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For a one-dimensional electron-phonon system we consider photon absorption involving electronic excita-
tions within the pseudogap energy range. Within the adiabatic approximation for the electron-phonon interac-
tions these processes are described by nonlinear configurations of an instanton type. The one-parameter ansatz
for the extremal instanton trajectory allows one to span a wide spectral rang providing qualitatively correct
limits. We calculate intensities of the photoemission spectros¢B®8 including momentum-resolved or
angle-resolved PEGARPES, and supplement known results for the optical subgap absorption. We start with
the generic case of a one-dimensional semiconductor with a pronounced polaronic effect. We consider in
details the Peierls model for a half-filled band of electrons coupled to a lattice which describes the polyaceth-
ylene and some commensurate charge-density waves. Particular attention was required to study the momentum
dependences for the ARPES, where we face an intriguing interference between the time evolution and the
translational motion of the instantons.
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. INTRODUCTION tion ng~exy —E¢/T] of topological solitongkinks with the
energyE;) commuting different domains of the order param-
This paper is devoted to the theory of pseudogaps in eleGter ~+A,. The midgap electronic states associated with
tronic spectra as they can be observed by means of photéhese solitons create a finite DOS-efy at the former Fermi
electron spectrograph{PES or angle-resolved photoelec- |evel E=0, and originate related optical featureee Refs.
tron spectroscopyARPES. The notion of a pseudogdPG) 11 and 12 for a review and Ref. 14 for a systematic thgory
refers to various systems where a dgapin their bare elec- hence there is no true gap at finife Neglecting this expo-
tronic spectra is partly filled showing subgap tails. The beshentially freezing contribution, we are left, at first sight, with
known examples are the tails in the density of std®S 3 sharp electronic gai%=A,. But what happens instead is
due to disordéror the Urbach tails in the subgap optical that, even atT=0, ratﬁer smeared edges appear+ak,
absorption due to thermal fluctuatioh&ut the PG is espe- yhile the spectrum extends deeply inward of the gap. This
cially pronounced in cases where the bare gap is openegkfect is particularly pronounced in one dimension because
spontaneously as a symmetry-breaking effect which was thgf the edge singularity- (E— Eg)—llz at E~E% in the bare
subject of detailed experimental studfeé.In quasi-one-  pOS which smearing is considered to be the most evident
dimensional (1D) conductors it is known as the Peierls- signature of the PG formation beloi. In the Peierls state
Frohlich instability leading to the charge-density wave the PG effect is further enhanced by strong electron-phonon
(CDW) formation, as well as to analogous spin Peierls ande-ph) interactions between electrons and quantum fluctua-
spin-density-wave statésHere the picture of the PG has tions of the gap amplitudé=A(x,t)—A,. Stationary exci-
been suggested theoreticdllin relation to absence of the tations (eigenstates of the tota-ph system are now the
long-range ordefLRO) in 1D CDW's. Similarly, in highT,  selftrapped states, polarons or solitons, which eneiyigsr
materials gap opening mechanisifssill of disputable ori- W are fractions ofA,; see Ref. 15. States close to the bare
gin), which are not yet stabilized by the LRO, are consid-electron edgeA, can be observed only via instantaneous
ered. They are supposed to be responsible for the pseudogapasurements like optical or x-ray absorptions or tunneling.
which opens at a higher-energy scale than the sharp gap aphe spectra of these nonstationary states fill the rakhge
pearing below the transition temperature to the supercon>E>W, for single electronidPES or 2A,>w>2W; for
ducting staté? We shall consider generic 1D semiconductorse-h (optic) processes. Particularly near, the states re-
and concentrate on systems with the dimerized ground stasemble free electrons in the field of uncorrelated quantum
like the well-known polyacethylene (CH)'*? or some fluctuations of the lattic&® Here the self-trapping does not
CDW's with the a twofold commensurability like Ng8  have enough time to develop. But approaching the exact
Properties of incommensurate CDWldue bronzes, trichal- threshold they evolve toward eigenstates which are self-
cogenides, and tetrachalcogenides of transition métate  trapped states accompanied by excitations of their dress. This
further complicated by interference of the gapless collectivegpicture describes coexistence of the PG regibg> |E|
mode and we shall consider them separately. >W,,,W and the exact galk| <W,,Ws in a similarity with
For 1D systems with only a discrete symmetry an absencehe highT. superconductors.
of the LRO is not drastically important at low enough tem- It should be stressed in this respect that thenenot be a
peratures. At finite temperature there is a remnant concentrgommon PGfor processes characterized by different time
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scales. We should distinguighs stated in Ref. 17 and also extend earlier calculatiof%?! for the intragap optical ab-

stressed also in several reviews, e.g., Ref.dgween short-  sorption related to creation of kinks pairs. In Sec. lllF we

living states observed in optical, PE&nd maybe tunneling explore another approach of the instantaneous quantum dis-

experiments and long-living statémmplitude solitons, phase order valid near the free edge. In Sec. IVA we compare

solitons contributing to the spin susceptibility, NMR relax- various results and discuss the validity of our main approxi-

ation, heat capacitance, conductivity, etc. States forming th&ations. Finally, Sec. IV B is devoted to general conclusions.

optical PG are created instantaneously, over times which are

shorter than the inverse phonon frequencigg~7%/E, Il. GENERAL RELATIONS

<w;h1 and many orders of magnitude beyond the lifetimes

required for current carriers, and even much longer times for

thermodynamic contributions. It then follows that the analy- ARPES(Ref. 5 means an absorption of a high enefgy

sis of different groups of experimental data within the samePhoton taking off an electron from the crystal which is then

modef® must be reevaluated. analyzed in energf,,; and momentun®, ;. Thus one ob-
While experimental techniques of PES and ARPES ardains information about the spectral density of the hole left

still less accurate than the traditional optics, their very fasbehind. The transition rat€(),P), whereQ)=Q,—E,,; and

progress through the last decade will allow one to rely uporP=— Py, is proportional to the imaginary part of the

a required accuracy today or in the near future. An apparergingle-electron retarded Green function

advantage of the ARPES is its access to the momentum dis-

tributions of spe_ctral densities. Ano_ther particu]ar _featu_re _of I(P,Q)ocImJ dxe“PXfdeémG(x,T,O,O). 1)

both PES and its ARPES version in our applications is its 0

decoupling from the final-state Coulomb interactions which ,

drastically affect the optical intergap absorption. In this re-(Since from now on we shall omit all constant factors and

spect the PES also differs from traditional spectroscopy byake the Planck constarit=1, () will be measured with
internal absorption from a core level; there the final-statd ©SPECt t0 a convenient level: the band edge or the middle of

interaction between the band particle and the remnant hol'® 9ap} The simple PES nonresolved in momenta measures
cases a seminal problem of the x-ray edge singularity ifh€ integrated absorption intensitf(})=Jdpl(p,Q).
metalst® We shall use the adiabati®orn-Oppenheimgrapproxi-

A theory of the subgap absorption in optics has been demation. Electrons move in the_slowly var)_/ing phqnon poten-
veloped for a general type of polaronic semicondifceath  tidl €.9-Q(x,t), so that at any instandetheir energies(t)
an emphasis on long-range Coulomb effects, and for a onénd wave functions;(x,t) are defined from the stationary
dimensional Peierls-type system with an emphasis an SO|it0S_chrcd|nger equation for the_: instantaneous Iat'Flce conflgu_ra-
nic processé&?i—the last work is closest to our targets. fion, and they depend on time only parametrically. The in-
Here we shall address the PES and ARPES in 1D systemnSity can be written in the for.m of a functional integral
Methodologically all these studies deal with quantum transiP[Q(x,t)] over lattice configuration®(x,t):
tions between distant field configurations which generalize .
the WKB method for a single degree of freedom. These clas- |(Q’p)ocJ' dxe*iPXJ' de D[Q(x,t)]¥ (X, T;[Q])
sically forbidden nonlinear processes, well localized in space 0
and time, are described by extremal trajectories called instan-
tons. The methods of optimal trajectories in the functional XW5(0,0{QNexp—SQJ). @

space have been initiated by the problem of guantum decayhis equation is already written in the Euclidean spéce
of a metastable staft‘?e(that is of a "false vacuum®) andfor ¢ which is adequate for studies of classically forbidden
guantization of solitorfS (see the Ref. 24 for a reviewA processe%*?“*z‘r’ Here Wo(x,t;[Q]) is the wave function of
relevant paper on this likg was devoted to self-trapping the added i+ 1)th particle in the instantaneous fieQ{x, t)
barriers for transformation of a bare electron to the polaron, hich corresponds to the energy levh(t) = Eq[Q(x,t)]

in 3D systems. inside the gap. The effective actiod= x,t)] is ex-
The plan of our paper is the following. In Sec. Il we gz)ressed viangérangidn- as SQMD)]
_ ]

describe a general scheme for calculating the ARPES pro
abilities within the adiabatic approximations, that is based on 0 T %
the smallness of typical phonon frequencies with respect to SZJ dtL0+f dt(Ll—Q)ﬂLf dtLo, 3
the energies of electron transitions. In Sec. Il we explore ” 0 T

applications to particular models. In Sec. Ill A we consider awhere indice§ =1 and 0 label systems with and without the

tl_JtoriaI zero-dimensional model for an electron coupleq to aadditional particle statdactually the holg Their typical
single oscillator mode, and show that results of the adiabatigtrycture is

approximation coincide with exact calculations. In Sec. Il B

we study the transition rate for shallow subgap states in a 1D o 5 72
system, both near the bare gap and at the polaronic threshold. szf dx5(Q)"+Vj(Q), u=const-wy”, (4)
In Sec. llIC we consider in detail the Peierls model in the

half-filled band case. In Sec. IlID we present the ARPESwherew, is a bare phonon frequeng¢ymplying the disper-
theory for this model. Beyond the PES, in Sec. Il E we alsosionless phonon branghA nature of the fieldQ, its poten-

A. Adiabatic approximation

245108-2



THEORY OF SUBGAP PHOTOEMISSION IN . .. PHYSICAL REVIEW B5 245108

tials V;(Q), and the action upon electrons differ for various orgin it one zero mode in the functional integration around

models as described in Sec. Ill. Usually the saddle-point solution. We expand the fi€l¢ix,t) in the
vicinity of the instanton solution as
Q? _
Vj[Q(Xat)]:j dX2—g2+6j[Q], pg?=we?, (5 Q(X,t) = Qo[ X = X(1),t]+ 7[Xx—X(1),t], ®

_ _ _ ) _ with t_he orthogonality conditiorf dxQ, 77_=O, wherez(x,t)
which contains the bare harmonic termQ< and the adia-  contains only nonzero modes. Integrating over the zero mode

batic contribution from the energy of the electron system inis carried out by means of the Faddeev-Pdparethod, in-
the jth excited state. The electronic terjrs 0,1 correspond  serting the identities

to adiabatic ground states &f and N—1 electrons in the
instantaneous field)(x). For calculations of subgap pro-
cesses only lowest localized stajes0 and 1 are relevant, 12[ D[X(t)]ﬁ(f dxa7o[x—X(1),t]Q(x,1) |J,
while other states belong to the continuum spectrum above
the gap. ThenV in Eq. (2) is the wave functiontV of the
split off singly filled electronic state with the energy lewg J= H f dxdymol X—X(1),t]Q(X,1), 9
inside the gap an®,=V,+ E,.

Within the PG region the main contribution tocomes  where 7,=d,Qq(x— X(t),t)/\/J(4,Q)?dx is the normalized
from the saddle points of the actic® 6S/6Q=00S/dT  zero-mode eigenfunction. The integration ovgt) can be
=0; the last equation determines the valie T(Q)) as done exactly. Taking into account only terms containing

X(t), we rewrite Eq.(2) as
Li(T)=Lo(T)=Eo(T)=1Q. (6)

[The same relation holds at the potrt O if one substitutes IXocf dxe*‘PXf f DX(t) ][IV o(x—X(T),T;[Q])
0,T—t,t+T in Eq. (3) and finds the minimum over) We 0

shall find also, in Sec. IlID devoted to particularities of the 1 _

ARPES, circumstances when the extremum must be deter- X‘I’S(—X(O),O;[Q])exp{— EJ dtM(t)Xz(t)},
mined for the whole expression under the integral in defini-

tion (2), including the wave functions in the prefactor of Eq. (10)
(2). Any nonzero contribution for a finite action requirSg i , )
<o, which selects configuratior®(x,t) deviating from the ~ WhereJ=II; yM(t;), andM(t) is the translational effective
ground state only within a finite space-time region. Suchmass of the instanton at a given momént

extremal solutions with finite actions are called the

instantong their trajectories correspond to tunneling in the M(t)=,U~J dx(9,0)2
real time. e
Introducing the integration oveX;=X(0) and X,=X(T),
B. Translational mode one obtains
Within the saddle-point approximation the transition rate g g
is given by f X1 Xz _ipr”f
Ix* | ———= dxe DLQ(X,t) [Wo(x
VM (0) VM (T) 0
1(p,Q)=1oexp(—Sp). ()
—X(T), T;[QD W5 (—X(0),0;[QD 4!l 5, (11)

The prefactol g=I4ly ... comes from integration over de-
viations 6Q and 6T around the extremal solution. That is, where
the factorl+=(6°S/9T?) 2= /dT/dQ) comes from the in-

tegration oveiT. Usually it can be taken after the extremal is _ f
determined. But there are cases wHegnshould be deter- !
mined self-consistently, as in statistical physics looking for

the minimum of a free energy, rather then simply of an en- X(T) =Xz Ty 02
ergy. This option appears naturally in comparison of PES and 2= fx(o)x D[X(t)]t_ E%T) YM (tj) e odtMx72,

X(0)=X,
DIX(1)]
0 t

M (t_)e—f(imdtMXZ/Z
[ )
)

(—oc):

je(==,0

ARPES, where it comes from a treatment of the translational !

invariance. Aparently an essential contribution to the action X()=0 o
from the “quantum entropy”§S= —logl, may come only |3=J DX I \/M(ti)e—frd“v'xzfz_
from an integration over particular zero modes appearing be- (M=xz tie(T,»)

cause of continuous degeneracy. The contribution of usuaé

S ach integrall; is easy calculated, after the transformation
nondegenerate modes must be small by definition in a well- "> . .~ h the helb of th 2
defined extremum. MX“=Y?, with the help of the res

The extremal solution can be written &3 (x—X,t), X(T)=x, . PS, |12
T o(x—X,t) where the collective coordinat€ of the instan- f D[x(t)]e*fo(XZW(X))dt: e S,
ton corresponds to the translational invariance which is the x(0)=xg IX19X3
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whereS; is the saddle-point action. After simple integrations v V, V-0
overdx, dX;, anddX,, we arrive at '

P2

T
Ixoc|‘Pp(T)|2ex;{ - fo dtm
whereW , is the Fourier transform of the wave functidn,. 0 . O b
Contrary to stationary solutions, the solitoffmlarons, b, \/
kinks), hereM (t) depends on time along the instanton tra-
jectory Qq(x,t). The exponential term in Eq12) gives a
contribution to the total action which is important at very
large P, because generally it is of the order Mif 1~ w3. It FIG. 2. Potentiald/, andV;— Q.
provides an important, sometimes leading, effect upon the
edge shape: it is singular along the instanton term WMth

o
vanishing at largét| when the space localization is week and f(a)= EJ dx
M ~1(t) diverges.

: 12

2
ﬂQa(X.t)) 15

da(t)

is the variable effective mas§/[a(t)]=Vi[a(t)]—Q for
e[0,T], or V[a(t)]=Vg[a(t)] otherwise.

) ) ) . ) In some cases the form factﬁr,% gives the main contri-
As a rule the space-time differential nonlinear equations, tion to the function (P,Q). Then we must find the ex-

for extremals are not solvable, hence one is bound to varig;emal solution for a modified actic®— S— |09|‘1’p|2- Such a
tional procedures. We shall use the following ansatz which i?)ossibility will be considered in details in Sec. Il D.

actually a one-parameter reduction of the functional space. gjnce the PES intensity is obtained simply by integration
The instanton trajectory must satisfy conditio®), which ¢ the ARPES one, we obtain

means that there is an electron letgl= ) at timest=0,T.

It seems reasonable that the trajectory with only one local dp o> aT

level inside the gap will be a good approximation for the |(Q)°<( f ﬂe_p 54 wp(T)Iz) \/mexq—so],
extremal action. There is also a special advantage that for (16)
models considered below we know exact solutions of the

stationary problenQo(x,a) depending on some continuous Where

parameten with the local levelEy(a) inside the gap. There- T dt

fore, we shall search the instantime-dependentsolution ZZJ -

in the form Qg[x,a(t)]. After integration around saddle o M[a(t) ]’

point Da(t) for the ARPES intensity we find finally

C. Zero-dimensional reduction

and S, is the extremum of actioril4) without the kinetic

term P?2M. The form factor F=[dP|y,(T)|?
1(P, ) 3 /ﬂm, (aq)|2e” S, (13  Xexp P22/2) in Eq. (16) provides a kind of Debye-Waller
da' P reduction of the intensity. Thus for sméalin compare to the
localization lengthé of W (short times near the free edge
"E~1 while for largel> ¢ (long timesT near the absolute
threshold F~|W,_q(T)|2~ &/I with & being the polaronic

where S; is the instanton action which is extremum ove
T,a(t), of

. p2 width. In our examples typically it will hold<<¢.
S:f dt| f(a)a?+ ———+V[a(D)]|, (14 For typical_potentialsv_(g) (see_ Figs. 1-4 belo_)/\lhe ex-
— 2M(a(t)) tremum solution with a finite action exists only in some re-
gion of Q) where the potential curv¥/i(a) —Q [or V4(a)
where <—Q+P?2M(a) for the case of ARPEScrosses both

curvesVy(a) andV=0. It takes place if the minimum of the

2A,

V] 4A o
/ Z VI
q 0

4,9, v
T 1f -0
0 a
a, a,
FIG. 1. Potentiald/y andV,—Q. FIG. 3. Plots ofV,(a) for »=0,1 and 2.
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FIG. 4. Plots ofVy(a) andV,+P%/2M(a)— Q.

potential V;— Q ( or V;—Q+P?/2M) is placed below the
minimum of the potential/, (min Vy=0). If a; is the point
where

Vo(ar)=Vi(ar)—Q (PES,

Vo(ar)=Vi(ar)—Q+P?%2M(ay) (ARPES, (17)
anda; is the solution of
Vi(as)—Q=0 (PES,
Vi(a;)—Q+P?2M(a;)=0 (ARPES; (18

then the extremal solution is the closed trajectory, described

by the equation

f(a)a®=V(a), (19
where V=Vy(a), ae[0a;], and V=V;(a)-Q
+P?/2M(a)}, ae(ar,a;s] for ARPES, or the same expres-
sion without the kinetic potentidP?/2M for PES. Equation
(17) is a consequence of Ef), it implies a continuity of the
velocity a at the pointa;. Equation(18) reads that the ve-
locity a=0 at the pointa; .

The instanton equatiof19) describes the motion of some
particle of zero energy with variable mas$§(2) in the in-
verted potential- V. The trajectory starts at= — o from the
pointa=0, reaches the points; att=0, a; att=T/2, after
which the particle moves back across the peiptatt=T to
the initial pointa=0 att—c. The instanton actior{for
ARPES can be expressed as

SO:4J'Qqu\/fV0+4qudq\/f[Vl—Q+ P%12M(a)].
0 ar
(20

IIl. RESULTS FOR ABSORPTION INTENSITIES

A. Zero-dimensional case

PHYSICAL REVIEW B5 245108

m., Mo
L= 50~ 5 0ga’—gaN, (21)
whereq is the oscillator coordinatem is its massg is the
interaction constant, and is the electron’s occupation num-

ber. The potentialyy andV,,

2
Vo—Tq .
2 2
VFTCIZ—QCFT(CI—C]O)Z—WO,
2
g g
= W,=
%o mwé 0 meg

are shown in Fig. 1. In comparison =0, for N=1 the
oscillator states are shifted byq, in coordinate and by
—W, in energy. Adiabatically allowed transitions take place
only at the givenq that is they explore the regiog=0, ()
=0. Taking into account the quantum character of the coor-
dinateq, the transitions are found to the lower energies down
to Wy. The region 0>Q>—W, corresponds to pseudogaps
in more complex systems.

The solutions of Eqs(17) and (18) read

qr=—0/g, q;=2g/(mw}).

The instanton action is easy calculated, and for the absorp-
tion rate we arrive at

Q+W0I eW
oo 90T Wy) |
(22

Expanding the exponent near the extremum p6irt0, we
obtain

1 (Q)oc ;ex% - %) exp{
\/Q+W0 wo

2

2W0w0

, (23

1(Q) exp[—

which describes smearing of the adiabatically allowed elec-
tronic edge. This is the Gaussian with the wid&{)
=Wywo> 0wy Which justifies the adiabatic approximation.
At the lower boundary)l=—W, of the exact spectrum the
probability has a finite exponentially small value which is
approached with an infinite slope.

For this simple exampl&/({)) can be calculated exactly
in the representations of eigenstates. Indeed,

1(Q)=2 [(n,]¥*|0,0]26(Q—E,+Ep), (24

where |0,0) is the ground state of the system without an

We shall start with a tutorial example where the generaklectron with the energfy=%wo/2, and|n,1) is the nth
approximate scheme can be compared with exact calcul@xcited staterf=0,1, . . . ) with one electron and the energy
tions. Consider a particle interacting with a single quantunE,=7%wq(n+ 1/2)—W,. The wave functions are the ones for
oscillator at zero temperature. Physically it can be a problenthe harmonic oscillator which are centeredyjatO for |0,0)
of the Jahn-Teller center or a zero order approximation foand atq=qo for |n,1). In the limits wg—0 and n=(Q

the small radius polaron. The total Lagrangian is

+Wg)/ wo>1 we find
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Vo=Wp2b® and V;—Q=W,[2b3-3b%]-Q,

Q) exn:_(é\/)z/Z] ;{ l e( §y)2
= ————exgnlog—F—
V2mnwg 2n which are shown in Fig. 2. The value;=|Q/Ey|, the
lueb; at the turni int is determined by th diti
where&yzg/m. This equation reproduces res(2p). ;?(ub?)i?lzoe_ Hrning point 1s defermined by the condition

For the PES the action is

: (25

B. Shallow states in a 1D system

Consider the electrothole) states in a 1D dielectric near 30%4\/0— %
an edge of a conductinralence band. We shall take into % wo
account a dispersionless phonon fig){x,t) with a bare
frequencywy which interacts locally with the electron via n fbf \/(2b3—3b2— g)b db
the deformation potential with a couplirgg Within the adia- by W,

batic approximation the action has the fotagain at imagi- ) )
nary time and we arrive at the following results. Near the free elec-

tronic edge()=0 we have
[l [ o0 2o e
- X — =] +Z 8 [Co(—Q
—= 205\ 2 Q)| Q| Hexg — 5 Col )1/2
9V 6 wW;
T 1 2
+ f dt| =— +gQ\PT\If—Q)], (26)  The characteristic width of the edge BO~(w3Wy)®
0
It is well known that the stationary@=0) extremum ofS

2m > wg, Which justifies the adiabatic approximation.
corresponds to the self-trapped stétee polaron.>® We ar-

b
f " 2b2db
0

. (30)

ox

In the vicinity of the absolute edg@ ~ —W, we obtain

rive directly at Eqs(4) and(5) with E andV' as solutions of 1(Q)x ;exr{ _ 2%
the Schrdinger equation: VO +W, o
LY e el , Xexp[ p[Co 2+ Wo V8- D™Wol
T om gl +9Q¥=EV¥, E=E(1). 27 3 wo Q+W,) |

In this limit the probability is finite, exponentially small in
the adiabatic paramet&¥,/wq and it shows a weak singu-
larity in its derivative. The prefactors in above formulas
come froml~(d?S/dQ?)¥2 The form factor isF~1 ac-
cording to Sec. Il. Indeed, in spite of a formal divergence of

Since the exact solution of the complete time dependedt within limits c_)f the adiabatic appro>_<im§\tior1(@|>wo or
extremal equations is not known, we shall follow a varia- ({2 T Wo)> o) it stays below the localization lengéh Thus

2 ~
tional approach. We will search for the instanton solution in”gw(“’l%/m <1 for small O and I/&~(wologlWo/(Q2
a form which simulates the stationary solution but with a*Wo)D ™ for = —W,. Peculiarities of the ARPES will be

variable time-dependent parameRs(t) which we chose as studied in Sec. Il C within a richer Peierls model.
the inverse localization length:

The minimum of the initial potential mW,=0 is achieved at
the uniform configuratio@=0. The minimum ofV, takes
place at the polaron state mip=W,=—Wo=—mg/24. The
minimum of V;— ) must be lower than the minimum &f;
hence—Wy<(1<0.

C. Peierls model

Q(x,t)=— B*(1) 1 We now consider the PES absorption spectrum in the gap
' Mg cosHB(t)x region for a half-filled Peierls model. In the ground state the
electron spectrum has the forE?=vZp?+A3, and from
B(t) 1 B2 now on we shall set the Fermi velocity ag=1. The gap
V= \/Tm, E(t)=—ﬁ- (28)  2A,~erexd—1/\] is opened as a result of symmetry-

breaking lattice deformations. We shall consider the case of a
The stationary solution correspondsB¢t) =B,=mg?/2. In  dimerization (trans-polyacethylene, spin-Peierls systems
terms ofb(t) =B(t)/B,, the Lagrangians become which is described by a model with a real order paraméter
taking equilibrium valuest Ay. The excited states are soli-
tons (kinks), polarons and bisolitongkink-antikink pairg
' which are characterized by electron levels localized deeply
29 within the gap(see Ref. 1 The adiabatic approximation is
valid when the electron transition energies are much larger
where Cy=4+27?%/15~5.3. The instanton equation de- than the phonon frequenay,<|E;— E;|. For characteristic
scribes the motion of a zero-energy particle, with a coordi Ei—Ej|~AO this constraint coincides with the applicability
nateb and with a variable mask~b, in the inverted poten- condition for the Peierls model in genet&laway from the
tials ground state the field (x,t) extends the role of the fiel@

Co. .
2 bb?+2b?

wq

Lo:WO

Co .
, LI:WO{—be2+2b3—3b2

wq
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from Sec. Il B. The first difference is that# 0 already in
the ground state. The second one is that the whole sea
electrons at E<—A, contributes to the self-trapping
energy® and to the instanton terms.

The effective Euclidean actio8 consists of kinetic and

bare potential lattice energies and of the sum over filled elec-

tron levelsk,,,

2
S{A(x,t)}=fdejdt, LJ-=de7_rMu2 +Vi[A(x,1)],
ph

where o= JVAw, is the bare frequency of the phonon re-
sponsible for the dimerization whileg is the amplitude
mode frequency in the dimerized stake*0. The indexj
characterizes perturbations in the et} of filled electronic
states in the field\. The potential energy in thgth elec-
tronic state is

AZ
VJ[A(x,t)]=J dxHJrE Eo {A(X D)} =W,
qj

PHYSICAL REVIEW B5 245108

tion Vy(a) monotonically increases fronVy(0)=0 to
&y(0) =2Wg, (Ws=2/7Ay is the total soliton energywith
the asymptotic behaviors

4
Vo(a)~ §A0a3, a—0,

Vo(a)=2W;—2Ey(a), a— . (34)
For the polaronv=1 (either one electron &, or one
hole at —E,) the equilibrium state corresponding to the

minimum of V is achieved aa=a, where

sinhap=1, minV,=V(ag)=W,=2%A/,

Eoonl\/E.

The limiting values ofV(a) are V,(0)=A, and Vy(«)
=2W;.

The casev=2 corresponds to either an excit@ne elec-
tron and one whole at-E that is each of these levels is
singly occupiedl or to electron or hole bipolarorsll states

which we have defined relative to the grOUnd state energy- g are either filled or empby The excitonic state p|ays a

Wys at A(Xx,t)=A, for a system ofN=N, electrons N, is
the number of sites in the chain
The PES absorption adds one partih®le) to the sys-

principal role in the subgap optical absorption probferff
The equilibrium state is achieved at=c~ whereV=2W;
and E;=0. The functionV,(a) decreases monotonically

tem; then the polaron state is formed by local deformationgrom V,(0)=2A, to V,(®)=2W,. The dependencies

of the field A(x) which originate the pair of split off elec-
tronic levels = E, localized deeply in the gap. In optical

V,(a) are shown in Fig. 3.
The abovea- dependent family of solutions is the only

absorptiofi* an electron is excited across the gap; then a paibne which provides exactly one pair of discrete levels in the
of distant kinks is formed with electron level placed exactly gap. Its perturbations originate only shallow levels located
in the center of the gapE;=0). The crossover solution near the edgestA, which are not important for the de-
describing the states with jUSt one pair of localized electroni(\scribed processes. Therefore we will choose the Configura_
levels + Eg is known*%* tion A(x,t)=AJx,a(t)] of Eq. (32), taken with the time-
dependent parameter The kinetic term in the Lagrangian

a becomes (a)a?, with

As(x)on[ 1—tanha 5

tanl‘( Axtanha+

(35

2

—tanl‘( Agxtanha—

] . (32

The function f(a) increases fromf(0)=0, reaching the
maximum valuef~1.55\,/(7\w3) at a~0.78, and then
decreases with asymptotics,

Depending on the parameteit describes the evolution from
the shallow polaron ea—0 to the pair of kinks a— . In
the first case the parametarkl becomes equivalent to
from Sec. Il B. In the second case>1 becomes a distance

between divergent kinks. For configurati(8®) the potential 2 CpApa 0

energy functionaV and the energy of the local levEl, are flA)~3——, a>0, f(ag)~ 2

given by

4 4 E A 2 Ay
= —JAZ—E2- = ~10 -9 f(o)=z—. 36)

V,(a)=vEq+ W\/AO Eg— —Eocos A, Eo=—era (<)=3 ol (
33
33 with the same coefficient as in Sec. Il B.

where »=0,1,2 is the number of particle@lectrons and The translational mass becomes

holeg added to the system. The wave function of the in-

tragap state can be written?8aP o(x) = VAZ— A (x)2. 2 dA\?

The casev=0 describes the state which evolves from the M(a)= w2 dx X

ground one without perturbing the occupation numbers: the 0

level —E, i's 'doubly filled while the leveE, is empty. Naty— 8A8 tarfa  acosha—sinha

rally the minimum ofV corresponds to the uniform configu- =— - (37)

ration A(x)=A, ata=0 without a split-off level. The func- g’w5| 3 costa
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ICS:
M(a)~C A9 5 C 32 0
a ~ _a ] :_l a*) 1]
M(,()S M 15
A3 16 A3
M(ao)%0.49—2, M(OO)=3——2. (38)
TwWy T wq

The functionM (a) monotonically increases with asymptot-
: Vo(ar)—V;
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f f

This equation leads to a discontinuity of the poteriait
the pointa; and, due to the equation of motidf9), also
leads to the discontinuity of the “velocityd. The expression
for the ARPES intensity has the same fofa®) with the
action (20). The only difference is the shift of the poiat

(

1 dlog|Vp|
U

a=ar

(42

Following the prescriptions of Sec. Il, we can now de-due to Eq.(42) which happens to be small in all important

scribe the PG regiolV,<Q<A,. In the limiting cases the

cases. That is, Eq46) below acquires the additional term

results are qualitatively similar to the ones for the shallow~Pwq/at which is found to be neglecting in compare with

polaron.
Near the free edg@~A,, we find

32\/Cq (Ag— Q)32

9T woyA,

with the same coefficient, as in Eq.(29).
Near the polaronic energQ ~W, we find

. (39

I(Q)~(AO—Q)1’4ex;{

[(Q))=const

1
———exX
VQ-W, F{

O-W,
xex;{ Cz( p)log
wo

Here the numerical coefficients;=0.34, C,=5.2, andC;
=0.1.

—C;—
1100

=

C3AO
Q-W,)

L

D. ARPES intensities
For case of ARPES the potenth} acquires an additional

term P2/2M, according to the general scheme of the Sec.
[IC. Now the closed trajectory is allowed in the region

(Q,P) where(see Fig. 4

Vi(am=Vi(am +P?2M(ay) —0<0, dV;/dal,, =0
(41)

Here the value,, is the point of a minimum of the potential

V,(a), which exists for any value of the momentunin the
limit P=0 we havea,,=a,. For other() andP there are no

other. Consider the most important cases where an analytical
solution can be found.

(A) In the vicinity of the absolute edg@~W, the ab-
sorption appears aﬂzvl(am)JrPZ/ZM(am)Eva. Here,
near the polaron edge, the translational mass is almost con-
stant staying neavl (a,,) hence the momentum appears sim-
ply through the shift)=Q — P?/2M(a,,),

1
[(P,Q)oc ———exd — S, (43
Vo -W,
with
Ci Ay |x (=W,  CTsAg
= —+|C : ——|. (44
Jm\ @o 2 mwo Og(Q—Wp)l &

The result for the absorption looks like E40) for the PES
with W,=W,(P) but the coefficientsC; become functions

of P: C;,C,, andCs. They are defined as

Ci=4m\ Z_ZanTda f(a)Vo(a)
+Jafda\/f(a)(vl—wp)}

ar

. 2t(ay) e ,Viam)
Co=Vmhwyg—F——, C3=§(af—aT) B
VVi(am) 0

solutions with a finite action so that the transition rate isand atP— 0 they coincide with the numerical on€s, C,,
zero. In contrast to the PES case, the closed trajectory exiséd C; defined above in Sec. Il C.

for any frequency)2>W, in the region of the momentui
satisfying condition(41).

(B) A vicinity of the free edgeQ)~ A is very particular
for the ARPES. It is dominated by shallow fluctuations de-

For the ARPES intensities we must, in principle, mini- termined by smalh<1, where the kinetic energy diverges as

mize the total expression of ER) with the prefactor term

P?2/M~a~° according to Eq(38). The form factor|¥p|?

| W 5|2, since in some cases this term gives a main contribuacquires an explicit form

tion to the exponent. Then the action is changed as
S—S—log|Vp|2.

The extremal solution, as before, satisfies @4§). The turn-
ing pointaf is not changed, and is defined by E8), but
the equation defining the poird;y becomes more compli-
cated. Instead of Eq17), we obtain

ol —costr? (45)
P~ Agar 0" 2A0ar

To simplify the appearance of cumbersome relations, below
we shall use dimensionless unkg=1 for the momentuni

and energies which also will be counted with respech §o

In the limit a,,a;<1, Eqs.(17) and(18) are reduced to
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2 2p2

a wsP
—em 5t ——==0, (46)

Cuway
+4 3 af2er(z’Pz—o 4
IR RO @0

wheree=(Q—Ay)/A, and the term-a3/2 comes from the
expansion of the local level enerdsy. A simple analysis of
Egs. (46) and (47) shows thata;—ar=o0(at), and the first
term gives the main contribution to actid®0), so that

8\2C, A,
—a

97  wy

T (48
The general constraint iSy>1, hencea;> wcl,’s. This also
assures us in about the conditibh> A, (the masdvl must
stay above the free-band edge masshich requires a
weaker inequalityar>w. We have different regions where
one of the terms of Eq(46) is small in comparison with
others.

(B1) Consider, first, the region lying deeply enough

within the PG:

(woP)¥ "< —e<1.

Here the characteristic values &f are not too small so that
one can neglect the kinetic energyP%é/a? in comparison
to the energy—a?/2 of the localized levelP?w3/a><aZ.
Thenar~\—2¢, S~|¢|*%w, anddQ/dT~ar. The mo-
mentum dependence comes only from the form fafkar.
(45)] but it can still be appreciabl®/ay is limited by a large
quantity (P/ar< e”¥ wo> wy 9 that is allowed to be large.
The total intensity is

1 32yC
I(e,P)oc—ex;{— O|a5|3/2—
9T wg

|E|3/4

7P

|26|1/2'

In the limit —e<\Pw, the contribution from|W¥ |2 (the
second term in the expongrdominates, while in the oppo-
site case the main contribution comes from the t&nThe
line of the maximum intensity- e~ \woP will show up in
the ARPES plots as guasispectrumwhose intensity de-
creases exponentially with growing momenturh(P)
~ P~ ¥%exd —constP 4w, 4.

(49
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The form factor¥3 gives the main contributiorthe first
term) to the exponent of Eq50) .

(B3) Consider now a new region of positive frequencies
e>0:

e>(woP)¥" but e< cu(l)/?’Pz.

The first inequality ensures that the excess frequency is ab-
sorbed mainly by the kinetic energy with a negligibB(2

<€) contribution from the electronic state which is still lo-
calized. The second inequality supports the adiabatic condi-
tion Sg>1. We find

(wOP)2/5 dT P6/5
ar~ ——, A .
(ZCME)l/S dQ 613/5
The ARPES intensity becomes

Pl/5

eX
611/10 [{

8\/2_%(0%/5 P6/5
97T(2CM)3/5 63/5

W(ZCM)lIS

2/5
Wo

|(€'P)oc 3/561/5

. (51

The form-factor contribution, the first term in the exponent,
always dominates, but the second term is also larger thus
contributing to the dependentée,P). The total expression

in the exponent of Eq51) looks nonmonotonic, similar to
case(B1), but now the minimal is not physical: its position
e~ (woP)®* would fall too low, into region(B2). Contours

of constant intensity are close to the descending kne
~w§/ P3. Contribution(51) from thefast moving instantons
can be observable only below the intensive free electronic
absorption at~ P?/2 that is atP> w3 [a similar constraint
already appeared for the cad®?)].

E. Optical absorption: effects of confinement

The same method is applicable to the subgap optical ab-
sorption problem which was basically already studied in
Refs. 11 and 21. We shall see that more details can be easily
obtained. In this case we must use the poteittigldefined
in Eq. (33), instead ofV,;. The termV, describes the first
excited state when the optical photon, assisted by a lattice
quantum fluctuation, creates arh pair with levels* E(t)

(B2) Consider a marginal frequency lying very close to spanning the whole intervdE|<A,. The transition rate is

the free edgee=0 for both signs ofe:

wo<|e|<(woP)¥'<1 for P> wl?.

In this case the instanton kinetic energy and the binding of

the electron almost compensate for each otHet/2M
~a?/2>|e|, which gives usar=[(woP)%Cy]*", and we

obtain
1 p[ mCw g, 8V2Cq
——SeXp —m
P3/7

w(z)n _QW(CM)sﬂwéﬂ
(50)

6/7

I(e,P)ox

given by the modified Eq(7). For the vicinity of the free
electronic edgd&)~2A, we easily find, in analogy with Eq.
16y2C, (2A0— Q)32

0)x —

This law was noted in Ref. 21, but with a different coeffi-
cient in the exponent. Actually it was already obtained in
Ref. 16 by another method which was later reproduced in
Ref. 18. Near the absolute absorption edfe~2W;
=4A,/, we obtain

(52
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1(Q)o exy 6yF() VO — 2W,] (53  Pproof® Here we shall derive this result within the approach
of functional integrals which will provide a model-
wheref () is given by Eq.(36). Near this edge the absorp- independent limit for an overapproximate analysis of more
tion is due to tunneling to the final state formed by the twocomplicated regimes and systems.
diverging kinks with the distance parameter> . (This re- Consider a particle interacting with media of harmonic
gime was studied for the first time in Ref. 21, but the aboveoscillators. This model embraces the shallow polaron case of
analytical asymptotics was not foundaw (53) is different ~ Sec. llIB and the limit of@~A, of Sec. IlID. The prob-
from Eq. (40), which is typical for all polaronic thresholds. ability is given by the action
The particularity is related to a very fastexg—a], de-
crease of interactions for diverging solitons which determine +oo 1 Q\? 1
the threshold. In terms of the effective particles the differ- S{Q,‘I’;T)ZJ dDXf dt ﬁ(_) +§Q2
* 0

. . . . ot
ence is that near the polaronic threshold the turning point
approaches the potential extremum while for the solitonic T (1 |gw|2
threshold it climbs asymptotically to the plateéhe dashed +J def dt(— — +gQ\IfT\If).
. ; 0 2m/| dx
line in Fig. 3.
While law (40) is very robust, e.g., the same as for shal- (54)

low polarons, the solitonic threshold is extremely sensitive to
perturbations. The most drastic effect comes from the conWe can integrate out the fiel@® at all x andt to arrive
finement energysV,=Fa with the constant confinement at the action which is defined only at the intervalTQ,(see
force F caused by a lifting of the ground-state degeneracyRef. 2,

The confinement is always produced by the interchain

coupling?® But even for a single chain it appears in cases of T 1 2
a built-in alternation of unit cells which interferes with the S{‘I':T)Zf d®x f dt<2— )

. . . . . . L 0 m

spontaneous dimerization like in cis-(OHY%?2In principle,

A4
oX

solitonic terms for this problem have been found exactly in 1 T T
the frameworalé ?J the microscopic model of the “combined - Zgzwofo dtlfo dtzp(X,t1) p(X,t2)

Peierls state, and they can be used in our calculations
for an arbitrary strength of the forde=yA,/&,. But here
we shall consider only a weak confinemen& 1 which pre- xexd - w0|t1—t2|]}, (55)
serves the local structure of solitons but prevents their diver-
gence at large. This effect can be taken into account by
adding the termyA,a to the potentiald/y, V, taken in zero
order iny<1. (For the PES this effect is not relevant since
the minimum of the polaronic potentidl, is achieved at . 1 2
finite vaIuea_o yvhere confmement_ is not yet |mporta)mx_s a gV T]= J dXJ dt[—|r?x\1’|2—ﬂp—g—p2}
result the minimum of the potenti&l, is shifted to the finite 0o [2m 2
point a,~ log(16/ry)/2, whereVj(a,)=2y. The optical 2

4 . . - g% (T T
absorption edge is shifted up toW,=4Aq/7 _ _f dtlf dtzj dxdyp(X,t1) dep(X,ts)
+ yAolog(16/47y)/2 and the transition ratg()) is given by 4wolo 0
Eq. (40) if we substituteW,—W,,, V;—V,, ap—a,, a;
—cosh }(w/2).

The problem of solitonic absorption, without the confine- ) o
ment, was considered in Refs. 26 and 21 by means of a The result will prove that'the characteristic energy scale
different quasiclassical approaches. Our results supply théo iS much larger tham, which takes place only db<2.
absent analytical asymptotics in this case, and provide a dd-nen the whole time interval is shoftwo~ wo/6p<1, and
scription of the general case of confinement. Further compliWe can neglect the retardation: gxfaoolt; —t,|]—1. Now the
cations come from the long-range Coulomb interactiondast term inS{¥;T) can be decoupled back by the Hubbard-
which must be studied before comparison with existing ex-Stratonovich transformation via theme-independenauxil-

wherep=|W¥|2. There is also an equivalent form of E§5)
suitable at largd which we shall use later on:

Xexn:—wo|t1_t2|]. (56)

periments. iary field ¢ to give us
i i i T 1 |gw|?
F. Quantum fluctuations as an instantaneous disorder S{\P,é;T)=J dPx f dt(ﬁ —
In a one-dimensional system x-ray or optical absorption 0

can be viewednear the band edge onlas the one in a T 1
system with a quenched disorder which is emulated by in- +§(X)f dt;p(x,t)+ (%) |.
stantaneous quantum fluctuations. This conclusion was 0 ’ 92wy

achieved® by an analysis of the perturbation series for the
polarization operator, which is not the most efficient methodFinally we can integrate ove¥ to arrive at the transition
to do so. Later applications of this idea did not add anyprobability
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Near the absolute edge@~W,, the absorption is deter-
|(Q)~f D[Z(X)]J dT mined by long-time processes when the lattice configuration

xex;{ - )+ T{E[Z(x)]—Q}

2
g wg

1

(%)

£(x) 5(E[§(X)]—Q)exr{ —

2
g wo

2

is almost statically self-consistent with electrons. Here the
solution is close to the stationary polaron; it is nearly time
. independent, approaching the turning paatover most of
the active time interval &t<T. This behavior is allowed by
After rotation to real time, it becomes our parametrization, which provides qualitatively correct as-
ymptotics. While no exact results is availablexcept the
trivial case ofD=0 of Sec. Il A) in this range to compare
f D ' with our approximation, we still can obtain help from the
harmonic model of Secs. 11l B and Ill F. Indeed, the first term
whereE[ {(x)] is the eigenfunction in the random fiefd in Eq. (56) is nothing but the actios,; of the static polaron
S~ —T6Q,60=0—-W,. The second term in E¢56) col-
_ _(_ o+ W=EV. lects contributions only from short transient processes near
2m\ gx t=0,T which are seen agip(X,t)~pp(X)[ o(t) = o(t—T)],

. Lo , . wherep, is the electronic density for the static polaron so-
B etsuone o sk o oo [Scalzed over h lengl,L/(mg). Then e ae
gQ(x.t) cIieft with only exponentially decreasing interference and the

v action acquires the structure

IV. DISCUSSION AND CONCLUSIONS gz
A. Comparison and applicability 8S~—6Q0T+ consf—pw0 exf — woT]+const,

Most of the_z _results presente(_j were base_d upon one.. ... yields the extremum
parameter variational approximations for the instanton tra-
jectory (in imaginary time. The solutions describe local lat-

tice fluctuations of a special class for which only one sQ~mg'exd — woT] hencelod ~ — §S~ &Iog%
electron leveEy(t) is split off inside the gap. This conjunc- oQ

tion is in the spirit of methods of optimal fluctuations in | ) )
statically disordered systemsnd gives good results for dy- N accordance with our one-parametrical results of Secs. 11l B

namics as well: also see Ref. 21. and Il C. We conclude that the asymptotics obtained within
Near the free edge, the spectrum is determined by shallof4" one-parametric approximation are qualitatively correct

states described by the universal model of Sec. |1l B which i#€ing universal for systems with gapful phonons.

harmonic in phonons. It also allows one to exploit an alter-

native approach of Sec. llIF, which is not limited by the B. Summary

one-parameter treatment. For both approaches we find quali-

tatively identical asymptotic dependencies. The results fO{ors in the Peierls state are quite peculiar in several respects.

the_ DOS of d|§ordered systefri$ confirm our direct calcu- In general it is due to a strong interaction of CDW deforma-
lations of the time-dependent processes in the pseudogap re- ith | el hich lead heir f if

ion, and extend them to the nonexponential part of the spe fions with normay electrons which leads to their fast selt-
gon, . (frapplng. The stationary excited states of the model are soli-
trum of 3>0. For D=0 (m=«) and D=1 we arrive

. . tons (kinks) and polarons with energied/s,W,<A,. The
Co”ispog,g"”g'y.at the s_pectral widtf~gwo ar_u;l o1 processes related to these nonlinear excitations determine the
~(g°wg)“~, to find that in both cases the conditiofy

. - . oo true gaps 2V and 2V, placed within the pseudogap\3.
> o IS Sat'Sf'.Ed at IO_W enqugh)O. (This condition is not The single-particle gap, as measured in absorption or tunnel-
satisfied at higher dimensiorid3=2, where the quantum

; = ing, is opened by polarons which should exist also in 1D
fluctuations are not reduced to the random static field bu 9 P yp

i gystems without symmetry breaking, like the majority of
rather become resolved phonon assistant 'procéés'kls.ac'j- conjugated polymer€:2The effect is very common because
ditional peculiarity of the Peierls model is that, in micro-

. ; . . in 1D semiconductors the self-trapping of free electrons

scopic units ofAo and &, the COUPI'”% (ignstarg~1; this  takes place for any type oé-ph interactions® while in
the band edge smearing dg=C1(Aowp) ™. o _ higher dimensions long-range interactions are required. Here

The precise value of the numerical coefficieBt is  the minimal role of the Peierls effect, or at least its partial
known thanks to the exact solutinfor the Gaussian ran- contribution, is to ensure a presence of the stremd cou-
dom white noise modelS;=81/2/3. Its comparison with our - pling. The optical threshold exists a¥\2p in general. But for
approximate valueC} ~16y20/9, obtained in the Sec. IIB systems with degenerate ground states like the
[Eq. (30)], gives the validity ratioC¥/C,=2Cy/3~1.08  polyacethylen¥ there is also a lower gap a2, because
which demonstrates a higli8%) accuracy of the one- the lowest excitations are now topological solitons
parametrical ansatz. The same holds for the Peierls model ¢kinks).>”*33*A weak interchain couplintj preserves the po-
Sec. llIC which is reduced to the shallow model for this laronic effects while creating a shallow barrier with respect
energy range. to the self-trapping, thus allowing for metastable free elec-

Electronic properties of quasi-one-dimensional conduc-
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tronic states and corresponding transitions. The 3D effects olum dependence of the form factor—the momentum distri-
solitonic transitions are more drastic because of the confindsution of the split off state. Another one is the inertial part of

ment effect®>® the action coming from the drastic dependence of the kinetic
Near the free edgéor both PES and optigsve recover mass on the localization parameter which evolves in time
the stretch exponential dependencies along the instanton process. One of unexpected results is that
at largeP law (57) changes to a nonmonotonic function(@f
|Q|\ "o 1, which would show itself as a quasispectriianline of maxi-
I ~exp — oo | P (57 mums ofl (Q,P)] within the pseudogafregime(B3) of Sec.

1D ]. Another result is an appearance of optimal localized
fluctuations at an elevated kinetic energy so that they show
up above the PG region, &>0 [regime(B1)]. These ob-
servations may be more general than the studied one-
dimensional adiabatic models.

In conclusion, we have calculated intensities of subgap
, (58) photoelectronic transitions by means of a functional integra-

tion over the lattice oscillation modes. By this virtue we have

which differs only by numerical coefficients among different Studied the problem of photoemission from the pseudogap
models. The first constant term in the exponent describes tH&dion for typical one-dimensional models. We have found
adiabatic reduction for the probability of creation of the sta-9eneral expressions for the transition rate and studied the

tionary polaron atW,. The second term gives the law for asymptotic behaviors near absorption edges, both below the
approaching this threshold. free electronic edge and approaching the lower true one. It

The same law holds for the two-particle procés® in- ~ Was shown that the main contributions to the transition rates
ternal optical absorptigrif the ground state is nondegener- €0Me from instanton configurations of the phonon field. The
ate. But for a system with a spontaneous symmetry breakin@’e'e”S model was considered in particular detail due to its
like the Peierls model for the polyacethylene the threshold'umerous applications. Peculiarities of the ARPES regime
dependence of the exponent changes fred logsQ toa  COMe from unexpected effects of the instanton motion. For

— ; ; the intragap optical absorption problem we have calculated
stronger one~ () —2W; with the threshold ¥ being the ) . . e
energy of a solitonic pasir. s g the asymptotic behavior of the absorption coefficient near the

The momentum dependence of the intensit,P), as threshold for (_:reation of pairs of solitons, and studied the
recovered by ARPES, shows a rich variety of regimes. Onlyff€cts of confinement.
near the absolute threshold is 1&88) simply generalized by
adding the polaron kinetic energW,=W,+P%2M,. But
the region near the free electronic threshfle-E; demon- S. M. acknowledges the hospitality of the Laboratoire de
strates several nontrivial regimes. The differences come frorRhysique Therique et des Mode Statistiques, Orsay, and
two effects achievable for shallow states. One is the momerthe support of the CNRS and the ENS—Landau Foundation.

with different powersvp>1 for dimensiondD =0,1: vy=2
andv,=3/2.

Near the absolute threshold & = ) —W,<W, we find
the samgfor the PES law,

| CWp CI&QI W,
ex — w—oog—69
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