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Time-dependent density-functional thediyDFT) provides a way of calculating, in principle exactly, the
linear response of interacting many-electron systems, and thus allows one to obtain their excitation energies.
For extended systems, there exist excitations of a collective nature, such as bulk and surface plasmons in
metals or intersubband plasmons in doped semiconductor quantum wells. This paper develops a quantitatively
accurate first-principles description for the frequency and the linewidth of such excitations in inhomogeneous
weakly disordered systems. A finite linewidth in general has intrinsic and extrinsic sources. At low tempera-
tures and outside the region where electron-phonon interaction occurs, the only intrinsic damping mechanism
is provided by electron-electron interaction. This kind of intrinsic damping can be described within TDFT, but
one needs to go beyond the adiabatic approximation and include retardation effects. It has beefGshown
Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. L€et®, 4878(1997)] that a density-functional response theory
that is local in space but nonlocal in time has to be constructed in terms of the currents, rather than the density.
This theory will be reviewed in the first part of this paper. For quantitatively accurate linewidths, extrinsic
dissipation mechanisms, such as impurities or disorder, have to be included in the response theory. In the
second part of this paper, we discuss how extrinsic dissipation can be described within the so-called memory-
function formalism. This formalism will first be introduced and reviewed for homogeneous systems. We will
then present a synthesis of TDFT with the memory function formalism for inhomogeneous systems, which
allows one to simultaneously account for intrinsic and extrinsic damping of collective excitations. As an
example where both sources of dissipation are important and where high-quality experimental data are avail-
able for comparison, we discuss intersubband plasmons in a 40-nm-wide Gg4&&MAs quantum well.
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[. INTRODUCTION where v4(r,t)=v,(r,0)e”'“'+c.c. is a periodic potential

(v1<<vg) that couples linearly to the density operaflirr)
The calculation of excitation energies and linewidths of = Eiﬁ(r_ri)_ One then Computes the time-dependent den-

collective excitations in extended electronic SyStemS is Ongr[y of the System, which, in the linear approximation, will be
of the outstanding problems in many-body theory. Time-given by

dependent density-functional theafDFT)*~° offers a pow-

erful and elegant approach to this difficult problem. To set t) = T —iwt 3
the stage for the developments that are to follow, we shall n(rH=no(r)+M(r.)e “e @
begin this paper with a summary of some of the key elememﬁ/hereno(r) is the ground-state density, and(r, ) is lin-

of TDFT. Let early related ta(r,») via

2

~ Pi
Hozzi {ﬁ‘l‘vo(ri) +

N| -

;j U(lri—rj) D nl(r,w)=fd3rx(r,r’,w)v1(r’,w>- (4

be the Hamiltonian of a many-electron system, wherend | hedensity-density response functig(r,r’,») contains the
p; are the canonical coordinates and momenta oftthelec- essential information about those excited states of the system
I

tron, mis its massp(r) is a static external potential, which hat are coupled o the _grour_ld_ state by the perturbation
includes contributions from randomly distributed impurities H1(t). More specifically, in a finite systertatom or mol-
and other sources of disorder, abd|r;—r}|) is the Cou- ecule this response function has a discrete set of poles on
lomb interaction potential. To calculate the excitationthe real frequency axis, corresponding to the discrete excita-
energied® one adds to |:|o a small time-dependent tion energies of the system. In an extended system, _the poles

iofh merge into a continuous branch cut along the real axis. How-
perturbation of the form ; T

ever, isolated poles can arise in the lower half of the complex

frequency plane: they correspond to collective excitations of
the system, where the imaginary part of the frequency de-
fines the characteristic lifetime of the excitation.

|:|1(t)=f d®roy(r,H)n(r), )
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The basic TDFT strategy for calculating(r,r’,w) isto  garded as a time-dependent perturbation to the first. The
construct anoninteractingsystem that has the same ground-time-dependent density response is therefore given by
state densityng(r), and yields the same density response
n.(r,w) as the interacting system under study. The dynamics
of this noninteracting system is controlled by an effective
single-particle potential that is written as the sum of the total
external potentiab y(r) +v(r,t) plus the Hartree potential

nl(r,w)zf d3r’XKS(r,r’,w)[vl(r’,w)

e2
+J d3r” | |+fxc(r',l’",w) ny(r’,m) |,
rr_rr/

n(r’,t)
vy(r,t :ezf d¥r'——— 5

n(r,t) ] 5 (10)
where the second and the third terms in the curly brackets
arise fromvy ; andu, 1, respectively. Comparing Eq$4)

and (10) we obtain the following integral relation between

plus a remainder, which is known as the “exchange-
correlation” (xc) potentialv,(r,t). It is not at all obvious
that such a potential, can be cor]syructe.d, but, if It can, the exact density-density response functppfr,r’,») and
then Runge and Grosshowed that it is ainique functional the noninteracting response functigpe(r.r',):

of the time-dependent density up to within an additive func- g resp RRS(LT @)
tion of time. The form of the xc potential depends, in gen-

eral, on the initial state of the system, but this dependence X(r,r'yw):XKs(r.r',w)Jrf d*Xxs(r, X, )
disappears if one assumes, as we do here, that the system is

initially in its ground staté. The effective noninteracting 4 2 ¢ ,
Hamiltonian (also known as the Kohn-Sham Hamiltonian X y |x_—y| + fx(X Y, @) | x (Y, 1, ).
that yields the exact density is then given by (11)
~ _ p; This can also be written as
HKs(t)—Z %+Uo(ri)+UH,0(ri)+ch,O(ri)
2
. X U o) = xed(rr o) — ————f (1,1 ),
+j Brlvy(r,t) +opar,t) +uyea(r,t)In(r), [r=r'| 12

(6)  wherey ! is the matrix inverse of.

where both the Hartree and the xc potentials have been writ- The excitation energies are finally obtained from the poles
ten as the sum of static parts, o, associated with the of the linear response function, i.e., from the solution of the
ground-state density, andsmal) time-dependent parts €igenvalue problem

Un1,Uxc1 associated with the time-dependent density. The

static part of the Kohn-Sham Hamiltonigfirst line of Eq. f A3 x Hr,r"w)E(r,0)=0, (13

(6)] yields the exact ground-state density in the interacting

system, while the time-dependent pfsecond line of Eq. where E (r,w) is the function that describes the spatial de-

(6)] yields the exact density response. pendence of the density in the excited state.
In the linear response regime the xc potential can be writ- Equation(11) is the main formal result in the TDFT ap-
ten as proach to the calculation of excitation energies. From a fun-

damental point of view, calculatinfy. is of course no easier
vt , , , . than calculatingy. The main advantage of recasting linear
Uxe(T 1) = Ve d 1)+ f_wdt f A fie(r,r ", t=t)ng (1,1, response theog/)(within TDFT is of a?nore practica?nature:
7) as long as the exact excitations of the interacting system are
in qualitative correspondence to those of the Kohn-Sham
ystem(a kind of “Fermi liquid” assumption, the xc kernel
in Eq. (1) is expected to be a small correction, which can be
approximated with relative impunity.The simplest approxi-
(8) mation is to ignore both nonlocality in space and retardation
in time. This leads to the widely usedliabatic local-density
approximatiod? (ALDA ) in which one poses

wherev,, ((r) depends only on the ground-state density, an
foo(r,r’,t—t") is the retarded xc kernel, formally defined as

5ch[n](rat)

foo(r,r’  t—t")=
ol sn(r’,t)

no(r)

Fourier transformation of both,. and f,; with respect to

i i i dey(n)
time leads to the simpler relation o(r )= chr(\ , 14
n=n(r,t)
ch,l(f,w)=f B/ foe(r, 1 )Ny (r',w). (9)  wheree,(n) is the xc energy density of the homogeneous

electron gas of density. The right-hand side of Eq14) is
We denote byxyks(r,r’,») the density-density response nothing but the local-density approximati¢ghDA) for the
function of thestatic Kohn-Sham systerfthe first line of Eq.  ground-statexc potential evaluated at the time-dependent
(6)]. The second line of the same equation can then be redensity. In terms of the xc kernel, this approximation implies
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d2e,(n) diverges wherk—0 at constank’ or vice versa.(In the
— < - , (15 homogeneous case one Hask’ and the singularity disap-
o ears
n=ng(r) p . .

o ) ) Vignale and KohA® (VK) and Vignale, Ullrich, and
which is a purely real and frequency-independent object.  cont? (VUC) showed that the nonlocality problem could be

The ALDA is a remarkably successful approximation, de-¢jrcumyvented by working with theurrent densityather than
spite the fact that it entirely neglects the frequency depeng,q density as a basic variable. The idea is to perturb the

dence of the_xc kernel, that' is, thletarded_dependence of system(1) with a time-dependentector potentialay (r,t)
the xc potential on the density at earlier times. In atoms the_ ay(r,»)e '+ c.c. rather than with a scalar potential. The

ALDA has yielded reasonably accurate values of the excnaberturbing Hamiltonian has the form
tion energies:** Most of the residual inaccuracy has been
traced to the fact that the ground-state xc potential in the R R

LDA fails at large distance from the nucleus. An optimized Hl(t)=f dray(r,t)-j,(r), 17
effective potential approach, similar in spirit to Eq.(14)

(i.e., still without retardatiop yields a dramatic improve- \here Jo(N)=(1/2m)3,[pi(r—r)+8(r—r)p] is the
ment in accurac. Applications to more complex paramagneticcurrent density operatéf.One then calculates

6-18 i imi . . . :
system&®~® (molecules, polymejshave met with similar  he cyrrent response, and determines the excitation energies
degrees of success. The essential reason seems to be that#h@, the poles of theurrent-current response function

frequency dependence of the xc kernel is rather weak, be- The Kohn-Sham Hamiltonian in this time-dependent
cause it is controlled by multielectron excitations, which aregyrent-density-functional theorfTCDFT) contains an xc
either very high in energy(atoms and moleculgs or  yector potentiala,. 1(r,t), which is a(linean functional of
smoothly distributed through a spectral rariggtended sys- he full  current density  responsej(r,t)=jpy(r,t)
tems. _ +no(r)ay(r,t)/m:

There are, however, some important features of the dy-
namical response that cannot be accounted for in any way by
an instantaneous xc potential. Quite generally, the need for a  ayc14(f, @)=, f A3 frgap(r,r @)j1 (1" ),
dynamical theory of . arises in the study of excitations that A (18
do not have an analog in the Kohn-Sham system. Perhaps the
clearest example of this is provided by collective excitationsyhere f, «5(r,1",w) is the tensorial generalization of the
in extende_d electronic systems, such as bulk and surfaggsual xc kernelhere and in the followinge, 8 denote Car-
plasmons in metals or intersubband and intrasubband plagesian components The static part of the Kohn-Sham

mons in doped semiconductor quantum wells. In this caseamiltonian remains unchanged, and the ground-state den-
the ALDA would predict resonance peaks of vanishingsity is still determined by the static xc fietd o.

foc(r,r',w)=38(r—r")

width, in glaring contradiction to experiment. _ It turns out that the xc vector potentidbesadmit a local
Attempts to go beyond the ALDA to include retardation approximation in terms of the current density: as we shall see
date back to the mid-eighties. In 1985 Gross and K@io- i the next section, the form of this approximation is essen-

posed a dynamical local-density approximation fog,  tially determined by symmetry considerations and can be
which was designed to preserve the local relationship begxpressed in terms of an xc stress ted8dfhe resulting
tweenwv,c, and the density, while including retardation in expression fom, , is local in space, retarded in time, satis-
time. Their approximation reads fies the generalized Kohn’s theoréf?? and allows a con-
, , sistent calculation of the linewidth of elementary excitations,

ful 11, 0) = fFR(k=0,0) (r—r), 168 4t least the part of it that arises from intrinsig many-body
Wherefi'c(k,w) is the xc kernel of the uniform electron gas effects. The _fundgmental reason Why a.” this is pOSSible is
calculated at the local ground-state density(r) (more thatthe relationship between the longitudinal current and the
aboutf"_will be said in the next sectionsBecausd,(w) is ~ density is nonlocal. From the continuity equation
complex, this approximation yields a finite linewidth for ex-
citations that would have zero linewidth in the ALDA?° Iny(r,Y) _VLiy(rD) (19

Unfortunately, the Gross-Kohn approximatici®6) suffers at B

from several inconsistencies, such as the failure to satisfy the L .
generalized Kohn's theoréfhand related sum rulé@Asa~  One sees that the longitudinal component of the current is
consequence, it was fouffcthat within this approximation, 91ven by
intersubband plasmons in quantum wells may become sub-
stantially overdamped. These deficiencies were ultimately . 1 3.,
traced back to the fact that a local approximation for the Ju(r,= Ef d*r
dynamical xc potential in terms of the density does not exist
(except atw=0, in which case it is the static LDAThe  while the transverse component of the current remains unde-
reason for this startling result is that the xc kernel of a nontermined. Thus, a local functional ¢f, will necessarily be
homogeneous system is a function of infinite range in spacey nonlocal functional of the density. What is remarkable here
or, more precisely, the spatial Fourier transfdig(k,k’, ») is that the nonlocality ob,. ; as a functional of the density

r;l(r 1t), (20)
r—

r'|
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can be completely eliminated by “upgrading” TDFT to a qualitative behavior of the linewidth as a function of an ex-
description in terms o#,. ; andj;. This is the essence of the ternal electric field that controls the shape of the quantum
VK and VUC theories. well is correctly reproduced.

Since any scalar potential can be represented by an The remainder of this paper is organized as follows: In
equivalent vector potential, and since the density is easilypec. Il we review the main aspects of the TCDFT formalism
calculated from the currerfsee Eq.(19)], we see that the for the_linear response of ma_ny-electro_n systems. In Sec. llI
ordinary TDFT is a special case of the TCDFT formulatfén. We review the memory function formalism and demonstrate
An additional advantage of this formulation is that it allows ItS application to the case of a homogeneous electron gas
one to treat the more general problem of the response of apith randomly distributed |mpur|t|e§. These sectlon's are
electronic system to an electromagnetic field having bott{n€ant to make the paper self-contained and to provide the

longitudinal and transverse components, whereas the origin?leCessary backgroqnd for the following more techn_|cal parts.
ST T . . n Sec. IV we combine the memory function formalism with
Runge-Gross formulation is limited to longitudinal fields

i.e., fields that can be expressed as the gradient of a scéITCDFT for inhomogeneous systems and derive the key inte-
s P 9 8Fa| equations for the current-current response functions. Fi-
potential. ) . nally, in Sec. V we demonstrate the power of the method by

Although the VK and VUC formulations are important calculating the linewidth of the intersubband plasmon in a

steps enabling the calculation of the linewidth of elementaryqu&mtum well and comparing to recent experimental results,
excitations in extended systems, they are still not sufficiengng in sec. VI we give our conclusions.

to achieve quantitative accuracy in cases of practical interest.
For example, the calculation of the linewidth of the intersub- Il. TCDET BEYOND THE ADIABATIC LDA
band plasmon in a 40-nm GaAsAGa /As quantum well
reported in Ref. 24, based on VUC formalism, yielded a  A. Exchange-correlation kernels in the homogeneous
linewidth about five times smaller than the experimental electron gas
value. The reason for this disappointing result is that the For orientation, let us first consider the xc kernels of a
theory, as it stands, does not take into account other intrinsifomogeneouslectron gas. Because of translational invari-
and extrinsic sources of damping, such as electron-phonasince, it is convenient to work with the Fourier transform
interactions, electron-impurity scattering, and, in the case of(k,w) of the current density. The linear response of this
guantum wells, interfacial roughness. All these interactiongjuantity to a vector potential,; (k,w) can be written as
contribute to the linewidth and must be included in any cal-
culation that aspires to achieve quantitative accuracy. ; _

In this paper we take a first step in this direction by show- J1alkw)= E,g Xap(Ki@)ap(k,w), @
ing how two of the most prominent contributions to the low- .
temperature linewidth of plasmons in quantum Wens,wherexaﬁ(k,w) is the current-current response tensor. Due

namely, electron-impurity scattering and interfacial rough—t0 rotli';\t:onall(l mva(\jnance, the responj_eslof tg(e longitudinal
ness, can be built into the current-density-functional formal{Parallel tok) and transverseperpendicular tk) compo-
ism. nents of the current are completely independent, and one can

Our approach is based on the “marriage” of the TCDFTWrite
formalism with the memory function formalism described, . .
for example, by Forstéf In the homogeneous electron gas Jim6e)=ximk e)a mk o), (22)
limit this approach reduces to the Belitz—Das Séht@at-  whereL (T) denotes the longitudinélransversecomponent,
ment of the effect of impurities on bulk plasmons, which, inand XL(T)(kiw) is the longitudinal (transversg response
turn, can be viewed as the high-frequency extension of théunction. According to the general linear response
Mermin relaxation-time approximati6?1 for the density- formalism33 XL(T) is given by
density response function of an electron gas in the presence
of randomly distributed impurities. Of course, our interest n . 5
lies in strongly inhomogeneous systems, such as quantum XL(T)(k'“’):E+2 [T p,Lemy(K)]0)]

wells 3132 which exhibit the intersubbandplasmon reso-
nance. Such resonances are of practical interest in connection y 1 23
with the design of infrared detector devices. w—wotiny wtogtin|’ (23

Our strategy is to derive an integral equation which re-
lates the current response function of the disordered interacwhere|0) is the ground staté]) is thelth excited state, and
ing many-electron system to that of the same system in theo iS the excitation energl¢, — Eq. The Fourier transform of
absence of disorder: the latter is calculated by the standanthe paramagnetic current operafgfk) is given by
TCDFT outlined above. We shall show that this approach
(despite some inevitable approximations in the treatment of - 1 N ik 1 ke
disordej meets with considerable success: the linewidth of Jp(k) =5 Z [pie”™"i+e ip]. (24)
the intersubband plasmon is considerably enhanced by
disorder—in particular, by interfacial roughness—and agreeslote that the total current response is the sum of the “Lon-
quantitatively with the measured one. More importantly, thedon current”na; /m and the paramagnetic currefithe ex-
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pectation value of Eq24)]. A key feature of Eq(23) is that In analogy to Eq(12), the relationship between the inter-
in the limit of k—0 and finitew it approaches the form acting current-current response function and its noninteract-
ing counterpariys takes the form
xL(K, @)= ———+a (0)K?, 2
me(w) _ N k
25) Xe(h (kK@) = xis (ko) — ?[UL(T)(k)_’_ch,L(T)(k!w)]a

XT(kaw)H%'i‘aT(w)kz, (30)

where we have defined (k) =v (k) andv+(k)=0.
where «| (1)(w) are functions of frequency onlg(w)=1 Notice that, according to EQqs(25), x, ‘(k,») and
—lim_onv (k)k?/mw? is the homogeneous dielectric func- g, (k,») —k?(k)/w? have the same limitme(w)/n
tion, andv (k) is the Fourier transform of the Coulomb in- +0O(k?) for k—0 and finite w. Similarly, X{l(k,w) and
teraction. Notice that the difference between the Iongitudinag(lzslj(k,w)_kZUT(k)/wZ have the same limitn/n+O(k?).

and transverse resultslet 0 is due to the long range of the Thus, we see that Eq30) is consistent with the limiting
Coulomb interaction: the difference vanishesvi(k) di-  forms (25) if and only if the k—0 limits of the xc kernels

verges more slowly than M-_ _ £ L(r) are finite functions of frequency,
Translational invariance is the essential reason for the ™

smallk behavior of theyx’s. In the k—0 limit the current
operator reduces to the total momentum operator plus a cor-
rection that vanishes linearly witk Thus the first term on
the right-hand side of Eq$25) is the response of the center- Because of the central role these functions play in the devel-
of-mass momentum, which obeys a simple equation of moepments to follow, we now describe their properties in detail.
tion under the action of the external force, while the second
term, of orderk?, comes from the residual part of the opera-
tor, which is linear ink. There are no cross terms, since the
dynamics of the center of mass is decoupled from that of the The calculation of the xc kernel;, r)() is a very
internal degrees of freedom. difficult problem in many-body theory. Approximate calcula-
Let us now turn to the xc potentials. The idea is to expresdions have been done usir@ Interpolation schemes be-
the exact current responé2?) as the response of a nonin- tween exact high- and low-frequency limitsji) Perturba-

teracting electron gas to an effective vector potential, writterfion theory>***and(iii) Mode-decoupling approximatiori8.
as Here we simply summarize the main results that have been

established to date, and refer the reader to the original refer-
et (K, w) =3y (k,w) +ay 1(K,0) + a5 1(k,w).  (26)  ences.

_ o _ . 1. The high-frequency limit is a purely real constant given
The Hartree componeat, ; is purely longitudinalsince itis

just another way of describing the scalar Hartree potential
and is given by

im e, (k) =l (@) (31)
k—0

B. Properties of the homogeneous xc kernels

1
lim fQC,L(T)(w) = ﬁ[dL(T)(<ke> —(ke)o) te m(pe)],

2 w— %

apa(k,0)= ;v(k)m(k,w)lz, (27) (32)

R which is also known as thiird-moment sum rulg ke) and
wherek=k/k. The xc potential can be decomposed into its(pe) are the expectation values of the kinetic and potential
longitudinal and transverse componefusth respect to the  energy, respectively, angke), is the noninteracting kinetic
direction ofk) as follows: energy. In three dimensiond, =4, e =8/15, d;=4/3, ey

" =—4/15. In two dimensionsd, =6, e =5/4, d;=2, ey
. A =—1/4 (see Ref. 3b
ek, )= ;[fQC,L(k"")JlVL(k"")k The behavior of the imaginary part of the longitudinal xc
kernel was first determined by Glick and LdfAdthree-

+ 10 r(k,@)j11(K,w)]. (28)  dimensional(3D) casd and Holas and Singwi (2D), mak-
ing use of second-order perturbation theory, which becomes,
The factork’/ w? has been introduced, in analogy to B27),  in all likelihood, exact in the high-frequency limit. More
so that the longitudinal component of the xc vector potentiatecently, their calculation has been confirmed and extended
is equivalent to the scalar xc potential to the transverse kern€lby a different method based on the

equations of motion for the current response function. The

Dealk,w)= ==l (kony(kw) (29 U
2
(jL=molk), thus making f}; (k.) identical with the i M 2 oy ()= — @y PO iD, -
usualfi(k,») of the ordinary TDFT. o : a
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whereay,=%2/mé is the Bohr radiusw=%way/e? is the
dimensionless frequency, amlis the number of spatial di-
mensions. The coefficients asg =23/30 anda;=16/15 in
three dimensions, and, =11/32 anda;=9/32 in two di-
mensions.

2. The w—0 limit was first worked out by Conti and
Vignale2” and is subtly different from the static limit, which
is obtained by settingh=0 beforeletting k— 0. The result
for fy, in D dimensions is

2(D—1)

5 (34

lim 5 (),

w—0

lim £, (w)=€j(n)+

w—0

where €),(n) =d?e,,(n)/dn?. The second term on the right-
hand side of this expression is proportional to

i fh _28|: 3F2_5F1 35
I Ger(@)= 260 | 377, | 39
in three dimensions, and
F,—F
S _fF[2 1
M Gerl@)= 501 258, (36

in two dimensions, whereg is the Fermi energy, anl, are
the conventional Landau parameters of the electron lidftid.
Note that the first term on the right-hand side of E2f) is

the usual compressibility obtained from the static limit

lim,_olim,_o fL‘C,,_(k,w). Thus, Eq.(34) vividly shows the
noncommutativity of th&k—0 andw—0 limits.

PHYSICAL REVIEW B 65 245102

7 KeB0 | [yt 2 tar ta - Zgin 1
=— - —|tan ‘A — —sin" F —
(hlag)  457° N N J1A2
2 T (40)
—_— —_— n —_—
MV2+202| 2 AV24+22
in three dimensions, and
Ui
[ — + —_——
(h1aD) 12772{2'”()‘ D=1+
fl A2X
— | dx 41
0 (AX+1)(AV1—Xx?+1) 4D

in two dimensions. In the above expressiong defined as
N=2kg /kg, wherekg is the Fermi wave vector, and is the
screening wave vector: in random-phase approximation
(RPA), for example k= (4mkgrao) Y% ma, in three dimen-
sions, andkg=2/a, in two dimensions. The derivation of
these results is presented in Ref. 38.

5. Parametrized expressions. To keep our presentation
self-contained, we also include the explicit parametrization
for fQC’L(w) that has been used in the calculations of Sec. V.
This is the original Iwamoto-Gross-Kohn parametrization,
and has the form

B a(n)w
[L+b(n)w?]

with the coefficientsa(n) andb(n) determined by the com-
pressibility and third-moment sum rules, and the Kramers-

Imfh (o) (42)

3. Due to the causality properties of the linear responséronig dispersion relations. The real partfgf, () is then

functions, the xc kernels must be analytic functionswoin

calculated with the help of the dispersion relati8). More

the upper half of the complex plane. This leads to therecent analytic expressions fdiEc,,_(w) andec'T(w) have
Kramers-Kronig relations, which relate the real parts of thebeen obtained by Nifosi, Conti, and T&siand Qian and

xc kernels to their imaginary parts:

1 Imfl(w')
Reflw) =M+ =P [ o 22 (3
™ o' —w
whereP denotes the “principal part” integral.
4. In a very recent developméfthe low-frequency be-

havior of the imaginary parts of the xc kernels has also been
calculated exactly to leading order in the strength of the Cou-

lomb interaction. The results are

2

h . n —
|meC,T(w)_> (na([)))Z (ﬁ/ag)waé,Dl (38)
and
2(D-1)
Im e (0) = —5—Im fer(w), (39

where the dimensionless “shear viscosity?/(ﬁ/ag) is
given by

Vignale (QV).28 These new expressions possess considerable
structure in the frequency dependence due to two-plasmon
excitations. The QV expression reproduces the exact pertur-
bative limit of {7 (w) in the limit w— 0. Additional details
about these expressions can be found in the original refer-
ences.

C. The exchange-correlation field for a homogeneous
electron gas

As a preparation for the study of inhomogeneous systems
let us now examine the real-space form of the xc vector
potential. It is convenient for this purpose to introduce the xc
electric field

1
Evca(k.w) =i0a,1(k,0)=— —{k[k-ji(k,0)]f} ()

o r(@)inr(k, @)} (43)
Splitting off the familiar ALDA contribution
K-j
EADA (K, w) =ikel afl, (44)
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we can write
ALDA 1 H
Exca(K,0)=Exc1  (K,w)— m{k[k-n(k,w)]

X[fxc L(w) — e ]+ k*f ch(w)JlT(k w)}.
(45)
Introducing at this point the velocity field

i

= (46)

and Fourier transforming Eq45) to real space, we get

Exc,l(raw):E;\é_EA(r! {[fxc L(w) ch( o)

€IV (V- u>+fm<w>v2u}. (@7)

It is easy to verify that this expression can be rewritten as

1 I0yc ap(l, o)
Ero1al,0) =ERD0(r0)+2 3~ (49
B
where the xc stress tensoy . is defined as
- g | g V s
Oxc,aB™ n(nrw) é’rﬁ [?T n u ap
+7(n,w)V-Ud,4, (49
and
n2
-~ h
77("11(1)):_i_fxc,T(a))v (50)
w
- n® 2(D-1) .
g(niw):_i xcl_(w) T ch(w)
(51)

are generalized.e., frequency-dependent and compleis-
coelastic constants of the electron liqdidn particular, the
real parts of 7 and ¢ [related to the imaginary parts of
fxC L(w)/ o] play the role of shear and bulk viscosities,

respectively, while the imaginary parts efy and w{ [re-
lated to the real parts cﬂhC L(m)(w)] are interpreted as post-
ALDA xc contributions to frequency-dependent elastic con-
stants u (shear modulus and K (bqu modulug of the
electron liquid:  pgyp=n Refch(w) and  Kgy,
=n?Re{f}, 1(w) —[2(D—1)/D]fh 1(w) — €} (see Ref. 37
for details; the full elastic constantsandK given there also
include the kinetic and the ALDA part of the xc contribu-
tion).

Because InixC L(r)(@) vanish linearly foro—0 (point 4
of Sec. IIB, we see that the viscosity coefficienisand?
stay finite in thew— 0 limit. Equations(38), (39) of Sec. 11 B
imply that thew— 0 limit of the bulk viscosity lim,_, {(w)
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also see that ligoKgy(w)=0, implying that the bulk
modulus of the electron liquid is entirely accounted for by
the ALDA contributione,

The fact that the shear modulus does not vanishdfor
—0 but tends to the finite value of EB4) is perhaps sur-
prising. One ordinarily thinks of liquids as having zero shear
modulus. The reason for this strange behavior is that we are
taking thek—0 limit beforethe w—0 limit. Thus, the sys-
tem remains “dynamical” down to zero frequency. Of
course, this would not be true if the— 0 limit were taken at
finite k. In that limit, fﬂcT is no longer related to the shear
modulus, but to the static diamagnetic susceptibility, which is
extremely small. The truly static shear modulus is zero, as
expected.

D. The exchange-correlation field in the inhomogeneous
electron gas

The main result of the previous section, E48), is art-
fully written so that it can immediately be turned into a local-
density approximation for the xc electric field of an inhomo-
geneous electron liquid through the replacemenatng(r),
where ng(r) is the ground-state density of the inhomoge-
neous liquid. Of course, the xc kernels must also be evalu-
ated at the local density.

An important question is this: Why should the replace-
mentn—ng(r) be done in Eq(48) rather than in one of the
many equivalent expressions one can generate starting from
Eq. (45)? For example, why not write the second term on the
right-hand side of Eq(47) in the equivalent form

1 h h 2:
E{[fxc,L(w)_fxc,T(w) ]V(V Jl)+fch (0)V Jl}
(52

before substitutingn by ng(r)? The answer is that this and
similar ambiguities are completely removed by general
physical requirements which we now discuss.

First of all, because the Coulomb interaction obeys New-
ton’s third law, the net force exerted by the xc electric field
on the system must vanish. At the local level, Newton’s third
law implies that a small volume of the electron liquid cannot
exert a net force on itself. Accordingly, the net force acting
on an arbitrary volume element must be expressible as the
_integral of theexternalstresses exerted by the surrounding
fluid on the surface of the volume element. The mathematical
expression of this requirement is that the force density must
be the divergence of a local stress tensor as in(&g).

A similar argument can be applied to the tajueacting
on a volume element of the fluid. Again, this must be ex-
pressible in terms of a surface integral, and it is not difficult
to see that the condition for this to happen is that the stress
tensor be a symmetric rank-2 tenédr.

Finally, Galilean invariance requires the stress tensor to
vanish identically when the fluid moves as a whole, i.e.,
when the velocity field is spatially uniform. It is for this

is exactly zero at least to within the accuracy of our perturreason that the stress tensor must contain derivatives of the

bative calculation. By virtue of the limiting forni34), we

velocity field and not of the current.
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These criteria unambiguously establish E48) as the
correct expression in which the substitution- ny(r) should

PHYSICAL REVIEW B 65 245102

validity in the region of the barrier between the two wells.
The physical reason is that electronic motion through tunnel-

be made. This expression was originally derived by VK on ang barriers implies strong internal compression of the elec-
more laborious and apparently quite different path, whichtron liquid, which locally destroys coherence of the electron
more clearly exposed the underlying approximations and thdynamics and leads to a breakdown of the simple hydrody-
conditions for their validity. VK considered a weakly inho- namical picture. In such a situation, a hybrid between the
mogeneous electron liquid modulated by a charge-densityUC and the more robust Gross-Kohn approximatia6)
wave of small amplitudey and small wave vectay. Bothk  provides a pragmatic and practically useful rem&ly.

and g were assumed to be small not only relative to the Because the occurrence of two spatial derivatives of the
Fermi momentunkg but also relative tav/ur (ug being the  Vvelocity field in the post-ALDA term is dictated by general
Fermi velocity. The latter condition assures that the phaseprinciples, Eq(48) is expected to remain valid even for large
velocity of the density disturbance is much faster than thealues ofu, i.e., in the nonlinear regime, provided thaand
Fermi velocity, so that no form of static screening can occurh are sufficiently slowly varying. The argument goes as fol-
Under these assumptions, all the components of the tensoril§iws. Suppose we tried to extend E¢8) into the nonlinear
kernel f,. .z could be calculated, up to first order in the regime by including terms of order”. Because the stress
amplitude of the charge density wave, and to second order itensor must depend on first derivativesupbuch corrections
the wave vectork andq. The calculations were greatly fa- would have to go as{u)?. But then the force density, given
cilitated by a set of sum rules that are mathematicallyoy the derivative of the stress tensor, would have to involve
equivalent to the zero-force and zero-torque requirement8t least three derivatives. Thus, for sufficiently small spatial
discussed above. The result of the analysis was that the dvariation of the density and velocity fields, the nonlinear
agonal matrix elements . ,4(k,k,w) remain equal to termscan be neglected. . _
f*;c(k,w) to first order iny, but the off-diagonal elements  Since the ALDA is an |ntr|n5|cally_ nonl_mear approxima-
fre.ap(K+0,k, ) acquire a finite value, given By tion, VUC propo_sed that Ec(.48_), written _m_the time d(_)-
main, could provide an appropriate description of both linear
and nonlinear response properties. A nonlinear, retarded ex-
pression for,.; was also proposed by Dobsen al*! The

two approximations coincide in “one-dimensional systems”
(i.e., when one has a unidirectional current density field that
depends only on one coordingtdut differ in the general
case.

fXC,aB(k+q!k!w)

Y
== E (5f>r<]c,L_ f:c,T)qaqﬁ+ ch,qugaB

h
afxc,T

Jn

-n K-(kK+Q) 35+ A(N,0)
IIl. MEMORY FUNCTION FORMALISM AND TCDFT
FOR HOMOGENEOUS SYSTEMS

X(ka+qa)k/3_3(n!w)ka(kﬁ+qﬁ) ’ (53)

In the preceding sections, we outlined a linear response
" formalism within TCDFT that goes beyond the adiabatic ap-
WheLe 5ch,LEf%c,L(“”nt)1_ €xe(N), A(n,w)z[n(Zafgc,T/an proximation and allows one to account for intrinsic damping
~ 01/t 3hier= Ok ] and  B(n,w)=[ndfx.1/dn o collective excitations in electronic systems, caused by dy-
+3f 51— 6fxc,L]- A remarkable feature of this result is that namical many-body effects. As mentioned in Introduction,
the off-diagonal matrix elements &f; .z do not exhibit any  this is usually not sufficient to achieve quantitative agree-
singularity fork or g tending to zero in any order. This is in ment with experimentally measured linewidths. In reality, in-
marked contrast with the off-diagonal elements of the scalafrinsic damping is often overshadowed by strong extrinsic
(density xc kernel which, when calculated for the same sys-dissipation mechanisms, such as impurities or disotiter
tem, exhibit a power singularity of the fork-q/k* for k  this paper, we consider the low-temperature case only and
—0 at finiteq. This is the fundamental reason why the dy- limit the discussion to systems where LO phonon scattering
namical local-density approximation is possible in terms ofdoes not occyr
the current, but not in terms of the density. Effects of impurities and disorder in the linear dynamics
Equation(53) can be translated into a real-space expresof a many-electron system are conveniently discussed in the
sion for E,c 4(r, ). More details of the derivation, which is language of relaxation functiod$, which then naturally
quite laborious, are given in Ref. 23. Finally, the resultingleads to the so-called memory function formali€®In this
expression can be rearran§eih the elegant form of Eq. paper, we perform a conceptually new step and unite the
(48). The conditions of validity of the real-space approachmemory function formalism with TCDFT in the linear re-
are|Vng(r)|/ng(r) much smaller tharke(r) and w/ug(r),  sponse regime, which will then allow us to treat both intrin-
wherekg(r) andug(r) are the local Fermi momentum and sic and extrinsic damping from first principles and on an
velocity. In Ref. 24, the practical relevance of these condi-equal footing. This is necessary for an accurate description of
tions was investigated in detail. It was found that the ap-experiments performed on very clean samglasch as the
proach could be successfully applied to describe intersubguantum well we shall discuss in Sed, Where intrinsic and
band plasmons in wide single quantum wells, but failed forextrinsic damping may be of comparable magnitude.
narrow double quantum wells. The failure in the latter case The purpose of this section is twofold: To make this paper
was traced back to a strong violation of the above criteria ogelf-contained, we first review the memory function formal-
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ism for the hpmogeneous case. We_ then make qontact _be- iatﬁij(r,r’,t)=2X{’j(r,r’,t), (60)
tween relaxation and response functions, thereby integrating

the memory function formalism with TCDFT. In Sec. IV we where x{i(r,r’,t) denotes the inverse Fourier transform of
shall extend the approach to systems that are inhomogeneolss y;; (r,r’, ).

in one spatial directiorisuch as quantum we)lsand show Since relaxation occurs fde>0, it is customary to intro-
how it can be applied to discuss intrinsic and extrinsic dampduce the Laplace transform of the quantities of interest,
ing of collective charge-density excitations in such systemswhich, e.g., for the correlation function is defined as

A. Relaxation and linear response Eij(r,r',f):f dteiaéij(r,r’,t), (61)
Suppose we are interested in the dynamics of a sét of 0
+1 observables{Ao(r,t), ce ,AN(r,t)}, eachA(r,t) cou- where¢ is a complex number in the upper half of the com-

pling to a small perturbing external fielda;(r,t). The plex plane. One then finds the following relationship be-
Hamiltonian in the presence of these fields is givem tween the Kubo relaxation functions and the response func-

Schralinger representation, i.64; independent of) by tions:
Ci(r,r, &=0xij(r,r', &)= xi(r,r",io)Ji(ig). (62)

For the remainder of this section, we assume that the sys-
Consider now the case where the external fields are adiabatem is spatially homogeneoua more general case will be

cally turned on beginning at=—o, and then abruptly considered in Sec. IV Equation(56) can then be Fourier
switched off att=0: transformed into momentum space, and one obtains

I:I(t)=l:|o+2i f d3rA;(r)da(r,t). (54)

Say(r)e™ for t<0
0 for t>0.
The system starts out from nonequilibrium tat0* and, The L{iplace transform of the correlation functi¢®d) is
being left to itself, relaxes back towards equilibrium. Thethen given by

first-order change of the nonequilibrium expectation value of _
R —44 _ N | ~
an observable can then be writterf® T (a6 = (A §_£|Aj(q)>_ (64)

5ai(r,t)=[ (55 5<Ai(qig)>noneq.:; éij(ng)éaj(q)- (63

5<Ai(r1t)>noneq.:2 str,éij(rar,,t)5aj(r,); (56) _ _
J B. Projectors and memory functions

where the correlatioifor Kubo) function in the presence of The observable$Ao(q), o ,AN(Q)} can be regarded as
disorder is defined as vectors in a Hilbert space. The Liouvilliafi acts as a linear
s operator in that space, see E§9). We define a projection
Eij(r,r’,t)=<f dB' (A DA (I, =18 ))eq operatorP onto the space spanned B (q), . . . Ay(q)}
0 as

‘<Ai<r't>>eq<Ai(f"‘iﬂ’>>eq]> =3 IA@)A(] (65

disorder

(57) and its complemen@=1-"P projects perpendicular to it.

This may be rewritten as One can then formally write Eq64) as
. ’ —/A. —iLU A (¢! - ~ i R
Cij(r,r',t)=(Ai(r)|e "™A(r"), (58) Cij(q,g):<Ai(q)|mm;(m)- (66)
where L is the Liouville operator governing time evolution
of the system via Following Forstef® one performs a few straightforward ma-
' nipulations in Eq(66) and finds
At =i LA =[A(t),A/(i#), (59 B - ) )
and the scalar produ¢t - - |- - -) is defined by Eq(57). We Cij(a.6)= g‘sij T Ek: |<Ai(q>|"3|'%<(q)>
impose normalization on the set of variables, i.e.,
(Ai(r)|A(r"))=8; . In the following, we are interested in A 1 A =
the zero temperature limitd— ). (Ai(a)] QQﬁQ—§Q|Ak(q)> Cii(. ).
The correlation functiort57) is related to the dissipative 67)
part of the usual quantum mechanical response functions
Xij(r,r',t) as follows?®42 Defining
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Cij(q,6)= iéij(q-f)y (69) C. Generalized relaxation time approximation

In the following, we discuss the case where there are only
two observables of interest: density fluctuatiqﬁi(sq) and

Qi@ =A@ LlAD), 69 current densitj(q). Including normalization, we have
Mik(q,f):<Ai(Q)| Q;Qlﬂk(q)% (70 Ag(a)= % (73
QLe-¢ (p(ap(a)™?
we rewrite Eq.(67) as follows: and
A j(@)
Ai(q)=—, 74
S {£01- Q)+ Mi( .0} Cy(a. )=~ 3. (7D (@5 4

where n is the uniform density of the system, and

Q;;(q) can be viewed as characteristic frequency or restoringp(q)|p(q))=x(q,0), the static density-density response
force matrix of the system. Our particular interest, howeverfunction (in the presence of disorderEquation(71) then
lies in the memory function matriM(q,&), which intro-  describes the four associated correlation functiopg Co;,

duces dissipation into the electron dynamics of the systeme, . andC., i.e., p-p, p-, j-p, andj-j.
In general, dissipation originates fromtrinsic as well as Since we deal with the homogeneous and isotropic case,
extrinsic scattering mechanisms. The former, caused bBEq. (71) decouples into two independent equations for the

electron-electron interaction along, are pre;ent even ina Pefongitudinal (L) and transverséT) components of the corre-
fectly “clean” system* In the previous section we discussed lation functions,

the treatment of intrinsic dissipation in the framework of
TCDFT. Now we describe how additional extrinsic dissipa- 1
tion (e.g., caused by scattering off disorder or charged impu- E [wb‘ik—QiLk(q)Jr MiLk(q,w)]ij(q,w)z —dij
rities) can be taken into account simultaneously. k=0
M has the formal structure of a correlation function be-

tween two project.ed forcesQA(q) and QA;(q). .ThAese [w—QL(q)JrML(q,w)]CL(q,wF -1 (76)
forces act perpendicular to the vector space of varigl#ds
thus providing a coupling to other degrees of freedom of théEquation (75), with i,j=0,1, represents a system of four
system(which effectively form a “thermal bath. Accord- ~ equations coupling the four possible longitudinal correlation
ingly, the frequency dynamics &fl;(q,£) is determined by  functions (@-p, p-j*, j“-p, andj‘-j}). Since there is no
QLQ, where those fluctuations of the Liouville operator arecoupling between density and transverse currents, there is
projected out that occur only within the space of variablesonly a single transverse correlation functign-j T, deter-
{A}, therefore describing the internal dynamics of themined by Eq.(76). Using the continuity equation,
“bath.”

The correlation function<;;(q,§) are determined by a Lp(q)=—q]j"(q), (77)
set of (N+1)? coupled equations, E¢71), whose solution o
will be discussed for an example in Sec. Ill C. The observawe convince ourselves that indegli,| A})=0. Furthermore,

ablesA; are not restricted to be scalars, but can also baince LA, is proportional toA}, the first component of the

v_ectors(or nth-rank tensors In general, all correlation func- “perpendicular” forceQ,&o is identically zero, so that

tionsCjj(k,w) as well ad);; andM; are tensors whose rank

equals the sum of the ranks Af andA, . Mbo(Q, @) =M§y(q,0)=M5(q,w)=0. (78)
Assuming that explicit solutions for th€;; have been

found, the final step is then to make contact with linear re- In the following, we will be concerned with the limit of

sponse theory, which involves Fourier transfortwsth fre-  weak disorder In this limit, it is a good approximation to

guencyw) rather than Laplace transformaith frequencyg) assume that alstatic correlation functions are not affected

of the associated response and correlation functions. Fortiy disorder. This means th&-("(q) contains effects of

nately, the relationship between Fourier and Laplace transSoulomb interaction only. Likewise, we assume

forms is a straightforward linear one, so that the response

functions x;;(q,w) can be simply obtained from x5 (0,.0=x°"9(q,0), (79

(79

where the superscriptc” denotes the “clean” response
Cij(g,@)=[xij(q,@) — xij(q,0) )/ . (72} function. In general, static disorder effectaainly changes
of the density of state at the Fermi surfacee weak, pro-
Here w are real frequencies, an@ij(q,0)=C;j(q,é=w vided (re¢) “1<1, wherer is a characteristic disorder scat-
+i0™). tering time for the system under study.
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In general, the memory functions contain both intrinsic We now make contact with the response functions as fol-
(Coulomb interactionand extrinsic(disordej contributions.  lows. For the case of density-density response, we have from
In the limit of weak disorder, one can separate them as folEq. (72),
lows:

1
MYED(q,0)=MED(q0)+ ML (qw).  (80) Cod( @) = —[ X500 @) ~ Xoo(4:0) )/ X5o(A.0),  (92)

We combine the intrinsic part with;,, thereby defining a \here the functionys,(g,0) in the denominator arises from
frequency-dependent, dissipative restoring force matrl)§he normalization of the variabléo, see Eq.(73). Similar

in,L(T) ; i ; ) ) AN
Q2 "’(q, ) that contains effects of Coulomb interactions expressions are obtained for the other longitudinal and trans-

only: verse correlation functions. We then find from Eg§7):

Q5 0(0,0) =05 () + M"(0,0) 818 (8D 1 1

w
One then obtains from Eq§75) and (76): L = Ly . Lc L
,® w+M , o+ M

) Xoo(Q, @) ( ) Xoo(d )

> {[o+M5(0,0)]18— Q" (q,0)}Cii(q,0) ME 1

&0 (93

+ L Lc '
(w+M%) x66(d,0)

Equation(93) is formally in agreement with Belitz and Das

T ainT T _ Sarma[Eq. (2.3 in Ref. 29. However, x55(q, ) here de-
[0+ Me(q,0) =011 (q0)]C1(qo)==1. (B oo theexact fully interacting longitudinal response func-
For notational brevity, we suppress thg,4&) dependence tion of the homogeneous electron gas, not just the RPA re-
and the subscript “ex” oM}, andM [, in the following. To  sponse function.

=~ 8jj+ 8ioMg(0,0)Ci(0,0), 1,j=0,1, (82

solve Egs(82) and(83), we introduce “clean” longitudinal From Eq.(93), one easily derives explicit expressions for
(transversgreference functioné:}-jc(”)(q,w), defined in the longitudinal density-current and current-current response
absence of dissipatiofi.e., Mt=0=M"), as follows: functions using
. g q q?
2 [0 05 (q.0)]Cf(,0)= =8, 1,j=01, X 0, 0) = X0l 0,0) = D X61(0,0) =5 Xin(0h ).
(84 (99
[o—0"T(q,0)]CI(q0)=—1. (85  Itis notdifficult to show that the results fario, x5, andxi

obtained in this fashion are consistent with E@S8)—(90).
The desired correlation functions are then expressed in terms |n the same way one finds the transverse current-current

of these reference functions. In the longitudinal case, we findesponse function from Eq91):

Cij(0,0)=Ci%(q,0+M") ~ Ci5(q, 0+ M") ] o o : MT
XMLCéj(q,w), ij=0.1, 86) x11(0, ) (w+MT)Xll(q’w+M )+(w+MT)Xll(q’0)'
or explicitly (95
Expressions that are formally similar to E483)—(95) were
L CES recently derived by Conti and Vignalein the framework of
Cool9, @)= 1+ micte’ (87 Mermin’s relaxation time approximatiol.In this formalism,
00 the role ofM(q,w) is taken by a frequency- and momentum-
Ccle independent phenomenological scattering rate Note that
Chy(q,w)= 10 ’ (88) the second term on the right-hand side of E&p) is absent
1+MLCES in Ref. 37, because there the diamagnetic susceptibility of
the electron gasXLC(q,O), was implicitly taken to be zero.
. Céf Finally, explicit expressions for the memory functions
Co(q, @)= T Mo’ (89  MY(qg,w) andMT(qg,») are obtained in the following way
00

from Eq. (70): first, we approximately write

Cii+CiiM‘ Co5— CigM “Cag
1+MLChs

where all “clean” functions carry the argumentsy,p  and similar forMT, i.e. we resort to the standard approxima-

+MU). For the transverse case, on the other hand, we simpltion of replacing the projected by the full Liouville operator

obtain by settingQ~1 in the denominator. We thus assume that the

T Te T huge amount of degrees of freedom in the thermal bath and
C11(9,0)=C11(q0+M"). (9D their extremely complex time evolution are completely

R 1 .
Ci(q0)= . (0 M (a,0) =(F-(a)] 7= IF-(a)), (96)
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dominating over the small subspace of observa@l@s&l E
and its relatively well-controlled time evolution.
In turn, the fluctuating longitudinal forces have the form

f A2 wd(2'~2) dy— Q) 2,2")

+Mi(q),2.2",0)]Cy(q),2".2",0) = = 5 8(z—2'),

- 1 < 9g-(k=q)] ~
Fra)= N 2 ————U@-kpk), (97 (102
whereq; is the in-plane wave vector. We again consider den-
and the transverse forces are sity fluctuations and current density as the only variables.

Just like in the homogeneous case, by virtue of the continuity
ax(gxk) equation, all elements of thex2 memory function matrix
FT(q)_ T E 9 SChy k)p(k) (98) M, are zero exceptl,;. As before, we can separate intrin-
sic and extrinsic contributions to the memory function in the
Here, U(q) is a random scattering potential. In the weak-weak-disorder limit,M;=M;,+ Mg, and we combine the
disorder limit, we can perform the following decoupling, up intrinsic part withQ;,, defining
to within corrections of higher than second order in the dis-

order potential: Na).2,2,0)=Qy(9),2.2") + Miy(0),2,2",©) 81 5y -
1 (103
(U(a=k)p(k)| z——[U(a—k")p(k") Equation(102) thus becomes
- 1
N<P(k)|ﬁ__w|p(k,)><u(q_k)U(q_k,»disorder- kZo f dZ"{[a)5(Z"—Z)+Me,&qH,Z,Z”,w)]ﬁik
(99 —Qk(0),2,2",0)}Cy(q),2",2' )
Since the system is homogeneous, we hlawek’, and we
arrive at the following expression for the longitudinal =—8;0(z—2')+ 5i0f dZ'Medq),2,2", @)
memory function:
XCii(qy,2",2",w), 1,j=0,1. 104
] B 1 2 y 2[q (q— k)]2 |](q\| o) J ( )
(G.w)= n< (U(a—k)) 92 Similar to Sec. Il C, we will solve this set of equations by
introducing suitable reference functions. However, the inho-
><C00(k w))( $(k,0). (100 mogeneity of the system prevents us from using the same

-l L . trick as for the homogeneous case, where we directly ex-
One thus needs to calculd#(q,») andCqgy(q, ) via self-  hrassed the correlation functions in the presence of disorder
consistent solution of Eq¢87) and(100). The so-determined i, terms of the “clean” correlation functions, with their fre-

Coo(q w) then serves as input for the transverse memonyuency argumend replaced bywﬂ\/'ex Now, by contrast,

function the memory functioM,(q),z,2',w) is no longer simply a
1 < K)2 number, but acts in conjunction with an integral operator, see
MT(qw)=7 3 (U(a-k z(q—)] Eq. (104. To deal with this difficulty, we first define a set of
(q,0)= (U(g—k)) : . ) , ;
n intermediate reference functlomﬁ(q” ,2,2',w) that satisfy
the following coupled equations:
X Clio(k, @) x55(K.0), (101 9 coupea e
which was obtained using the same decoupling approxima- J , v " _
tion that led to Eq(100) for M'(q, ). go dZ{[wd(z" = 2)+ Mex( ), 22", )] ik
i " R "o
IV. MEMORY FUNCTION FORMALISM AND TCDFT —Qi(9),2.2",0)}Cy(q),2",2', )
FOR INHOMOGENEOUS SYSTEMS =—6.8(z—2") i,j=0,1 (105
1 [l y gL

A. Formalism . .
In terms of these reference functions, the full correlation

We now generalize the memory function formalism to functions are given, combining Eq4.04) and(105), through
systems that are inhomogeneous in one spatial direction, btie following Dyson-type integral equation:
still homogeneous in the plane perpendicular to it. The ex-
ample we have in mind are quantum wells whose direction C;;(q ,z,z’,w)zcﬁ(qu 2,2 w)
of growth is thez axis. One can then in general no longer
deco_uple Iongltudlnal and_ transverse components of the_cor- _f dzlf dZZCiFE)(qH 2,21, 0)
relation functions. A special case where this is still possible
will be discussed in some detail later on. <M 20.2.0)Coi() 1 Zp, 2" )
The generalization of Eq(71) for this inhomogeneous edd):21,22,0)Coi(q) 22,2, @)
situation is (106
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We now use a similar trick to obtain the reference functionsAt this point, it is convenient to introduce the following set
CiR. Defining the “clean” response function via of auxiliary functions, which will allow us later to write the

2 fdz”{wé(z —2)6

—Q'k(q” z,2" w)}Ck] q.2".2",w)=—6;8(z—7'),

(107)
we get from Eqs(106) and (107):

Cﬁ(qH 2,2, 0)=C{i(q),2,2",0)
1
+k§0 dzlf dzCik(q),2,21,0)

X MEX(qH lZl!ZZIw)CE](q” 12212’1(1))-
(108

memory functionM, in @ more compact fornisee below

<1>(qu,2.2’,w)EJ dz'Coo(qy,2,2", @) x°(q,2",2',0),
(110

DR(qy,2,2',0)= j dz'Cgy(qy,2,2", @) x(q.2",2',0),
(111

®%(q,2,2' ,w)Ef dZ'Cgy(qy,2,2", @) x°(qy,2",2',0).
(112

Again it is assumed that all extrinsic damping effects can be
neglected for the static response function. In terms of these

The density-density reference correlation function is explicfunctions, Eq.(106) becomes foi=j=0

itly given by
Cou(a).2.2',0)=Ci(q).,2.2",®)

+f leJ dz,Co(q),2,21,0)

XMex(0) 121,22, @) Cif( ) 22,2, @)

+J dzlf dz,Cqy(q),2,2,0)

X Mex(qH 121122!w)CTO(qH 12212’1(1))-
(109

®(q),z2.2',0)=DR(q),2,2 ,0)

—f dzlf dzzf dz®%(q,2,21,0)

X[Xc(q” 12112210)]71M
X(I)(q” 12312,1(1))'

ex(qH ,22,23,(1))

(113

In the example to be discussed in Sec. V, only the agse
=0 will be of interest. Since in this case the continuity equa-
tion can be used to explicitly eliminate the current density in
favor of the density, Eq(109 can be written as

CDR(O,Z,Z’,w)=<1>°(0,z,z’,w)+j dzlf dZZJ dzz®°(0,2,21,0)[ x°(0,21,25,00] M 0,25,23,0)PR(0,23,2" , @)

J dzlf dzzf dzx%(0,2,2),0)— "

0
Med 021 22, wJ d2[ @DR(0Z,,2' ,0)— x(02,,2",0)].

Vn(z)n(zp) J-

(114

The desired density-density response functions are then fifo summarize: Eqs(109—(117) allow one to express the

nally obtained using

Xc(q” 1212,10)]/(01

(I)(QH 12!2,1w):[X(q|| ,Z,Z',w)—
(115

®R(qp,2.2,0)=[x(q),2,2",0) —x*(q},2.2 0] o,
(116

<I>°(q|| 2,2 ,w)=[XC(q“ ,2,2' ,w)—)(c(qu 2,2 ,0) ]/ w.
(117)

interacting density-density response function of the system in
the presence of intrinsicand extrinsic dissipation,
x(qj,z,2',0), in terms of the interacting response function
for the “clean” systemx°(qy,z,z, ), i.e., including intrin-

sic dissipation aloney® is calculated, in principle exactly,
using the framework of TCDFT outlined in Sec. II. Although
admittedly somewhat frightening in appearance, the integral
equationg(113) and (114) involve only one-dimensional in-
tegrals, and their numerical solution is therefore quite man-
ageable, as will be shown below.
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B. Memory functions for impurity and interface roughness
scattering

In general, a vector fielé/(r) is decomposed into longi-
tudinal and transverse components as follow:(r)
—(1A4m)V [d3c ' [V V() |r—=r'] and V()
=(U4m)VXV X A3 'V(r')/|r=r'|. In our case, ie.,
working in a mixed (| ,z) representation, it is convenient to
define the operatdd(q,z) as

q
D(qH ,Z)E(iV )

The longitudinal fluctuating forces are then given by

=L _ 1 ’
0.2 =D 2| |

x{D(qy.z")-[p(p}.2")

XD(py—q,z")U(q—p;,z")]1}
and the transverse fluctuating forces are

(118

dsz efq\\lzfz"
(2m)?

2q

(119

1
——=D(q;,2)XD(q;,2)

Vn(z)

e

XD(pj—q;,z")U(q—py,z")]. (120

One finds from Eqs119 and(120) that in thehomogeneous
limit (no z dependence of the density fluctuatigngnd the

Fl(q).2)=

d*p) e =7

2m? 29 Le(py.2")

PHYSICAL REVIEW B 65 245102

d2p|| <I)(p”,Z,Z’,w)
(2m)% n(z)n(z’)

><Vsz’<U(_p|| Z)U(— P ’Z,)> (123

ez

and

d2p|| CI)(p” 2,2 )
(2m)? Jn(z)n(z')
xpHU(—p;.2U(=p;.2"). (129

The next step consists in finding explicit forms for the
disorder-averaged random scattering poteritigb; ,z), as-
sociated with some extrinsic damping mechanism. In the fol-
lowing, we shall focus on two examples specific to quantum
wells: damping by charged impurities and by interface
roughness.

The potential associated with a single, statically screened,
positively charged impurity at position, is

Mlx(z,z’,w)zj

27 e Plz-zl
U(p,2)= _—
P25 hy
wheree(p)) is the 2D dielectric functioi® The longitudinal
memory function for charged-impurity scattering is thus

(125

d*py ®(p;,2.2 @)
e?(p) Vn(z)n(z')
X sgr(z—2)sgnz’ —z)e Pllz-Zg =Pz’ 2|

(126)

Mb(z,2',w)= dzn,(2)
J J

scattering potentidl), the longitudinal and transverse forces . ) .
only have in-plane components, given by the 2D versions ofVN€reni(z) is the number of impurities per volume.
Egs.(97) and (98). In the following, we shall limit the dis- _L|I_<eW|se, the Iong|tud!nal memory function associated
cussion of thénhomogeneousituation to a case of special With interface roughness is

interest, namelyg = 0. In that case, only thecomponent of

F- survives, and is given by d’p; ®(pj.z.2 )

ML<z,z',w>=f (U(pp?)
— " 2m? \n(2nz)
L oy [ ,
Fz(2)= 3 (ZW)ZP(DH'Z)VZU(—F’M 2). (121 XV, [8(z—2)8(z' —z))
The transverse force, in the same limit, acts inxhe plane +o(z=z)8(z' = z)], (127
only, whereU(p)) is the random roughness scattering potential,
5 assumed for simplicity to be the same at the left and right
ET(2)= 1 d°py S(p1.2)U(—pp.2). (122 interfaces,zy and z,. It is common to assume a Gaussian
I nz)) (2m)? PiPtRy P2 form for the autocorrelation function of the random interface

_ o _ roughnesé®*” which leads to
We note that, by symmetry, in the limg =0 there is a

natural decoupling of the formalism outlined abo(&ec.
IV A) into separate sets of equations of the typE3)—(117)
determining longitudinal and transverse response functiondjere, u is the height of the potential step at the interface,
respectively. In other words,-T cross correlations are ab- and the correlation length and average roughness height
sent since the associated fluctuating forces are perpendiculare controlled by material and growth conditions. In the pres-
to each other. The longitudinal and transverse memory funcence of both impurity and roughness scattering, the memory
tions are obtained in a quite straightforward manner fronfunctions M, and Mg are additive(i.e., different extrinsic
Egs. (119 and (120, using the same approximate decou-scattering mechanisms are assumed to be uncorrglated
pling procedure that was used for the homogeneous case in Some practical complications arise from the fact that the
Sec. Il C. The result is memory functions explicitly depend ch(q,z,z’,w) atall

(U(p)?)=mulA2yPe P! (128
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qj, not justq;=0. This means tha® should be calculated
self-consistently from Eqg113) for all q;, which is a very 15
demanding computational task. Therefore, as a first approxi-
mation, we ignore self-consistency and instead usentire
interacting ®4(qy,z,2’,w) in Egs.(126) and (127), defined

by replacingy and x. with xxs in Eq. (115. The wave-
vector dependence db is thus known analyticallysee the
explicit expression foiks below). This is expected to be a
reasonable approximation as long as plasmon damping is not
too strong.

10

W12 K

Plasmon Energy (meV)

0 0.5 1 1.5 2
V. LINEWIDTH OF INTERSUBBAND PLASMONS q (a,u,)

IN A QUANTUM WELL

FIG. 1. Dispersions of ISEcircles and 2D plasmor{squares
quencies()(q) in a clean quantum welko,; is the difference
between the two lowest bare subband levels. Inside the shaded re-
gions, the plasmons are subject to strong Landau damping and rap-

In semiconductor quantum wells, the conduction bandfre
splits up into several subbands, and electr@upplied, e.g.,
by remote doping can perform collective transitions be-
tween them. These so-called intersubbaf&B) plasmons iy die off (open symbols The experiment by Williamet al32
are currently of great experimental and theoretical intéfest, measures the ISB plasmon frequency and linewidty at0.
being the basis of a variety of new devices operating in the
terahertz regime, such as detectdrand quantum cascade noninteracting response function reads
lasers?® In designing these devices, the emphasis usually lies

in covering a particular frequency range. However, often it is Xks(0),2,2,)

desirable that the transitions also have a narrow linewidth, to Noce

achieve better frequency resolution and larger peak absorp- = > Fuld,0)¢, (e (2)e,(2)¢(2),
tion in detectors, and higher gain in lasers. The linewidth p=lv=l

arises from a complicated interplay of a variety of scattering (129

mechanisms, intrinsic (electron-electron and electron-

A . ) : where
phonon as well as extrinsic one@mpurity, alloy-disorder,

and interface roughnessMany aspects of this interplay are o ) " dzkH f(e,+ kf/z)
still not well understood, in particular the relative importance A, 0)=— f :
of the individual mechanisr?%. P : (2m)? LAk T8, (a) T otisg
To disentangle the various contributions to the ISB line- f(e +kﬁ/2)
width, it is helpful to consider a situation where some of + KTa ”( g ] (130
them are not effective. In a recent experiment, Williams KT 3= @17

et al? studied collective ISB transitions in antype 40-nm-  a,,(q)) = qﬁ/2+ €,— €,, fis the Fermi function aT =0, and

wide single GaAs/AJGa -As quantum well, with Si dop- 7 is a positive infinitesimale,, and ¢,(z) are the Kohn-
ing centers 100 nm away from the well. Sharp transitionsSham energies and wave functi@n LDA) of the quantum
were found well below the LO phonon frequency of GaAswell. For the experimental range &, the system under
(35.6 meV, at a temperature of 2.3 K. Thus, neither remotestudy has nine bound levels, only the lowest being occupied
impurity nor phonon scattering are playing any significant(Noe= 1) 2*
role (nor is alloy-disorder scattering, as shown in Ref).52  We consider perturbations of the foroy(z,w)=Eyz,
The linewidth is therefore expected to be dominated by bullcorresponding to monochromatic plane electromagnetic
impurity and interface roughness scattering, while electronievaves of amplitudés,, polarized along the axis, the direc-
many-body effects have traditionally been neglected. Howtion of growth of the quantum well. Having solved the re-
ever, for high-quality samples such as the one used in theponse equatiofil0), the photoabsorption cross section is
experiment discussed here, this is no longer justified. then obtained as(w)=—(87w/Eyc)Imfdz z n(z,w) and
In the experiment? two parameters were controlled inde- can be directly compared with data from photoabsorption
pendently: the electronic sheet dendity (from 0.05 to 1.3 measurementsr(w) has a peak at the plasmon frequetity
x 10" cm™2), and a static electric fiel& perpendicular to  with linewidth (half width at half maximumT .
the well, which pushes the electrons against one of its edges. In Fig. 1 we plot the dispersiorf3(q)) of the ISB and the
This provides an ideal tool to distinguish interface roughnesintrasubband(or 2D) plasmon in the clean quantum well
from other damping effects. (Ng=1.0x 10" cm?), calculated within ALDA, see Eq.
We describe ISB plasmons within a one-band effective{15). The imaginary part of the Kohn-Sham response func-
mass approximation with parabolic subbartisyhich is a  tion yys determines the regime of damping by single-particle
widely used and, for our purposes, sufficiently accurateexcitations(Landau damping as indicated by the shaded
method for GaAs/AJGa 7As quantum wells. The case of region in Fig. 1. Outside that region, in particular at small
the cleanquantum well was treated in detail in Ref. 24. The g, the plasmons are undamped in ALDA, for whitf is
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FIG. 2. ISB plasmon frequend®, atg=0, versus electric field FIG. 3. ISB plasmon linewidtl’, atq,=0, versus electric field
E. Top: experimental data from Ref. 23. Middle: calculated resultsE. Top: experimental data from Ref. 23. Middle: calculated results
for the clean quantum well, using TDHEg. (10)]. Bottom: bare including extrinsic(impurity and interface roughngsand intrinsic
LDA subband splitting. The individual curves are associated with(électron-electron interactiprdamping. BottomI'(E) for a clean
different electronic sheet densitied=0.05, 0.1, 0.2, 0.3, 0.5, 0.7, quantum well(intrinsic damping only. The individual curves cor-

1.0, and 1.X 10" cm 2). The lowerN,, the steepef)(E) around ~ respond to different electronic sheet densitisse Fig. 2 At E
E=0. =0, the lowestN causes the smallekt

frequency-independent and real. In reality, however, the abresults are clearly qualitatively wrong: there is no crossing of
sence of momentum conservation in theirection and cou- Q(E) for differentNg, in contradiction to experiment.
pling via Coulomb interaction opens the possibility of plas- Figure 3 shows the ISB plasmon linewidii{E), for dif-
mon decay into more complicated excitations, such agerentNg. For smallE, the experimental data again exhibit a
multiple electron-hole pairs, even gf=0. To take this ef- quadratic behavior, and(E) rises faster for smalle¥s. For
fect into account, we go beyond the ALDA and in the fol- large negativee, I' saturates around 0.7 meV. For positize
lowing include dynamical xc effects, see E¢8), (49). (i.e., pointing in the direction of sample growth" rises

In Fig. 2 we show the electric field dependence of the ISBsomewhat higher. The asymmetryIofE) is likely to be due
plasmon frequencieQ (q;=0) for different values oNg. In  to slightly different roughnesses of the interfaces.
the experimental data, built-in electric fields are subtracted, The calculated” for the clean quantum well(intrinsic
so thatQ)(E) exhibits a minimum forE=0 and rises qua- damping through electron-electron interaction gnkhown
dratically for small fields{)(E) increases most rapidly for in the bottom panel of Fig. 3, lies clearly below the experi-
the smallestNg, since higher electronic densities tend to mental values, which is hardly surprising. However, it can be
screen the external electric field more efficiently. At the sameseen that these purely electronic effects are far from negli-
time, the depolarization shift increases witly. As a conse- gible, at least folNg not too small, and provide an intrinsic
guence, the curves dR(E) for different Ng are crossing lower limit to the linewidth of order 0.1 to 0.2 meV fd\
each other. These features are very well reproduced by 10 cm 2.
theory. Ignoring xc effects in Eq10) (i.e., using RPA in- The middle part of Fig. 3 showB(E) calculated includ-
duces a 10% blueshift &®, which then compares less favor- ing electronic, impurity, and interface roughness damping,
ably with experiment. To demonstrate the importance of in-using the combined TCDFT and memory function formal-
cluding many-body effects in the response equation, we plasms outlined above, see Eq4.13—(117). The results are
the bare subband spacings in the bottom panel of Fig. 2. Thenow in very good agreement with experiment even away
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from flat band, as long &8 is not too large. We now briefly logical assumptions of varying degrees of refinement. This
discuss the details of how the various contributions to extrinpaper, by contrast, presents a new formalism that allows one
sic damping were modeled. to calculate excitation energies and their lifetimes entirely
The presence of bulk impurities in the quantum well isfrom first principles.
mainly caused by segregation of donors from the lower Qur approach begins with the basic notion that there are
o-doped layer and diffusion alorgyduring growth. We use  two classes of mechanisms that are responsible for dissipa-
the functional formn;(z)=1.33"7% "< 10" cm™3, pro-  tion of collective electronic dynamics. The first classiris
posed in Ref. 32 to explain in-plane mobility data, for therinsic scattering, which occurs even in a “perfect” material
bulk impurity concentration in Eq(126). We also include o geyice. Here we have in mind primarily systems where
scattering from the upped-doped layer(remote impurity  nhonon scattering is inactive, so the only source of intrinsic

i 1 —2
density 4.8¢10" cm %), . dissipation are electronic many-body effects such as multiple

tlnth;ef. b32|kthe |n-F;Iane ';?Ot.)'“ty évas fo?ndttqtt:e dom"tparticle—hole excitations. The second class of dissipation
Fhilte nei%/herubullrll]?ll:)rrl >r/efncgteeir;rr1]gﬁritiyesfocr(])rr1?rsi,l),ulte lﬁ;ﬁihoﬁomechanisms igxtrinsicin nature, such as scattering off im-
b purities and disorder.

the linewidth. The behavior of' is instead dominated by Our treatment of intrinsic scattering relies on TDFT for

interface roughness scattering and can in fact be quaIitative%e linear response. Fundamental existence theorems guaran
explained by it alone: Vial27), I' depends on the product of L . . . s
b y 127 b P tee that TDFT describes the linear dynamics of interacting

density fluctuations at the edges, which, for 0, have larg- X . : ) S
est amplitude for highesN,. For finite E, electrons get many-electron systems in principle exactly, including dissi-

pushed towards one edge, but less so for higher densities dfi@tion of collective degrees of freedom. In practice, however,
to screening of the external field:(E) thus rises more the success of a TDFT approach relies on the approximations
steeply for smalleN, and the curves cross. used f(_)r the linearized xc potential. The most widely used
We take a roughness scattering potential of the fornPproximation, the ALDA, has proved to be useful for cal-
(128). The height of the potential step for our quantum well culating accurate excitation energies, but it produces line-
is w=257.6 meV. The roughness parameters are chosen #4dths that are strictly zero. Thus, a nonadiabatic descrip-
n=64.4 A andA=4 A, to give the best fit to experiment tion, which includes retardation, is required. A nonadiabatic
for the largestN;. Both » and A are in the characteristic dynamical density-functional approach which is local in
range found by lattice imaging techniqu¥s. space but nonlocal in time has to be formulated replacing the
We also find that including electron-electron scatteringdensity with the current as basic variad[fECDFT). As a
does lead to a significant quantitative improvementlfoin result, the linearized xc potential in the TCDFT response
particular for smallE. equation in general acquires a frequency dependence and an
For|E|=1 mV/nm, the experimental linewidth saturates. imaginary part, leading to finite linewidths.
This saturation can be understood as a negative feedback To deal with extrinsic scattering, on the other hand, we
effect, related to the self-consistency of the memory funcmake use of a powerful formal technique, the so-called
tions (126) and (127). Roughly speaking, the plasmon line- memory function formalism. This approach can be traced
width comes from the imaginary part ", which in turn  back to the relaxation time approximation, but it replaces the
depends on the imaginary part®f. Broadening of the plas- simple phenomenological relaxation timavith the memory
mon resonance means thatdms peaked around) over  functionM(q,w), which is defined microscopically as a cor-
some frequency range of widih. But, due to the constraint relation function between fluctuating random forces. The
of the f-sum rule,increasingl” means that théeightof the  memory function formalism is developed in the language of
peak of ImP mustdecreaseThis, in turn, limits the growth  Kubo relaxation functions, which are, however, intimately
of the memory function and rapidly saturatésNeglect of  connected to thécurrenjdensity response functions.
the self-consistency of the memory function, as in our calcu- The final step then consists in uniting the memory func-
lations, thus means that this saturation effect cannot be fullfion formalism with linear response theory in TCDFT. We

captured, as can be seen from Fig. 3. thus arrive at a new, self-consistent theory that expresses the
response function of an interacting system in the presence of
VI. CONCLUSION bothintrinsic and extrinsic damping in terms of the “clean

interacting response functiomwvhich contains only intrinsic

In this paper, we have dealt with a long-standing problendamping and the memory functiotwhich accounts only for
in the many-body theory of extended systems: the calculaextrinsic damping
tion of collective electronic excitations and their associated We finally applied the theory to describing ISB plasmons
linewidths in systems that are both inhomogeneous anth a wide GaAs/A}Ga -As quantum well. Using reason-
weakly disordered, in the sense that the random potential cagible values for the roughness parameters, we obtained quan-
be treated as a perturbation. In any real extended systertitative agreement with the experimentally measured line-
collective excitations are subject to dissipation, causing thevidth. But we also found that purely electronic damping due
associated coherent, plasmon-like motion to decay into manto dynamical exchange and correlation makes non-negligible
individual, incoherent degrees of freedom associated witltontributions to the linewidth, especially for high electronic
single-particle excitations. It has been common practice irdensities, where the effect can be as high as a few tens of
the literature to describe these processes with phenomenpercents.
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A further remarkable outcome of this study is the physicaldicular to the quantum well in the former case, and parallel
insight that the ISB plasmon linewidth is primarily con- to it in the latter.
trolled by interfacial roughness, and only weakly affected by
the poncentratlon' pf bulk' |mpur|t|¢s. The opposite is true for ACKNOWLEDGMENTS
the in-plane mobility, which is primarily controlled by bulk
impurities3? Thus, the correlation between ISB plasmon This work was supported by NSF grants No. DMR-
linewidth and in-plane mobility is rather weak, which is 9706788 and DMR-0074959. We acknowledge useful dis-
physically understandable since currents are flowing perpereussions with Zhixin Qian, Jon Williams, and Mark Sherwin.

1E. Runge and E.K.U. Gross, Phys. Rev. L&&, 997 (1984). 20t js often stated, not quite accurately, that the Gross-Kohn ap-
2E.K.U. Gross and W. Kohn, Phys. Rev. Léib, 2850(1985. proximation reduces to the ALDA in the=0 limit. In fact,
3E.K.U. Gross and W. Kohn, Adv. Quantum Cher®l, 255 it turns out that lim_of"(k=00)#lim of"(k,w=0)
(1990. =d?e,(n)/dn?, as pointed out in Ref. 37. The Gross-Kohn in-
4E. K. U. Gross, J. F. Dobson, and M. PetersilkaDiensity Func- terpolation formula forf,(k=0,0) does, however, reduce to the
tional Theory I} edited by R.F. Nalewajski, Vol. 181 of Topics ALDA for »—0.
in Current Chemistry(Springer, Berlin, 1996 p. 81. lw. Kohn, Phys. Rev123 1242(1961); L. Brey, N.F. Johnson,
SM. Petersilka, U.J. Gossmann, and E.K.U. Gross, Phys. Rev. Lett. and B.l. Halperin, Phys. Rev. BO, 10 647(1989; L. Brey, J.
76, 1212(1996. Dempsey, N.F. Johnson, and B.l. Halperibjd. 42, 1240
R. van Leeuwen, Int. J. Mod. Phys. B5, 1969(2001). (1990; S.K. Yip, ibid. 43, 1707(1991).

7In a more general form, TDFT deals with many-body systems”-J.F. Dobson, Phys. Rev. Left3, 2244 (1994.
evolving under the influence of time-dependent potentials>G. Vignale and W. Kohn, Phys. Rev. Le®t7, 2037(1996.
v4(r,t) of arbitrary strengtiisee Refs. 1, 3, 4 and.6 24C.A. Ullrich and G. Vignale, Phys. Rev. B8, 15 756(1998.
8Strictly speaking, the Runge-Gross proof does not apply to adia>>G. Vignale, C.A. Ullrich, and S. Conti, Phys. Rev. Lét8, 4878
batically switched-on periodic potentials such as the ones em- (1997.
ployed in linear response theory. There are known exariples 2The factore/c that usually multiplies the interactidi, has been
two different periodic potentials producing the same linear re- absorbed in the vector potential.
sponse in a finite system. However, such pathologies are ext'The generalized Runge-Grod®RG) theorem concerning the
pected to disappettin extended systems, such as the ones con-  uniqueness o&,. is in fact more easily proved than the original

sidered in this paper. RG theorent, see S.K. Ghosh and A.K. Dhara, Phys. Re®&
9E.K.U. Gross, D. Mearns, and L.N. Oliveira, Phys. Rev. Létf. 1149(1988.

1518(1988. 28D, Forster,Hydrodynamic Fluctuations, Broken Symmetry, and
10T K. Ng and K.S. Singwi, Phys. Rev. Lei9, 2627(1987; T.K. Correlation FunctiongBenjamin, Reading, 1975

Ng, Phys. Rev. B10, 8061(1989. 29D, Belitz and S. Das Sarma, Phys. Rev3B 8264(1986.

“\we take the point of view that thetatic xc potential can be °N.D. Mermin, Phys. Rev. B, 2362(1970.
adequately treated in one of the existing approximations, e.g3'C.A. Ullrich and G. Vignale, Phys. Rev. Le&7, 037402(2001).
the static LDA. The Kohn-Sham response function can then bé2J.B. Williams, M.S. Sherwin, K.D. Maranowski, and A.C. Gos-
constructed in the standard way from the eigenfunctions and sard, Phys. Rev. Let87, 037401(2001).

eigenvalues of the static Kohn-Sham problem. 33D. Pines and P. Nozies, The Theory of Quantum Liquid8en-
2p, Zangwill and P. Soven, Phys. Rev. Letb, 204(1980; Phys. jamin, New York, 1966.

Rev. B24, 4121(198)). %A.J. Glick and W.F. Long, Phys. Rev. & 3455(1971.
135 H. Vosko, L. Wilk, and M. Nusair, Can. J. Phy38, 1200  3°A. Holas and K.S. Singwi, Phys. Rev. 40, 158(1989.

(1980. 36R. Nifosi, S. Conti, and M.P. Tosi, Phys. Rev. B8, 12 758
1. Vasiliev, S. Ogut, and J.R. Chelikowsky, Phys. Rev. L88, (1998.

1919(1999. 873, Conti and G. Vignale, Phys. Rev.@®), 7966 (1999.
15C.A. Ullrich, U.J. Gossmann, and E.K.U. Gross, Phys. Rev. Lett3¥Z. Qian and G. Vignaléunpublishedl

74, 872(1995. 39N. Iwamoto and E.K.U. Gross, Phys. Rev.35, 3003(1987.
165.J.A. van Gisbergen, C.F. Guerra, and E.J. Baerends, J. CompdfL. D. Landau and E. LifshitzMechanics of Fluids2nd ed.,

Chem.21, 1511(2000. Course of Theoretical Physi¢Bergamon Press, Oxford, 1987

7S J.A. van Gisbergen, P.R.T. Schipper, O.V. Gritsenko, E.J. Bae#!J.F. Dobson, M.J. Buner, and E.K.U. Gross, Phys. Rev. L&®,
ends, J.G. Snijders, B. Champagne, and B. Kirtman, Phys. Rev. 1905(1997.
Lett. 83, 694 (1999. 42|_P. Kadanoff and P.C. Martin, Ann. Phy@\.Y.) 24, 419(1963.
185.J.A. van Gisbergen, F. Kootstra, P.R.T. Schipper, O.V. Grit-**F. Yoshida and S. Takeno, Phys. R&{#3 301(1989.
senko, J.G. Snijders, and E.J. Baerends, Phys. R&7, 8556  **W. Gaize, Philos. Mag. B3, 219(1981); A. Gold and W. Gze,

(1998. Phys. Rev. B33, 2495(1986.
193.F. Dobson, G.H. Harris, and A.J. O'Connor, J. Phys.: Condens™®The exception are harmonically confined systems, for which the
Matter 2, 6461 (1990. generalized Kohn's theoreéth?? applies. These systems sustain

245102-18



TIME-DEPENDENT CURRENT-DENSITY-FUNCTIONA . .. PHYSICAL REVIEW B 65 245102

collective excitations that are unaffected by intrinsic damping. A.Y. Cho, Science264, 553(1994).
46T, Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phy#l, 437 5IM. Helm, in Intersubband Transitions in Quantum Well$Ref.

(1982. 48), Vol. 62, p. 1.
47G. Fishman and D. Calecki, Phys. Rev. L&2, 1302(1989. 52K L. Campman, H. Schmidt, A. Imamoglu, and A.C. Gossard,
“8ntersubband Transitions in Quantum Wells | andedited by H. Appl. Phys. Lett.89, 2554(1996.
C. Liu and F. Capasso, Semicond. Seming&.and 66 (Aca- Sk, T, vasko and A. V. KuznetsoElectronic States and Optical
demic Press, San. Qlego, 2000 ) _ Transitions in Semiconductor Heterostructur@pringer, New
49C.L. Cates, G. Bricém M.S. Sherwin, K.D. Maranowski, K. York, 1999.
Campman, and A.C. Gossard, PhysicaAinsterdam 2, 463 545 oyrmazd, D.W. Taylor, and J. Cunningham, Phys. Rev. Lett.
(1998. 62, 933(1989.

503, Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and

245102-19



