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Complex band structure, decay lengths, and Fermi level alignment
in simple molecular electronic systems
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The complex band structure of a periodic system is the conventional band structure extended to complex
Bloch k vectors. Thek vectors with an imaginary part describe spatially decaying wave functions and arise in,
for example, the analysis of impurity and surface states. They also represent the quantum tunneling states
which are vehicles of electron transport through a barrier such as a thin oxide layer or a molecule. We present
a method for obtaining the complex band structure of a molecule which is composed of repeating units. The
complex band structures of some simple organic moleduledkanes, alkenes, and linked benzene jingh
be determined and used to analyze electron conduction through moléeuesoctanedithigl connected
between gold electrodes. The form of the complex band structure clearly elucidates the molecule length
dependence of the tunneling current and also suggests the energy for alignment of the Fermi level.
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[. INTRODUCTION mensional organic chains, for which finite fragments are the
molecules of interest. Examples we examine in this work are
The goal in the emerging field of molecular electronics isshown in Fig. 1. They ar¢Fig. 1(a)] alkane chains with
to create devices based on electronic current passing througirbon single bonds$Fig. 1(b)] alkene chains with alternat-
a single molecule or an assembly of molecules. Low cost anthg carbon double-single bonds, afiéig. 1(c)] molecules
small size are strong motivators that have rapidly advancefprmed from benzene rings linked by triply bonded carbon
this field. Typical structures consist of a molecular film, or of &loms. These examples are model molecules for molecular
a single molecule, sandwiched between a pair of metaflectronic studies. , _ o
contacts™* The Fermi level of the metal contacts usually 1h€ €lectron energy eigenstates in a periodic system can
lies between the highest occupied molecular oriffEdMO) be taken to have the Bloch form
and lowest unoccupied molecular orbiteUMO) electronic ikx
states of the molecule. A small applied voltage results in P(x)=e"u(x),

electron transport through the molecule via nonresonant tUnyhereu(x) is a function with the periodicity of the lattice.
neling or, for higher voltages, via resonant tunneling through\ormally, only real values of the Blockvector are consid-

a molecular energy levél® The nonresonant tunneling prob- ered since, for infinite systems, imagindrgolutions exhibit
ability is quantified by a 3" parameter, where the tunneling the physically unreasonable behavior of blowing up expo-
probability is proportional t@ 4%, andL is the length of the nentially in some direction. The energy eigenvalues consid-
molecule. The molecular orbital energies and wave functiongred as a function of re&lvalues(the band structujareveal
control 8, and general statements about its value are difficulthe detailed nature of electron transport through extended
to make. states in the material.

A simplification exists for molecular systems that are con-  Imaginary (or compley k solutions are also physically
structed of a finite set of repeating building blocks. For thesé€levant and important for systems of finite size or, more
molecules, the methods of solid-state physics can be used @gnerally, systems which contain breaks or defects in spatial
make predictions abouB. The theory of complex band uniformity. The simplest example is the transport of a free
structures, originally developed to examine surface states ¢flectron over a square potential energy barrier. Here the
crystals, is used in this work to determine propagating an@igenstates are of the forel* wherek, a function of the
nonpropagatingtunneling states of infinite repeating chains
at any energ\E. This analysis will yield3 values that give (a) P N P N
reliable estimates of how the electron wave functions in the
metal decay through a molecule that is a fragment of the
infinite chain. The basic concept has been used previously in
its simplest_form by Beratan and Hop_ﬁéltb e_malyze_ elec- (b) NN NN
tron tunneling rates through ruthenium dithiaspiro com-
plexes. Expressions for decay rates of gap states in some
model systems in molecular electronics have been derived by
Magoga and Joachfirand Girardet al® The exponentially © 7N\ __ /N __
decaying states have also been observed directly with a scan-
ning tunneling microscopé_anglaiset al ).

In this paper, we examine infinitely long periodic one di- FIG. 1. Three organic periodic molecules.
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electron energy, is real or imaginary depending on whether Model Complex Bandstructure (t=A)
the electron energy is above or below the height of the po- Imaginary k Real k
tential energy barrier. Low energies lead to imaginargnd S~ '
the transmission probabilitjobtained from the square of the

wave function is approximately proportional te” #- where I T |
L is the length of the barrier and=2|k|. In this example,

the function B(E) is 2y2m(¢—E)/#?, where ¢ is the I e T B
height of the energy barrier. Just as the funct@fE) is

important for tunneling through the barrier, so is the form of
the complex band structure for a finite fragmémtolecule

of an infinite chain. r T E=Z-A
A concise picture of electron transport through a rigid /
finite molecule is obtained from the complex band structure, s T 1
k

Energy
o]

which generalizes the usual band structure to include com- /-
plex Bloch vectors. A fundamental assumption used here is :
that the interior of the molecule has a local environment very
near that of the infinitely long ideal chain. Even if the ends
are altered due to charge rearrangement, we assume that thisriG. 2. The complex band structure for the model system, with
has little effect on the atoms in the central region so that set equal toA. The right half of the figure is the usuéieal k)
locally the Hamiltonian is that of the infinite molecule. As band structure while the left region is a plot pfnk| for the k
the molecule is lengthened, the central region lengthens, argblutions with an imaginary part. The valence-band bramncéxi-
an accurate measure of the reduction of tunneling is obtaine@um atE,) is connected to the conduction-band brageinimum
from an analysis of the infinite chain. atE_.) at the branch point located Bt=23.. Thek solutions with a
Much of the previous work in molecular electronic has honzero imaginary part decay ky "™®I2 from one unit cell to the
focused on current-voltage characteristi¢s:*® These are Next. O.f. more direct significancg is thg reduction in thg tunneling
sensitive to a number of variables not directly related to therobability, e 2m®W2—e~#2 This defines the quantity3(E)
molecule(the nature of the contacts, the connection, the tem= 2 IMk(E).
perature, the chemical environment, gtén advantage of .
the complex band structure approach applied to a molecule &"angement of two types of atomsandB, arranged in an

that it reveals aspects of conduction which are unique to th@'ternating sequencABABABAB. . . . The unit cell con-
molecule, independent of the environment. sists of anA and aB atom and the spacing between cellsiis

In this paper, we describe a method for obtaining the com!the distance betweeh andB is a/2). A two-band model of

plex band structure of a molecule and apply it to SOmethis kind has been analyzed previously. The wave func-

simple systems. We emphasize that the concept of a Bloction in unit cell m is expressed as a linear c_ombination of
wave vector is only meaningful for a molecule which is a ©"thonormal orbitalsp, and ¢g on each atom in that cell:
sequence of repeating units; hence we are restricted to mol- m)_ ~(m m
ecules constructed by stacking repeating building blocks. v )_CS* )¢A+C(B e @
This includes a wide variety of molecules, including The Hamiltonian matrix has couplingt between orbitals on
(n-)alkanes, alkenes, alkynes, carbon nanotubes, polyestefearest-neighbor atoms only and the onsite energie& are
polyanaline, and synthetic DNAe.g., poly-A—poly-7. In  andEg, with EA<Eg.

Sec. Il, we compute the complex band structure for a simple Assuming the Bloch form for the eigenstate€(™
model system to illustrate the method and concepts, and ob-=e'kmac(0) the energy eigenvalues are found to be

tain analytic formulas that serve as model formulas for more
complex systems. In Sec. lll we develop the theoretical tech- E.(k)=3 A%+ 2t%(1+ coska), 2
nigues to compute the complex band structure following the
method of Chang and Shulméhln Sec. IV, we apply this to Where
the case ofi-alkanes. In Sec. V, we discuss the lineup of the E.+E
Fermi level of Au for ann-alkane(octanedithiol system. In - A B

w/a

:
Ba/2

Sec. VI we evaluate the complex band structure of an alkene 2
chain and of a molecule formed from linked benzene ringsgngd
Finally, in Sec. VIl we conclude.
Eg—Ea
Il. EXAMPLE 2

Before presenting the complex band structure of a realis- The eigenvalues are shown in Fig. 2 for real and imagi-
tic system and a general method for computing complexary k values. The band gap in this model igA2, and the
band structures, it is instructive to determine the complewalence-band tojg, (=E,) and conduction-band minimum
band structure of a simple model system. E. (=Eg) occur at>—|A| and X +|A|, respectively. The

The model we have chosen is a one-dimensional perioditwo bands(or branchesE . (k) andE_(k) are connected in
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the complexk plane at the branch point Bt=2.. The branch om
point occurs whetk . (k) =E_(k),*" which requires BE)=2\/— (¢s—E), 9)
f

2. 52 _0-
ATF2t(1+coska)=0; where ¢ is the barrier height anB is the energy below the

this can only be satisfied if cém<—1, sok must have an barrier. _ _

imaginary component. We can take another approach to this problem using the
The imaginaryk region of the band structure determines (forward propagatingGreen's function

how an electron with a given energy will tunnel through a

finite region of the crystal. In the gap region, betwegn G(E)=2 M (10)

—A and3 +A (see Fig. 2 |k| gives the rate of decay of the n E-Epting

wave function from one cell to the next. As the energy ap- . . .
proaches the band edge from the g, decreases so an The sum is over all eigenstatgs) of the systemeach with

electron with an energy in the gap will tunnel more eﬁec_elgenvalueEn) and the limity— 0+ is Eci)EbShtakenG(E) IS
tively as its energy approaches the band edge. The bar{glated to the propagat@(t) ==,[me”"=""(n| by
edges each act as the top of an effective potential barrier; like 1 (=
the top of the simple square barrier, they mark the crossover G(t)=— _f G(E)e BV dE.
point from decaying states to propagating ones. 2l ) -

We can find the complek vector for energies in the gap
from Eqg. (2) by replacingE. by an input energyeE and
solving for coska. The result is

(x"|G(t)|x) is the probability amplitude for propagation
from pointx to X’ in time t (>0) and we see that this is the
sum of time-independent amplitudes |G(E)|x) multiplied
by time-dependent phases'E'". Loosely speakingG(E)

coska=—y(E), ®) indicates how electrons with ener@y“penetrate” from one
where point (or state to another.

For a one-dimensional periodic system with spacrize-

(E—E,)(E.—E) tween unit cells, the cell-averaged Green’s functtda de-

v(E)= — Yz +1. (4)  fined as
Thek solutiorjg split off of Fhe real axis from the band edges G(m,E)=f (x+maG(E)|x)dx
at ka= . Writing ka= 7w+i8(E)a/2 we have cell
1 ikma
B(E)ai2=In[ y(E)+ Jy(E)*—1]. (5) oy _ & (11)

. N nk E_ Enk+ | 77 ’
The eigenstates in the gap change sigff) and decay by ) ) ) _

the probability ( |#]2) is e #2. entire Brillouin zone, antN— o is the number of cells in the
To make contact with tunneling through a barrier, we noteSystem. For our model, this can be directly evaluated using
that t2 can be related to the effective mas®*, contour integration. The result, in the gap region, is
[(1/42)d’E/dk?] "1, evaluated at the band edge. Expanding
Eq. (2) for energies near the top of the valence band or the 3 [— ¥(E)+Vy(E)*—1]"
bottom of the conduction band yields G(mE)=(2-E) 2 2 o (12
t“Vy(E)*—1
ﬁzEg _i2 ©) where y(E) is the same as in Eq$3) and (4). Writing ka
2m*aZz =m+iBal2 as before, this can be written as
Replacingt? by this effective mass expression in EF) for (—1)Mg-Amar2
¥(E) gives G(mBE)=CE~B) “zgrnzan (13
om* The (cell-averaged Green’s functionG(m,E) has the same
B(E)=2 Py (E—E,) (7) exponential decay at ener@yas the complek Bloch states.

We make this connection because the cell-averaged
Green's function is relevant to another important aspect of
molecular conduction. As will be discussed further in Sec. V,
. when a molecule is connected between metal contacts, the
B(E)=2 /ﬂ(E _E) ) tunneling electrons are those located at or near the Fermi

2 © level of the metal. In order to understand electron transport
through the molecule it is necessary to estimate where the

for energies neaE.. These expressions are similar to the metal Fermi level lies relative to the molecule energy levels.
simple barrier tunneling expression The cell-averaged Green’s function gives such an estimate.

for energiesE nearE, and
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The situation is similar to a Schottky barrier where anwherek, has the smallest imaginary part of thdse in the
exchange of charge between the semiconductor and theum.
metal—resulting in the formation of an interface dipole— We now have all the necessary tools using the MIGS
brings the Fermi levels of the two materials into coincidencetheory to make an estimate of the position of the Fermi level
A central problem in characterizing a Schottky barrier is toof a metal contact relative to the LUMO-HOMO levels
determine the location of the Fermi level relative to the semi{roughly E. andE,, , respectively of the molecule. The en-
conductor band edges near the interféte. ergy of the branch point is the charge neutrality legglof

For the metal-semiconductor interface, there are metalthe molecule. Physically this means the character of the state
induced gap staté$(MIGS) in the semiconductor gap region changes from valend@onding to conduction(antibonding
which decay exponentially in the semiconductor. These corfRef. 25 and the charge-neutrality point is where the ener-
respond to the Bloch states of the semiconductor which havgies of these two states are equBl.(=E_ in our simple
k vectors with an imaginary component. There is an associmode). The Fermi level is pinned to this level in the MIGS
ated charge neutrality leved, (Refs. 20—22for the MIGS  theory. The branch poinp, determined by Tersoff is located
and it is expected that if the density of MIGS is reasonablyat the energy wher&(m,E)=0 (for large enoughm). This
large, the Fermi level should be “pinned” #,. The effect  follows from Eq.(17) sincev (ko) =dE/dk is infinite at the
may be viewed as a feedback mechanism where electronganch point.
leaking out of the MIGS and partly into the depletion region  One can see from our model using Ef3) that the cell-
of the semiconductor cause further band bending whiclaveraged Green’s function indeed vanishesEat2., the
counters the whole process by lowering the energies of theranch point energy. This energy is the estimate of the pin-
MIGS 23 ning position of a metal Fermi level due to MIGS. Using this

One particularly simple approach to the Schottky barriermodel and the complex band structures of organic molecules
problem was proposed by Tersétwho gave a prescription we consider below, it is a simple matter to obtain the branch
for determining¢, which is based only on the properties of points without evaluating the cell-averaged Green’s function.
the semiconductor. Tersoff proposed that the charge neutraks in Fig. 2, we simply seek a “vertical” regiori.e.,
ity level should be located at the branch point in the gap odE/dk— <, giving G=0) for an imaginary value (3/2) at
the complex band structure of the semiconductor. More spean energyE in the gap. This locates the branch point and,
cifically, since there may be more than one branch point irhence, an approximate estimate for the position of the metal
the gap, thepy branch point is the branch point in the gap for Fermi level.

Bloch k states which penetrate deepgsin(k| smallest. The Fermi level problem for the metal-molecule system
The method suggested by Tersoff for locating this branctwill be examined in more detail in Sec. V. We note that the
point uses the cell-averaged Green’s function. It followsMIGS theory has had reasonable success in giving estimates
from Allen?® that the cell-averaged Green’s function in the of the Fermi level alignment of metal/semiconductor inter-
gap may be written as faces. A complete self-consistent calculation is necessary to

obtain a more reliable value, assuming that defects do not
(14) influence the barrief® We view the MIGS method applied to

molecular electronic applications as simply a first approxi-
mation. In molecular electronics applications one would ide-
ally want a single molecule between metal contacts, and the
MIGS theory is based on planar interfaces in which charge
®ransfer effects yield energy offsets similar to a parallel plate
capacitor. In practice, many molecular electronics devices do
in fact involve a planar array of contacts which arise from

eikma

G(mE)=-ai2, ——,
(ME)==ai

where the sum is oveonly those values ok and n which
satisfy bothE(k,n)=E and Imk sgn(m)>0. The restriction
on Imk picks out the decaying solutions and excludes thos
which increase exponentially &s1| increases. The quantity
v(k,n), the velocity times:, is given by

dE(k,n) self-assembled monolayefSAM’s) and for these systems
v(k,n)= ——" (15  the assumptions built into the MIGS theory are closer to
dk being correct.

For the model system of this section,

Ill. METHOD TO DETERMINE THE COMPLEX BAND

424 e
—Vasinka (16) STRUCTURE

E-3
o o o In this section we present a method for determining a
k is given by Eq.(3), and application of Eq(14) will yield  complex band structure. In particular, we derive a math-

Eq. (13) for the cell-averaged Green’s function. The methodgmatical technique which produces all Blachrectors(pos-
for locating the branch point for the most penetrating 9aRsibly compley corresponding to a given input ener§y A
states follows by recognizing that the contributions Osweep over a range of energies then reveals the complex
G(m,E) from eachk value in the sum will vanish rapidly as pang structure. An understanding of the method is not re-

v(k,n)=

mincreases, so quired for understanding complex band structures, however,
eikoma so the reader may wish to skip this section.

G(m,E)——ai—— as m increases, (17) A conventional band structure is obtained by choosing

v(Ko) real k values and solving the energy eigenvalue problem

245105-4



COMPLEX BAND STRUCTURE, DECAY LENGTHS, AND.. .. PHYSICAL REVIEW B5 245105

from the Hamiltonian. The loci of associated eigenenergies whereZ(M=H(™ —ES™_ The matricedH™ andS™ con-
are collected to produce the well-know#ik) band structure. tain the(Hamiltonian and overlgpmatrix elements between
An alternative approach, which is more complete but lesghe orbitals of the zeroth andth unit cells. The sum oven
direct, is to instead consider the energy as input and obtain as the sum over unit cells which interact through Hamiltonian
output thek values that produce that energy. This “inverted” matrix elements or orbital overlaps with a chosgime ze-
procedure producek values that may have both real and roth) unit cell. Electronic states are linear combinations of

imaginary parts, and this generates the complex band strugtomiclike orbitals, and the vect@™ contains the coeffi-

ture. _ o _ cients of the basis orbitals in cefli. Interactions are included
~The goal in obtaining a complex band structure is t0 ob+rom the central cell to cell8! lattice constants away.
tain the spectrum ok’s associated with any real energy The periodicity of the system permits us to invoke a gen-

This inverted approach has a long history, and the theoreticaralization of Bloch’s theorem that relates vectors on neigh-
methods used are generally referred to as transfer matrigoring cell,

techniqueg’ The technique can be applied using local-
atomic-like orbital$®?®14or plane-wave basis segt%_‘?z In Eme1)_y &) 19
the present case we use a set of local atomic orbitals as our '
basis. One can repeatedly insert Ed.9) into Eq.(18) and obtain a
The specific theoretical approach we have taken followsnatrix polynomial equation foik up to ordera?N. This is
from the general theory developed by Chang and Shulmagifficult to solve. Instead, in the method of CS, a new matrix
(C9).* The concept is to rewrite the Scliliager equation as  of larger size is createh transfer matrix with the ultimate
an eigenvalue equation i, where\ =e'*® (a= lattice con-  goal of producing a linear polynomial i; a linear polyno-
stan). The eigenvalues are to be determined for any given mial is tantamount to an eigenvalue equation Xgrwhich
input energyE. When an output eigenvalue satisfla$=1, can be solved by standard algorithms. From Hd8) and
we have a redk value; when is off the unit circle, we have (19) we obtain the following set of I8 equations:
exponentially decaying or growingunneling solutions cor-

responding to complek values. It is these tunneling solu- N-1
tions that reduce the transmission in molecular electronic — > zZMEM=zMN)\CN-1) (20)
systems and, hence, are of special interest. m=-N
We define an operatat (a matriy asZ=(H—-ES) where S .
H is the HamiltonianS is the overlap matrix between non- CM*D=)\CM(~N<m<N-2). (21)
orthogonal atomic orbitals, arld is the input scalar energy _ ) o _
of interest. The Schdinger equation is written as When z(V is nonsingular(i.e., its inverse exisjsone can
multiply the first of these equations by () ! to yield a
N simple eigenvalue problem far. The transfer matrix gener-
E ZMEmM = (18) ated by Eqs(20) and(21) can then be written in matrix form
m=—N ’ as
[ZN]1ZIN-D [z(N]m1ZN-2) pz(N1Z(N+D) [ Z(N)]-1Z(-N) cN-1 cN-1
1 0 . 0 0 CcN-2 CcN-2
0 0 : =\
C-N+1 G-N+1
0 0 1 0 G-N é-N
(22)

Unfortunately, in all but the simplest of models, the ma-We now describe a general method to easily identify and
trix Z(N) is singular, and the matrixzZ™]~* does not exist. remedy this problem.
Matrix elements between orbitals go to zdar effectively Our method is based on identifying two subspaces: a
s0) past the sum of their orbital ranges. If any orbital within “range” subspace and a “null” subspace. whaiV is sin-
cell N has no interaction with any orbital in cell “zero,” the gular, it can rigorously be decomposed 2%")=UW,V'
matrix Z™) will have a row of zeros and the matrix is sin- whereU andV are unitary matrices and/p is diagonal. This
gular. In large unit cells this is likely to occur since atomsis the well-known singular value decompositi¢gVD).**
near the mutual boundary between the two cells are mucBefining DM =V'C™ and Y™ =U'z(MV we obtain re-
closer than a pair of atoms each located on opposite sideplacements of Eqg20) and (21):
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N-1 N-1

— > YMDM=w\DN-D), (23 Iy > YM DD y(N=D xDN-1D)
m=—N m=—-N+1

> > N—1 S(N—1) _

DM D= \BM(~N<m<N-2). (24 FIYE DD =0. (27

In a SVD, that which is producing the singularity is clearly N the('ﬁlhjrl? step we US.§9(N_1()N-7V\f)“Ch is the null subspace
identified and is visible as a null submatrix 8fy . We ar-  Part of Y contained inl Y™™~y This matrix is aug-

range the columns df andV so thatW, has the form mented to the full space by defining a mat@xas
wp 0 Q=1 YNV +l1g. (28)
=l o o/ The matrixQ is sir_nply the identity in the range subspace and
the matrixy®™~1) in the null subspace and is of the form
wherewp is a diagonal matrix with all nonzero diagonal
values. The null matrix in the lower right-hand corneMgf B | 0 29
defines the null subspace, and the subspace spanneg, by Q= 0 y(N-»J (29)

defines the range subspace. To simply treat these two sub-

spaces, we define projector operators in the range and null In the fourth and final step, we ugly=1yYN "D in
subspaced g andly, respectively. The range projectigris  the third term of Eq(27) and use Eq(26) in the second term
a diagonal matrix with diagonal values of 1 or 0. The valueso finally obtainD™"1) in the null subspace,

of 1 are given to those elements in the same subspaag as

and a zero is assigned to elements in the same subspace as " e _ _ i -

the null matrix in the lower right-hand corner of,. In  In m:ZNH Ym=pm — y(N =D gw 1m;N Ympm
other words| i is obtained fromWy by replacing eaclidi-

agonal elements ofvp with a 1. The null space projectbg = —Q\I N|5(N—1)_ (30)
is the identity matrix minudg. We also define a matrixV

by W=Wp+1y; this matrix, unlikeWy, is invertible. If the submatrixy™~%) in Eq. (29) is invertible, so isQ

The strategy is to replace ER3) by two sets of equa- and Eq.(30) multiplied by —Q ™1, together with Eq.(25)
tions, instead of one. One set of equations applies to thand(24), makes up a complete eigenvalue problem:
range subspace and the other to the null subspace. We first

. . N—1
rewrite EqQ.(23) usingWp=W—1 andWly=1y, so that - - 2 (N—1
Eq. (23) can be written as —IrRW sz—N YMDM=)1gDMN"Y,
N—1
WL S yMBmMo\FN-D ) \BN-D (25 - x
w = Y = N . (29 —1,Q7t E y(m=1)p(m)
m=—N+1
Equation(25) is the equation we use to develop the two sets N-1
of equations for the range and null subspaces. —YN=Dpw L > ympm | =\ DN,
The range subspace rows of E@5) are easy to deter- m=-N
mine. We multiply byl s and usd gl =0 to yield _ R
- DM D=\DM(—N<m<N-2). (31
—1gW Lt > yMpBM= )| DN-D), (26)  Equations(31) can be assembled into matrix form as in Eq.
m=-N (22) to produce an eigenvalue equation foffor a givenE,

] o - ) o which can be solved numerically and completes the task. If
This equation involvesgD™~ % on the right, which is the  the sjtuation is unusual and the submayR 2 is not in-
vector in the range subspace. _vertible, then the procedure for handling singi&)’ can be

The more complex case is that of the null subspace, W'tl?epeated fory™~1). We did not encounter this difficulty in
equations involving \DN™1) on the right. This is accom- the present work.
plished in four steps. In the first step, we multiply Eg5)

by WAIy. The right-hand side vanishes sirlggy=1y, and IV. COMPLEX BAND STRUCTURE FOR AN ALKANE
using[W,1y]=0, we obtainl \=N-1  YMWAD(™=0. Using

Eq. (24), this sum is rewritten to expose tREN 1) term as Perhaps the most studied self-assembled monolayer sys-

tem in nanotechnology is that of thealkanes**® (see Ref.

N-2 35 for many referencésThe n-alkanes CH(CH,)yCH; are
In > y(m)[j(m+1)+|Ny(Nfl))\5(Nfl):o_ nonbranching chains of singly bonded carbon atoms. Thi-
m=—N olated alkanes C}CH,)\SH spontaneously assemble into

) o o highly ordered monolayers on a gold (111) surface. The
In the second step, the identity in the foig+ 1y IS in- strong Au-S bond cleaves the terminal hydrogen, creating a
serted in front oD(N"1), film of van der Waals interchain-bonded molecul®@ghe
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N Alkane
(a) Minimal Basis (b) Extended

15

10 F - é %
-5t 4 L i El

FIG. 3. The structure of an infinite alkane chain. The structure is

ideal with all bonding angles 109.47°. Three repetitions of the unit  -10 1
cell are shown.

Energy (eV)
<

chain exists in any desired lenghty with a typical film in 0 wa 0 ‘ wa
molecular electronic applications haviiyin the range of
8-20. FIG. 4. The conventional band structure of an infinite alkane

The |-V characteristics of the alkanes themselves can behain computed usingg) a minimal basis sefRef. 3§ and (b) an
measured with, for example, a conducting atomic forceextended basis séRef. 39. Density-functional theory is used in
microscopée’ Alkane monolayers also serve as a convenienboth methods in the local density approximation. In both figures,
supporting, insulating matrix in which other molecules canthe top of the valence baftiOMO) is defined to have zero energy.
be embedded and their conducting properties measured. R€rek vector is real and goes from 0 to/a, where “a” is the 1D
cent experiments have been performed in which a low conlattice spacing.
centration of alkanedithiol molecules are embedded in a
monothiol SAM. Contact at the other end of the dithiols ismal basis calculation: 9.00 eV vs 10.25 eV. However, in
made with gold nanoparticles and single-molecule tunnelinglensity-functional theory, the band gap is usually underesti-
through the alkanedithiols is observed. mated. The experimental ionization potentials fealkanes

Tunneling through an alkane thiol or dithiol film will be are all approximately 10 ef?
very sensitive to the length of the alkane chain. One theoret- We now examine the complex band structure for the al-
ical approach is to investigate each molecule individuallykane chain using the local orbital method described in Sec.
and determine the tunneling probability. In the complex band|l. We show the complex band structures calculated with the
structure approach used here, we consider only the infiniteninimal basis sefFig. 5@)] and with the extended basis set
length alkane chain and the tunneling characteristics are déFig. 5b)]. In each figure, the region to the right of the origin
termined by the complex vectors that produce decaying Sshows the real parts of tHevalues obtained at each energy.
wave functions. The major assumption is that the electronid he region to the left of the origin displays=Im(ka). This
states of the finite-length molecule are a subset of th&uantity is proportional to the decrease of the tunneling prob-
infinite-chain states. This means that the finite length doe8bility per carbori 2 Im(ka) is the decrease of the tunneling
not create any intrinsically new states, but rather produceprobability per cell, and there are two carbons per]céhe
only finite-size effects. An analogy is that the harmonics of alransmission probability for an electron with a givghis
short violin string are a subset of those present in the vibrathen proportional te~#N whereN is the number of carbon
tions of a very long string. atoms in the alkane.

The atomic structure of the infinite-length alkane chain is In generalk can have both real and imaginary parts. In
shown in Fig. 3. The angles and bond lengths used are thdis case, the state is not propagating and we only show the
ideal values: all angles are tetrahedral (109.47°), the C-@maginary part ofk which corresponds to the decay of the
bond length is 1.54 A, and the C-H bond length is 1.10 A. state. The rightmost panel showkssectors that are entirely

The conventional band structufeeal k) for an infinite  real. These energy-reéllpoints reproduce the conventional
alkane chain is shown in Fig. 4. We use two different elec-band structure.
tronic structure techniques, both of which use density- Let us focus our attention on the energies within the fun-
functional theory and pseudopotentials. We use Fireballsdamental band gap regiofbetweenE=0 and ~10 eV).
2000 (Ref. 38 using a minimal basis séH has a singles  The extended basis calculation has more structurg fibran
state, C ansp®), and siesTA (Ref. 39 using an extended the minimal basis calculation. But this extra structure occurs
basis set ¢p° for H, sp>d® for C). The top of the valence for large 8 values and is loosely interpreted as decaying
band has been shifted so that it defines zero energy. Botwvaves from distant bands. The largevalues produce de-
methods give similar band structures, especially for the oceaying states that have negligible tunneling probability after
cupied valence states. Differences between the methods aist a few C atoms. What is observed in experiment for
more pronounced for the conduction states. In addition, thehains with on the order of ten carbon atoms will be only
band gap is smaller for the extended basis than for the minithose states with sma values. Comparing Figs.(® and
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Complex Band Structure Minimal Basis: Alkane B for an Alkane: Calculated and Effective Mass Fits
15 ————— Minimal Basis (m'=0.29m,, E;=10.25 eV)
Lt [_—:,//' T e 1.5 T T T T T
ﬂ Barrier Model
0 1 11 e
RealK | | e

5 [ Imaginary
K

Calculated

Energy (eV)
o

B (per carbon)
o

Extended (m*=0.28me, E,=9.75eV)

-5t i
Barrier

>—”,”’\\\ 1

_10 L

- - 05
-15 : : — : : : :

8 6 4 2 0 02 04 06 08 1 Mode|
(a) B (per carbon) Ka/n 0 0 > 4 6 8 10
Complex Band Structure Extended Basis: Alkane Energy (GV)
15 ‘ | : : : ; : ‘ FIG. 6. The lowes{B-value semielliptical curve for energies in
the fundamental band gap region computed using a minimal basis

w0l ] set. For comparison, the model fit to expression g.is shown.

The two parametergy andm* are obtained from the conventional
5 / | | band structure wheren* is the valence-bandhole) mass. The

| Imagiggry Real K curves labeled “Barrier” are a barrier modétg. (7)] coming from
the valence band.

5 / ? Near the conduction band we must recognize that the tun-

: neling may involve more than just ong value. Let us ex-
: J’/’> amine our results in more detail for energies in the band gap
-0t T i i i
that are not near the conduction-band edge. We examine the
s ‘ « }—// ’ single semielliptical curve for the minimal basis set. The

& 6 4 2 o o0z 04 06 08 1  extended basis set gives almost identical results.
(b) B (per carbon) Ka/n The semielliptical band is shown in Fig. 6. We see that the
. . : —aN .

FIG. 5. The complex band structure f@ a minimal basis set tunneling probability, which goes as ™ WhereN Is the
(Ref. 38 and(b) an extended basis set. The top of the valence ban@umber of carbon atoms, hagavalue near 1 at midgap and
is set to 0 eV. The right panel shovi&(k) for k completely real, Which decreases to zero as the energy approaches the
which is the conventional band structure. The left panel shews conduction- E.) or valence- E,) band energies. A model
(the imaginary part of the complek solutiong for energies that expression of3(E) can be obtained using E@5) where
have complex vectors. The units oB shown are such tha #is  y(E) is given by Eq.(4). A value fort is determined using
the reduction in the tunneling probability from one carbon atom toEq. (6) with the effective mass determined from the curva-
the next. Specifically, the decrease of the wave functiae 1802 16 of the valence-band; the value fBy, is taken as the
per unit cell; the decrease in the probabilityes? '™®2 per unit energy difference between the valence-band edge and the
cell, and since there are two carbon atoms per unit cell, the decreaggyqq of the associated unoccupied band it is joined to by the
in the probability per carbon ig~"™2, Thus, in this particular I : . .
plot, 3 is obtained from Imk)a. sem|ell|pt|cal_,8 curve. In general, this unoccup|ed_band is

not necessarily the lowest in energy of the unoccupied bands.
This is seen in the extended basis calculatidfig. 5b)] of

5(b), we see that for these states both calculations give Virthe complex band structure where there are a few intervening
tually identical behavior. unoccupied bands between the fundamepitasemiellipse

In the fundamental band gap, the small@svalues are and the point at which it connects to an unoccupied band.
given by a semielliptical-like curve similar to the model  The two valuesE; andm* determine the model expres-
curve in Fig. 2. We do detect some difference between thaion and this is also plotted in Fig. 6 for both the minimal
two calculations for this semielliptical curve near the con-and extended basis calculations. The agreement is very good.
duction band. In the extended basis system there are a cougle the extended basis calculation the model curve is nearly
of other 8 bands that pass through the semiellipse very neaindistinguishable from the calculated curve. Also shown are
the conduction band. In fact, the extended basis calculatiothe simple barrier tunneling curves Ed) using the valence-
suggests that for energies very near the conduction bantand effective mass. The barrier tunneling model is a reason-
there are three disting® values that are all comparable and able approximations only for energies very close—within
that can contribute to tunneling. about 1 eV—to the band edge.

Energy (eV)
o
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V. FERMI LEVEL LINEUP

The complex band structure specifies how an electron
with a given energy will propagate through a molecule. If the
molecule is connected between metallic electrodes, the con-
ducting electrons are those with energies located near the
Fermi level of the metal. To understand the conducting be-
havior of the molecule, it is therefore necessary to estimate
the metal's Fermi level lineup with the molecule’s band
structure for the complete metal-molecule-metal system. For
example, in ther-alkanes, we need to know where the Fermi
level lies relative to the semiellipse of Fig. 6. The Fermi
level or band lineup problem is central in the study of
Schottky barriers and heterojunctions and has also received
attention in molecular electroniés.

Assuming that Tersoff's branch point method remains
valid for metal-molecule interfaces, we estimate that the
Fermi level is located at they branch point in the complex
band structure as discussed in Sec. Il. This branch point is
identified as the energy where the slopE/dk, becomes
infinite for the most penetrating gap states—in other words,
the point where the tangent to tigeellipse in the complex
band structure becomes vertical. Specifically, in Fig. 5, this
corresponds to the peak of ti ellipse where=1.0 per
carbon.

A more rigorous determination of the position of the
Fermi level can be performed by solving the entire metal-
molecule electronic structure problem self-consistently. The, . < oliow and the S-Au-hollow structures, respectively.

Fermi level lineup is determined from the projected densities We determined the Kohn-Shaself-consistent single-
of states which reveql the relative location O.f the rnOIl?C.meelectron eigenstates and energies for this structure using
energy levels. In particular, the most convenient and V'S'bl%inimal 3 extended® and plane-wav@ basis sets. Al
referencg points are the HOM@alence banblan_d LUMO  1ethods used the same ideal geometry described. For the
(conduction band We performed these calculations using |0cal orbital methods a 86X 2 Monkhorst-Pack grid was

periodic geometry of alternating octanedithiol monolayers o . ; At
and gold (111) “slabs” as shown in Fig. 7. The gold Slabsused fork-point sampling (6’s for directions parallel to the

were chosen to be six layers thick. However, we have alsgOId surfaces and 2 for the gold-slab to gold-slab diregtion

performed calculations using up to 12 layers, and the results

are very similar. The surface structure of the monolayer is

(V3% /3)R30° (see, e.g., Ref. 35and the orientation of the

octanedithiol moleculéone per unit cejlis described in Fig. 7
8. This orientation was determined by performing structural

FIG. 7. The alternating layer structure used in the calculations of
the density of states. The unit cell is shown repeated3X 2
=18 times.

relaxations of the molecule with the gold atom positions
fixed in an idealized configuration with an Au-Au bond
length of 2.885 A. However, while a preferred orientation of
the molecule as a whole was estimated with structural relax-
ations, the CX bond lengths anK-C-X bond angles were
fixed at their ideal values: C-H 1.10 A, C-C= 1.54 A,
C-S= 1.84 A, andX-C-X=109.47°. X
We performed calculations on two variations of this struc- \ H v
ture. These are shown in Fig. 9. In the fifs}, the sulfur v ' P al®
atoms were positioned 1.95 A directly above a “hollow” in /u U
the gold surface, equidistant from three surface gold atoms.
The S-Au bond length is then 2.56 A. In the second structure (@) (b)
(b), there is a gold atontdarkened in the figujeinserted FIG. 8. Alignment of the octanedithiol chain with the A1)
between each S atom and the gold surface. The extra golgrface. Begin with orientatiofa) in which the carbon backbone is
atoms sit in the ideal position above the hollou-Au bond  in the y-z plane and perpendicular to the AliL1) surface(in the
length = 2.885 A). We used a S-Au bond length of 2.25 A x-y plane. Rotate the moleculén the right-handed sense-30°
and an Au-S-C angle of 109.47°; these choices were guidegbout thez axis, then 7° about thg axis, and finally 30° about the
by structural relaxations. Structuré® and(b) will be called  x axis. The resultb) is the orientation used in our calculations.
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B from the Carbon Projected DOS

2 T . . :
4 DOS at Fermi level
5 B=-slope ~ 1
@
15 0.
g 6
£7
8

B(per carbon)

FIG. 9. The S-hollow structuréa) and S-Au-hollow structure 05
(b) used in the density of states calculations. The only difference is
the extra gold atonfdarkened for emphagisserted between each
sulfur and the gold surface.

1 2 3 4
and, for the plane-wave calculation, a<4x4 grid was Energy (eV)
used.

Projected densities of states for the S-hollow structure ar
shown in Fig. 10. The projected density of states onto th
orbitals of a “middle” carbon atom(fourth or fifth carbon  the cajculation was done using the DOS determined with plane
from the end of the eight-carbon chaiis shown for each  \yaves and the result is similar to tifecurves determined from the
basis set. This reveals the position of the octane HOMO anghinimal and extended local orbital basis calculations. The slight dip
LUMO levels and it is seen that—although the HOMO- near~—1 eV is at the location of a state localized on the sulfur.
LUMO gap is smaller for the extended and plane-wave
calculations—in all three cases the Fermi letddfined as 0 poring or “end” carbon orbitals. It is important to note that
eV) lies approximately in the middle of the HOMO-LUMO there are prominentlocalized sulfur-based states in the
gap of the molecule. This is in agreement with the branchyiddie of the alkane chain HOMO-LUMO gap. It may be
point estimate. Specifically, for the minimal basis, the MIGSthat these states play a significant role in electron conduc-
theory predictsEr to be about 5.4 eV above the HOMO of tjon, in particular for shorter alkanes. In the projected DOS
the octane chain and the self-consistent minimal basis calcypr the end carbon, the alkane HOMO-LUMO levels are vis-
lation gives about 4.9 eV. _ ible but they are blended with sulfur and gold states. These

Some other features of the density of statBO©S are  states are partially the tails of MIGS and their presence is the
ShOWI’] fOI‘ the m|n|ma| ba.S|S Calculatlon. Here the DOS arQeason for focusing on the m|dd|e Carbon atom Where most
also shown projected onto the sulfur orbitals and the neighpf the MIGS have decayed away and the true HOMO and
LUMO states are revealed. Similar features are seen in the
projected DOS for the extended and planewave basis calcu-
. lations.

Minimal The decay in the MIGS component of the density of states
Basis from the end carbons to the middle carbons provides a direct
and simple alternate way of calculatin® The projected
DOS p, on thenth carbon from the end contributed by the
MIGS should be approximately given by

FIG. 11. TheB curve determined from the densities of states
rojected onto carbon atoms 1, 2, 3, an@cdunting from the end
f the octane chairof the octanedithiol SAMS-hollow structurg

Projected DOS
octanedithiol SAM on gold

N

Extended

e pa(E)=po(E)e PEM,

where po(E) is a function of energy only. An estimate of
B(E) may then be determined by fitting, for each energy, the
projected DOS on the carbof@as a function of carbon num-
bern) to an exponential. This was done for the planewave
-15 -10 -5 0 5 calculation and the result is shown in Fig. 11. TBeurve is
Energy (eV) noisy but still has a similar shape to the idgakurves de-
FIG. 10. Projected densities of states for the S-hollow structurd€’mined from the complex band structure calculations. One
[Fig. %a)] using three different electronic structure methods. Thecurious feature is the slight dip aroundl eV. This is the
minimal basis panel shows the DOS projected onto a sulfur andocation of the sulfur state mentioned before.
onto a carbon at the end and at middeid) of the octane chain. Finally, the DOS projected onto the middle carbon for the
The extended and plane-wave panels show only the projection§-hollow and S-Au-hollow structures are compared in Fig.
onto a middle carbon atom. The Fermi level is at 0 eV. “h” indi- 12. It is seen that the HOMO has shifted upward, towards the
cates the approximate position of the alkane HOMO. Fermi level, by just over 1 eV. This result is from a minimal

DOS (arbitrary units)

Planewaves
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S-hollow structure vs. S—Au-hollow structure Complex Band Structure Minimal Basis: Alkene
(DOS projected onto middle carbon) 10 ﬂ
i ol ;\\\ |
i Imaginary \
f S-hollow K Real K
! o ol |

[%2]) D ~—~

= u -

> il 5 ><\

> + c 5t e ]

- |

8 5 ~10 “""/.\\\‘

8 S-Au-hollow

e | 15 - - ]
6 4 2 0 02 04 06 08 1
; B (per carbon) Ka/n

-10 -5 0 5

FIG. 13. The complex band structure for the infinite alkgFig.
1(b)]. The figure is as Fig. (®) for an n-alkane. The valence-band

FIG. 12. The effect of the insertion of a gold atom between thelOP IS at 0 eV.

S and gold surfacéS-Au-hollow) using a minimal basis calcula-
tion. The HOMO is shifted upward by just over 1 eV compared to VII. CONCLUSION
the S-hollow structure.

Energy (eV)

In this paper the complex band structure has been a focal

basis calculation, but the same trend is seen in both the epoint for a number of important topics related to molecular
tended basis and plane-wave calculations. conduction.

This result suggests that the Fermi level is sensitive to the The complex band structure describes all the electronic
structural details about the metal-molecule interface so thaBloch states where the Blodhvector ranges over the entire
the branch-point estimate of the position of the Fermi level iscomplex plane. The main advantage of the complex band
only approximate. This underscores the difficulty of makingstructure is that it provides a clear picture of the nature of the
reliable calculations of the current-voltage characteristics oglectron states in the HOMO-LUMO gap region of the mol-
a molecule where a small change in the position of the Fermécule. These are the electron tunneling states which deter-
level is amplified by the exponential nature of the tunneling.mine the nature of electron transport through the molecule.

The B(E) curve, which describes the most penetrating of the
VI. COMPLEX BAND STRUCTURE OF ALKENE gap wave functions, gives a simple quantitative measure of
AND BENZENE CHAINS the rate of decay of these tunneling states and so reveals the

In this section we present the complex band structures Oef}xpected length dependence of the conductivity.

two other organic molecules: an alkene chain and linked ben-
zene rings. Complex Band Structure Minimal Basis: Benzenes

The alkene structure has alternating singles4 A) and 10 —p—= ‘ ‘ ; ‘
double (1.34 A) bonds[Fig. 1(b)]. The unit cell is (CH). s
The alkene chain complex band structure is shown in Fig. Pl
13. The band gap is very narrow, approximately 1.9 eV, and
the valence-band edge occurskat w/a. The 8 values in the
gap are much smaller than for the alkane. The peaialues
in the gap for the alkane and alkene chains @e
=0.79 A (about 1.0 per carborand=0.27 A~ ! (about
0.34 per carbon respectively. As expected, electron tunnel-
ing states in the gap are far more penetrating for the conju-
gated alkene structure.

Finally, the complex band structure of the linked benzene
rings [Fig. 1(c)] is shown in Fig. 14. All C-C bond lengths
are 1.39 A except for the triple bond which is 1.2 A. Inthe  _;5 A
figure, B is in units of A"X. The band gap is 2.1 eV and the 5 4 E(A_l)
peak value for theB curve in the gap is coincidentally the
same as for the alkeng=0.27 A™*. There are several flat FIG. 14. The complex band structure for the linked benzene ring
bands which presumably represent states localized on thgructure[Fig. 1(c)]. The units of3 shown correspond to the prob-
benzene rings or the triple bonds. ability decay per angstrom. The valence-band top is at 0 eV.

5t

Real K

Energy (eV)

. i b .
1 0 02 04 06 08 1
Ka/m
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We have presente(Sec. Il) a method for obtaining the calculations of an octanedithiol monolayer connected to gold
full complex band structure of a periodic molecule. We haveslabs(Sec. \J. However, the location of the Fermi level was
also describedSec. V) a simple alternative method for ob- also found to be somewhat sensitive to structural details of
taining B(E) from projected densities of states. This methodthe metal-molecule connection.
directly reveals the exponentially decaying electron wave
functions—analogous to metal-induced gap states. This
method generalizes to nonperiodic molecules.

Besides describing the form of the tunneling wave func- We thank the National Science FoundatidfiRT ECS-
tions, theB(E) semiellipse also provides a simple means for0103175, (MRSEC DMR-96-32635 and(DMR-99-86706
estimating the location of the Fermi level for a molecule infor support. We would also like to thank the molecular elec-
contact with a metal. In particular, according to Tersoff'stronics group at Arizona State University: Xiao Dong Cui,
theory?! the Fermi level for a Schottky barrier should be Ganesh Ramachandran, Jin He, Stuart Lindsay, Alex Primak,
located near the peak of ti8{E) semiellipse. Applied to the Xristo Zarate, Devins Gust, Anna Moore, Tom Moore, Salah
metal-molecule system, this estimate was found to be in reédBoussaad, Huixin He, Nongjian Tao, and, from Motorola,
sonable agreement with more elaborate electronic structur@ari Harris, Larry Nagahara, Alex Demkov, and X. Zhang.
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