
1

AV2W̃p

exp@2S0#, ~43!

with

S05
C̃1

Apl

D0

v0
1F C̃2

~V2W̃p!

Aplv0

log
C̃3D0

~V2W̃p!
G . ~44!

The result for the absorption looks like Eq.~40! for the PES
with Wp⇒Wp(P) but the coefficientsCj become functions
of P: C̃1 ,C̃2, andC̃3. They are defined as

C̃154Apl
v0

D0
F E

0

aT
daAf ~a!V0~a!

1E
aT

af
daAf ~a!~Ṽ12Wp!G ,

C̃25Aplv0

23/2Af ~am!

AṼ19~am!
, C̃35

e

2
~af2aT!2

Ṽ19~am!

D0

,

and atP→0 they coincide with the numerical onesC1 , C2,
andC3 defined above in Sec. III C.

~B! A vicinity of the free edgeV'D0 is very particular
for the ARPES. It is dominated by shallow fluctuations d
termined by smalla!1, where the kinetic energy diverges a
P2/M;a25 according to Eq.~38!. The form factoruCPu2

acquires an explicit form

uCPu2'
p

D0aT
cosh22

pP

2D0aT
. ~45!

To simplify the appearance of cumbersome relations, be
we shall use dimensionless unitsD051 for the momentumP
and energies which also will be counted with respect toD0.
In the limit at ,af!1, Eqs.~17! and ~18! are reduced to
8-8
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2e2
aT

2

2
1

v0
2P2

CMaT
5

50, ~46!

2e1
4

3p
af

32
af

2

2
1

v0
2P2

CMaf
5

50, ~47!

wheree5(V2D0)/D0 and the term2aT
2/2 comes from the

expansion of the local level energyE0. A simple analysis of
Eqs. ~46! and ~47! shows thataf2aT5o(aT), and the first
term gives the main contribution to action~20!, so that

S05
8A2C0

9p

D0

v0
aT

3 . ~48!

The general constraint isS0@1, henceaT@v0
1/3. This also

assures us in about the conditionM@D0 ~the massM must
stay above the free-band edge mass!, which requires a
weaker inequalityaT@v. We have different regions wher
one of the terms of Eq.~46! is small in comparison with
others.

~B1! Consider, first, the region lying deeply enoug
within the PG:

~v0P!4/7!2e!1.

Here the characteristic values ofaT are not too small so tha
one can neglect the kinetic energy;P2v0

2/aT
5 in comparison

to the energy2aT
2/2 of the localized level:P2v0

2/aT
5!aT

2 .
Then aT'A22e, S;ueu3/2/v0 and dV/dT;aT . The mo-
mentum dependence comes only from the form factor@Eq.
~45!# but it can still be appreciable:P/aT is limited by a large
quantity (P/aT!e5/4/v0@v0

21/6) that is allowed to be large
The total intensity is

I ~e,P!}
1

ueu3/4
expF2

32AC0

9pv0
ueu3/22

pP

u2eu1/2G . ~49!

In the limit 2e!APv0 the contribution fromuCpu2 ~the
second term in the exponent! dominates, while in the oppo
site case the main contribution comes from the termS0. The
line of the maximum intensity2e;Av0P will show up in
the ARPES plots as aquasispectrumwhose intensity de-
creases exponentially with growing momentum:I (P)
;P23/8exp@2constP3/4v0

21/4#.
~B2! Consider a marginal frequency lying very close

the free edgee50 for both signs ofe:

v0!ueu!~v0P!4/7!1 for P@v0
2/5.

In this case the instanton kinetic energy and the binding
the electron almost compensate for each other:P2/2M
'aT

2/2@ueu, which gives usaT5@(v0P)2/CM#1/7, and we
obtain

I ~e,P!}
1

P3/7
expF2p

p~CM !1/7

v0
2/7

P5/72
8A2C0

9p~CM !3/7v0
1/7

P6/7G .

~50!
24510
f

The form factorCP
2 gives the main contribution~the first

term! to the exponent of Eq.~50! .
~B3! Consider now a new region of positive frequenci

e.0:

e@~v0P!4/7 but e!v0
1/3P2.

The first inequality ensures that the excess frequency is
sorbed mainly by the kinetic energy with a negligible (aT

2/2
!e) contribution from the electronic state which is still lo
calized. The second inequality supports the adiabatic co
tion S0@1. We find

aT'
~v0P!2/5

~2CMe!1/5
,

dT

dV
}

P6/5

e13/5
.

The ARPES intensity becomes

I ~e,P!}
P1/5

e11/10
expF2

p~2CM !1/5

v0
2/5

P3/5e1/5

2
8A2C0v0

1/5

9p~2CM !3/5

P6/5

e3/5G . ~51!

The form-factor contribution, the first term in the expone
always dominates, but the second term is also larger t
contributing to the dependenceI (e,P). The total expression
in the exponent of Eq.~51! looks nonmonotonic, similar to
case~B1!, but now the minimal is not physical: its positio
e;(v0P)3/4 would fall too low, into region~B2!. Contours
of constant intensity are close to the descending linee
;v0

2/P3. Contribution~51! from the fast moving instantons
can be observable only below the intensive free electro
absorption ate'P2/2 that is atP@v0

2/5 @a similar constraint
already appeared for the case~B2!#.

E. Optical absorption: effects of confinement

The same method is applicable to the subgap optical
sorption problem which was basically already studied
Refs. 11 and 21. We shall see that more details can be e
obtained. In this case we must use the potentialV2, defined
in Eq. ~33!, instead ofV1. The termV2 describes the first
excited state when the optical photon, assisted by a lat
quantum fluctuation, creates ane-h pair with levels6E(t)
spanning the whole intervaluEu,D0. The transition rate is
given by the modified Eq.~7!. For the vicinity of the free
electronic edgeV;2D0 we easily find, in analogy with Eq
~39!, that

I ~V!} expF2
16A2C0

9p

~2D02V!3/2

v0AD0
G . ~52!

This law was noted in Ref. 21, but with a different coef
cient in the exponent. Actually it was already obtained
Ref. 16 by another method which was later reproduced
Ref. 18. Near the absolute absorption edgeV'2Ws
54D0 /p, we obtain
8-9
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I ~V!} exp@6Af ~`!AV22Ws# ~53!

where f (`) is given by Eq.~36!. Near this edge the absorp
tion is due to tunneling to the final state formed by the t
diverging kinks with the distance parametera→`. ~This re-
gime was studied for the first time in Ref. 21, but the abo
analytical asymptotics was not found.! Law ~53! is different
from Eq. ~40!, which is typical for all polaronic thresholds
The particularity is related to a very fast,;exp@2a#, de-
crease of interactions for diverging solitons which determ
the threshold. In terms of the effective particles the diff
ence is that near the polaronic threshold the turning p
approaches the potential extremum while for the solito
threshold it climbs asymptotically to the plateau~the dashed
line in Fig. 3!.

While law ~40! is very robust, e.g., the same as for sh
low polarons, the solitonic threshold is extremely sensitive
perturbations. The most drastic effect comes from the c
finement energydVn5Fa with the constant confinemen
force F caused by a lifting of the ground-state degenera
The confinement is always produced by the interch
coupling.29 But even for a single chain it appears in cases
a built-in alternation of unit cells which interferes with th
spontaneous dimerization like in cis-(CH)x.30,28 In principle,
solitonic terms for this problem have been found exactly
the framework of the microscopic model of the ‘‘combine
Peierls state,’’30,28 and they can be used in our calculatio
for an arbitrary strength of the forceF5gD0 /j0. But here
we shall consider only a weak confinementg!1 which pre-
serves the local structure of solitons but prevents their div
gence at largea. This effect can be taken into account b
adding the termgD0a to the potentialsV0 , V2 taken in zero
order ing!1. ~For the PES this effect is not relevant sin
the minimum of the polaronic potentialV1 is achieved at
finite valuea0 where confinement is not yet important.! As a
result the minimum of the potentialV2 is shifted to the finite
point ag' log(16/pg)/2, where V29(ag)52g. The optical
absorption edge is shifted up toWg54D0 /p
1gD0log(16/pg)/2 and the transition rateI (V) is given by
Eq. ~40! if we substituteWp→Wg , V1→V2 , a0→ag , a1
→cosh21(p/2).

The problem of solitonic absorption, without the confin
ment, was considered in Refs. 26 and 21 by means o
different quasiclassical approaches. Our results supply
absent analytical asymptotics in this case, and provide a
scription of the general case of confinement. Further com
cations come from the long-range Coulomb interactio
which must be studied before comparison with existing
periments.

F. Quantum fluctuations as an instantaneous disorder

In a one-dimensional system x-ray or optical absorpt
can be viewed~near the band edge only! as the one in a
system with a quenched disorder which is emulated by
stantaneous quantum fluctuations. This conclusion
achieved16 by an analysis of the perturbation series for t
polarization operator, which is not the most efficient meth
to do so. Later applications of this idea did not add a
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proof.18 Here we shall derive this result within the approa
of functional integrals which will provide a model
independent limit for an overapproximate analysis of mo
complicated regimes and systems.

Consider a particle interacting with media of harmon
oscillators. This model embraces the shallow polaron cas
Sec. III B and the limit ofV'D0 of Sec. III D. The prob-
ability is given by the action

S$Q,C;T!5E dDxE
2`

1`

dtS 1

2v0
2 S ]Q

]t D 2

1
1

2
Q2D

1E dDxE
0

T

dtS 1

2mU]C

]x U
2

1gQC†C D .

~54!

We can integrate out the fieldQ at all x and t to arrive
at the action which is defined only at the interval (0,T), ~see
Ref. 2!,

S$C;T!5E dDxF E
0

T

dtS 1

2mU]C

]x U
2D

2
1

4
g2v0E

0

T

dt1E
0

T

dt2r~x,t1!r~x,t2!

3exp@2v0ut12t2u#G , ~55!

wherer5uCu2. There is also an equivalent form of Eq.~55!
suitable at largeT which we shall use later on:

S@C;T#5E dxE
0

T

dtF 1

2m
u]xCu22Vr2

g2

2
r2G

2
g2

4v0
E

0

T

dt1E
0

T

dt2E dx] tr~x,t1!] tr~x,t2!

3exp@2v0ut12t2u#. ~56!

The result will prove that the characteristic energy sc
dD is much larger thanv0 which takes place only atD,2.
Then the whole time interval is short,Tv0;v0 /dD!1, and
we can neglect the retardation: exp@2v0ut12t2u#→1. Now the
last term inS$C;T) can be decoupled back by the Hubbar
Stratonovich transformation via thetime-independentauxil-
iary field z to give us

S$C,z;T!5E dDxF E
0

T

dtS 1

2mU]C

]x U
2D

1z~x!E
0

T

dt1r~x,t !1
1

g2v0

z2~x!G .

Finally we can integrate overC to arrive at the transition
probability
8-10
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I ~V!;E D@z~x!#E dT

3expF2
1

g2v0

z2~x!1T$E@z~x!#2V%G .

After rotation to real time, it becomes

E DF z~x!d~E@z~x!#2V!expF2
1

g2v0

z2~x!G ,

whereE@z(x)# is the eigenfunction in the random fieldz:

2
1

2m S ]

]xD 2

C1zC5EC.

Clearly the dispersiond05gAv0/2 of the fieldz is just the
mean square of quantum fluctuations of the phonon fi
gQ(x,t).

IV. DISCUSSION AND CONCLUSIONS

A. Comparison and applicability

Most of the results presented were based upon o
parameter variational approximations for the instanton
jectory ~in imaginary time!. The solutions describe local la
tice fluctuations of a special class for which only o
electron levelE0(t) is split off inside the gap. This conjunc
tion is in the spirit of methods of optimal fluctuations
statically disordered systems,1 and gives good results for dy
namics as well; also see Ref. 21.

Near the free edge, the spectrum is determined by sha
states described by the universal model of Sec. III B whic
harmonic in phonons. It also allows one to exploit an alt
native approach of Sec. III F, which is not limited by th
one-parameter treatment. For both approaches we find q
tatively identical asymptotic dependencies. The results
the DOS of disordered systems1,32 confirm our direct calcu-
lations of the time-dependent processes in the pseudoga
gion, and extend them to the nonexponential part of the sp
trum of V.0. For D50 (m5`) and D51 we arrive
correspondingly at the spectral widthsd0;gAv0 and d1
;(g2v0)2/3, to find that in both cases the conditiondD
@v0 is satisfied at low enoughv0. ~This condition is not
satisfied at higher dimensionsD>2, where the quantum
fluctuations are not reduced to the random static field
rather become resolved phonon assistant processes.17! An ad-
ditional peculiarity of the Peierls model is that, in micr
scopic units ofD0 and j0 the coupling constantg;1; this
the band edge smearing isd15C1(D0v0

2)1/3.
The precise value of the numerical coefficientC1 is

known thanks to the exact solution32 for the Gaussian ran
dom white noise model:C158A2/3. Its comparison with our
approximate valueC1* '16A20/9, obtained in the Sec. II B
@Eq. ~30!#, gives the validity ratioC1* /C15A2C0/3'1.08
which demonstrates a high(8%) accuracy of the one
parametrical ansatz. The same holds for the Peierls mod
Sec. III C which is reduced to the shallow model for th
energy range.
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Near the absolute edgeV'Wp , the absorption is deter
mined by long-time processes when the lattice configura
is almost statically self-consistent with electrons. Here
solution is close to the stationary polaron; it is nearly tim
independent, approaching the turning pointaf over most of
the active time interval 0,t,T. This behavior is allowed by
our parametrization, which provides qualitatively correct a
ymptotics. While no exact results is available~except the
trivial case ofD50 of Sec. III A! in this range to compare
with our approximation, we still can obtain help from th
harmonic model of Secs. III B and III F. Indeed, the first ter
in Eq. ~56! is nothing but the actionSst of the static polaron
Sst'2TdV,dV5V2Wp . The second term in Eq.~56! col-
lects contributions only from short transient processes n
t50,T which are seen as] tr(x,t)'rp(x)@d(t)2d(t2T)#,
whererp is the electronic density for the static polaron s
lution localized over the lengthl p;1/(mg2). Then we are
left with only exponentially decreasing interference and
action acquires the structure

dS'2dVT1const
g2

l pv0
exp@2v0T#1const,

which yields the extremum

dV;mg4exp@2v0T# hence logI;2dS;
dV

v0
log

Wp

dV

in accordance with our one-parametrical results of Secs. I
and III C. We conclude that the asymptotics obtained with
our one-parametric approximation are qualitatively corr
being universal for systems with gapful phonons.

B. Summary

Electronic properties of quasi-one-dimensional cond
tors in the Peierls state are quite peculiar in several respe
In general it is due to a strong interaction of CDW deform
tions with normal electrons which leads to their fast se
trapping. The stationary excited states of the model are s
tons ~kinks! and polarons with energiesWs ,Wp,D0. The
processes related to these nonlinear excitations determin
true gaps 2Ws and 2Wp placed within the pseudogap 2D0.
The single-particle gap, as measured in absorption or tun
ing, is opened by polarons which should exist also in
systems without symmetry breaking, like the majority
conjugated polymers.30,28The effect is very common becaus
in 1D semiconductors the self-trapping of free electro
takes place for any type ofe-ph interactions,33 while in
higher dimensions long-range interactions are required. H
the minimal role of the Peierls effect, or at least its part
contribution, is to ensure a presence of the stronge-ph cou-
pling. The optical threshold exists at 2Wp in general. But for
systems with degenerate ground states like
polyacethylene12 there is also a lower gap at 2Ws because
the lowest excitations are now topological solito
~kinks!.17,13,34A weak interchain coupling35 preserves the po
laronic effects while creating a shallow barrier with respe
to the self-trapping, thus allowing for metastable free el
8-11
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tronic states and corresponding transitions. The 3D effect
solitonic transitions are more drastic because of the confi
ment effect.29,35

Near the free edge~for both PES and optics! we recover
the stretch exponential dependencies

I;expF2S uVu
dD

D nDG , dD;v0
1/nD , ~57!

with different powersnD.1 for dimensionsD50,1: n052
andn153/2.

Near the absolute threshold atdV5V2Wp!Wp we find
the same~for the PES! law,

I;expF2C
Wp

v0
2C8

dV

v0
log

Wp

dVG , ~58!

which differs only by numerical coefficients among differe
models. The first constant term in the exponent describes
adiabatic reduction for the probability of creation of the s
tionary polaron atWp . The second term gives the law fo
approaching this threshold.

The same law holds for the two-particle process~the in-
ternal optical absorption! if the ground state is nondegene
ate. But for a system with a spontaneous symmetry break
like the Peierls model for the polyacethylene the thresh
dependence of the exponent changes from;dV logdV to a
stronger one;AV22Ws with the threshold 2Ws being the
energy of a solitonic pair.

The momentum dependence of the intensityI (V,P), as
recovered by ARPES, shows a rich variety of regimes. O
near the absolute threshold is law~58! simply generalized by
adding the polaron kinetic energy:Wp⇒Wp1P2/2M p . But
the region near the free electronic thresholdV'Eg demon-
strates several nontrivial regimes. The differences come f
two effects achievable for shallow states. One is the mom
a

e
F
e

24510
on
e-

t
he
-

g
ld

ly

m
n-

tum dependence of the form factor—the momentum dis
bution of the split off state. Another one is the inertial part
the action coming from the drastic dependence of the kin
mass on the localization parameter which evolves in ti
along the instanton process. One of unexpected results is
at largeP law ~57! changes to a nonmonotonic function ofV
which would show itself as a quasispectrum@a line of maxi-
mums ofI (V,P)# within the pseudogap@regime~B3! of Sec.
III D #. Another result is an appearance of optimal localiz
fluctuations at an elevated kinetic energy so that they sh
up above the PG region, atV.0 @regime~B1!#. These ob-
servations may be more general than the studied o
dimensional adiabatic models.

In conclusion, we have calculated intensities of subg
photoelectronic transitions by means of a functional integ
tion over the lattice oscillation modes. By this virtue we ha
studied the problem of photoemission from the pseudo
region for typical one-dimensional models. We have fou
general expressions for the transition rate and studied
asymptotic behaviors near absorption edges, both below
free electronic edge and approaching the lower true one
was shown that the main contributions to the transition ra
come from instanton configurations of the phonon field. T
Peierls model was considered in particular detail due to
numerous applications. Peculiarities of the ARPES reg
come from unexpected effects of the instanton motion.
the intragap optical absorption problem we have calcula
the asymptotic behavior of the absorption coefficient near
threshold for creation of pairs of solitons, and studied
effects of confinement.
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