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Time-dependent density-functional theory~TDFT! provides a way of calculating, in principle exactly, the
linear response of interacting many-electron systems, and thus allows one to obtain their excitation energies.
For extended systems, there exist excitations of a collective nature, such as bulk and surface plasmons in
metals or intersubband plasmons in doped semiconductor quantum wells. This paper develops a quantitatively
accurate first-principles description for the frequency and the linewidth of such excitations in inhomogeneous
weakly disordered systems. A finite linewidth in general has intrinsic and extrinsic sources. At low tempera-
tures and outside the region where electron-phonon interaction occurs, the only intrinsic damping mechanism
is provided by electron-electron interaction. This kind of intrinsic damping can be described within TDFT, but
one needs to go beyond the adiabatic approximation and include retardation effects. It has been shown@G.
Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Lett.79, 4878~1997!# that a density-functional response theory
that is local in space but nonlocal in time has to be constructed in terms of the currents, rather than the density.
This theory will be reviewed in the first part of this paper. For quantitatively accurate linewidths, extrinsic
dissipation mechanisms, such as impurities or disorder, have to be included in the response theory. In the
second part of this paper, we discuss how extrinsic dissipation can be described within the so-called memory-
function formalism. This formalism will first be introduced and reviewed for homogeneous systems. We will
then present a synthesis of TDFT with the memory function formalism for inhomogeneous systems, which
allows one to simultaneously account for intrinsic and extrinsic damping of collective excitations. As an
example where both sources of dissipation are important and where high-quality experimental data are avail-
able for comparison, we discuss intersubband plasmons in a 40-nm-wide GaAs/Al0.3Ga0.7As quantum well.
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I. INTRODUCTION

The calculation of excitation energies and linewidths
collective excitations in extended electronic systems is
of the outstanding problems in many-body theory. Tim
dependent density-functional theory~TDFT!1–6 offers a pow-
erful and elegant approach to this difficult problem. To
the stage for the developments that are to follow, we s
begin this paper with a summary of some of the key eleme
of TDFT. Let

Ĥ05(
i

H pi
2

2m
1v0~r i !J 1

1

2 (
iÞ j

U~ ur i2r j u! ~1!

be the Hamiltonian of a many-electron system, wherer i and
pi are the canonical coordinates and momenta of thei th elec-
tron, m is its mass,v0(r ) is a static external potential, whic
includes contributions from randomly distributed impuriti
and other sources of disorder, andU(ur i2r j u) is the Cou-
lomb interaction potential. To calculate the excitati
energies,2,5 one adds to Ĥ0 a small time-dependen
perturbation7 of the form

Ĥ1~ t !5E d3rv1~r ,t !n̂~r !, ~2!
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where v1(r ,t)5v1(r ,v)e2 ivt1c.c. is a periodic potentia
(v1!v0) that couples linearly to the density operatorn̂(r )
5( id(r2r i). One then computes the time-dependent d
sity of the system, which, in the linear approximation, will b
given by

n~r ,t !5n0~r !1n1~r ,v!e2 ivt1c.c., ~3!

wheren0(r ) is the ground-state density, andn1(r ,v) is lin-
early related tov1(r ,v) via

n1~r ,v!5E d3rx~r ,r 8,v!v1~r 8,v!. ~4!

Thedensity-density response functionx(r ,r 8,v) contains the
essential information about those excited states of the sys
that are coupled to the ground state by the perturba
Ĥ1(t). More specifically, in a finite system~atom or mol-
ecule! this response function has a discrete set of poles
the real frequency axis, corresponding to the discrete exc
tion energies of the system. In an extended system, the p
merge into a continuous branch cut along the real axis. H
ever, isolated poles can arise in the lower half of the comp
frequency plane: they correspond to collective excitations
the system, where the imaginary part of the frequency
fines the characteristic lifetime of the excitation.
©2002 The American Physical Society02-1
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C. A. ULLRICH AND G. VIGNALE PHYSICAL REVIEW B 65 245102
The basic TDFT strategy for calculatingx(r ,r 8,v) is to
construct anoninteractingsystem that has the same groun
state densityn0(r ), and yields the same density respon
n1(r ,v) as the interacting system under study. The dynam
of this noninteracting system is controlled by an effect
single-particle potential that is written as the sum of the to
external potentialv0(r )1v1(r ,t) plus the Hartree potential

vH~r ,t !5e2E d3r 8
n~r 8,t !

ur2r 8u
~5!

plus a remainder, which is known as the ‘‘exchang
correlation’’ ~xc! potentialvxc(r ,t). It is not at all obvious
that such a potentialvxc can be constructed, but, if it can
then Runge and Gross1 showed that it is aunique functional
of the time-dependent density up to within an additive fun
tion of time. The form of the xc potential depends, in ge
eral, on the initial state of the system, but this depende
disappears if one assumes, as we do here, that the syst
initially in its ground state.8 The effective noninteracting
Hamiltonian ~also known as the Kohn-Sham Hamiltonia!
that yields the exact density is then given by

ĤKS~ t !5(
i

H pi
2

2m
1v0~r i !1vH,0~r i !1vxc,0~r i !J

1E d3r @v1~r ,t !1vH,1~r ,t !1vxc,1~r ,t !#n̂~r !,

~6!

where both the Hartree and the xc potentials have been w
ten as the sum of static partsvH,0,vxc,0 associated with the
ground-state density, and~small! time-dependent part
vH,1,vxc,1 associated with the time-dependent density. T
static part of the Kohn-Sham Hamiltonian@first line of Eq.
~6!# yields the exact ground-state density in the interact
system, while the time-dependent part@second line of Eq.
~6!# yields the exact density response.

In the linear response regime the xc potential can be w
ten as

vxc~r ,t !5vxc,0~r !1E
2`

t

dt8E d3r 8 f xc~r ,r 8,t2t8!n1~r 8,t8!,

~7!

wherevxc,0(r ) depends only on the ground-state density, a
f xc(r ,r 8,t2t8) is the retarded xc kernel, formally defined

f xc~r ,r 8,t2t8!5
dvxc@n#~r ,t !

dn~r 8,t8!
U

n0(r )

. ~8!

Fourier transformation of bothvxc and f xc with respect to
time leads to the simpler relation

vxc,1~r ,v!5E d3r 8 f xc~r ,r 8,v!n1~r 8,v!. ~9!

We denote byxKS(r ,r 8,v) the density-density respons
function of thestaticKohn-Sham system@the first line of Eq.
~6!#. The second line of the same equation can then be
24510
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garded as a time-dependent perturbation to the first.
time-dependent density response is therefore given by

n1~r ,v!5E d3r 8xKS~r ,r 8,v!H v1~r 8,v!

1E d3r 9F e2

ur 82r 9u
1 f xc~r 8,r 9,v!Gn1~r 9,v!J ,

~10!

where the second and the third terms in the curly brack
arise fromvH,1 and vxc,1, respectively. Comparing Eqs.~4!
and ~10! we obtain the following integral relation betwee
the exact density-density response functionx(r ,r 8,v) and
the noninteracting response functionxKS(r ,r 8,v):

x~r ,r 8,v!5xKS~r ,r 8,v!1E d3xxKS~r ,x,v!

3E d3yF e2

ux2yu
1 f xc~x,y,v!Gx~y,r 8,v!.

~11!

This can also be written as

x21~r ,r 8,v!5xKS
21~r ,r 8,v!2

e2

ur2r 8u
2 f xc~r ,r 8,v!,

~12!

wherex21 is the matrix inverse ofx.
The excitation energies are finally obtained from the po

of the linear response function, i.e., from the solution of t
eigenvalue problem

E d3r 8x21~r ,r 8,v!J~r 8,v!50, ~13!

whereJ(r ,v) is the function that describes the spatial d
pendence of the density in the excited state.

Equation~11! is the main formal result in the TDFT ap
proach to the calculation of excitation energies. From a f
damental point of view, calculatingf xc is of course no easie
than calculatingx. The main advantage of recasting line
response theory within TDFT is of a more practical natu
as long as the exact excitations of the interacting system
in qualitative correspondence to those of the Kohn-Sh
system~a kind of ‘‘Fermi liquid’’ assumption!, the xc kernel
in Eq. ~11! is expected to be a small correction, which can
approximated with relative impunity.11 The simplest approxi-
mation is to ignore both nonlocality in space and retardat
in time. This leads to the widely usedadiabatic local-density
approximation12 ~ALDA ! in which one poses

vxc~r ,t !5
dexc~n!

dn U
n5n(r ,t)

, ~14!

whereexc(n) is the xc energy density13 of the homogeneous
electron gas of densityn. The right-hand side of Eq.~14! is
nothing but the local-density approximation~LDA ! for the
ground-statexc potential evaluated at the time-depende
density. In terms of the xc kernel, this approximation impli
2-2



.
e
en
f
th
ita
en
th
ed

-

a
b
r

d
y
or
at
s
n
fa
la
s

ng

n

b
in

s

x-

t

su
te
th
xis

on
c

-

e

the

e

rgies

nt

e

en-

see
en-
be

s-

s,
dy

is
the

t is

de-

ere

TIME-DEPENDENT CURRENT-DENSITY-FUNCTIONAL . . . PHYSICAL REVIEW B 65 245102
f xc~r ,r 8,v!5d~r2r 8!
d2exc~n!

dn2 U
n5n0(r )

, ~15!

which is a purely real and frequency-independent object
The ALDA is a remarkably successful approximation, d

spite the fact that it entirely neglects the frequency dep
dence of the xc kernel, that is, theretardeddependence o
the xc potential on the density at earlier times. In atoms
ALDA has yielded reasonably accurate values of the exc
tion energies.5,14 Most of the residual inaccuracy has be
traced to the fact that the ground-state xc potential in
LDA fails at large distance from the nucleus. An optimiz
effective potential approach,15 similar in spirit to Eq.~14!
~i.e., still without retardation!, yields a dramatic improve
ment in accuracy.4 Applications to more complex
systems16–18 ~molecules, polymers! have met with similar
degrees of success. The essential reason seems to be th
frequency dependence of the xc kernel is rather weak,
cause it is controlled by multielectron excitations, which a
either very high in energy~atoms and molecules!, or
smoothly distributed through a spectral range~extended sys-
tems!.

There are, however, some important features of the
namical response that cannot be accounted for in any wa
an instantaneous xc potential. Quite generally, the need f
dynamical theory off xc arises in the study of excitations th
do not have an analog in the Kohn-Sham system. Perhap
clearest example of this is provided by collective excitatio
in extended electronic systems, such as bulk and sur
plasmons in metals or intersubband and intrasubband p
mons in doped semiconductor quantum wells. In this ca
the ALDA would predict resonance peaks of vanishi
width, in glaring contradiction to experiment.

Attempts to go beyond the ALDA to include retardatio
date back to the mid-eighties. In 1985 Gross and Kohn2 pro-
posed a dynamical local-density approximation forf xc ,
which was designed to preserve the local relationship
tween vxc,1 and the density, while including retardation
time. Their approximation reads

f xc~r ,r 8,v!5 f xc
h ~k50,v!d~r2r 8!, ~16!

where f xc
h (k,v) is the xc kernel of the uniform electron ga

calculated at the local ground-state densityn0(r ) ~more
aboutf xc

h will be said in the next sections!. Becausef xc(v) is
complex, this approximation yields a finite linewidth for e
citations that would have zero linewidth in the ALDA.19,20

Unfortunately, the Gross-Kohn approximation~16! suffers
from several inconsistencies, such as the failure to satisfy
generalized Kohn’s theorem21 and related sum rules.22,23As a
consequence, it was found24 that within this approximation,
intersubband plasmons in quantum wells may become
stantially overdamped. These deficiencies were ultima
traced back to the fact that a local approximation for
dynamical xc potential in terms of the density does not e
~except atv50, in which case it is the static LDA!. The
reason for this startling result is that the xc kernel of a n
homogeneous system is a function of infinite range in spa
or, more precisely, the spatial Fourier transformf xc(k,k8,v)
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diverges whenk→0 at constantk8 or vice versa.~In the
homogeneous case one hask5k8 and the singularity disap
pears!.

Vignale and Kohn23 ~VK ! and Vignale, Ullrich, and
Conti25 ~VUC! showed that the nonlocality problem could b
circumvented by working with thecurrent densityrather than
the density as a basic variable. The idea is to perturb
system~1! with a time-dependentvector potentiala1(r ,t)
5a1(r ,v)e2 ivt1c.c. rather than with a scalar potential. Th
perturbing Hamiltonian has the form

Ĥ1~ t !5E d3ra1~r ,t !• ĵ p~r !, ~17!

where ĵ p(r )5(1/2m)( i@ p̂id(r2r i)1d(r2r i)p̂i # is the
paramagneticcurrent density operator.26 One then calculates
the current response, and determines the excitation ene
from the poles of thecurrent-current response function.

The Kohn-Sham Hamiltonian in this time-depende
current-density-functional theory~TCDFT! contains an xc
vector potentialaxc,1(r ,t), which is a ~linear! functional of
the full current density responsej1(r ,t)5 j p1(r ,t)
1n0(r )a1(r ,t)/m:

axc,1,a~r ,v!5(
b

E d3r 8 f xc,ab~r ,r 8,v! j 1,b~r 8,v!,

~18!

where f xc,ab(r ,r 8,v) is the tensorial generalization of th
usual xc kernel~here and in the following,a,b denote Car-
tesian components!. The static part of the Kohn-Sham
Hamiltonian remains unchanged, and the ground-state d
sity is still determined by the static xc fieldvxc,0.

It turns out that the xc vector potentialdoesadmit a local
approximation in terms of the current density: as we shall
in the next section, the form of this approximation is ess
tially determined by symmetry considerations and can
expressed in terms of an xc stress tensor.25 The resulting
expression foraxc,1 is local in space, retarded in time, sati
fies the generalized Kohn’s theorem,21,22 and allows a con-
sistent calculation of the linewidth of elementary excitation
at least the part of it that arises from intrinsic many-bo
effects. The fundamental reason why all this is possible
that the relationship between the longitudinal current and
density is nonlocal. From the continuity equation

]n1~r ,t !

]t
52“• j1~r ,t ! ~19!

one sees that the longitudinal component of the curren
given by

j 1,L~r ,t !5
1

4pE d3r 8
n1~r 8,t !

ur2r 8u
, ~20!

while the transverse component of the current remains un
termined. Thus, a local functional ofj 1,L will necessarily be
a nonlocal functional of the density. What is remarkable h
is that the nonlocality ofvxc,1 as a functional of the density
2-3
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C. A. ULLRICH AND G. VIGNALE PHYSICAL REVIEW B 65 245102
can be completely eliminated by ‘‘upgrading’’ TDFT to
description in terms ofaxc,1 andj1. This is the essence of th
VK and VUC theories.

Since any scalar potential can be represented by
equivalent vector potential, and since the density is ea
calculated from the current@see Eq.~19!#, we see that the
ordinary TDFT is a special case of the TCDFT formulation27

An additional advantage of this formulation is that it allow
one to treat the more general problem of the response o
electronic system to an electromagnetic field having b
longitudinal and transverse components, whereas the orig
Runge-Gross formulation is limited to longitudinal field
i.e., fields that can be expressed as the gradient of a s
potential.

Although the VK and VUC formulations are importan
steps enabling the calculation of the linewidth of element
excitations in extended systems, they are still not suffici
to achieve quantitative accuracy in cases of practical inter
For example, the calculation of the linewidth of the intersu
band plasmon in a 40-nm GaAs/Al0.3Ga0.7As quantum well
reported in Ref. 24, based on VUC formalism, yielded
linewidth about five times smaller than the experimen
value. The reason for this disappointing result is that
theory, as it stands, does not take into account other intri
and extrinsic sources of damping, such as electron-pho
interactions, electron-impurity scattering, and, in the case
quantum wells, interfacial roughness. All these interactio
contribute to the linewidth and must be included in any c
culation that aspires to achieve quantitative accuracy.

In this paper we take a first step in this direction by sho
ing how two of the most prominent contributions to the lo
temperature linewidth of plasmons in quantum we
namely, electron-impurity scattering and interfacial roug
ness, can be built into the current-density-functional form
ism.

Our approach is based on the ‘‘marriage’’ of the TCDF
formalism with the memory function formalism describe
for example, by Forster.28 In the homogeneous electron g
limit this approach reduces to the Belitz–Das Sarma29 treat-
ment of the effect of impurities on bulk plasmons, which,
turn, can be viewed as the high-frequency extension of
Mermin relaxation-time approximation30 for the density-
density response function of an electron gas in the prese
of randomly distributed impurities. Of course, our intere
lies in strongly inhomogeneous systems, such as quan
wells,31,32 which exhibit the intersubbandplasmon reso-
nance. Such resonances are of practical interest in conne
with the design of infrared detector devices.

Our strategy is to derive an integral equation which
lates the current response function of the disordered inter
ing many-electron system to that of the same system in
absence of disorder: the latter is calculated by the stan
TCDFT outlined above. We shall show that this approa
~despite some inevitable approximations in the treatmen
disorder! meets with considerable success: the linewidth
the intersubband plasmon is considerably enhanced
disorder—in particular, by interfacial roughness—and agr
quantitatively with the measured one. More importantly,
24510
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qualitative behavior of the linewidth as a function of an e
ternal electric field that controls the shape of the quant
well is correctly reproduced.

The remainder of this paper is organized as follows:
Sec. II we review the main aspects of the TCDFT formalis
for the linear response of many-electron systems. In Sec
we review the memory function formalism and demonstr
its application to the case of a homogeneous electron
with randomly distributed impurities. These sections a
meant to make the paper self-contained and to provide
necessary background for the following more technical pa
In Sec. IV we combine the memory function formalism wi
TCDFT for inhomogeneous systems and derive the key in
gral equations for the current-current response functions.
nally, in Sec. V we demonstrate the power of the method
calculating the linewidth of the intersubband plasmon in
quantum well and comparing to recent experimental resu
and in Sec. VI we give our conclusions.

II. TCDFT BEYOND THE ADIABATIC LDA

A. Exchange-correlation kernels in the homogeneous
electron gas

For orientation, let us first consider the xc kernels o
homogeneouselectron gas. Because of translational inva
ance, it is convenient to work with the Fourier transfor
j (k,v) of the current density. The linear response of th
quantity to a vector potentiala1(k,v) can be written as

j 1,a~k,v!5(
b

xab~k,v!a1,b~k,v!, ~21!

wherexab(k,v) is the current-current response tensor. D
to rotational invariance, the responses of the longitudi
~parallel to k) and transverse~perpendicular tok) compo-
nents of the current are completely independent, and one
write

j 1,L(T)~k,v!5xL(T)~k,v!a1,L(T)~k,v!, ~22!

whereL(T) denotes the longitudinal~transverse! component,
and xL(T)(k,v) is the longitudinal ~transverse! response
function. According to the general linear respon
formalism,33 xL(T) is given by

xL(T)~k,v!5
n

m
1(

l
u^ l u ĵ p,L(T)~k!u0&u2

3H 1

v2v l01 ih
2

1

v1v l01 ihJ , ~23!

whereu0& is the ground state,u l & is the l th excited state, and
v l0 is the excitation energyEl2E0. The Fourier transform of
the paramagnetic current operatorĵ p(k) is given by

ĵ p~k!5
1

2m (
i

@ p̂ie
2 ik•r i1e2 ik•r ip̂i #. ~24!

Note that the total current response is the sum of the ‘‘Lo
don current’’na1 /m and the paramagnetic current@the ex-
2-4
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pectation value of Eq.~24!#. A key feature of Eq.~23! is that
in the limit of k→0 and finitev it approaches the form

xL~k,v!→ n

me~v!
1aL~v!k2,

~25!

xT~k,v!→ n

m
1aT~v!k2,

where aL(T)(v) are functions of frequency only,e(v)51
2 limk→0nv(k)k2/mv2 is the homogeneous dielectric fun
tion, andv(k) is the Fourier transform of the Coulomb in
teraction. Notice that the difference between the longitudi
and transverse results atk50 is due to the long range of th
Coulomb interaction: the difference vanishes ifv(k) di-
verges more slowly than 1/k2.

Translational invariance is the essential reason for
small-k behavior of thex ’s. In the k→0 limit the current
operator reduces to the total momentum operator plus a
rection that vanishes linearly withk. Thus the first term on
the right-hand side of Eqs.~25! is the response of the cente
of-mass momentum, which obeys a simple equation of m
tion under the action of the external force, while the seco
term, of orderk2, comes from the residual part of the oper
tor, which is linear ink. There are no cross terms, since t
dynamics of the center of mass is decoupled from that of
internal degrees of freedom.

Let us now turn to the xc potentials. The idea is to expr
the exact current response~22! as the response of a nonin
teracting electron gas to an effective vector potential, writ
as

aeff,1~k,v!5a1~k,v!1aH,1~k,v!1axc,1~k,v!. ~26!

The Hartree componentaH,1 is purely longitudinal~since it is
just another way of describing the scalar Hartree poten!
and is given by

aH,1~k,v!5
k2

v2
v~k! j 1,L~k,v!k̂, ~27!

wherek̂5k/k. The xc potential can be decomposed into
longitudinal and transverse components~with respect to the
direction ofk) as follows:

axc,1~k,v!5
k2

v2
@ f xc,L

h ~k,v! j 1,L~k,v!k̂

1 f xc,T
h ~k,v!j1,T~k,v!#. ~28!

The factork2/v2 has been introduced, in analogy to Eq.~27!,
so that the longitudinal component of the xc vector poten
is equivalent to the scalar xc potential

vxc,1~k,v!5
vaxc,1,L

k
5 f xc,L

h ~k,v!n1~k,v! ~29!

( j L5n1v/k), thus making f xc,L
h (k,v) identical with the

usual f xc
h (k,v) of the ordinary TDFT.2
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In analogy to Eq.~12!, the relationship between the inte
acting current-current response function and its noninter
ing counterpartxKS takes the form

xL(T)
21 ~k,v!5xKS,L(T)

21 ~k,v!2
k2

v2 @vL(T)~k!1 f xc,L(T)
h ~k,v!#,

~30!

where we have definedvL(k)5v(k) andvT(k)50.
Notice that, according to Eqs.~25!, xL

21(k,v) and
xKS,L

21 (k,v)2k2vL(k)/v2 have the same limitme(v)/n
1O(k2) for k→0 and finite v. Similarly, xT

21(k,v) and
xKS,T

21 (k,v)2k2vT(k)/v2 have the same limitm/n1O(k2).
Thus, we see that Eq.~30! is consistent with the limiting
forms ~25! if and only if the k→0 limits of the xc kernels
f xc,L(T)

h are finite functions of frequency,

lim
k→0

f xc,L(T)
h ~k,v![ f xc,L(T)

h ~v!. ~31!

Because of the central role these functions play in the de
opments to follow, we now describe their properties in det

B. Properties of the homogeneous xc kernels

The calculation of the xc kernelsf xc,L(T)
h (v) is a very

difficult problem in many-body theory. Approximate calcul
tions have been done using~i! Interpolation schemes be
tween exact high- and low-frequency limits,2 ~ii ! Perturba-
tion theory,34,35 and~iii ! Mode-decoupling approximations.36

Here we simply summarize the main results that have b
established to date, and refer the reader to the original re
ences.

1. The high-frequency limit is a purely real constant giv
by

lim
v→`

f xc,L(T)
h ~v!5

1

2n
@dL(T)~^ke&2^ke&0!1eL(T)^pe&#,

~32!

which is also known as thethird-moment sum rule. ^ke& and
^pe& are the expectation values of the kinetic and poten
energy, respectively, and̂ke&0 is the noninteracting kinetic
energy. In three dimensions,dL54, eL58/15, dT54/3, eT
524/15. In two dimensions,dL56, eL55/4, dT52, eT
521/4 ~see Ref. 36!.

The behavior of the imaginary part of the longitudinal
kernel was first determined by Glick and Long34 @three-
dimensional~3D! case# and Holas and Singwi35 ~2D!, mak-
ing use of second-order perturbation theory, which becom
in all likelihood, exact in the high-frequency limit. Mor
recently, their calculation has been confirmed and exten
to the transverse kernel36 by a different method based on th
equations of motion for the current response function. T
result is

lim
v→`

Im f xc,L(T)
h ~v!52aL,Tp42Dv̄2D/2

e2

a0
12D

, ~33!
2-5
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wherea05\2/me2 is the Bohr radius,v̄5\va0 /e2 is the
dimensionless frequency, andD is the number of spatial di
mensions. The coefficients areaL523/30 andaT516/15 in
three dimensions, andaL511/32 andaT59/32 in two di-
mensions.

2. The v→0 limit was first worked out by Conti and
Vignale,37 and is subtly different from the static limit, whic
is obtained by settingv50 before letting k→0. The result
for f xc,L in D dimensions is

lim
v→0

f xc,L
h ~v!5exc9 ~n!1

2~D21!

D
lim
v→0

f xc,T
h ~v!, ~34!

whereexc9 (n)5d2exc(n)/dn2. The second term on the righ
hand side of this expression is proportional to

lim
v→0

f xc,T
h ~v!5

2«F

25n S 3F225F1

31F1
D , ~35!

in three dimensions, and

lim
v→0

f xc,T
h ~v!5

«F

2n S F22F1

21F1
D ~36!

in two dimensions, where«F is the Fermi energy, andFl are
the conventional Landau parameters of the electron liqui33

Note that the first term on the right-hand side of Eq.~34! is
the usual compressibility obtained from the static lim
limk→0limv→0 f xc,L

h (k,v). Thus, Eq.~34! vividly shows the
noncommutativity of thek→0 andv→0 limits.

3. Due to the causality properties of the linear respo
functions, the xc kernels must be analytic functions ofv in
the upper half of the complex plane. This leads to
Kramers-Kronig relations, which relate the real parts of
xc kernels to their imaginary parts:

Ref xc
h ~v!5 f xc

h ~`!1
1

p
PE dv8

Im f xc
h ~v8!

v82v
, ~37!

whereP denotes the ‘‘principal part’’ integral.
4. In a very recent development38 the low-frequency be-

havior of the imaginary parts of the xc kernels has also b
calculated exactly to leading order in the strength of the C
lomb interaction. The results are

Im f xc,T
h ~v!→2

1

~na0
D!2

h

~\/a0
D!

v̄
e2

a0
12D

, ~38!

and

Im f xc,L
h ~v!→ 2~D21!

D
Im f xc,T

h ~v!, ~39!

where the dimensionless ‘‘shear viscosity’’h/(\/a0
D) is

given by
24510
e

e
e

n
-

h

~\/a0
D!

52
kFa0

45p3 H 52S l1
5

l D tan21l2
2

l
sin21

l

A11l2

1
2

lA21l2 Fp

2
2tan21

1

lA21l2G J ~40!

in three dimensions, and

h

~\/a0
D!

5
1

12p2 H 2F ln~l11!2
l

11lG
2E

0

1

dx
l2x

~lx11!~lA12x211!
J ~41!

in two dimensions. In the above expressionsl is defined as
l52kF /ks , wherekF is the Fermi wave vector, andks is the
screening wave vector: in random-phase approxima
~RPA!, for example,ks5(4pkFa0)1/2/pa0 in three dimen-
sions, andks52/a0 in two dimensions. The derivation o
these results is presented in Ref. 38.

5. Parametrized expressions. To keep our presenta
self-contained, we also include the explicit parametrizat
for f xc,L

h (v) that has been used in the calculations of Sec
This is the original Iwamoto-Gross-Kohn parametrization,2,39

and has the form

Im f xc,L
h ~v!5

a~n!v

@11b~n!v2#5/4
~42!

with the coefficientsa(n) andb(n) determined by the com
pressibility and third-moment sum rules, and the Krame
Kronig dispersion relations. The real part off xc,L

h (v) is then
calculated with the help of the dispersion relation~37!. More
recent analytic expressions forf xc,L

h (v) and f xc,T
h (v) have

been obtained by Nifosi, Conti, and Tosi36 and Qian and
Vignale ~QV!.38 These new expressions possess consider
structure in the frequency dependence due to two-plasm
excitations. The QV expression reproduces the exact pe
bative limit of f xc

h (v) in the limit v→0. Additional details
about these expressions can be found in the original re
ences.

C. The exchange-correlation field for a homogeneous
electron gas

As a preparation for the study of inhomogeneous syste
let us now examine the real-space form of the xc vec
potential. It is convenient for this purpose to introduce the
electric field

Exc,1~k,v!5 ivaxc,1~k,v!52
1

iv
$k@k• j1~k,v!# f xc,L

h ~v!

1k2f xc,T
h ~v!j1,T~k,v!%. ~43!

Splitting off the familiar ALDA contribution

Exc,1
ALDA ~k,v!5 ikexc9

k• j1

v
, ~44!
2-6
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we can write

Exc,1~k,v!5Exc,1
ALDA ~k,v!2

1

iv
$k@k• j1~k,v!#

3@ f xc,L
h ~v!2exc9 #1k2f xc,T

h ~v!j1,T~k,v!%.

~45!

Introducing at this point the velocity field

u5
j1

n
~46!

and Fourier transforming Eq.~45! to real space, we get

Exc,1~r ,v!5Exc,1
ALDA ~r ,v!1

n

iv
$@ f xc,L

h ~v!2 f xc,T
h ~v!

2exc9 #“~“•u!1 f xc,T
h ~v!¹2u%. ~47!

It is easy to verify that this expression can be rewritten a

Exc,1,a~r ,v!5Exc,1,a
ALDA ~r ,v!1

1

n (
b

]sxc,ab~r ,v!

]r b
, ~48!

where the xc stress tensorsxc,ab is defined as

sxc,ab5h̃~n,v!S ]ua

]r b
1

]ub

]r a
2

2

D
“•udabD

1 z̃~n,v!“•udab , ~49!

and

h̃~n,v!52
n2

iv
f xc,T

h ~v!, ~50!

z̃~n,v!52
n2

iv S f xc,L
h ~v!2

2~D21!

D
f xc,T

h ~v!2exc9 D
~51!

are generalized~i.e., frequency-dependent and complex! vis-
coelastic constants of the electron liquid.37 In particular, the
real parts of h̃ and z̃ @related to the imaginary parts o
f xc,L(T)

h (v)/v# play the role of shear and bulk viscositie

respectively, while the imaginary parts ofvh̃ and vz̃ @re-
lated to the real parts off xc,L(T)

h (v)# are interpreted as pos
ALDA xc contributions to frequency-dependent elastic co
stants m ~shear modulus! and K ~bulk modulus! of the
electron liquid: mdyn5n2Ref xc,T

h (v) and Kdyn

5n2Re$ f xc,T
h (v)2@2(D21)/D# f xc,T

h (v)2exc9 % ~see Ref. 37
for details; the full elastic constantsm andK given there also
include the kinetic and the ALDA part of the xc contribu
tion!.

Because Imf xc,L(T)
h (v) vanish linearly forv→0 ~point 4

of Sec. II B!, we see that the viscosity coefficientsh̃ and z̃
stay finite in thev→0 limit. Equations~38!, ~39! of Sec. II B
imply that thev→0 limit of the bulk viscosity limv→0z̃(v)
is exactly zero at least to within the accuracy of our pert
bative calculation. By virtue of the limiting form~34!, we
24510
-

-

also see that limv→0Kdyn(v)50, implying that the bulk
modulus of the electron liquid is entirely accounted for
the ALDA contributionexc9 .

The fact that the shear modulus does not vanish forv
→0 but tends to the finite value of Eq.~34! is perhaps sur-
prising. One ordinarily thinks of liquids as having zero she
modulus. The reason for this strange behavior is that we
taking thek→0 limit beforethe v→0 limit. Thus, the sys-
tem remains ‘‘dynamical’’ down to zero frequency. O
course, this would not be true if thev→0 limit were taken at
finite k. In that limit, f xc,T

h is no longer related to the shea
modulus, but to the static diamagnetic susceptibility, which
extremely small. The truly static shear modulus is zero,
expected.

D. The exchange-correlation field in the inhomogeneous
electron gas

The main result of the previous section, Eq.~48!, is art-
fully written so that it can immediately be turned into a loca
density approximation for the xc electric field of an inhom
geneous electron liquid through the replacementn→n0(r ),
where n0(r ) is the ground-state density of the inhomog
neous liquid. Of course, the xc kernels must also be ev
ated at the local density.

An important question is this: Why should the replac
mentn→n0(r ) be done in Eq.~48! rather than in one of the
many equivalent expressions one can generate starting
Eq. ~45!? For example, why not write the second term on t
right-hand side of Eq.~47! in the equivalent form

1

iv
$@ f xc,L

h ~v!2 f xc,T
h ~v!2exc9 #“~“• j1!1 f xc,T

h ~v!¹2j1%

~52!

beforesubstitutingn by n0(r )? The answer is that this an
similar ambiguities are completely removed by gene
physical requirements which we now discuss.

First of all, because the Coulomb interaction obeys Ne
ton’s third law, the net force exerted by the xc electric fie
on the system must vanish. At the local level, Newton’s th
law implies that a small volume of the electron liquid cann
exert a net force on itself. Accordingly, the net force acti
on an arbitrary volume element must be expressible as
integral of theexternalstresses exerted by the surroundi
fluid on the surface of the volume element. The mathemat
expression of this requirement is that the force density m
be the divergence of a local stress tensor as in Eq.~48!.

A similar argument can be applied to the nettorqueacting
on a volume element of the fluid. Again, this must be e
pressible in terms of a surface integral, and it is not diffic
to see that the condition for this to happen is that the str
tensor be a symmetric rank-2 tensor.40

Finally, Galilean invariance requires the stress tenso
vanish identically when the fluid moves as a whole, i.
when the velocity field is spatially uniform. It is for thi
reason that the stress tensor must contain derivatives o
velocity field and not of the current.
2-7
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These criteria unambiguously establish Eq.~48! as the
correct expression in which the substitutionn→n0(r ) should
be made. This expression was originally derived by VK o
more laborious and apparently quite different path, wh
more clearly exposed the underlying approximations and
conditions for their validity. VK considered a weakly inho
mogeneous electron liquid modulated by a charge-den
wave of small amplitudeg and small wave vectorq. Both k
and q were assumed to be small not only relative to t
Fermi momentumkF but also relative tov/uF (uF being the
Fermi velocity!. The latter condition assures that the pha
velocity of the density disturbance is much faster than
Fermi velocity, so that no form of static screening can occ
Under these assumptions, all the components of the tens
kernel f xc,ab could be calculated, up to first order in th
amplitude of the charge density wave, and to second orde
the wave vectorsk andq. The calculations were greatly fa
cilitated by a set of sum rules that are mathematica
equivalent to the zero-force and zero-torque requireme
discussed above. The result of the analysis was that the
agonal matrix elementsf xc,ab(k,k,v) remain equal to
f xc

h (k,v) to first order ing, but the off-diagonal element
f xc,ab(k1q,k,v) acquire a finite value, given by23

f xc,ab~k1q,k,v!

52
g

v2 H ~d f xc,L
h 2 f xc,T

h !qaqb1 f xc,T
h q2dab

2n
] f xc,T

h

]n
k•~k1q!dab1A~n,v!

3~ka1qa!kb2B~n,v!ka~kb1qb!J , ~53!

whered f xc,L
h [ f xc,L

h (v,n)2exc9 (n), A(n,v)[@n(2] f xc,T
h /]n

2] f xc,L
h /]n13 f xc,T

h 2d f xc,L
h ] and B(n,v)[@n] f xc,T

h /]n
13 f xc,T

h 2d f xc,L
h #. A remarkable feature of this result is th

the off-diagonal matrix elements off xc,ab do not exhibit any
singularity fork or q tending to zero in any order. This is i
marked contrast with the off-diagonal elements of the sc
~density! xc kernel which, when calculated for the same s
tem, exhibit a power singularity of the formk•q/k2 for k
→0 at finiteq. This is the fundamental reason why the d
namical local-density approximation is possible in terms
the current, but not in terms of the density.

Equation~53! can be translated into a real-space expr
sion for Exc,1(r ,v). More details of the derivation, which i
quite laborious, are given in Ref. 23. Finally, the resulti
expression can be rearranged25 in the elegant form of Eq.
~48!. The conditions of validity of the real-space approa
are u“n0(r )u/n0(r ) much smaller thankF(r ) and v/uF(r ),
wherekF(r ) and uF(r ) are the local Fermi momentum an
velocity. In Ref. 24, the practical relevance of these con
tions was investigated in detail. It was found that the a
proach could be successfully applied to describe inters
band plasmons in wide single quantum wells, but failed
narrow double quantum wells. The failure in the latter ca
was traced back to a strong violation of the above criteria
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validity in the region of the barrier between the two wel
The physical reason is that electronic motion through tunn
ing barriers implies strong internal compression of the el
tron liquid, which locally destroys coherence of the electr
dynamics and leads to a breakdown of the simple hydro
namical picture. In such a situation, a hybrid between
VUC and the more robust Gross-Kohn approximation~16!
provides a pragmatic and practically useful remedy.24

Because the occurrence of two spatial derivatives of
velocity field in the post-ALDA term is dictated by gener
principles, Eq.~48! is expected to remain valid even for larg
values ofu, i.e., in the nonlinear regime, provided thatu and
n are sufficiently slowly varying. The argument goes as f
lows. Suppose we tried to extend Eq.~48! into the nonlinear
regime by including terms of orderu2. Because the stres
tensor must depend on first derivatives ofu, such corrections
would have to go as (¹u)2. But then the force density, give
by the derivative of the stress tensor, would have to invo
at least three derivatives. Thus, for sufficiently small spa
variation of the density and velocity fields, the nonline
terms can be neglected.

Since the ALDA is an intrinsically nonlinear approxima
tion, VUC proposed that Eq.~48!, written in the time do-
main, could provide an appropriate description of both line
and nonlinear response properties. A nonlinear, retarded
pression forvxc,1 was also proposed by Dobsonet al.41 The
two approximations coincide in ‘‘one-dimensional system
~i.e., when one has a unidirectional current density field t
depends only on one coordinate!, but differ in the general
case.

III. MEMORY FUNCTION FORMALISM AND TCDFT
FOR HOMOGENEOUS SYSTEMS

In the preceding sections, we outlined a linear respo
formalism within TCDFT that goes beyond the adiabatic a
proximation and allows one to account for intrinsic dampi
of collective excitations in electronic systems, caused by
namical many-body effects. As mentioned in Introductio
this is usually not sufficient to achieve quantitative agre
ment with experimentally measured linewidths. In reality,
trinsic damping is often overshadowed by strong extrin
dissipation mechanisms, such as impurities or disorder~in
this paper, we consider the low-temperature case only
limit the discussion to systems where LO phonon scatter
does not occur!.

Effects of impurities and disorder in the linear dynami
of a many-electron system are conveniently discussed in
language of relaxation functions,42 which then naturally
leads to the so-called memory function formalism.28,43In this
paper, we perform a conceptually new step and unite
memory function formalism with TCDFT in the linear re
sponse regime, which will then allow us to treat both intri
sic and extrinsic damping from first principles and on
equal footing. This is necessary for an accurate descriptio
experiments performed on very clean samples~such as the
quantum well we shall discuss in Sec. V!, where intrinsic and
extrinsic damping may be of comparable magnitude.

The purpose of this section is twofold: To make this pap
self-contained, we first review the memory function forma
2-8
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ism for the homogeneous case. We then make contact
tween relaxation and response functions, thereby integra
the memory function formalism with TCDFT. In Sec. IV w
shall extend the approach to systems that are inhomogen
in one spatial direction~such as quantum wells!, and show
how it can be applied to discuss intrinsic and extrinsic dam
ing of collective charge-density excitations in such syste

A. Relaxation and linear response

Suppose we are interested in the dynamics of a set oN

11 observables,$Â0(r ,t), . . . ,ÂN(r ,t)%, eachÂi(r ,t) cou-
pling to a small perturbing external fielddai(r ,t). The
Hamiltonian in the presence of these fields is given~in
Schrödinger representation, i.e.,Âi independent oft) by

Ĥ~ t !5Ĥ01(
i
E d3rÂ i~r !dai~r ,t !. ~54!

Consider now the case where the external fields are adia
cally turned on beginning att52`, and then abruptly
switched off att50:

dai~r ,t !5H dai~r !eht for t<0

0 for t.0.
~55!

The system starts out from nonequilibrium att501 and,
being left to itself, relaxes back towards equilibrium. T
first-order change of the nonequilibrium expectation value
an observable can then be written as28,42–44

d^Âi~r ,t !&noneq.5(
j
E d3r 8C̃i j ~r ,r 8,t !daj~r 8!, ~56!

where the correlation~or Kubo! function in the presence o
disorder is defined as

C̃i j ~r ,r 8,t !5K E
0

b

db8@^Âi~r ,t !Âj~r 8,2 ib8!&eq.

2^Âi~r ,t !&eq.̂ Âj~r 8,2 ib8!&eq.#L
disorder

.

~57!

This may be rewritten as

C̃i j ~r ,r 8,t !5^Âi~r !ue2 iLtuÂj~r 8!&, ~58!

whereL is the Liouville operator governing time evolutio
of the system via

Ȧ̂i~ t !5 iLÂi~ t !5@Âi~ t !,Ĥ#/~ i\!, ~59!

and the scalar product^•••u•••& is defined by Eq.~57!. We
impose normalization on the set of variables, i.

^Âi(r )uÂj (r 8)&5d i j . In the following, we are interested i
the zero temperature limit (b→`).

The correlation function~57! is related to the dissipative
part of the usual quantum mechanical response funct
x i j (r ,r 8,t) as follows:28,42
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i ] tC̃i j ~r ,r 8,t !52x i j9 ~r ,r 8,t !, ~60!

where x i j9 (r ,r 8,t) denotes the inverse Fourier transform
Im x i j (r ,r 8,v).

Since relaxation occurs fort.0, it is customary to intro-
duce the Laplace transform of the quantities of intere
which, e.g., for the correlation function is defined as

C̃i j ~r ,r 8,j!5E
0

`

dtei jtC̃i j ~r ,r 8,t !, ~61!

wherej is a complex number in the upper half of the com
plex plane. One then finds the following relationship b
tween the Kubo relaxation functions and the response fu
tions:

C̃i j ~r ,r 8,j!5@x i j ~r ,r 8,j!2x i j ~r ,r 8,i0!#/~ i j!. ~62!

For the remainder of this section, we assume that the
tem is spatially homogeneous~a more general case will b
considered in Sec. IV!. Equation~56! can then be Fourier
transformed into momentum space, and one obtains

d^Âi~q,j!&noneq.5(
j

C̃i j ~q,j!daj~q!. ~63!

The Laplace transform of the correlation function~58! is
then given by

C̃i j ~q,j!5^Âi~q!u
i

j2L uÂj~q!&. ~64!

B. Projectors and memory functions

The observables$Â0(q), . . . ,ÂN(q)% can be regarded a
vectors in a Hilbert space. The LiouvillianL acts as a linear
operator in that space, see Eq.~59!. We define a projection
operatorP onto the space spanned by$Â0(q), . . . ,ÂN(q)%
as

P5(
i

uÂi~q!&^Âi~q!u, ~65!

and its complementQ[12P projects perpendicular to it
One can then formally write Eq.~64! as

C̃i j ~q,j!5^Âi~q!u
i

j2LQ2LP uÂj~q!&. ~66!

Following Forster,28 one performs a few straightforward ma
nipulations in Eq.~66! and finds

C̃i j ~q,j!5
i

j
d i j 1

1

j (
k

H ^Âi~q!uLuÂk~q!&

2^ Ȧ̂i~q!uQ 1

QLQ2j
Qu Ȧ̂k~q!&J C̃k j~q,j!.

~67!

Defining
2-9
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Ci j ~q,j!5 iC̃ i j ~q,j!, ~68!

V ik~q!5^Âi~q!uLuÂk~q!&, ~69!

Mik~q,j!5^ Ȧ̂i~q!uQ 1

QLQ2j
Qu Ȧ̂k~q!&, ~70!

we rewrite Eq.~67! as follows:

(
k

$jd ik2V ik~q!1Mik~q,j!%Ck j~q,j!52d i j . ~71!

V i j (q) can be viewed as characteristic frequency or resto
force matrix of the system. Our particular interest, howev
lies in the memory function matrixMik(q,j), which intro-
duces dissipation into the electron dynamics of the syst
In general, dissipation originates fromintrinsic as well as
extrinsic scattering mechanisms. The former, caused
electron-electron interaction alone, are present even in a
fectly ‘‘clean’’ system.45 In the previous section we discusse
the treatment of intrinsic dissipation in the framework
TCDFT. Now we describe how additional extrinsic dissip
tion ~e.g., caused by scattering off disorder or charged im
rities! can be taken into account simultaneously.

Mik has the formal structure of a correlation function b

tween two projected forces,QȦ̂i(q) and QȦ̂ j (q). These
forces act perpendicular to the vector space of variables$Âi%,
thus providing a coupling to other degrees of freedom of
system~which effectively form a ‘‘thermal bath’’!. Accord-
ingly, the frequency dynamics ofMik(q,j) is determined by
QLQ, where those fluctuations of the Liouville operator a
projected out that occur only within the space of variab

$Âi%, therefore describing the internal dynamics of t
‘‘bath.’’

The correlation functionsCi j (q,j) are determined by a
set of (N11)2 coupled equations, Eq.~71!, whose solution
will be discussed for an example in Sec. III C. The obse
ables Âi are not restricted to be scalars, but can also
vectors~or nth-rank tensors!. In general, all correlation func
tionsCi j (k,v) as well asV i j andMi j are tensors whose ran
equals the sum of the ranks ofÂi and Âj .

Assuming that explicit solutions for theCi j have been
found, the final step is then to make contact with linear
sponse theory, which involves Fourier transforms~with fre-
quencyv) rather than Laplace transforms~with frequencyj)
of the associated response and correlation functions. Fo
nately, the relationship between Fourier and Laplace tra
forms is a straightforward linear one, so that the respo
functionsx i j (q,v) can be simply obtained from

Ci j ~q,v!5@x i j ~q,v!2x i j ~q,0!#/v. ~72!

Here v are real frequencies, andCi j (q,v)[Ci j (q,j5v
1 i01).
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C. Generalized relaxation time approximation

In the following, we discuss the case where there are o
two observables of interest: density fluctuationsr̂(q) and
current densityĵ (q). Including normalization, we have

Â0~q!5
r̂~q!

^r̂~q!ur̂~q!&1/2
~73!

and

Â1~q!5
ĵ ~q!

An
, ~74!

where n is the uniform density of the system, an

^r̂(q)ur̂(q)&5x(q,0), the static density-density respon
function ~in the presence of disorder!. Equation ~71! then
describes the four associated correlation functionsC00, C01,
C10, andC11, i.e., r̂-r̂, r̂-ĵ , ĵ -r̂, and ĵ -ĵ .

Since we deal with the homogeneous and isotropic ca
Eq. ~71! decouples into two independent equations for
longitudinal~L! and transverse~T! components of the corre
lation functions,

(
k50

1

@vd ik2V ik
L ~q!1Mik

L ~q,v!#Ck j
L ~q,v!52d i j ,

~75!

@v2V11
T ~q!1M11

T ~q,v!#C11
T ~q,v!521. ~76!

Equation ~75!, with i , j 50,1, represents a system of fou
equations coupling the four possible longitudinal correlat
functions (r̂-r̂, r̂- ĵ L, ĵ L-r̂, and ĵ L- ĵ L). Since there is no
coupling between density and transverse currents, ther
only a single transverse correlation function,ĵ T- ĵ T, deter-
mined by Eq.~76!. Using the continuity equation,

Lr̂~q!52q ĵL~q!, ~77!

we convince ourselves that indeed^Â0uÂ1
L&50. Furthermore,

sinceLÂ0 is proportional toÂ1
L , the first component of the

‘‘perpendicular’’ forceQȦ̂0 is identically zero, so that

M00
L ~q,v!5M01

L ~q,v!5M10
L ~q,v!50. ~78!

In the following, we will be concerned with the limit o
weak disorder. In this limit, it is a good approximation to
assume that allstatic correlation functions are not affecte
by disorder. This means thatVL(T)(q) contains effects of
Coulomb interaction only. Likewise, we assume

x i j
L(T)~q,0!5x i j

Lc(Tc)~q,0!, ~79!

where the superscript ‘‘c’’ denotes the ‘‘clean’’ response
function. In general, static disorder effects~mainly changes
of the density of state at the Fermi surface! are weak, pro-
vided (t«F)21!1, wheret is a characteristic disorder sca
tering time for the system under study.
2-10
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In general, the memory functions contain both intrins
~Coulomb interaction! and extrinsic~disorder! contributions.
In the limit of weak disorder, one can separate them as
lows:

M11
L(T)~q,v![M in

L(T)~q,v!1Mex
L(T)~q,v!. ~80!

We combine the intrinsic part withV ik , thereby defining a
frequency-dependent, dissipative restoring force ma
V ik

in,L(T)(q,v) that contains effects of Coulomb interactio
only:

V ik
in,L(T)~q,v![V ik

L(T)~q!1M in
L(T)~q,v!d i1dk1 . ~81!

One then obtains from Eqs.~75! and ~76!:

(
k50

1

$@v1Mex
L ~q,v!#d ik2V ik

in,L~q,v!%Ck j
L ~q,v!

52d i j 1d i0Mex
L ~q,v!Ci j

L ~q,v!, i , j 50,1, ~82!

@v1Mex
T ~q,v!2V11

in,T~q,v!#C11
T ~q,v!521. ~83!

For notational brevity, we suppress the (q,v) dependence
and the subscript ‘‘ex’’ ofMex

L andMex
T in the following. To

solve Eqs.~82! and ~83!, we introduce ‘‘clean’’ longitudinal
~transverse! reference functionsCi j

Lc(Tc)(q,v), defined in the
absence of dissipation~i.e., ML505MT), as follows:

(
k50

1

@vd ik2V ik
in,L~q,v!#Ck j

Lc~q,v!52d i j , i , j 50,1,

~84!

@v2V11
in,T~q,v!#C11

Tc~q,v!521. ~85!

The desired correlation functions are then expressed in te
of these reference functions. In the longitudinal case, we

Ci j
L ~q,v!5Ci j

Lc~q,v1ML!2Ci0
Lc~q,v1ML!

3MLC0 j
L ~q,v!, i , j 50,1, ~86!

or explicitly

C00
L ~q,v!5

C00
Lc

11MLC00
Lc

, ~87!

C10
L ~q,v!5

C10
Lc

11MLC00
Lc

, ~88!

C01
L ~q,v!5

C01
Lc

11MLC00
Lc

, ~89!

C11
L ~q,v!5

C11
Lc1C11

LcMLC00
Lc2C10

LcMLC01
Lc

11MLC00
Lc

, ~90!

where all ‘‘clean’’ functions carry the arguments (q,v
1ML). For the transverse case, on the other hand, we sim
obtain

C11
T ~q,v!5C11

Tc~q,v1MT!. ~91!
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We now make contact with the response functions as
lows. For the case of density-density response, we have f
Eq. ~72!,

C00
L ~q,v!5

1

v
@x00

L ~q,v!2x00
L ~q,0!#/x00

L ~q,0!, ~92!

where the functionx00
L (q,0) in the denominator arises from

the normalization of the variableÂ0, see Eq.~73!. Similar
expressions are obtained for the other longitudinal and tra
verse correlation functions. We then find from Eq.~87!:

1

x00
L ~q,v!

5
v

~v1ML!

1

x00
Lc~q,v1ML!

1
ML

~v1ML!

1

x00
Lc~q,0!

. ~93!

Equation~93! is formally in agreement with Belitz and Da
Sarma@Eq. ~2.3! in Ref. 29#. However,x00

Lc(q,v) here de-
notes theexact, fully interacting longitudinal response func
tion of the homogeneous electron gas, not just the RPA
sponse function.

From Eq.~93!, one easily derives explicit expressions f
longitudinal density-current and current-current respo
functions using

x00
L ~q,v!5

q

v
x10

L ~q,v!5
q

v
x01

L ~q,v!5
q2

v2
x11

L ~q,v!.

~94!

It is not difficult to show that the results forx10
L , x01

L andx11
L

obtained in this fashion are consistent with Eqs.~88!–~90!.
In the same way one finds the transverse current-cur

response function from Eq.~91!:

x11
T ~q,v!5

v

~v1MT!
x11

Tc~q,v1MT!1
MT

~v1MT!
x11

Tc~q,0!.

~95!

Expressions that are formally similar to Eqs.~93!–~95! were
recently derived by Conti and Vignale37 in the framework of
Mermin’s relaxation time approximation.30 In this formalism,
the role ofM (q,v) is taken by a frequency- and momentum
independent phenomenological scattering ratei /t. Note that
the second term on the right-hand side of Eq.~95! is absent
in Ref. 37, because there the diamagnetic susceptibility
the electron gas,x11

Tc(q,0), was implicitly taken to be zero.
Finally, explicit expressions for the memory function

ML(q,v) and MT(q,v) are obtained in the following way
from Eq. ~70!: first, we approximately write

ML~q,v!5^F̂L~q!u
1

L2v
uF̂L~q!&, ~96!

and similar forMT, i.e. we resort to the standard approxim
tion of replacing the projected by the full Liouville operato
by settingQ'1 in the denominator. We thus assume that
huge amount of degrees of freedom in the thermal bath
their extremely complex time evolution are complete
2-11
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dominating over the small subspace of observablesÂ0 ,Â1
and its relatively well-controlled time evolution.

In turn, the fluctuating longitudinal forces have the for

F̂L~q!5
1

An
(

k

q@q•~k2q!#

q2
U~q2k!r̂~k!, ~97!

and the transverse forces are

F̂T~q!52
1

An
(

k

q3~q3k!

q2
U~q2k!r̂~k!. ~98!

Here, U(q) is a random scattering potential. In the wea
disorder limit, we can perform the following decoupling, u
to within corrections of higher than second order in the d
order potential:

^U~q2k!r̂~k!u
1

L2v
uU~q2k8!r~k8!&

'^r̂~k!u
1

L2v
ur~k8!&^U~q2k!U~q2k8!&disorder.

~99!

Since the system is homogeneous, we havek5k8, and we
arrive at the following expression for the longitudin
memory function:

ML~q,v!5
1

n (
k

^U~q2k!&2
@q•~q2k!#2

q2

3C00
L ~k,v!x00

Lc~k,0!. ~100!

One thus needs to calculateML(q,v) andC00
L (q,v) via self-

consistent solution of Eqs.~87! and~100!. The so-determined
C00

L (q,v) then serves as input for the transverse mem
function

MT~q,v!5
1

n (
k

^U~q2k!&2
@q3~q3k!#2

q4

3C00
L ~k,v!x00

Lc~k,0!, ~101!

which was obtained using the same decoupling approxi
tion that led to Eq.~100! for ML(q,v).

IV. MEMORY FUNCTION FORMALISM AND TCDFT
FOR INHOMOGENEOUS SYSTEMS

A. Formalism

We now generalize the memory function formalism
systems that are inhomogeneous in one spatial direction
still homogeneous in the plane perpendicular to it. The
ample we have in mind are quantum wells whose direct
of growth is thez axis. One can then in general no long
decouple longitudinal and transverse components of the
relation functions. A special case where this is still possi
will be discussed in some detail later on.

The generalization of Eq.~71! for this inhomogeneous
situation is
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(
k
E dz9@vd~z92z!d ik2V ik~qi ,z,z9!

1Mik~qi ,z,z9,v!#Ck j~qi ,z9,z8,v!52d i j d~z2z8!,

~102!

whereqi is the in-plane wave vector. We again consider de
sity fluctuations and current density as the only variabl
Just like in the homogeneous case, by virtue of the contin
equation, all elements of the 232 memory function matrix
Mik are zero exceptM11. As before, we can separate intrin
sic and extrinsic contributions to the memory function in t
weak-disorder limit,M11[M in1Mex, and we combine the
intrinsic part withV ik , defining

V ik
in~qi ,z,z8,v![V ik~qi ,z,z8!1M in~qi ,z,z8,v!d i1dk1 .

~103!

Equation~102! thus becomes

(
k50

1 E dz9$@vd~z92z!1Mex~qi ,z,z9,v!#d ik

2V ik
in~qi ,z,z9,v!%Ck j~qi ,z9,z8,v!

52d i j d~z2z8!1d i0E dz9Mex~qi ,z,z9,v!

3Ci j ~qi ,z9,z8,v!, i , j 50,1. ~104!

Similar to Sec. III C, we will solve this set of equations b
introducing suitable reference functions. However, the in
mogeneity of the system prevents us from using the sa
trick as for the homogeneous case, where we directly
pressed the correlation functions in the presence of diso
in terms of the ‘‘clean’’ correlation functions, with their fre
quency argumentv replaced byv1Mex. Now, by contrast,
the memory functionMex(qi ,z,z8,v) is no longer simply a
number, but acts in conjunction with an integral operator,
Eq. ~104!. To deal with this difficulty, we first define a set o
intermediate reference functionsCi j

R(qi ,z,z8,v) that satisfy
the following coupled equations:

(
k50

1 E dz9$@vd~z92z!1Mex~qi ,z,z9,v!#d ik

2V ik
in~qi ,z,z9,v!%Ck j

R ~qi ,z9,z8,v!

52d i j d~z2z8!, i , j 50,1. ~105!

In terms of these reference functions, the full correlati
functions are given, combining Eqs.~104! and~105!, through
the following Dyson-type integral equation:

Ci j ~qi ,z,z8,v!5Ci j
R~qi ,z,z8,v!

2E dz1E dz2Ci0
R ~qi ,z,z1 ,v!

3Mex~qi ,z1 ,z2 ,v!C0 j~qi ,z2 ,z8,v!.

~106!
2-12
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We now use a similar trick to obtain the reference functio
Ci j

R . Defining the ‘‘clean’’ response function via

(
k50

1 E dz9$vd~z92z!d ik

2V ik
in~qi ,z,z9,v!%Ck j

c ~qi ,z9,z8,v!52d i j d~z2z8!,

~107!

we get from Eqs.~106! and ~107!:

Ci j
R~qi ,z,z8,v!5Ci j

c ~qi ,z,z8,v!

1 (
k50

1 E dz1E dz2Cik
c ~qi ,z,z1 ,v!

3Mex~qi ,z1 ,z2 ,v!Ck j
R ~qi ,z2 ,z8,v!.

~108!

The density-density reference correlation function is exp
itly given by

C00
R ~qi ,z,z8,v!5C00

c ~qi ,z,z8,v!

1E dz1E dz2C00
c ~qi ,z,z1 ,v!

3Mex~qi ,z1 ,z2 ,v!C00
R ~qi ,z2 ,z8,v!

1E dz1E dz2C01
c ~qi ,z,z1 ,v!

3Mex~qi ,z1 ,z2 ,v!C10
R ~qi ,z2 ,z8,v!.

~109!
n

24510
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At this point, it is convenient to introduce the following s
of auxiliary functions, which will allow us later to write the
memory functionMex in a more compact form~see below!:

F~qi ,z,z8,v![E dz9C00~qi ,z,z9,v!xc~qi ,z9,z8,0!,

~110!

FR~qi ,z,z8,v![E dz9C00
R ~qi ,z,z9,v!xc~qi ,z9,z8,0!,

~111!

Fc~qi ,z,z8,v![E dz9C00
c ~qi ,z,z9,v!xc~qi ,z9,z8,0!.

~112!

Again it is assumed that all extrinsic damping effects can
neglected for the static response function. In terms of th
functions, Eq.~106! becomes fori 5 j 50:

F~qi ,z,z8,v!5FR~qi ,z,z8,v!

2E dz1E dz2E dz3FR~qi ,z,z1 ,v!

3@xc~qi ,z1 ,z2,0!#21Mex~qi ,z2 ,z3 ,v!

3F~qi ,z3 ,z8,v!. ~113!

In the example to be discussed in Sec. V, only the caseqi
50 will be of interest. Since in this case the continuity equ
tion can be used to explicitly eliminate the current density
favor of the density, Eq.~109! can be written as
FR~0,z,z8,v!5Fc~0,z,z8,v!1E dz1E dz2E dz3Fc~0,z,z1 ,v!@xc~0,z1 ,z2,0!#21Mex~0,z2 ,z3 ,v!FR~0,z3 ,z8,v!

1E dz1E dz2E
2`

z1
dz̃1xc~0,z,z̃1 ,v!

Mex~0,z1 ,z2 ,v!

An~z1!n~z2!
E

2`

z2
dz̃2@vFR~0,z̃2 ,z8,v!2x~0,z̃2 ,z8,0!#.

~114!
in

n

,
h
ral

an-
The desired density-density response functions are the
nally obtained using

F~qi ,z,z8,v!5@x~qi ,z,z8,v!2xc~qi ,z,z8,0!#/v,
~115!

FR~qi ,z,z8,v!5@xR~qi ,z,z8,v!2xc~qi ,z,z8,0!#/v,
~116!

Fc~qi ,z,z8,v!5@xc~qi ,z,z8,v!2xc~qi ,z,z8,0!#/v.
~117!
fi-To summarize: Eqs.~109!–~117! allow one to express the
interacting density-density response function of the system
the presence of intrinsic and extrinsic dissipation,
x(qi ,z,z8,v), in terms of the interacting response functio
for the ‘‘clean’’ system,xc(qi ,z,z8,v), i.e., including intrin-
sic dissipation alone.xc is calculated, in principle exactly
using the framework of TCDFT outlined in Sec. II. Althoug
admittedly somewhat frightening in appearance, the integ
equations~113! and ~114! involve only one-dimensional in-
tegrals, and their numerical solution is therefore quite m
ageable, as will be shown below.
2-13
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B. Memory functions for impurity and interface roughness
scattering

In general, a vector fieldV(r ) is decomposed into longi
tudinal and transverse components as follows:VL(r )
52(1/4p)“*d3r 8@“8•V(r 8)#/ur2r 8u and VT(r )
5(1/4p)“3“3*d3r 8V(r 8)/ur2r 8u. In our case, i.e.,
working in a mixed (qi ,z) representation, it is convenient t
define the operatorD(qi ,z) as

D~qi ,z![S qi

i“z
D . ~118!

The longitudinal fluctuating forces are then given by

F̂L~qi ,z!5
1

An~z!
D~qi ,z!E dz8E d2pi

~2p!2

e2qiuz2z8u

2qi

3$D~qi ,z8!•@ r̂~pi ,z8!

ÃD~pi2qi ,z8!U~qi2pi ,z8!#% ~119!

and the transverse fluctuating forces are

F̂T~qi ,z!52
1

An~z!
D~qi ,z!3D~qi ,z!

3E dz8E d2pi

~2p!2

e2qiuz2z8u

2qi
@ r̂~pi ,z8!

3D~pi2qi ,z8!U~qi2pi ,z8!#. ~120!

One finds from Eqs.~119! and~120! that in thehomogeneous
limit ~no z dependence of the density fluctuationsr and the
scattering potentialU), the longitudinal and transverse force
only have in-plane components, given by the 2D versions
Eqs. ~97! and ~98!. In the following, we shall limit the dis-
cussion of theinhomogeneoussituation to a case of specia
interest, namely,qi50. In that case, only thez component of
FL survives, and is given by

F̂z
L~z!5

i

An~z!
E d2pi

~2p!2
r̂~pi ,z!¹zU~2pi ,z!. ~121!

The transverse force, in the same limit, acts in thex-y plane
only,

F̂i
T~z!5

1

An~z!
E d2pi

~2p!2
pir̂~pi ,z!U~2pi ,z!. ~122!

We note that, by symmetry, in the limitqi50 there is a
natural decoupling of the formalism outlined above~Sec.
IV A ! into separate sets of equations of the type~113!–~117!
determining longitudinal and transverse response functio
respectively. In other words,L-T cross correlations are ab
sent since the associated fluctuating forces are perpendi
to each other. The longitudinal and transverse memory fu
tions are obtained in a quite straightforward manner fr
Eqs. ~119! and ~120!, using the same approximate deco
pling procedure that was used for the homogeneous cas
Sec. III C. The result is
24510
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Mex
L ~z,z8,v!5E d2pi

~2p!2

F~pi ,z,z8,v!

An~z!n~z8!

3¹z¹z8^U~2pi ,z!U~2pi ,z8!& ~123!

and

Mex
T ~z,z8,v!5E d2pi

~2p!2

F~pi ,z,z8,v!

An~z!n~z8!

3pi
2^U~2pi ,z!U~2pi ,z8!&. ~124!

The next step consists in finding explicit forms for th
disorder-averaged random scattering potentialU(pi ,z), as-
sociated with some extrinsic damping mechanism. In the
lowing, we shall focus on two examples specific to quant
wells: damping by charged impurities and by interfa
roughness.

The potential associated with a single, statically screen
positively charged impurity at positionz1 is

U~pi ,z!5
2p

«~pi!

e2piuz2z1u

pi
, ~125!

where«(pi) is the 2D dielectric function.46 The longitudinal
memory function for charged-impurity scattering is thus

MI
L~z,z8,v!5E d2pi

«2~pi!

F~pi ,z,z8,v!

An~z!n~z8!
E dz̃ni~ z̃!

3sgn~z2 z̃!sgn~z82 z̃!e2piuz2 z̃ue2piuz82 z̃u,

~126!

whereni(z) is the number of impurities per volume.
Likewise, the longitudinal memory function associat

with interface roughness is

MR
L~z,z8,v!5E d2pi

~2p!2

F~pi ,z,z8,v!

An~z!n~z8!
^U~pi!

2&

3¹z¹z8@d~z2zl !d~z82zl !

1d~z2zr !d~z82zr !#, ~127!

where U(pi) is the random roughness scattering potent
assumed for simplicity to be the same at the left and ri
interfaces,zl and zr . It is common to assume a Gaussia
form for the autocorrelation function of the random interfa
roughness,46,47 which leads to

^U~pi!
2&5pm2D2h2e2pi

2h2/4. ~128!

Here, m is the height of the potential step at the interfac
and the correlation lengthh and average roughness heightD
are controlled by material and growth conditions. In the pr
ence of both impurity and roughness scattering, the mem
functions MI and MR are additive~i.e., different extrinsic
scattering mechanisms are assumed to be uncorrelated!.

Some practical complications arise from the fact that
memory functions explicitly depend onF(qi ,z,z8,v) at all
2-14
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qi , not justqi50. This means thatF should be calculated
self-consistently from Eqs.~113! for all qi , which is a very
demanding computational task. Therefore, as a first appr
mation, we ignore self-consistency and instead use thenon-
interactingF0(qi ,z,z8,v) in Eqs. ~126! and ~127!, defined
by replacingx and xc with xKS in Eq. ~115!. The wave-
vector dependence ofF0 is thus known analytically~see the
explicit expression forxKS below!. This is expected to be a
reasonable approximation as long as plasmon damping is
too strong.

V. LINEWIDTH OF INTERSUBBAND PLASMONS
IN A QUANTUM WELL

In semiconductor quantum wells, the conduction ba
splits up into several subbands, and electrons~supplied, e.g.,
by remote doping! can perform collective transitions be
tween them. These so-called intersubband~ISB! plasmons
are currently of great experimental and theoretical interes48

being the basis of a variety of new devices operating in
terahertz regime, such as detectors49 and quantum cascad
lasers.50 In designing these devices, the emphasis usually
in covering a particular frequency range. However, often i
desirable that the transitions also have a narrow linewidth
achieve better frequency resolution and larger peak abs
tion in detectors, and higher gain in lasers. The linewi
arises from a complicated interplay of a variety of scatter
mechanisms, intrinsic ~electron-electron and electron
phonon! as well as extrinsic ones~impurity, alloy-disorder,
and interface roughness!. Many aspects of this interplay ar
still not well understood, in particular the relative importan
of the individual mechanisms.51

To disentangle the various contributions to the ISB lin
width, it is helpful to consider a situation where some
them are not effective. In a recent experiment, William
et al.32 studied collective ISB transitions in ann-type 40-nm-
wide single GaAs/Al0.3Ga0.7As quantum well, with Si dop-
ing centers 100 nm away from the well. Sharp transitio
were found well below the LO phonon frequency of Ga
~35.6 meV!, at a temperature of 2.3 K. Thus, neither remo
impurity nor phonon scattering are playing any significa
role ~nor is alloy-disorder scattering, as shown in Ref. 5!.
The linewidth is therefore expected to be dominated by b
impurity and interface roughness scattering, while electro
many-body effects have traditionally been neglected. Ho
ever, for high-quality samples such as the one used in
experiment discussed here, this is no longer justified.

In the experiment,32 two parameters were controlled ind
pendently: the electronic sheet densityNs ~from 0.05 to 1.3
31011 cm22), and a static electric fieldE perpendicular to
the well, which pushes the electrons against one of its ed
This provides an ideal tool to distinguish interface roughn
from other damping effects.

We describe ISB plasmons within a one-band effecti
mass approximation with parabolic subbands,53 which is a
widely used and, for our purposes, sufficiently accur
method for GaAs/Al0.3Ga0.7As quantum wells. The case o
the cleanquantum well was treated in detail in Ref. 24. T
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noninteracting response function reads

xKS~qi ,z,z8,v!

5 (
m51

Nocc

(
n51

`

Fmn~qi ,v!wm~z!wm~z8!wn~z!wn~z8!,

~129!

where

Fmn~qi ,v!522E d2ki

~2p!2 H f ~em1ki
2/2!

qiki1amn~qi!1v1 ih

1
f ~em1ki

2/2!

qiki1amn~qi!2v2 ihJ , ~130!

amn(qi)5qi
2/21en2em , f is the Fermi function atT50, and

h is a positive infinitesimal.em and wm(z) are the Kohn-
Sham energies and wave function~in LDA ! of the quantum
well. For the experimental range ofNs , the system under
study has nine bound levels, only the lowest being occup
(Nocc51).24

We consider perturbations of the formv1(z,v)5E0z,
corresponding to monochromatic plane electromagn
waves of amplitudeE0 polarized along thez axis, the direc-
tion of growth of the quantum well. Having solved the r
sponse equation~10!, the photoabsorption cross section
then obtained ass(v)52(8pv/E0c)Im*dz z n1(z,v) and
can be directly compared with data from photoabsorpt
measurements.s(v) has a peak at the plasmon frequencyV
with linewidth ~half width at half maximum! G.

In Fig. 1 we plot the dispersionsV(qi) of the ISB and the
intrasubband~or 2D! plasmon in the clean quantum we
(Ns51.031011 cm22), calculated within ALDA, see Eq.
~15!. The imaginary part of the Kohn-Sham response fu
tion xKS determines the regime of damping by single-parti
excitations~Landau damping!, as indicated by the shade
region in Fig. 1. Outside that region, in particular at sm
qi , the plasmons are undamped in ALDA, for whichf xc is

FIG. 1. Dispersions of ISB~circles! and 2D plasmon~squares!
frequenciesV(qi) in a clean quantum well.v12 is the difference
between the two lowest bare subband levels. Inside the shade
gions, the plasmons are subject to strong Landau damping and
idly die off ~open symbols!. The experiment by Williamset al.32

measures the ISB plasmon frequency and linewidth atqi50.
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frequency-independent and real. In reality, however, the
sence of momentum conservation in thez direction and cou-
pling via Coulomb interaction opens the possibility of pla
mon decay into more complicated excitations, such
multiple electron-hole pairs, even atqi50. To take this ef-
fect into account, we go beyond the ALDA and in the fo
lowing include dynamical xc effects, see Eqs.~48!, ~49!.

In Fig. 2 we show the electric field dependence of the I
plasmon frequenciesV(qi50) for different values ofNs . In
the experimental data, built-in electric fields are subtrac
so thatV(E) exhibits a minimum forE50 and rises qua-
dratically for small fields.V(E) increases most rapidly fo
the smallestNs , since higher electronic densities tend
screen the external electric field more efficiently. At the sa
time, the depolarization shift increases withNs . As a conse-
quence, the curves ofV(E) for different Ns are crossing
each other. These features are very well reproduced
theory. Ignoring xc effects in Eq.~10! ~i.e., using RPA! in-
duces a 10% blueshift ofV, which then compares less favo
ably with experiment. To demonstrate the importance of
cluding many-body effects in the response equation, we
thebaresubband spacings in the bottom panel of Fig. 2. T

FIG. 2. ISB plasmon frequencyV, atqi50, versus electric field
E. Top: experimental data from Ref. 23. Middle: calculated resu
for the clean quantum well, using TDFT@Eq. ~10!#. Bottom: bare
LDA subband splitting. The individual curves are associated w
different electronic sheet densities (Ns50.05, 0.1, 0.2, 0.3, 0.5, 0.7
1.0, and 1.331011 cm22). The lowerNs , the steeperV(E) around
E50.
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results are clearly qualitatively wrong: there is no crossing
V(E) for different Ns , in contradiction to experiment.

Figure 3 shows the ISB plasmon linewidthG(E), for dif-
ferentNs . For smallE, the experimental data again exhibit
quadratic behavior, andG(E) rises faster for smallerNs . For
large negativeE, G saturates around 0.7 meV. For positiveE
~i.e., pointing in the direction of sample growth!, G rises
somewhat higher. The asymmetry ofG(E) is likely to be due
to slightly different roughnesses of the interfaces.

The calculatedG for the clean quantum well~intrinsic
damping through electron-electron interaction only!, shown
in the bottom panel of Fig. 3, lies clearly below the expe
mental values, which is hardly surprising. However, it can
seen that these purely electronic effects are far from ne
gible, at least forNs not too small, and provide an intrinsi
lower limit to the linewidth of order 0.1 to 0.2 meV forNs
;1011 cm22.

The middle part of Fig. 3 showsG(E) calculated includ-
ing electronic, impurity, and interface roughness dampi
using the combined TCDFT and memory function form
isms outlined above, see Eqs.~113!–~117!. The results are
now in very good agreement with experiment even aw

s

h

FIG. 3. ISB plasmon linewidthG, at qi50, versus electric field
E. Top: experimental data from Ref. 23. Middle: calculated resu
including extrinsic~impurity and interface roughness! and intrinsic
~electron-electron interaction! damping. Bottom:G(E) for a clean
quantum well~intrinsic damping only!. The individual curves cor-
respond to different electronic sheet densities~see Fig. 2!. At E
50, the lowestNs causes the smallestG.
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from flat band, as long asE is not too large. We now briefly
discuss the details of how the various contributions to ext
sic damping were modeled.

The presence of bulk impurities in the quantum well
mainly caused by segregation of donors from the low
d-doped layer and diffusion alongz during growth. We use
the functional formni(z)51.33e2z/30 nm31015 cm23, pro-
posed in Ref. 32 to explain in-plane mobility data, for t
bulk impurity concentration in Eq.~126!. We also include
scattering from the upperd-doped layer~remote impurity
density 4.831011 cm22).

In Ref. 32 the in-plane mobility was found to be dom
nated by bulk impurity scattering. By contrast, it turns o
that neither bulk nor remote impurities contribute much
the linewidth. The behavior ofG is instead dominated by
interface roughness scattering and can in fact be qualitati
explained by it alone: Via~127!, G depends on the product o
density fluctuations at the edges, which, forE50, have larg-
est amplitude for highestNs . For finite E, electrons get
pushed towards one edge, but less so for higher densities
to screening of the external field.G(E) thus rises more
steeply for smallerNs , and the curves cross.

We take a roughness scattering potential of the fo
~128!. The height of the potential step for our quantum w
is m5257.6 meV. The roughness parameters are chose
h564.4 Å andD54 Å, to give the best fit to experimen
for the largestNs . Both h and D are in the characteristic
range found by lattice imaging techniques.54

We also find that including electron-electron scatter
does lead to a significant quantitative improvement forG, in
particular for smallE.

For uEu*1 mV/nm, the experimental linewidth saturate
This saturation can be understood as a negative feed
effect, related to the self-consistency of the memory fu
tions ~126! and ~127!. Roughly speaking, the plasmon line
width comes from the imaginary part ofML, which in turn
depends on the imaginary part ofF. Broadening of the plas
mon resonance means that ImF is peaked aroundV over
some frequency range of widthG. But, due to the constrain
of the f-sum rule,increasingG means that theheightof the
peak of ImF mustdecrease. This, in turn, limits the growth
of the memory function and rapidly saturatesG. Neglect of
the self-consistency of the memory function, as in our cal
lations, thus means that this saturation effect cannot be f
captured, as can be seen from Fig. 3.

VI. CONCLUSION

In this paper, we have dealt with a long-standing probl
in the many-body theory of extended systems: the calc
tion of collective electronic excitations and their associa
linewidths in systems that are both inhomogeneous
weakly disordered, in the sense that the random potential
be treated as a perturbation. In any real extended sys
collective excitations are subject to dissipation, causing
associated coherent, plasmon-like motion to decay into m
individual, incoherent degrees of freedom associated w
single-particle excitations. It has been common practice
the literature to describe these processes with phenom
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logical assumptions of varying degrees of refinement. T
paper, by contrast, presents a new formalism that allows
to calculate excitation energies and their lifetimes entir
from first principles.

Our approach begins with the basic notion that there
two classes of mechanisms that are responsible for diss
tion of collective electronic dynamics. The first class isin-
trinsic scattering, which occurs even in a ‘‘perfect’’ materi
or device. Here we have in mind primarily systems whe
phonon scattering is inactive, so the only source of intrin
dissipation are electronic many-body effects such as mult
particle-hole excitations. The second class of dissipat
mechanisms isextrinsic in nature, such as scattering off im
purities and disorder.

Our treatment of intrinsic scattering relies on TDFT f
the linear response. Fundamental existence theorems gu
tee that TDFT describes the linear dynamics of interact
many-electron systems in principle exactly, including dis
pation of collective degrees of freedom. In practice, howev
the success of a TDFT approach relies on the approximat
used for the linearized xc potential. The most widely us
approximation, the ALDA, has proved to be useful for ca
culating accurate excitation energies, but it produces li
widths that are strictly zero. Thus, a nonadiabatic desc
tion, which includes retardation, is required. A nonadiaba
dynamical density-functional approach which is local
space but nonlocal in time has to be formulated replacing
density with the current as basic variable~TCDFT!. As a
result, the linearized xc potential in the TCDFT respon
equation in general acquires a frequency dependence an
imaginary part, leading to finite linewidths.

To deal with extrinsic scattering, on the other hand,
make use of a powerful formal technique, the so-cal
memory function formalism. This approach can be trac
back to the relaxation time approximation, but it replaces
simple phenomenological relaxation timet with the memory
functionM (q,v), which is defined microscopically as a co
relation function between fluctuating random forces. T
memory function formalism is developed in the language
Kubo relaxation functions, which are, however, intimate
connected to the~current!density response functions.

The final step then consists in uniting the memory fun
tion formalism with linear response theory in TCDFT. W
thus arrive at a new, self-consistent theory that expresses
response function of an interacting system in the presenc
both intrinsic and extrinsic damping in terms of the ‘‘clean
interacting response function~which contains only intrinsic
damping! and the memory function~which accounts only for
extrinsic damping!.

We finally applied the theory to describing ISB plasmo
in a wide GaAs/Al0.3Ga0.7As quantum well. Using reason
able values for the roughness parameters, we obtained q
titative agreement with the experimentally measured li
width. But we also found that purely electronic damping d
to dynamical exchange and correlation makes non-neglig
contributions to the linewidth, especially for high electron
densities, where the effect can be as high as a few ten
percents.
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A further remarkable outcome of this study is the physi
insight that the ISB plasmon linewidth is primarily con
trolled by interfacial roughness, and only weakly affected
the concentration of bulk impurities. The opposite is true
the in-plane mobility, which is primarily controlled by bul
impurities.32 Thus, the correlation between ISB plasm
linewidth and in-plane mobility is rather weak, which
physically understandable since currents are flowing perp
s
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dicular to the quantum well in the former case, and para
to it in the latter.
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