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Complex band structure, decay lengths, and Fermi level alignment
in simple molecular electronic systems

John K. Tomfohr and Otto F. Sankey
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287

~Received 10 December 2001; published 28 May 2002!

The complex band structure of a periodic system is the conventional band structure extended to complex
Bloch k vectors. Thek vectors with an imaginary part describe spatially decaying wave functions and arise in,
for example, the analysis of impurity and surface states. They also represent the quantum tunneling states
which are vehicles of electron transport through a barrier such as a thin oxide layer or a molecule. We present
a method for obtaining the complex band structure of a molecule which is composed of repeating units. The
complex band structures of some simple organic molecules~n-alkanes, alkenes, and linked benzene rings! will
be determined and used to analyze electron conduction through molecules~e.g., octanedithiol! connected
between gold electrodes. The form of the complex band structure clearly elucidates the molecule length
dependence of the tunneling current and also suggests the energy for alignment of the Fermi level.
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I. INTRODUCTION

The goal in the emerging field of molecular electronics
to create devices based on electronic current passing thr
a single molecule or an assembly of molecules. Low cost
small size are strong motivators that have rapidly advan
this field. Typical structures consist of a molecular film, or
a single molecule, sandwiched between a pair of m
contacts.1–4 The Fermi level of the metal contacts usua
lies between the highest occupied molecular orbital~HOMO!
and lowest unoccupied molecular orbital~LUMO! electronic
states of the molecule. A small applied voltage results
electron transport through the molecule via nonresonant
neling or, for higher voltages, via resonant tunneling throu
a molecular energy level.5,6 The nonresonant tunneling prob
ability is quantified by a ‘‘b ’’ parameter, where the tunnelin
probability is proportional toe2bL, andL is the length of the
molecule. The molecular orbital energies and wave functi
controlb, and general statements about its value are diffic
to make.

A simplification exists for molecular systems that are co
structed of a finite set of repeating building blocks. For the
molecules, the methods of solid-state physics can be use
make predictions aboutb. The theory of complex band
structures, originally developed to examine surface state
crystals, is used in this work to determine propagating a
nonpropagating~tunneling! states of infinite repeating chain
at any energyE. This analysis will yieldb values that give
reliable estimates of how the electron wave functions in
metal decay through a molecule that is a fragment of
infinite chain. The basic concept has been used previous
its simplest form by Beratan and Hopfield7 to analyze elec-
tron tunneling rates through ruthenium dithiaspiro co
plexes. Expressions for decay rates of gap states in s
model systems in molecular electronics have been derive
Magoga and Joachim8 and Girardet al.9 The exponentially
decaying states have also been observed directly with a s
ning tunneling microscope~Langlaiset al.10!.

In this paper, we examine infinitely long periodic one d
0163-1829/2002/65~24!/245105~12!/$20.00 65 2451
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mensional organic chains, for which finite fragments are
molecules of interest. Examples we examine in this work
shown in Fig. 1. They are@Fig. 1~a!# alkane chains with
carbon single bonds,@Fig. 1~b!# alkene chains with alternat
ing carbon double-single bonds, and@Fig. 1~c!# molecules
formed from benzene rings linked by triply bonded carb
atoms. These examples are model molecules for molec
electronic studies.

The electron energy eigenstates in a periodic system
be taken to have the Bloch form

c~x!5eikxu~x!,

whereu(x) is a function with the periodicity of the lattice
Normally, only real values of the Blochk vector are consid-
ered since, for infinite systems, imaginaryk solutions exhibit
the physically unreasonable behavior of blowing up exp
nentially in some direction. The energy eigenvalues cons
ered as a function of realk values~the band structure! reveal
the detailed nature of electron transport through exten
states in the material.

Imaginary ~or complex! k solutions are also physically
relevant and important for systems of finite size or, mo
generally, systems which contain breaks or defects in spa
uniformity. The simplest example is the transport of a fr
electron over a square potential energy barrier. Here
eigenstates are of the formeikx wherek, a function of the

FIG. 1. Three organic periodic molecules.
©2002 The American Physical Society05-1
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electron energy, is real or imaginary depending on whet
the electron energy is above or below the height of the
tential energy barrier. Low energies lead to imaginaryk, and
the transmission probability~obtained from the square of th
wave function! is approximately proportional toe2bL where
L is the length of the barrier andb52uku. In this example,
the function b(E) is 2A2m(f2E)/\2, where f is the
height of the energy barrier. Just as the functionb(E) is
important for tunneling through the barrier, so is the form
the complex band structure for a finite fragment~molecule!
of an infinite chain.

A concise picture of electron transport through a rig
finite molecule is obtained from the complex band structu
which generalizes the usual band structure to include c
plex Bloch vectors. A fundamental assumption used her
that the interior of the molecule has a local environment v
near that of the infinitely long ideal chain. Even if the en
are altered due to charge rearrangement, we assume tha
has little effect on the atoms in the central region so t
locally the Hamiltonian is that of the infinite molecule. A
the molecule is lengthened, the central region lengthens,
an accurate measure of the reduction of tunneling is obta
from an analysis of the infinite chain.

Much of the previous work in molecular electronic h
focused on current-voltage characteristics.1,11–13 These are
sensitive to a number of variables not directly related to
molecule~the nature of the contacts, the connection, the te
perature, the chemical environment, etc.!. An advantage of
the complex band structure approach applied to a molecu
that it reveals aspects of conduction which are unique to
molecule, independent of the environment.

In this paper, we describe a method for obtaining the co
plex band structure of a molecule and apply it to so
simple systems. We emphasize that the concept of a B
wave vector is only meaningful for a molecule which is
sequence of repeating units; hence we are restricted to
ecules constructed by stacking repeating building bloc
This includes a wide variety of molecules, includin
(n-!alkanes, alkenes, alkynes, carbon nanotubes, polye
polyanaline, and synthetic DNA~e.g., poly-A–poly-T!. In
Sec. II, we compute the complex band structure for a sim
model system to illustrate the method and concepts, and
tain analytic formulas that serve as model formulas for m
complex systems. In Sec. III we develop the theoretical te
niques to compute the complex band structure following
method of Chang and Shulman.14 In Sec. IV, we apply this to
the case ofn-alkanes. In Sec. V, we discuss the lineup of t
Fermi level of Au for ann-alkane~octanedithiol! system. In
Sec. VI we evaluate the complex band structure of an alk
chain and of a molecule formed from linked benzene rin
Finally, in Sec. VII we conclude.

II. EXAMPLE

Before presenting the complex band structure of a rea
tic system and a general method for computing comp
band structures, it is instructive to determine the comp
band structure of a simple model system.

The model we have chosen is a one-dimensional perio
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arrangement of two types of atomsA andB, arranged in an
alternating sequenceABABABAB. . . . The unit cell con-
sists of anA and aB atom and the spacing between cells isa
~the distance betweenA andB is a/2). A two-band model of
this kind has been analyzed previously.15,9 The wave func-
tion in unit cell m is expressed as a linear combination
orthonormal orbitalsfA andfB on each atom in that cell:

C (m)5CA
(m)fA1CB

(m)fB . ~1!

The Hamiltonian matrix has coupling2t between orbitals on
nearest-neighbor atoms only and the onsite energies areEA
andEB , with EA,EB .

Assuming the Bloch form for the eigenstates,C(m)

5eikmaC(0), the energy eigenvalues are found to be

E6~k!5S6AD212t2~11coska!, ~2!

where

S5
EA1EB

2

and

D5
EB2EA

2
.

The eigenvalues are shown in Fig. 2 for real and ima
nary k values. The band gap in this model is 2uDu, and the
valence-band topEv (5EA) and conduction-band minimum
Ec (5EB) occur atS2uDu and S1uDu, respectively. The
two bands~or branches! E1(k) andE2(k) are connected in

FIG. 2. The complex band structure for the model system, w
t set equal toD. The right half of the figure is the usual~real k)
band structure while the left region is a plot ofuIm ku for the k
solutions with an imaginary part. The valence-band branch~maxi-
mum atEv) is connected to the conduction-band branch~minimum
at Ec) at the branch point located atE5S. The k solutions with a
nonzero imaginary part decay bye2uIm(k)ua from one unit cell to the
next. Of more direct significance is the reduction in the tunnel
probability, e22uIm(k)ua5e2ba. This defines the quantityb(E)
52 Im k(E).
5-2
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COMPLEX BAND STRUCTURE, DECAY LENGTHS, AND . . . PHYSICAL REVIEW B65 245105
the complexk plane at the branch point atE5S. The branch
point occurs whenE1(k)5E2(k),16,17 which requires

D212t2~11coska!50;

this can only be satisfied if coska,21, sok must have an
imaginary component.

The imaginaryk region of the band structure determin
how an electron with a given energy will tunnel through
finite region of the crystal. In the gap region, betweenS
2D andS1D ~see Fig. 2!, uku gives the rate of decay of th
wave function from one cell to the next. As the energy a
proaches the band edge from the gap,uku decreases so a
electron with an energy in the gap will tunnel more effe
tively as its energy approaches the band edge. The b
edges each act as the top of an effective potential barrier;
the top of the simple square barrier, they mark the crosso
point from decaying states to propagating ones.

We can find the complexk vector for energies in the ga
from Eq. ~2! by replacingE6 by an input energyE and
solving for coska. The result is

coska52g~E!, ~3!

where

g~E!5
~E2Ev!~Ec2E!

2t2 11. ~4!

Thek solutions split off of the real axis from the band edg
at ka5p. Writing ka5p1 ib(E)a/2 we have

b~E!a/25 ln@g~E!1Ag~E!221#. ~5!

The eigenstates in the gap change sign (eip) and decay by
e2ba/2 from one cell to the next. The corresponding decay
the probability ( ucu2) is e2ba.

To make contact with tunneling through a barrier, we n
that t2 can be related to the effective massm* ,
@(1/\2)d2E/dk2#21, evaluated at the band edge. Expand
Eq. ~2! for energies near the top of the valence band or
bottom of the conduction band yields

\2Eg

2m* a2 5t2. ~6!

Replacingt2 by this effective mass expression in Eq.~5! for
g(E) gives

b~E!52A2m*

\2
~E2Ev! ~7!

for energiesE nearEv and

b~E!52A2m*

\2
~Ec2E! ~8!

for energies nearEc . These expressions are similar to t
simple barrier tunneling expression
24510
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b~E!52A2m

\2
~fB2E!, ~9!

wherefB is the barrier height andE is the energy below the
barrier.

We can take another approach to this problem using
~forward propagating! Green’s function

G~E!5(
n

un&^nu
E2En1 ih

. ~10!

The sum is over all eigenstatesun& of the system~each with
eigenvalueEn) and the limith→01 is to be taken.G(E) is
related to the propagatorG(t)5(nun&e2 iEnt/\^nu by

G~ t !52
1

2p i E2`

`

G~E!e2 iEt/\dE.

^x8uG(t)ux& is the probability amplitude for propagatio
from pointx to x8 in time t (.0) and we see that this is th
sum of time-independent amplitudes^x8uG(E)ux& multiplied
by time-dependent phasese2 iEt/\. Loosely speaking,G(E)
indicates how electrons with energyE ‘‘penetrate’’ from one
point ~or state! to another.

For a one-dimensional periodic system with spacinga be-
tween unit cells, the cell-averaged Green’s function21 is de-
fined as

G~m,E!5E
cell

^x1mauG~E!ux&dx

5
1

N (
nk

eikma

E2Enk1 ih
. ~11!

Herem labels a unit cell,n is a band index,k varies over the
entire Brillouin zone, andN→` is the number of cells in the
system. For our model, this can be directly evaluated us
contour integration. The result, in the gap region, is

G~m,E!5~S2E!
@2g~E!1Ag~E!221#m

t2Ag~E!221
, ~12!

whereg(E) is the same as in Eqs.~3! and ~4!. Writing ka
5p1 iba/2 as before, this can be written as

G~m,E!5~S2E!
~21!me2bma/2

t2 sinhba/2
. ~13!

The ~cell-averaged! Green’s functionG(m,E) has the same
exponential decay at energyE as the complexk Bloch states.

We make this connection because the cell-avera
Green’s function is relevant to another important aspect
molecular conduction. As will be discussed further in Sec.
when a molecule is connected between metal contacts,
tunneling electrons are those located at or near the Fe
level of the metal. In order to understand electron transp
through the molecule it is necessary to estimate where
metal Fermi level lies relative to the molecule energy leve
The cell-averaged Green’s function gives such an estima
5-3
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The situation is similar to a Schottky barrier where
exchange of charge between the semiconductor and
metal—resulting in the formation of an interface dipole
brings the Fermi levels of the two materials into coinciden
A central problem in characterizing a Schottky barrier is
determine the location of the Fermi level relative to the se
conductor band edges near the interface.18

For the metal-semiconductor interface, there are me
induced gap states19 ~MIGS! in the semiconductor gap regio
which decay exponentially in the semiconductor. These c
respond to the Bloch states of the semiconductor which h
k vectors with an imaginary component. There is an ass
ated charge neutrality levelf0 ~Refs. 20–22! for the MIGS
and it is expected that if the density of MIGS is reasona
large, the Fermi level should be ‘‘pinned’’ tof0. The effect
may be viewed as a feedback mechanism where elect
leaking out of the MIGS and partly into the depletion regi
of the semiconductor cause further band bending wh
counters the whole process by lowering the energies of
MIGS.23

One particularly simple approach to the Schottky barr
problem was proposed by Tersoff,21 who gave a prescription
for determiningf0 which is based only on the properties
the semiconductor. Tersoff proposed that the charge neu
ity level should be located at the branch point in the gap
the complex band structure of the semiconductor. More s
cifically, since there may be more than one branch poin
the gap, thef0 branch point is the branch point in the gap f
Bloch k states which penetrate deepest (uIm ku smallest!.

The method suggested by Tersoff for locating this bran
point uses the cell-averaged Green’s function. It follo
from Allen24 that the cell-averaged Green’s function in t
gap may be written as

G~m,E!52ai(
kn

eikma

v~k,n!
, ~14!

where the sum is overonly those values ofk and n which
satisfy bothE(k,n)5E and Imk sgn(m).0. The restriction
on Imk picks out the decaying solutions and excludes th
which increase exponentially asumu increases. The quantit
v(k,n), the velocity times\, is given by

v~k,n!5
dE~k,n!

dk
. ~15!

For the model system of this section,

v~k,n!5
2t2a sinka

E2S
, ~16!

k is given by Eq.~3!, and application of Eq.~14! will yield
Eq. ~13! for the cell-averaged Green’s function. The meth
for locating the branch point for the most penetrating g
states follows by recognizing that the contributions
G(m,E) from eachk value in the sum will vanish rapidly a
m increases, so

G~m,E!→2ai
eik0ma

v~k0!
as m increases, ~17!
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wherek0 has the smallest imaginary part of thosek’s in the
sum.

We now have all the necessary tools using the MIG
theory to make an estimate of the position of the Fermi le
of a metal contact relative to the LUMO-HOMO leve
~roughly Ec andEv , respectively! of the molecule. The en-
ergy of the branch point is the charge neutrality levelf0 of
the molecule. Physically this means the character of the s
changes from valence~bonding! to conduction~antibonding!
~Ref. 25! and the charge-neutrality point is where the en
gies of these two states are equal (E15E2 in our simple
model!. The Fermi level is pinned to this level in the MIG
theory. The branch pointf0 determined by Tersoff is locate
at the energy whereG(m,E)50 ~for large enoughm). This
follows from Eq.~17! sincev(k0)5dE/dk is infinite at the
branch point.

One can see from our model using Eq.~13! that the cell-
averaged Green’s function indeed vanishes atE5S, the
branch point energy. This energy is the estimate of the p
ning position of a metal Fermi level due to MIGS. Using th
model and the complex band structures of organic molec
we consider below, it is a simple matter to obtain the bran
points without evaluating the cell-averaged Green’s functi
As in Fig. 2, we simply seek a ‘‘vertical’’ region~i.e.,
dE/dk→`, giving G50) for an imaginaryk value (b/2) at
an energyE in the gap. This locates the branch point an
hence, an approximate estimate for the position of the m
Fermi level.

The Fermi level problem for the metal-molecule syste
will be examined in more detail in Sec. V. We note that t
MIGS theory has had reasonable success in giving estim
of the Fermi level alignment of metal/semiconductor inte
faces. A complete self-consistent calculation is necessar
obtain a more reliable value, assuming that defects do
influence the barrier.26 We view the MIGS method applied to
molecular electronic applications as simply a first appro
mation. In molecular electronics applications one would id
ally want a single molecule between metal contacts, and
MIGS theory is based on planar interfaces in which cha
transfer effects yield energy offsets similar to a parallel pl
capacitor. In practice, many molecular electronics devices
in fact involve a planar array of contacts which arise fro
self-assembled monolayers~SAM’s! and for these system
the assumptions built into the MIGS theory are closer
being correct.

III. METHOD TO DETERMINE THE COMPLEX BAND
STRUCTURE

In this section we present a method for determining
complex band structure. In particular, we derive a ma
ematical technique which produces all Blochk vectors~pos-
sibly complex! corresponding to a given input energyE. A
sweep over a range of energies then reveals the com
band structure. An understanding of the method is not
quired for understanding complex band structures, howe
so the reader may wish to skip this section.

A conventional band structure is obtained by choos
real k values and solving the energy eigenvalue probl
5-4
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from the Hamiltonian. The loci of associated eigenenergieE
are collected to produce the well-knownE(k) band structure.
An alternative approach, which is more complete but l
direct, is to instead consider the energy as input and obta
output thek values that produce that energy. This ‘‘inverte
procedure producesk values that may have both real an
imaginary parts, and this generates the complex band s
ture.

The goal in obtaining a complex band structure is to o
tain the spectrum ofk’s associated with any real energyE.
This inverted approach has a long history, and the theore
methods used are generally referred to as transfer m
techniques.27 The technique can be applied using loc
atomic-like orbitals28,29,14 or plane-wave basis sets.30–32 In
the present case we use a set of local atomic orbitals as
basis.

The specific theoretical approach we have taken follo
from the general theory developed by Chang and Shulm
~CS!.14 The concept is to rewrite the Schro¨dinger equation as
an eigenvalue equation inl, wherel5eika (a5 lattice con-
stant!. The eigenvaluesl are to be determined for any give
input energyE. When an output eigenvalue satisfiesulu51,
we have a realk value; whenl is off the unit circle, we have
exponentially decaying or growing~tunneling! solutions cor-
responding to complexk values. It is these tunneling solu
tions that reduce the transmission in molecular electro
systems and, hence, are of special interest.

We define an operatorZ ~a matrix! asZ5(H2ES) where
H is the Hamiltonian,S is the overlap matrix between non
orthogonal atomic orbitals, andE is the input scalar energ
of interest. The Schro¨dinger equation is written as

(
m52N

N

Z(m)CW (m)50, ~18!
a

in

-
s

uc
de

24510
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whereZ(m)5H (m)2ES(m). The matricesH (m) andS(m) con-
tain the~Hamiltonian and overlap! matrix elements between
the orbitals of the zeroth andmth unit cells. The sum overm
is the sum over unit cells which interact through Hamiltoni
matrix elements or orbital overlaps with a chosen~the ze-
roth! unit cell. Electronic states are linear combinations
atomiclike orbitals, and the vectorCW (m) contains the coeffi-
cients of the basis orbitals in cellm. Interactions are included
from the central cell to cellsN lattice constants away.

The periodicity of the system permits us to invoke a ge
eralization of Bloch’s theorem that relates vectors on nei
boring cell,

CW (m11)5lCW (m). ~19!

One can repeatedly insert Eq.~19! into Eq.~18! and obtain a
matrix polynomial equation forl up to orderl2N. This is
difficult to solve. Instead, in the method of CS, a new mat
of larger size is created~a transfer matrix!, with the ultimate
goal of producing a linear polynomial inl; a linear polyno-
mial is tantamount to an eigenvalue equation forl, which
can be solved by standard algorithms. From Eqs.~18! and
~19! we obtain the following set of 2N equations:

2 (
m52N

N21

Z(m)CW (m)5Z(N)lCW (N21), ~20!

CW (m11)5lCW (m)~2N,m,N22!. ~21!

When Z(N) is nonsingular~i.e., its inverse exists! one can
multiply the first of these equations by (Z(N))21 to yield a
simple eigenvalue problem forl. The transfer matrix gener
ated by Eqs.~20! and~21! can then be written in matrix form
as
S 2@Z(N)#21Z(N21) 2@Z(N)#21Z(N22) . . . 2@Z(N)#21Z(2N11) 2@Z(N)#21Z(2N)

1 0 . . . 0 0

0 1 . . . 0 0

A A A A

0 0 . . . 1 0

D S CW N21

CW N22

A

CW 2N11

CW 2N

D 5lS CW N21

CW N22

A

CW 2N11

CW 2N

D .

~22!
nd

: a
Unfortunately, in all but the simplest of models, the m
trix Z(N) is singular, and the matrix@Z(N)#21 does not exist.
Matrix elements between orbitals go to zero~or effectively
so! past the sum of their orbital ranges. If any orbital with
cell N has no interaction with any orbital in cell ‘‘zero,’’ the
matrix Z(N) will have a row of zeros and the matrix is sin
gular. In large unit cells this is likely to occur since atom
near the mutual boundary between the two cells are m
closer than a pair of atoms each located on opposite si
-

h
s.

We now describe a general method to easily identify a
remedy this problem.

Our method is based on identifying two subspaces
‘‘range’’ subspace and a ‘‘null’’ subspace. WhenZ(N) is sin-
gular, it can rigorously be decomposed asZ(N)5UWDV†

whereU andV are unitary matrices andWD is diagonal. This
is the well-known singular value decomposition~SVD!.33

Defining DW (m)5V†CW (m) and Y(m)5U†Z(m)V we obtain re-
placements of Eqs.~20! and ~21!:
5-5
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2 (
m52N

N21

Y(m)DW (m)5WDlDW (N21), ~23!

DW (m11)5lDW (m)~2N,m,N22!. ~24!

In a SVD, that which is producing the singularity is clear
identified and is visible as a null submatrix ofWD . We ar-
range the columns ofU andV so thatWD has the form

WD5S wD 0

0 0D ,

where wD is a diagonal matrix with all nonzero diagon
values. The null matrix in the lower right-hand corner ofWD
defines the null subspace, and the subspace spanned bwD
defines the range subspace. To simply treat these two
spaces, we define projector operators in the range and
subspaces,I R andI N , respectively. The range projectorI R is
a diagonal matrix with diagonal values of 1 or 0. The valu
of 1 are given to those elements in the same subspace awD
and a zero is assigned to elements in the same subspa
the null matrix in the lower right-hand corner ofWD . In
other words,I R is obtained fromWD by replacing each~di-
agonal! elements ofwD with a 1. The null space projectorI N
is the identity matrix minusI R . We also define a matrixW
by W5WD1I N ; this matrix, unlikeWD , is invertible.

The strategy is to replace Eq.~23! by two sets of equa-
tions, instead of one. One set of equations applies to
range subspace and the other to the null subspace. We
rewrite Eq.~23! usingWD5W2I N andW21I N5I N , so that
Eq. ~23! can be written as

2W21 (
m52N

N21

Y(m)DW (m)5lDW (N21)2I NlDW (N21). ~25!

Equation~25! is the equation we use to develop the two s
of equations for the range and null subspaces.

The range subspace rows of Eq.~25! are easy to deter
mine. We multiply byI R and useI RI N50 to yield

2I RW21 (
m52N

N21

Y(m)DW (m)5lI RDW (N21). ~26!

This equation involvesI RDW (N21) on the right, which is the
vector in the range subspace.

The more complex case is that of the null subspace, w
equations involvingI NDW (N21) on the right. This is accom
plished in four steps. In the first step, we multiply Eq.~25!
by WlI N . The right-hand side vanishes sinceI NI N5I N , and
using@W,I N#50, we obtainI N(m52N

N21 Y(m)lDW (m)50. Using
Eq. ~24!, this sum is rewritten to expose theD (N21) term as

I N (
m52N

N22

Y(m)DW (m11)1I NY(N21)lDW (N21)50.

In the second step, the identity in the formI R1I N is in-
serted in front ofDW (N21),
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I N (
m52N11

N21

Y(m21)DW (m)1I NY(N21)I RlDW (N21)

1I NY(N21)I NlDW (N21)50. ~27!

In the third step we usey(N21), which is the null subspace
part ofY(N21) contained inI NY(N21)I N . This matrix is aug-
mented to the full space by defining a matrixQ as

Q5I NY(N21)I N1I R . ~28!

The matrixQ is simply the identity in the range subspace a
the matrixy(N21) in the null subspace and is of the form

Q5S I 0

0 y(N21)D . ~29!

In the fourth and final step, we useQIN5I NY(N21)I N in
the third term of Eq.~27! and use Eq.~26! in the second term
to finally obtainDW (N21) in the null subspace,

I NS (
m52N11

N21

Y(m21)DW (m)2Y(N21)I RW21 (
m52N

N21

Y(m)DW (m)D
52QlI NDW (N21). ~30!

If the submatrixy(N21) in Eq. ~29! is invertible, so isQ
and Eq.~30! multiplied by 2Q21, together with Eq.~25!
and ~24!, makes up a complete eigenvalue problem:

2I RW21 (
m52N

N21

Y(m)DW (m)5lI RDW (N21),

2I NQ21S (
m52N11

N21

Y(m21)DW (m)

2Y(N21)I RW21 (
m52N

N21

Y(m)DW (m)D 5lI NDW (N21),

DW (m11)5lDW (m)~2N,m,N22!. ~31!

Equations~31! can be assembled into matrix form as in E
~22! to produce an eigenvalue equation forl for a givenE,
which can be solved numerically and completes the task
the situation is unusual and the submatrixy(N21) is not in-
vertible, then the procedure for handling singularZ(N) can be
repeated fory(N21). We did not encounter this difficulty in
the present work.

IV. COMPLEX BAND STRUCTURE FOR AN ALKANE

Perhaps the most studied self-assembled monolayer
tem in nanotechnology is that of then-alkanes34,35 ~see Ref.
35 for many references!. Then-alkanes CH3(CH2)NCH3 are
nonbranching chains of singly bonded carbon atoms. T
olated alkanes CH3(CH2)NSH spontaneously assemble in
highly ordered monolayers on a gold (111) surface. T
strong Au-S bond cleaves the terminal hydrogen, creatin
film of van der Waals interchain-bonded molecules.36 The
5-6
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chain exists in any desired lengthN, with a typical film in
molecular electronic applications havingN in the range of
8–20.

The I -V characteristics of the alkanes themselves can
measured with, for example, a conducting atomic fo
microscope.37 Alkane monolayers also serve as a conveni
supporting, insulating matrix in which other molecules c
be embedded and their conducting properties measured
cent experiments have been performed in which a low c
centration of alkanedithiol molecules are embedded in
monothiol SAM. Contact at the other end of the dithiols
made with gold nanoparticles and single-molecule tunne
through the alkanedithiols is observed.2

Tunneling through an alkane thiol or dithiol film will b
very sensitive to the length of the alkane chain. One theo
ical approach is to investigate each molecule individua
and determine the tunneling probability. In the complex ba
structure approach used here, we consider only the infin
length alkane chain and the tunneling characteristics are
termined by the complexk vectors that produce decayin
wave functions. The major assumption is that the electro
states of the finite-length molecule are a subset of
infinite-chain states. This means that the finite length d
not create any intrinsically new states, but rather produ
only finite-size effects. An analogy is that the harmonics o
short violin string are a subset of those present in the vib
tions of a very long string.

The atomic structure of the infinite-length alkane chain
shown in Fig. 3. The angles and bond lengths used are
ideal values: all angles are tetrahedral (109.47°), the C
bond length is 1.54 Å, and the C-H bond length is 1.10 Å

The conventional band structure~real k) for an infinite
alkane chain is shown in Fig. 4. We use two different el
tronic structure techniques, both of which use dens
functional theory and pseudopotentials. We use Fireba
2000 ~Ref. 38! using a minimal basis set~H has a singles
state, C ansp3), and SIESTA ~Ref. 39! using an extended
basis set (sp3 for H, sp3d5 for C!. The top of the valence
band has been shifted so that it defines zero energy. B
methods give similar band structures, especially for the
cupied valence states. Differences between the method
more pronounced for the conduction states. In addition,
band gap is smaller for the extended basis than for the m

FIG. 3. The structure of an infinite alkane chain. The structur
ideal with all bonding angles 109.47°. Three repetitions of the u
cell are shown.
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mal basis calculation: 9.00 eV vs 10.25 eV. However,
density-functional theory, the band gap is usually undere
mated. The experimental ionization potentials forn-alkanes
are all approximately 10 eV.40

We now examine the complex band structure for the
kane chain using the local orbital method described in S
III. We show the complex band structures calculated with
minimal basis set@Fig. 5~a!# and with the extended basis s
@Fig. 5~b!#. In each figure, the region to the right of the orig
shows the real parts of thek values obtained at each energ
The region to the left of the origin displaysb5Im(ka). This
quantity is proportional to the decrease of the tunneling pr
ability per carbon@2 Im(ka) is the decrease of the tunnelin
probability per cell, and there are two carbons per cell#. The
transmission probability for an electron with a givenb is
then proportional toe2bN whereN is the number of carbon
atoms in the alkane.

In generalk can have both real and imaginary parts.
this case, the state is not propagating and we only show
imaginary part ofk which corresponds to the decay of th
state. The rightmost panel showsk vectors that are entirely
real. These energy-realk points reproduce the convention
band structure.

Let us focus our attention on the energies within the fu
damental band gap region~betweenE50 and '10 eV).
The extended basis calculation has more structure forb than
the minimal basis calculation. But this extra structure occ
for large b values and is loosely interpreted as decay
waves from distant bands. The largeb values produce de
caying states that have negligible tunneling probability af
just a few C atoms. What is observed in experiment
chains with on the order of ten carbon atoms will be on
those states with smallb values. Comparing Figs. 5~a! and

s
it

FIG. 4. The conventional band structure of an infinite alka
chain computed using~a! a minimal basis set~Ref. 38! and ~b! an
extended basis set~Ref. 39!. Density-functional theory is used in
both methods in the local density approximation. In both figur
the top of the valence band~HOMO! is defined to have zero energy
The k vector is real and goes from 0 top/a, where ‘‘a’’ is the 1D
lattice spacing.
5-7
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5~b!, we see that for these states both calculations give
tually identical behavior.

In the fundamental band gap, the smallestb values are
given by a semielliptical-like curve similar to the mod
curve in Fig. 2. We do detect some difference between
two calculations for this semielliptical curve near the co
duction band. In the extended basis system there are a co
of otherb bands that pass through the semiellipse very n
the conduction band. In fact, the extended basis calcula
suggests that for energies very near the conduction b
there are three distinctb values that are all comparable an
that can contribute to tunneling.

FIG. 5. The complex band structure for~a! a minimal basis set
~Ref. 38! and~b! an extended basis set. The top of the valence b
is set to 0 eV. The right panel showsE(k) for k completely real,
which is the conventional band structure. The left panel showb
~the imaginary part of the complexk solutions! for energies that
have complexk vectors. The units ofb shown are such thate2b is
the reduction in the tunneling probability from one carbon atom
the next. Specifically, the decrease of the wave function ise2Im(k)a

per unit cell; the decrease in the probability ise22 Im(k)a per unit
cell, and since there are two carbon atoms per unit cell, the decr
in the probability per carbon ise2Im(k)a. Thus, in this particular
plot, b is obtained from Im(k)a.
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Near the conduction band we must recognize that the
neling may involve more than just oneb value. Let us ex-
amine our results in more detail for energies in the band
that are not near the conduction-band edge. We examine
single semielliptical curve for the minimal basis set. T
extended basis set gives almost identical results.

The semielliptical band is shown in Fig. 6. We see that
tunneling probability, which goes ase2bN, whereN is the
number of carbon atoms, has ab value near 1 at midgap an
which decreases to zero as the energy approaches
conduction- (Ec) or valence- (Ev) band energies. A mode
expression ofb(E) can be obtained using Eq.~5! where
g(E) is given by Eq.~4!. A value for t is determined using
Eq. ~6! with the effective mass determined from the curv
ture of the valence-band; the value forEg is taken as the
energy difference between the valence-band edge and
edge of the associated unoccupied band it is joined to by
semielliptical b curve. In general, this unoccupied band
not necessarily the lowest in energy of the unoccupied ba
This is seen in the extended basis calculations@Fig. 5~b!# of
the complex band structure where there are a few interven
unoccupied bands between the fundamentalb semiellipse
and the point at which it connects to an unoccupied ban

The two valuesEg andm* determine the model expres
sion and this is also plotted in Fig. 6 for both the minim
and extended basis calculations. The agreement is very g
In the extended basis calculation the model curve is ne
indistinguishable from the calculated curve. Also shown
the simple barrier tunneling curves Eq.~7! using the valence-
band effective mass. The barrier tunneling model is a reas
able approximations only for energies very close—with
about 1 eV—to the band edge.

d

o

se

FIG. 6. The lowestb-value semielliptical curve for energies i
the fundamental band gap region computed using a minimal b
set. For comparison, the model fit to expression Eq.~5! is shown.
The two parametersEg andm* are obtained from the conventiona
band structure wherem* is the valence-band~hole! mass. The
curves labeled ‘‘Barrier’’ are a barrier model@Eq. ~7!# coming from
the valence band.
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V. FERMI LEVEL LINEUP

The complex band structure specifies how an elect
with a given energy will propagate through a molecule. If t
molecule is connected between metallic electrodes, the
ducting electrons are those with energies located near
Fermi level of the metal. To understand the conducting
havior of the molecule, it is therefore necessary to estim
the metal’s Fermi level lineup with the molecule’s ba
structure for the complete metal-molecule-metal system.
example, in then-alkanes, we need to know where the Fer
level lies relative to the semiellipse of Fig. 6. The Fer
level or band lineup problem is central in the study
Schottky barriers and heterojunctions and has also rece
attention in molecular electronics.41

Assuming that Tersoff’s branch point method rema
valid for metal-molecule interfaces, we estimate that
Fermi level is located at thef0 branch point in the complex
band structure as discussed in Sec. II. This branch poin
identified as the energy where the slopedE/dk, becomes
infinite for the most penetrating gap states—in other wor
the point where the tangent to theb ellipse in the complex
band structure becomes vertical. Specifically, in Fig. 5, t
corresponds to the peak of theb ellipse whereb51.0 per
carbon.

A more rigorous determination of the position of th
Fermi level can be performed by solving the entire me
molecule electronic structure problem self-consistently. T
Fermi level lineup is determined from the projected densi
of states which reveal the relative location of the molec
energy levels. In particular, the most convenient and vis
reference points are the HOMO~valence band! and LUMO
~conduction band!. We performed these calculations using
periodic geometry of alternating octanedithiol monolay
and gold (111) ‘‘slabs’’ as shown in Fig. 7. The gold sla
were chosen to be six layers thick. However, we have a
performed calculations using up to 12 layers, and the res
are very similar. The surface structure of the monolaye
(A33A3)R30° ~see, e.g., Ref. 35!, and the orientation of the
octanedithiol molecule~one per unit cell! is described in Fig.
8. This orientation was determined by performing structu
relaxations of the molecule with the gold atom positio
fixed in an idealized configuration with an Au-Au bon
length of 2.885 Å. However, while a preferred orientation
the molecule as a whole was estimated with structural re
ations, the C-X bond lengths andX-C-X bond angles were
fixed at their ideal values: C-H5 1.10 Å , C-C5 1.54 Å,
C-S 5 1.84 Å, andX-C-X5109.47°.

We performed calculations on two variations of this stru
ture. These are shown in Fig. 9. In the first~a!, the sulfur
atoms were positioned 1.95 Å directly above a ‘‘hollow’’ i
the gold surface, equidistant from three surface gold ato
The S-Au bond length is then 2.56 Å. In the second struct
~b!, there is a gold atom~darkened in the figure! inserted
between each S atom and the gold surface. The extra
atoms sit in the ideal position above the hollow~Au-Au bond
length5 2.885 Å!. We used a S-Au bond length of 2.25
and an Au-S-C angle of 109.47°; these choices were gu
by structural relaxations. Structures~a! and~b! will be called
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the S-hollow and the S-Au-hollow structures, respectively
We determined the Kohn-Sham~self-consistent! single-

electron eigenstates and energies for this structure u
minimal,38 extended,39 and plane-wave42 basis sets. All
methods used the same ideal geometry described. For
local orbital methods a 63632 Monkhorst-Pack grid was
used fork-point sampling (6’s for directions parallel to th
gold surfaces and 2 for the gold-slab to gold-slab directi!

FIG. 7. The alternating layer structure used in the calculation
the density of states. The unit cell is shown repeated 33332
518 times.

FIG. 8. Alignment of the octanedithiol chain with the Au~111!
surface. Begin with orientation~a! in which the carbon backbone i
in the y-z plane and perpendicular to the Au~111! surface~in the
x-y plane!. Rotate the molecule~in the right-handed sense! 230°
about thez axis, then 7° about they axis, and finally 30° about the
x axis. The result~b! is the orientation used in our calculations.
5-9
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JOHN K. TOMFOHR AND OTTO F. SANKEY PHYSICAL REVIEW B65 245105
and, for the plane-wave calculation, a 43434 grid was
used.

Projected densities of states for the S-hollow structure
shown in Fig. 10. The projected density of states onto
orbitals of a ‘‘middle’’ carbon atom~fourth or fifth carbon
from the end of the eight-carbon chain! is shown for each
basis set. This reveals the position of the octane HOMO
LUMO levels and it is seen that—although the HOMO
LUMO gap is smaller for the extended and plane-wa
calculations—in all three cases the Fermi level~defined as 0
eV! lies approximately in the middle of the HOMO-LUMO
gap of the molecule. This is in agreement with the bran
point estimate. Specifically, for the minimal basis, the MIG
theory predictsEF to be about 5.4 eV above the HOMO o
the octane chain and the self-consistent minimal basis ca
lation gives about 4.9 eV.

Some other features of the density of states~DOS! are
shown for the minimal basis calculation. Here the DOS
also shown projected onto the sulfur orbitals and the ne

FIG. 9. The S-hollow structure~a! and S-Au-hollow structure
~b! used in the density of states calculations. The only differenc
the extra gold atom~darkened for emphasis! inserted between eac
sulfur and the gold surface.

FIG. 10. Projected densities of states for the S-hollow struc
@Fig. 9~a!# using three different electronic structure methods. T
minimal basis panel shows the DOS projected onto a sulfur
onto a carbon at the end and at middle~mid! of the octane chain.
The extended and plane-wave panels show only the project
onto a middle carbon atom. The Fermi level is at 0 eV. ‘‘h’’ ind
cates the approximate position of the alkane HOMO.
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boring or ‘‘end’’ carbon orbitals. It is important to note tha
there are prominent~localized! sulfur-based states in th
middle of the alkane chain HOMO-LUMO gap. It may b
that these states play a significant role in electron cond
tion, in particular for shorter alkanes. In the projected DO
for the end carbon, the alkane HOMO-LUMO levels are v
ible but they are blended with sulfur and gold states. Th
states are partially the tails of MIGS and their presence is
reason for focusing on the middle carbon atom where m
of the MIGS have decayed away and the true HOMO a
LUMO states are revealed. Similar features are seen in
projected DOS for the extended and planewave basis ca
lations.

The decay in the MIGS component of the density of sta
from the end carbons to the middle carbons provides a di
and simple alternate way of calculatingb. The projected
DOS rn on thenth carbon from the end contributed by th
MIGS should be approximately given by

rn~E!5r0~E!e2b(E)n,

where r0(E) is a function of energy only. An estimate o
b(E) may then be determined by fitting, for each energy,
projected DOS on the carbons~as a function of carbon num
ber n) to an exponential. This was done for the planewa
calculation and the result is shown in Fig. 11. Theb curve is
noisy but still has a similar shape to the idealb curves de-
termined from the complex band structure calculations. O
curious feature is the slight dip around21 eV. This is the
location of the sulfur state mentioned before.

Finally, the DOS projected onto the middle carbon for t
S-hollow and S-Au-hollow structures are compared in F
12. It is seen that the HOMO has shifted upward, towards
Fermi level, by just over 1 eV. This result is from a minim
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FIG. 11. Theb curve determined from the densities of stat
projected onto carbon atoms 1, 2, 3, and 4~counting from the end
of the octane chain! of the octanedithiol SAM~S-hollow structure!.
The calculation was done using the DOS determined with pl
waves and the result is similar to theb curves determined from the
minimal and extended local orbital basis calculations. The slight
near'21 eV is at the location of a state localized on the sulfu
5-10
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basis calculation, but the same trend is seen in both the
tended basis and plane-wave calculations.

This result suggests that the Fermi level is sensitive to
structural details about the metal-molecule interface so
the branch-point estimate of the position of the Fermi leve
only approximate. This underscores the difficulty of maki
reliable calculations of the current-voltage characteristics
a molecule where a small change in the position of the Fe
level is amplified by the exponential nature of the tunnelin

VI. COMPLEX BAND STRUCTURE OF ALKENE
AND BENZENE CHAINS

In this section we present the complex band structure
two other organic molecules: an alkene chain and linked b
zene rings.

The alkene structure has alternating single~1.54 Å! and
double ~1.34 Å! bonds@Fig. 1~b!#. The unit cell is (CH)2.
The alkene chain complex band structure is shown in F
13. The band gap is very narrow, approximately 1.9 eV, a
the valence-band edge occurs atk5p/a. Theb values in the
gap are much smaller than for the alkane. The peakb values
in the gap for the alkane and alkene chains areb
50.79 Å21 ~about 1.0 per carbon! andb50.27 Å21 ~about
0.34 per carbon!, respectively. As expected, electron tunn
ing states in the gap are far more penetrating for the co
gated alkene structure.

Finally, the complex band structure of the linked benze
rings @Fig. 1~c!# is shown in Fig. 14. All C-C bond length
are 1.39 Å except for the triple bond which is 1.2 Å. In th
figure,b is in units of Å21. The band gap is 2.1 eV and th
peak value for theb curve in the gap is coincidentally th
same as for the alkene,b50.27 Å21. There are several fla
bands which presumably represent states localized on
benzene rings or the triple bonds.

FIG. 12. The effect of the insertion of a gold atom between
S and gold surface~S-Au-hollow! using a minimal basis calcula
tion. The HOMO is shifted upward by just over 1 eV compared
the S-hollow structure.
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VII. CONCLUSION

In this paper the complex band structure has been a f
point for a number of important topics related to molecu
conduction.

The complex band structure describes all the electro
Bloch states where the Blochk vector ranges over the entir
complex plane. The main advantage of the complex b
structure is that it provides a clear picture of the nature of
electron states in the HOMO-LUMO gap region of the mo
ecule. These are the electron tunneling states which de
mine the nature of electron transport through the molec
Theb(E) curve, which describes the most penetrating of
gap wave functions, gives a simple quantitative measure
the rate of decay of these tunneling states and so reveal
expected length dependence of the conductivity.

e

FIG. 13. The complex band structure for the infinite alkene@Fig.
1~b!#. The figure is as Fig. 5~a! for an n-alkane. The valence-ban
top is at 0 eV.

FIG. 14. The complex band structure for the linked benzene r
structure@Fig. 1~c!#. The units ofb shown correspond to the prob
ability decay per angstrom. The valence-band top is at 0 eV.
5-11
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We have presented~Sec. III! a method for obtaining the
full complex band structure of a periodic molecule. We ha
also described~Sec. V! a simple alternative method for ob
tainingb(E) from projected densities of states. This meth
directly reveals the exponentially decaying electron wa
functions—analogous to metal-induced gap states. T
method generalizes to nonperiodic molecules.

Besides describing the form of the tunneling wave fun
tions, theb(E) semiellipse also provides a simple means
estimating the location of the Fermi level for a molecule
contact with a metal. In particular, according to Tersof
theory,21 the Fermi level for a Schottky barrier should b
located near the peak of theb(E) semiellipse. Applied to the
metal-molecule system, this estimate was found to be in
sonable agreement with more elaborate electronic struc
r,

A.
y,

s

an

im

ett

J

-

24510
e

e
is

-
r

a-
re

calculations of an octanedithiol monolayer connected to g
slabs~Sec. V!. However, the location of the Fermi level wa
also found to be somewhat sensitive to structural details
the metal-molecule connection.
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