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General conditions for intrinsic optical bistability at the atomic and molecular scale:
An effective spin-Hamiltonian approach
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A model for intrinsic optical bistability is presented in the case of systems that can be described as two
weakly interacting subsystems embedded in a matrix M. This model is based on an effective spin-Hamiltonian
and a semiclassical density-matrix approach. It is shown that optical bistability should occur when the inter-
action between the two subsystems fluctuates more rapidly than the characteristic time of the interaction. The
validity of the model is demonstrated in the case of bistable electron magnetic resonance, involving real spins.
It is also shown that this model provides a semiquantitative explanation of intrinsic optical bistability for Yb31

pairs in CsCdBr3 matrix.
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I. INTRODUCTION

Research on systems exhibiting intrinsic optical bistabi
~IOB! has been motivated by the hope to replace electron
photons in future data systems. Generally speaking, a sy
is bistable if it exhibits two stable output responsesR for a
single input signal or perturbationP. This property manifests
itself by a hysteresis loop in the curveR5 f (P), which re-
veals a different response of the system for upward
downward sweep of the input signal. Two ingredients
required to generate a bistable phenomenon:~i! a feedback
loop and~ii ! a nonlinear process. In the cases studied ea
the systems consist of a nonlinear medium placed in a Fa
Perot interferometer.1 For such devices the bistability is ma
roscopic, whereby the nonlinearity is brought by the medi
and the feedback loop is due to the cavity mirrors. Mo
recently, active research has been initiated in the domai
mirrorless or IOB at the most elementary atomic scale.
this paper, by ‘‘optical’’ we mean the whole spectral ran
from microwave to visible light, but it is obvious that visibl
or infrared range is required for practical applications in te
communication and data processing.

Up to now, there are only three systems in which IOB h
been observed and understood, i.e., the bistability of the
clotron resonance of a single electron in a Penning trap
InSb,2 the bistable electron paramagnetic resonance~EPR! of
shallow donor electrons in semiconductors and conduc
electrons in metallic lithium,3–5 and the bistable hysteresis o
the optical absorption in CdS.6 In the first system, the re
sponseR is the cyclotron kinetic energy and the perturbati
P is the driving frequency, the feedback loop originati
from the relativistic mass increase of the electron. In
second system, the response is the EPR intensity and
perturbation is the magnetic field or the microwave intens
The feedback loop is due to ‘‘flip-flop’’ relaxation betwee
electrons and nuclear spins inducing a nuclear polariza
known as the Overhauser effect.7 In the third system, the
responseR is the band-gap absorption coefficient and t
perturbationP is the incident laser power, the feedback lo
resulting from a reduction of the band gap produced by
0163-1829/2002/65~24!/245101~20!/$20.00 65 2451
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excitation of the electron-hole plasma.
Recently, IOB has been observed for the near-infrared

for the visible cooperative luminescence of Yb31 pairs in
halide matrices: Cs3Y2Br9 ,8 Cs3Lu2Br9 ,9,10 CsCdBr3 ,10,11

and in the Yb31/Tm31-codoped glass system.12 In these sys-
tems, the response is the rare-earth fluorescence and the
turbation is the incident laser power. However, the origin
the feedback loop is not yet understood. For most auth
the feedback loop is due to the so-called Lorentz local-fi
correction originating from interacting Yb31 ions forming
pairs.8,9,11,12 This idea is based on the previous works
Bowden and co-workers,13,14 Hopf and co-workers15 Fried-
berg, Hartmann, and Manassah16 Ben-Aryeh and
co-workers,17 Stroud, Bowden, and Allen,18 Inguva and
Bowden19 and Crenshaw and co-workers.20 They generally
consider a collection of two-level atoms in vacuum,13,15,16,18

or in a dielectric medium,14,20driven by an externally applied
coherent field. The local-field correction, which gives t
feedback loop, is due to a ground-state electric dipole-dip
interaction between these two-level atoms. A central at
absorbs the external field and induces a polarization of
nearest neighbors by interacting with the other atoms. In
dition to the ground-state interaction, Hehlenet al. consider
interactions between excited states of two ytterbium io
forming dimers, which take into account cooperative u
conversion processes.8 The role of this term is to enhance th
bistability phenomenon. However, in a recent study, Gam
lin, Lüthi, and Güdel propose that a completely differen
mechanism could be responsible for IOB
Cs3Lu2Br9 :Yb31 and CsCdBr3 :Yb31.10 The bistability is
explained as the result of laser heating effects and is
pected to occur for isolated ions instead of pairs. It th
appears that the origin of the bistability in Yb31-doped ha-
lide matrices is still beyond discussions and the situation
far from being clear.

Parallel to these studies, a controversy appears concer
the occurrence of IOB in pairs of atoms. From Heber’s wo
IOB can be expected for coupled ion pairs in solids.21 The
interactions between the two ions can be more general
the dipole-dipole interaction, and other mechanisms such
©2002 The American Physical Society01-1
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exchange or superexchange have to be taken into acc
Malyshev and co-workers suggest that the optical respo
of a dimer is a single-valued function and can never mani
a bistable behavior, only aggregates with a large numbe
ions can give a bistable optical response.22,23

In this work, we propose a treatment of IOB by an effe
tive spin-Hamiltonian model. This kind of approach is com
monly used in magnetic resonance to describe relaxa
processes in spin systems~see Refs. 24 and 25, for example!.
However, the aim of the present work is to apply the effe
tive spin approach to metal ions such as rare-earth ion
transition ions, and to discuss the conditions that a sys
has to fulfill to present a bistable behavior. The mechan
studied in this work can be described as follows. In a v
general way, the systemSunder study is always composed
two subsystemsL andK weakly interacting via an interactio
V. These two subsystems can be embedded in a mediumM.
For example, in the case of the Lorentz local-field correcti
the L system is the atom probed by the incident light, theK
system consists of the nearest neighbors of this central a
and V is the ground-state dipole-dipole interaction. In t
case of a dimer, the two subsystems are the two ions of
pair and the interactionV can be of magnetic, exchange,
superexchange type. In a very schematic way, the total
tem S can be written as

S5L ^ K1CLK, ~1!

whereCLK represents the correlation terms between the
systems. By definition, the hostM has several degrees o
freedom and thus can be treated as a ‘‘reservoir’’ or a ‘‘h
bath’’ in a steady state. Two very different cases have to
considered for the time evolution ofSunder an external per
turbation.

~i! The two weakly interacting subsystems cannot be d
tinguished experimentally and we cannot neglect the co
lation terms betweenK andL. The measurements probe th
total S system. Under steady-state conditions, the kine
equations describing the evolution ofS interacting with an
external field give a single-valued solution for the respo
of the system. This case has been already discussed by M
shev, Glaeske, and Feller,22 and will not be studied in this
work.

~ii ! The two subsystemsL and K can be distinguished
experimentally. In this case, we can isolate one system
the interaction with the other system is taken into account
an average interaction. During the time scale of the evolu
of L andK, the contribution of the correlation terms betwe
these two subsystems is neglected, so that Eq.~1! becomes

S5L ^ K. ~2!

We clearly demonstrate in this work that Eq.~2!, hereafter
referred to as the ‘‘factorization operation,’’ is based on t
following condition:

tc!
\

V
, ~3!
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wheretc , the correlation time associated with the interacti
V, measures the time during which the two subsystems re
the memory of their mutual interaction. This factorizatio
has already been pointed out as a key step for bistable
nomenon by Hopf and co-workers15 and Ben-Aryeh and
co-workers.17 However, the operation is always postulat
without any justification,17 or is explained in a heuristic man
ner, or justified by numerical simulations.15 This condition is
the origin of the controversy between Malyshev a
co-workers22 and Heber.21 The first author discusses situa
tions with tc@\/V, while Heber discusses situations wi
tc!\/V.

We show hereafter that when condition~3! is fulfilled, the
responseR of the system under steady-state conditions c
be written with two coupled equations of the type

R5
a

11b~c2v!21a
, ~4!

R5~d2v!
1

e
, ~5!

wherev is the angular frequency of the external applied fie
and coefficientsa–e are functions of control parameter
such as the temperature and the power of the incident ra
tion, and of material-dependent parameters such as the
quency of the transition and the time relaxation terms of
system. Equations~4! and ~5! correspond to the nonlinea
process and the feedback loop, respectively@see Eqs.~40!
and~41! in Sec. III A#. To get IOB, a renormalization of the
resonance frequency of the transition is necessary. By re
malization, it is meant that the frequency of the transition h
to change continuously during the interaction with the ext
nal field. In the paper, we show that this renormalization
included in Eq.~5!, which directly comes from the factoriza
tion operation and, therefore, from the conditiontc!\/V.
All systems described by Eqs.~4! and ~5! can exhibit a
bistable behavior. Figure 1 is a graphical representation
the coupled equation~4! and ~5!. The system is monostabl
when the straight line of Eq.~5! and the bell-shaped curve o
Eq. ~4! have only one crossing point@Fig. 1~a!, case~i!#. The
system is bistable when there are three crossing pointsa, b,
g @Fig. 1~a!, case~ii !# with two steady statesa andg and one
unstable stateb. Another way to represent this phenomen
is to plot the set of crossing points of these two equatio
which represent the line shape of the transition@Fig. 1~b!#. In
the monostable case, the responseR of the system exhibits a
symmetrical line shape without hysteresis. The respons
the system is the same whether the frequency is swept
ward or downward@case~i!#, which is the general situation
in spectroscopy. Under certain conditions, the theoretical
shape can be bent in such way as to describe a ‘‘shark
shape@Fig. 1~b! case~ii !#. In this case, with particular value
of the a–e parameters, the responseR becomes dependen
on the frequency sweep direction with a hysteresis wind
limited by abrupt transitions atv↑ andv↓ between the two
steady statesa andg. When the frequency is swept upwar
the system is on thea branch untilv↑ and switches abruptly
to theg branch. When the frequency is swept downward
1-2
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GENERAL CONDITIONS FOR INTRINSIC OPTICAL . . . PHYSICAL REVIEW B 65 245101
system is on theg branch untilv↓Þv↑ and switches to thea
branch. The unstableb branch cannot be recorded.

This paper is organized as follows. In Sec. II, we discu
the factorization operation and the approximations of
model. We present the spin-Hamiltonian approach, wh
leads to the kinetic equations representing the time evolu
of the S system interacting with an external radiation fie
Two situations are considered in which the two subsystemK
andL are different or identical. This approach is based o
semiclassical density-matrix formalism. In Sec. III, the p
vious kinetic equations are solved under steady-state co
tions. We obtain the coupled Eqs.~4! and~5! and a continu-
ous shift of the frequency of the transition under stu
resulting from the factorization operation. We discuss
condition for the occurrence of IOB, and demonstrate tha
order to obtain a bistable ‘‘shark fin’’ shape as shown in F
1~b!, that is, to obtain a bistability phenomenon, the ma
mum shift of the frequency must be larger than the homo

FIG. 1. ~a! Graphical representation of the responseR of the
system@Eqs. ~4! and ~5!# versus the frequencyv of the external
field. Case~i! corresponds to a monostable situation with one cro
ing point between the bell-shaped response@Eq. ~4!# and the
straight line@Eq. ~5!#. Case~ii ! corresponds to a bistable situatio
with three steady-state points~a, b, g!. ~b! Principle of bistability
and hysteresis of the response of the system induced by an ext
field. The monostable transition~i! and the bistable ‘‘shark fin’’
shape transition~ii ! are represented by the discontinuous line a
full line, respectively.
24510
s
e
h
n

.

a
-
di-

e
n
.
-
-

neous linewidth of the transition. Based on this criterion,
obtain a ‘‘phase diagram’’ for bistability ranging from th
microwave domain up to the visible domain. The effects
the material-dependent parameters as well as the contro
rameters are discussed. In Sec. IV, we illustrate the prev
model in the microwave range for the case of bistable m
netic resonance of electrons in semiconductors such
b-Ga2O3 or InP and in metallic Li. This well-understoo
example of IOB validates all the required conditions d
cussed in Sec. II. In a second part, the phase diagram is
to discuss the possibility of a bistability in the infrared a
visible range in the particular case of ytterbium ion pairs. W
show that the effective spin approach can qualitatively
plain with a correct order of magnitude all the previous
sults obtained in the CsCdBr3 :Yb31 system.

II. SPIN-HAMILTONIAN APPROACH

A. Position of the problem

Let us consider a systemS composed of two weakly in-
teracting subsystemsK andL connected by an interactionV
and embedded in a mediumM. The two subsystemsK andL
can be, for example, two different or identical ions, or
cluster of ions characterized by a complex energy-level d
gram. An effective spinK andL is associated to each sub
system. As we focus on a particular transition by applying
electromagnetic field of angular frequencyv close to the
resonance frequency of the transition, the two levels c
nected by the field can be described by an effective spi1

2.
The contribution of the other levels to the evolution of t
system is taken into account via phenomenological rel
ation terms. In the following, we consider only an interacti
between two single ions; however all the results can be e
ily generalized to larger clusters of interacting atoms or io

The effective spin-Hamiltonian of theSsystem in the lat-
tice M is written as

H5HL1HK1HM1V, ~6!

where HL5\vLLz and HK5\vKKz are the effective spin
Hamiltonians associated with the isolated two-level syste
L and K, respectively, with\vL and \vK being the corre-
sponding energy splittings.HM is the energy operator de
scribing the lattice. By definition, the interactionV between
K andL is Hermitian and is written in a very general way

V5(
p

~FpS~p!1Fp* S~p1 !!, ~7!

whereFp are constants that represent the interaction andS(p)

are products of two operators associated with the two s
systems. The sign1means the adjoint operator and* repre-
sents the complex conjugate. Equation~7! can be expanded
as follows:

V5F0LzKz1F1L1K21F1* L2K11F2L1Kz1F2* L2Kz

1F3LzK11F3* LzK21F4L1K11F4* L2K2 , ~8!

where Lz,6 and Kz,6 are effective spin operators. For ex
ample, in the case of a scalar interactionA, Eq. ~8! readsV

-

nal

d
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5ALzKz1(A/2)(L1K21L2K1). For a dipole-dipole type
interaction, see Refs. 24 and 25.

T1,2
L int

andT1,2
K int

represent the longitudinal~subscript 1! and
transverse~subscript 2! relaxation terms due to the intera

tion V and associated withL andK, respectively, andT1,2
Lother

and T1,2
Kother

represent the longitudinal and transverse rel
ation terms due to all the other mechanisms. These terms
be due to stimulated or spontaneous emission, and take
account the phenomenological relaxation terms resul
from the complex energy-level diagram of each subsyst
tc denotes the correlation time associated withV. K and L
are correlated fort!tc , and the two subsystems becom
progressively less correlated whent increases untilt@tc ,
where the correlations vanish.tc is thus a measure of th
time during which the two subsystems retain the ‘‘memor
of their mutual interaction.

The density operatorr of the whole system is written in
the form

r~ t !5sK~ t ! ^ sL~ t ! ^ sM~ t !1rKL~ t !1rLM~ t !1rKM~ t !,
~9!

where sK(t), sL(t), and sM(t) are the reduced density
matrix operators of theK, L, and M systems, respectively
They are obtained fromr by taking the trace over all the
variables ofL and M, K and M, andL and K, respectively,
i.e., sK5TrLM(r), sL5TrKM(r), and sM5TrLK(r). The
other termsrKL, rLM, andrKM of Eq. ~9! are the correla-
tions terms betweenK andL, L andM, andK andM, respec-
tively. In the following,sS(t) denotes the density operator
the S system given bysS(t)5sK(t) ^ sL(t)1rKL(t). The
time evolution ofS is obtained by solving the von Neuman
equation

d

dt
r~ t !5

1

i\
@H,r~ t !#. ~10!

Two cases have to be considered. In the first one, the in
actionV does not fluctuate, which corresponds totc@\/V.
The two subsystemsL andK cannot be distinguished and th
total systemS5L1K must be studied. TheV interaction is
time independent and gives a multiplet structure in
energy-level diagram ofS. For example, this case is com
monly encountered in electron paramagnetic resonance s
troscopy with hyperfine interactions between an electron s
and a nuclear spin. Under the conditiontc@\/V, the contri-
bution of the correlation terms betweenL and K cannot be
neglected in Eq.~9! and the total density-matrix operatorr
must be worked out. We will not discuss this case further,
Ref. 22 for more details. In the second case, the interactioV
fluctuates faster than\/V that istc!\/V. It means that the
multiplet structure resulting fromV disappears and each su
system feels an average interactionV.24 One of the two sub-
systems can be probed independently of the other that is
undetected. The undetected system influences the mea
one via a mean field proportional toV. Under this condition,
V becomes another relaxation mechanism for the two s
systemsL andK, which can be included and associated w
24510
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the hostM. TheFp terms of Eqs.~7! and~8! become fluctu-
ating functions of time characteristic of the medium, andV
can be written as

V~ t !5(
p

@Fp~ t !S~p!1Fp* ~ t !S~p1 !#. ~11!

In the following ~Sec. II B!, we show that the conditiontc

!\/V is equivalent totc!T1,2
L int

, T1,2
K int

. If Eq. ~10! is inte-

grated betweent and t1Dt with tc!Dt!T1,2
L int

, T1,2
K int

, the
calculation can be limited to second order in the perturbat
and the contribution of the correlation terms to Eq.~9! can be
neglected. It means that we can write in this case

r~ t !5sK~ t ! ^ sL~ t ! ^ sM~ t !, ~12!

sS~ t !5sK~ t ! ^ sL~ t !.

This factorization operation is at the origin of the so-call
renormalization of the resonance frequency. This is the s
ation studied in this work. Rewritten in the interaction pi
ture, Eq.~10! becomes

d

dt
r̄~ t !5

1

i\
@Ṽ~ t !,r̃~ t !#, ~13!

where

r̃~ t !5ei ~HL1HK1HM !t/\r~ t !e2 i ~HL1HK1HM !t/\,

Ṽ~ t !5ei ~HL1HK1HM !t/\V~ t !e2 i ~HL1HK1HM !t/\,

S̃~p!~ t !5ei ~HL1HK!t/\S~p!e2 i ~HL1HK!t/\.

By integrating Eq.~13! from t to t1Dt and taking the trace
over all the variables of the hostM, we obtain

Ds̃S~ t !5s̃S~ t1Dt !2s̃S~ t !5
1

i\ E
t

t1Dt

dt8TrM@Ṽ~ t8!,r̃~ t !#

1S 1

i\ D 2E
t

t1Dt

dt8E
t

t8
dt9TrM†Ṽ~ t8!, @Ṽ~ t9!,r̃~ t9!#‡.

~14!

Under the conditiontc!\/V, the interactionV is incorpo-
rated in the host and behaves as another relaxation me
nism. SinceM, by definition, possesses many degrees
freedom, it quickly dissipates the effects of the interactio
This means that the mediumM can be considered in a sta
tionary state and is constant in the interaction picture:

s̃M~ t !5s̃M~0!5sM. ~15!

As uVu!uHKu, uHLu, uHMu, the density operatorr̃(t) does
not vary significantly betweent andt9 for an integration time

Dt!T1,2
L int

, T1,2
K int

. We can, therefore, substituter̃(t9) by r̃(t)
in the second integral of Eq.~14!. This approximation is
equivalent to stop the calculation up to second order in p
turbation. r̃(t) depends only on its present value and los
the memory of its past, which is the well-known Marko
1-4
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approximation. The double commutator in the second in
gral of Eq.~14! is proportional to the time correlation func
tion ^Ṽ(t8)Ṽ(t9)&M5TrM@s̃MṼ(t8)Ṽ(t9)#. This function
characterizes the correlations between the interaction
times t8 and t9. SinceM quickly dissipates the effect of th
interaction, the time correlation function vanishes fort5t8
2t9@tc . Therefore, for an integrating timeDt@tc , the cor-
relations do not contribute to Eq.~14! and then r̃KL(t),
r̃LM(t), and r̃KM(t) can be neglected. Taking into accou

Eq. ~15! and the inequalitytc!Dt!T1,2
L int

, T1,2
K int

, Equation
~14! becomes

Ds̃S~ t !5
1

i\ E
t

t1Dt

dt8TrM@Ṽ~ t8!,s̃K~ t ! ^ s̃L~ t ! ^ s̃M#

1S 1

i\ D 2E
t

t1Dt

dt8E
t

t8
dt9TrM†Ṽ~ t8!,@Ṽ~ t9!,s̃K~ t !

^ s̃L~ t ! ^ sM#‡. ~16!

If we introducet5t82t9, we can replace* t
t1Dtdt8* t

t8dt9 by
*0

Dtdt* t1t
t1Dtdt8 so that Eq.~16! can be written as26,27

Ds̃S~ t !

Dt
5

1

i\

1

Dt Et

t1Dt

dt8TrM@Ṽ~ t8!,s̃K~ t ! ^ s̃L~ t ! ^ s̃M#

2
1

\2

1

Dt E0

Dt

dtE
t1t

t1Dt

dt8TrM†Ṽ~ t8!,

@Ṽ~ t82t!,s̃K~ t ! ^ s̃L~ t ! ^ s̃M#‡. ~17!

As tc!Dt and^Ṽ(t8)Ṽ(t9)&M50 for t@tc , we set the up-
per limit of integration ont at 1`, and att the lower limit of
integration ont8 so that we may replace*0

Dtdt* t1t
t1Dtdt8 by

*0
1`dt* t

t1Dtdt8. Finally Eq. ~17! becomes

Ds̃S~ t !

Dt
5

1

i\

1

Dt Et

t1Dt

dt8TrM@Ṽ~ t8!,s̃K~ t ! ^ s̃L~ t ! ^ s̃M#

2
1

\2

1

Dt E0

1`

dtE
t

t1Dt

dt8TrM†Ṽ~ t8!,@Ṽ~ t8

2t!,s̃K~ t ! ^ s̃L~ t ! ^ s̃M#‡. ~18!

B. Validity of the factorization operation

We analyze in this section the validity of the factorizati
operation by giving the order of magnitude of all the term
that are neglected in Eq.~18!. The discussion is based on th
treatment done for the case of a small system in interac
with a reservoir in Ref. 26. It is important to notice that th
discussion is valid for only weak interactionsV compared to
the frequency of the transition. The two important appro
mations, namely,~i! the calculation limited to second orde
in perturbation and~ii ! the factorization of the density opera
tor r(t)5sK(t) ^ sL(t) ^ sM can be checked by considerin

the order of magnitude ofT1,2
L int

, T1,2
K int

.

24510
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Since ^Ṽ(t8)Ṽ(t9)&M50 for t5t82t9@tc , the second
integral can be restricted to an areatcDt and Eq.~18! gives

Ds̃S~ t !

Dt
;

1

i\
Vs̃S~ t !2

1

T1,2
L,K int s̃

S~ t ! ~19!

with

1

T1,2
L,K int 5

V2tc

\2 . ~20!

Equation ~20! and the conditiontc!\/V give tc!T1,2
L,K int

and Vtc /\!1. It is important to notice that in absence

fluctuations, we obtain 1/T1,2
L,K int

;V/\. Under the condition

tc!\/V, the relaxation rates 1/T1,2
L,K int

are shortened by a
factor Vtc /\!1. Since the homogeneous linewidth of th

transition is proportional to 1/T2
L,K int

, the conditiontc!\/V
can be referred to as a narrowing condition.

The second-order calculation and the factorization ope
tion can be justified by an estimation of the order of mag
tude of the contribution of the third-order terms and of t
correlation terms to Eq.~14!, respectively.

The third-order terms are of the order of (1/T1,2
L,K int

)

3(Vtc /\). The inequality Vtc /\!1 gives (1/T1,2
L,K int

)

3(Vtc /\)!1/T1,2
L,K int

, which justifies to limit the calculation
up to second order in perturbation as the third-order term

negligible compared to 1/T1,2
L,K int

.

If we supposerKL(t), rLM(t), rKM(t)Þ0 at time t, the
correlation terms bring two contributions to Eq.~19!.

~1! A first-ordercontribution. As the correlations betwee
the two subsystems disappear fort@tc , the order of mag-
nitude of such terms isVtc /Dt. Under the conditiontc
!Dt, we haveVtc /Dt!V, these terms are thus negligib
compared toV in Eq. ~19!.

~2! A second-ordercontribution. As rKL(t), rLM(t),
rKM(t)Þ0 at time t, these terms result from an interactio
before timet between the two subsystemsL and K. There-
fore, they bring a second-order contribution toDs̃S(t)/Dt,
which is due to an interaction before timet and to an inter-
action betweent and t1Dt and which can be written a
2(1/\2)(1/Dt)*2`

t dt8* t
t1Dtdt9^Ṽ(t8)Ṽ(t9)&Ms̃S(t).26 As

the time correlation function̂Ṽ(t8)Ṽ(t9)&M vanishes fort

@tc , these terms are of the order of (1/T1,2
L,K int

)(tc /Dt). Un-

der the condition tc!Dt, we have (1/T1,2
L,K int

)(tc /Dt)

!1/T1,2
L,K int

. Therefore, the second-order contributions of t

correlations terms are negligible compared to 1/T1,2
L,K int

in Eq.
~19!.

Finally, for tc!Dt, the factorization ofr(t) is valid and
the contributions of the correlation terms in Eq.~14! can be
neglected. Equation~18! is obtained for an integration time

Dt that fulfills the inequalitytc!Dt!T1,2
L int

, T1,2
K int

. The con-

ditions tc!Dt and Dt!T1,2
L int

, T1,2
K int

justify the factorization
operation and the calculation up to second order in pertu
1-5
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tion, respectively. These simplifications are only due to
fundamental conditiontc!\/V, which is equivalent totc

!T1,2
L,K int

.
Considering the left-hand sideDs̃S(t)/Dt of Eq. ~18!,

which is equal to@s̃S(t1Dt)2s̃S(t)#/Dt, if we assumetc
!Dt, but with Dt sufficiently small so that the changes
s̃S(t) are linear inDt, we can replaceDs̃S(t)/Dt by the
time derivativeds̃S(t)/dt. It is important to realize that the
above kinetic equations cannot be use to describe chang
s̃S(t) over time intervals shorter thantc .

C. Kinetic equations of theS system

After some calculations, Eq.~18! rewritten in the Schro¨-
dinger picture becomes

dsS~ t !

dt
5

1

i\ FHK1HL1(
p

~^Fp&S
~p!1^Fp* &S~p1 !!,sK~ t !

^ sL~ t !G2
1

\2 (
p,q

E
0

1`

dt^Fp~ t !Fq~ t

1t!&e2 ivs~q!t@S~p!,S~q!$sK~ t ! ^ sL~ t !%#

2
1

\2 (
p,q

E
0

1`

dt^Fq~ t !Fp~ t1t!&

3e2 ivs~q!t@$sK~ t ! ^ sL~ t !%S~q!,S~p!#, ~21!

where ^Fp(t)Fq(t1t)& are the time correlation function

andvS(q)
are the eigenvalues associated with theS(q) opera-

tor. Only the secular terms are kept in Eq.~21!. For most
types of interactionV, only the ^Fp(t)Fp1(t1t)& terms
contribute to Eq.~21!.24 Under the Markoff approximation
the time correlation functions, which are real and even fu
tions of t, can be written as follows:28

^Fp~ t !Fp1
~ t1t!&5^uFp~0!u2&e2utu/tc. ~22!

Combining Eqs.~21! and ~22! gives

dsS~ t !

dt
5

1

i\ FHK1HL1(
p

~^Fp&S
~p!1^Fp* &S~p1 !!,sK~ t !

^ sL~ t !G2
1

2\2 (
p

Jpp1~vS~p!
!†S~p!,@S~p1!,sK~ t !

^ sL~ t !2$sK~ t ! ^ sL~ t !%0#‡, ~23!

where we have neglected imaginary terms responsible f
second-order shift of the resonance, which are too weak t
detected experimentally in most cases.24 The spectral density

termsJpp1(vS(p)
) in Eq. ~23! are the Fourier transform of th

time correlation functions and are given by

Jpp1~vS~p!
!5^uFpu2&

2tc

11vS~p!2
tc

2
. ~24!

These terms are proportional to 1/T1,2
L,K int

and, in particular,
are related to the linewidth of the transitions. The te
24510
e

of
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@sK(t) ^ sL(t)#0 in Eq. ~23! is the density operator of the
systemS at thermal equilibrium.24

Experimentally, we have access to the macrosco
quantum-mechanical average^Q& of an operatorQ. If Q is
acting on theL system then̂Q&5TrL(sLQ) and the kinetic
equation associated to this operator is

d^Q&
dt

52
1

i\ K FHK1HL1(
p

~^Fp&S
~p!1^Fp* &S~p1 !!,QG L

2
1

2\2 (
p

Jpp1~vS~p!
!^†S~p1!,@S~p!,Q2Q0#‡&.

~25!

It is important to note that the termS
p

(^Fp&S
(p)

1^Fp* &S(p1)) induces a shift in the resonance frequency
the system, which is the so-called renormalization of
resonance frequency. It comes from the factorization ope
tion of the total density operator discussed in Sec. II B. In
following, we will focus on the quantum-mechanical avera
of theLz , Kz andL1 , K1 operators, which are, respectivel
linked to the population inversion between the two lev
under study and to the off-diagonal element of the den
matrix by the following expressions:

^Lz&5 1
2 ~sbb

L 2saa
L !, ~26!

^L1&5sab
L , ~27!

where the subscriptsa andb refer to the ground and excite
states, respectively.̂Lz& represents the polarization of th
effective spinL.

Taking the general form ofV given by Eq.~8!, applying
an electromagnetic field with angular frequencyv on theL
system, considering other relaxation mechanisms represe

by T1,2
Lother

, T1,2
Kother

under the conditiontc!V1
21, whereV1 is

the Rabi frequency, and working in the quasiresonant
proximation uv2vLu!vL , in the slowly varying envelope
approximation, and in the rotating coordinate system,
~25! is written as follows after some lengthy calculatio
detailed in the Appendix:

~i! Different L, K systems.

d^Lz&
dt

52
3

4

1

T1
LL ~^Lz&2^Lz&

0!1
3

4

1

T1
LK ~^Kz&2^Kz&

0!

2
1

T1
Lother~^Lz&2^Lz&

0!1
iV1

2
~^L28 &2^L18 &!,

~28!

d^L18 &
dt

51 i S vL2v1
^F0&

\
^Kz& D ^L18 &2

1

T2
L ^L18 &

2 iV1^Lz&, ~29!
1-6
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d^Kz&
dt

52
3

4

1

T1
KK ~^Kz&2^Kz&

0!1
3

4

1

T1
LK ~^Lz&2^Lz&

0!

2
1

T1
Kother~^Kz&2^Kz&

0!, ~30!

where L68 5L6e6 ivt. The relaxation rates 1/T1
LL , 1/T1

LK ,
1/T2

L , and 1/T1
KK are defined in the Appendix. If we apply a

electromagnetic field to theK system, we obtain similar ki-
netic equations by replacingL by K in the above equations

~ii ! Identical L, K systems.

d^Lz&
dt

52
1

T1
L ~^Lz&2^Lz&

0!1 i
V1

2
~^L28 &2^L18 &!,

~31!

d^L18 &
dt

5 i FvL2v1S ^F0&
\

22
^F1&

\ D ^Lz&G^L18 &2
1

T2
L ^L18 &

2 iV1^Lz8&, ~32!

where the relaxation terms 1/T1
L and 1/T2

L are defined in the
Appendix.

The factorization operation shifts the resonance freque
of the transition by^F0&/\^Kz& and (̂ F0&/\22^F1&/\)
^Lz& for different and identicalL, K systems, respectively
For identical systems,̂F0&52^F1& when the interactionV
is only a scalar interaction, which implies that there is
shift in this case. Therefore, for identicalL, K systems in
scalar interaction, it is not possible to obtain a bistabil
phenomenon because there is no renormalization of the r
nance frequency, a result already obtained by Heber.21 More-
over, it is important to notice that even for a very gene
interaction given by Eq.~8!, a lot of terms can be neglecte
as a consequence of the quasiresonant and the slowly va
envelope approximations~see the Appendix!, and only the
F0 andF1 terms participate in the shift of the resonance.

III. CONDITION FOR INTRINSIC OPTICAL BISTABILITY

A. Steady-state solutions of the kinetic equations

Let us consider successively the two situations whereL, K
systems are different or identical. Under steady-state co
tions, the time derivative in the kinetic equations~28!–~32!
equals zero.

~i! Different L, K systems. Equation~30! gives

^Kz&5^Kz&
02 f L^Lz&

0sL , ~33!

where

f L5
3

4T1
LKS 3

4T1
KK 1

1

T1
KotherD ~34!

and

sL5
^Lz&

02^Lz&

^Lz&
0 . ~35!
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f L is called the leakage factor and characterizes the e
ciency of the polarization transfer from the effective spinL
(^Lz&) to the effective spinK (^Kz&), with 0< f L<1. When
the V interaction is the only relaxation mechanism for theK
system,f L is maximum and in some cases can be equal to
If other relaxation mechanisms coexist withV, then f L is
lesser than 1@see Eq.~34!#. sL is the saturation factor tha
can vary betweens50 ~thermal equilibrium! to s51 ~equal-
ity of populations!. This factor is directly proportional to the
intensity of the transition.

Let vL
eff denote the effective resonant angular frequen

of the L system,

vL
eff5vL1

^F0&
\

^Kz&5vL1DvL ~36!

whereDvL is the renormalization of the resonant frequen
vL . The maximum valueDvL

max of DvL is given by

DvL
max5

f L^F0&^Lz&
0

\
. ~37!

In this equation̂ Lz&
0 is the polarization at thermal equilib

rium, which is proportional to the inversion population@Eq.
~26!#.

In the case of magnetic resonance spectroscopy,\vL is
small compare to the thermal energykBT. The thermal equi-
librium polarization^Lz&

0 is thus temperature dependent.
the high-temperature approximation and for an effective s
L5 1

2 , ^Lz&
052\vL/4kBT, DvL

max is thus given by

DvL
max52

f L^F0&vL

4kBT
. ~38!

In the case of infrared and visible spectroscopy,\vL is high
compared to the thermal energykBT and then̂ Lz&

0 is tem-
perature independent. In this spectroscopic range, from
to ambient temperature, only the ground state is popula
that is,^Lz&

052 1
2 andDvL

max is thus given by

DvL
max52

f L^F0&
2\

. ~39!

By combining Eqs.~33!–~37!, we obtain

sL5
V1

2T1
LT2

L

11T2
L2~vL

eff2v!21V1
2T1

LT2
L , ~40!

sL52~vL
eff2vL

eff 0!
1

DvL
max5

vL
eff 02v

DvL
max 2

vL
eff2v

DvL
max ,

~41!

which correspond to Eqs.~4! and~5! defined in the Introduc-
tion and to Fig. 1. The angular frequencyvL

eff 0 corresponds
to vL

eff at thermal equilibrium and the longitudinal and tran
verse relaxation termsT1

L andT2
L are written as follows:

1

T 1
L52

3

4 S 1

T1
LK f L2

1

T1
LLD 1

1

T1
Lother, ~42!
1-7
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1

T2
L 5

1

T2
L int 1

1

T2
Lother. ~43!

~ii ! Identical L, K systems. By the same procedure, Eq
~31! and ~32! in steady-state conditions give Eqs.~40! and
~41! with vL

eff andDvL
max

vL
eff5vL1S ^F0&

\
22

^F1&
\ D ^Lz&, ~44!

DvL
max5S ^F0&

\
22

^F1&
\ D ^Lz&

0 ~45!

and

1

T1
L 52

3

4 S 1

T1
LK2

1

T1
LLD 1

1

T1
Lother, ~46!

1

T2
L 5

1

T2
L int 1

1

T2
Lother. ~47!

It is interesting to note that there is no leakage fac
when L and K are identical. Moreover, Eqs.~44! and ~45!
clearly show that there is no shift of the frequency, and th
no possibility of bistability for a scalar interaction betweenL
andK, as^F0&52^F1& in this case.

All the previous calculations can be summarized by
four-step mechanism~Fig. 2!. The system under study i

FIG. 2. Four-step mechanism of bistability. The system un
study is composed of two weakly interacting subsystemsL andK.
The first step represents the nonlinear process: excitation of tL
system with a resonant electromagnetic field. The second step
resents the polarization transfer betweenL and K, and the time
averagê Kz& becomes a function of the saturation factorsL @Eq.
~33!#. In the third step,vL

eff is renormalized and becomes a functio
of sL @Eq. ~36!# under the conditiontc!\/V. The fourth step rep-
resents the feedback loop where the saturation factor becom
function of itselfsL5 f (sL) @Eqs.~40! and ~41!#.
24510
r

s

a

composed of two weakly interacting subsystemsL and K.
The first step is the excitation of theL system with a resonan
electromagnetic field, which is, even for a very simple tw
level system, a nonlinear process. In the second step, a
larization transfer occurs betweenL andK through the inter-
actionV, and the polarization̂Kz& of theK system becomes
a function of the saturation factorsL @Eq. ~33!#. In the third
step, if the interaction fluctuates such as the conditiontc
!\/V is fulfilled, the effective resonant angular frequency
the L systemvL

eff is renormalized, which means thatvL
eff

becomes a function ofsL @Eq. ~36!#. In the fourth step, as
vL

eff changes continuously during the excitation, the satu
tion factor becomes a function of itselfsL5 f (sL), which
corresponds to the feedback loop@Eqs. ~40! and ~41!#. This
self-consistent equation is a third-degree equation that
exhibit three solutions—a signature of bistablity.

B. Condition for the occurrence of bistability

If we except the particular case of two identicalL, K
systems in scalar interaction, theL system becomes bistabl
when the straight line of Eq.~41! exhibits three crossing
points with the curve of Eq.~40! as shown in Fig. 1~a!. This
situation occurs when the slope of Eq.~41! is smaller than
the tangent at the inflection point of the curve of Eq.~40!. On
the left side of Eq.~40!, this condition gives

uDvL
maxu.

8

3)T2
L

1

sL
r A12sL

r
~48!

with sL
r 5V1

2T1
LT2

L/(11V1
2T1

LT2
L) being the saturation facto

at the resonance@v5vL
eff in Eq. ~40!#. This condition can be

generalized by taking the value ofsL
r that minimizes the right

side of Eq.~48!, that is,sL
r 5 2

3 , which gives for the bistability
condition

uDvL
maxu.

4

T2
L , ~49!

whereuDvL
maxu andT2

L are given in rad s21 and seconds re
spectively.

Finally, there should exist at least one value of the con
parameters that can give three solutions for Eqs.~40! and
~41! when condition~49! is fulfilled. Three control param-
eters can be varied experimentally:~i! the incident power of
the electromagnetic field, proportional to the square of
Rabi frequencyV1

2, ~ii ! the angular frequencyv of the inci-
dent field, and~iii ! the external temperature. Equation~49!
can be rewritten by considering the homogeneous linew
Gh of the transition given byGh51/pT2

L :

uDvL
maxu.2Gh , ~50!

whereuDvL
maxu andGh are given in cm21.

As a conclusion, in order to obtain a bistable ‘‘shark fin
shape as shown in Fig. 1~b!, the maximum shift of the fre-
quency induced by the fluctuating interaction must be lar
than twice the homogeneous linewidth of the transition.
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C. Discussion of the parameters controlling IOB

All the equations obtained in the previous part are c
trolled by different parameters, which can be separated
two classes: those related to the structure and propertie
the solid ~internal parameters! and those that can be con
trolled experimentally~external parameters!. The internal pa-
rameters are the longitudinal and transverse relaxation tim
T1

L and T2
L , the leakage factorf L that depends on all the

possible relaxation mechanisms, and the interactionV be-
tween the twoL andK subsystems. The control paramete
are the frequency of the incident fieldv and the powerP of
the incident field linked to the Rabi frequency by the follow
ing equation:

P5
mce0

q2

\vL

Fab
V1

2, ~51!

whereFab is the oscillator strength of the transition,m andq
are the electron mass and charge, respectively, ande0 is the
permittivity of the vacuum. The temperature is also a ‘‘hi
den’’ control parameter, as it may influence the relaxat
terms as well as the maximum shift of the frequencyDvL

max

through the leakage factor, and in the case of magnetic r
nance spectroscopies (\vL!kBT) through the thermal equi
librium population@see Eq.~38!#.

When the system is under bistable conditions, all the c
trol parametersv, P, andT can produce a bistable respon
of the transition. In the following we will only focus on th
frequencyv and the powerP of the external field. Indeed
the influence of the temperature on the relaxation terms
be very different from one system to another and thus can
be discussed in a general way. Consequently we conside
two possible cases of bistable response: a hysteresis ind
by upward and downward sweeps of the frequency@Fig.
3~a!# and a hysteresis induced by a variation of the incid
power@Fig. 3~b!#. In the first case, the position of the line o
Eq. ~41! and the amplitude of the bell-shaped curve of E
~40! are kept constant. The variation of the frequencyv cor-
responds to a horizontal shift of Eq.~40!. In the case of a
hysteresis induced by a variation of the incident power,
positions of the straight line and of the bell-shaped curve
fixed. Increasing the powerP of the incident field leads to a
broadening and an increase of the bell-shaped curve@Fig.
3~b!#.

The effects of the internal parameters on the bistable
sponse are gathered in Figs. 4–6, which represent the ef
of the leakage factorf L , the longitudinal relaxation termT1

L ,
and the transverse relaxation termT2

L , respectively. Each
simulation in Figs. 4–6 is obtained by a numerical resolut
of the coupled equations~40! and ~41!. Both the frequency-
induced hysteresis@Figs. 4~a!, 5~a!, and 6~a!# and the power-
induced hystereses@Figs. 4~b!, 5~b!, and 6~b!# are shown. All
the simulations are performed with dimensionless para
eters.

The leakage factorf L influences the bistability as show
in Figs. 4~a! and 4~b!. The figures are calculated forf L50,
0.1, 0.2, 0.4, 0.6, and 1, which correspond touDvL

maxuT2
L

50, 1, 2, 4, 6, and 10, respectively.T1
L andT2

L are fixed in
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the simulation. The transitions of Fig. 4~a! are calculated
with a fixed value of the incident power, indicated by a
arrow in Fig. 4~b!. The hysteresis curves of Fig. 4~b! are
calculated with a fixed value of the incident frequency, in
cated by an arrow in Fig. 4~a!. The leakage factor influence
DvL

max @Eq. ~37!# and thus the shape of the bent transition
shown in Fig. 4~a!. When f L increases, the shape of the lin
becomes more and more asymmetrical until a critical po
corresponding tof L50.4 ~and thus touDvL

maxuT2
L54!, where

the system becomes bistable. As already shown in Sec.
the boundary between the monostable and bistable situa
corresponds touDvL

maxuT2
L54. For uDvL

maxuT2
L>4, the re-

sponse of the system becomes dependent on the swee
rection of the frequency as well as on the sweep direction
the incident power as shown in Fig. 4~b!. For f L,0.4, the
intensity remains independent of the power sweep direct
When f L increases in the bistable regime@Fig. 4~b!#, the
hysteresis loop is shifted towards lower power and appe
for a lower value of the intensity. All these simulations r
flect the effects of the maximum frequency shiftDvL

max

through the leakage factor on the bistable response of
system.

FIG. 3. Origin of the frequency-induced hysteresis~a! and the
power induced-hysteresis~b!. Cases~i!–~iii ! correspond to three
different values of the frequency or of the power of the incide
electromagnetic field. Case~ii ! corresponds to a bistable situatio
with three crossing points~a, b, g!.
1-9
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Figures 5~a! and 5~b! gather the effects of the longitudina
relaxation termT1

L , which is directly linked to the lifetime of
the excited state of the transition. All the simulations a
performed with a fixed value ofDvL

max,0 and T2
L corre-

sponding touDvL
maxuT2

L510. The transitions of Fig. 5~a! are
obtained with a fixed value of the incident power@indicated
by an arrow in Fig. 5~b!#, and the curves of Fig. 5~b! are
obtained with a fixed value of the incident frequency@indi-
cated by an arrow in Fig. 5~a!#. WhenT1

L increases, the in-
tensity of the transition increases@see the multiplication fac-
tors in Fig. 5~a!#. This can also be seen in Fig. 5~b! for high
T1

L , where the intensity reaches its limit value for lowe
power of the incident field. For highT1

L , the transition is
more easily saturable. The most important influence ofT1

L is
shown in Fig. 5~b!. By increasingT1

L , the hysteresis loop
shifts towards lower power as the transition can be satura
more easily, and the width of the hysteresis loop drastica

FIG. 4. Effect of the leakage factorf L on optical bistability. The
simulations are performed with dimensionless parameters.T1

L , T2
L

are fixed andDvL
max is taken as negative.~a! Intensity versus fre-

quency, the power is set at the value indicated by an arrow in~b!.
~b! Intensity versus incident power, the frequency is set at the va
indicated by an arrow in~a!. f L50.1, 0.2, 0.4, 0.6, and 1 correspond
to uDvL

maxuT2
L51, 2, 4, 6, and 10, respectively. The critical poin

between the monostable and bistable situation is found
uDvL

maxuT2
L54.
24510
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decreases.T1
L has thus a strong influence on the bistab

properties, and a longT1
L is preferable as the phenomeno

can be obtained for low power of the incident field.
The effects of the transverse relaxation termsT2

L are gath-
ered in Figs. 6~a! and 6~b!. All the simulations are obtained
with fixed values ofT1

L andDvL
max,0. The valuesT2

L51, 4,
10, and 50 correspond touDvL

maxuT2
L51, 4, 10, and 50 in our

simulations. The effect ofT2
L is different from that ofT1

L .
WhenT2

L increases, the homogeneous linewidthGh51/pT2
L

of the transition decreases. Moreover, in the bistable regi
increasingT2

L does not induce an important shift in the pos
tion of the hysteresis loop as previously seen forT1

L , but the
width of the loop drastically increases revealing a stron
bent transition as shown in Fig. 6~a!.

From the previous simulations we can conclude that
systemL will exhibit a bistability if the following conditions
are fulfilled: ~i! The homogeneous transition linewidt
should be very small implying a long transverse relaxat
time T2

L . ~ii ! The longitudinal relaxationT1
L should be suffi-

ciently long to obtain a moderate saturability of the transiti
at rather low incident power.~iii ! uDvL

maxu should be high

e

r

FIG. 5. Effect of the longitudinal relaxation termT1
L on optical

bistability. The simulations are performed with dimensionless
rameters.DvL

max,0 andT2
L are fixed withuDvL

maxuT2510. ~a! Inten-
sity versus frequency, the power is set at the value indicated b
arrow in ~b!. ~b! Intensity versus incident power, the frequency
set at the value indicated by an arrow in~a!.
1-10
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enough implying a strong interactionV between the two sub
systems and a high value of the leakage factorf L . To obtain

a strongf L , the relaxation rate 1/T1
Kother

has to be very smal
compared to 1/T1

KK @see Eq.~34!#, which means that the
relaxation terms of theK system induced by the interactionV
should be predominant in order to maximize the value off L .
All the other relaxation terms of theK system contribute to a
decrease of the efficiency of the polarization transfer
tween the two subsystems. It is important to notice thaV
should be strong enough to give high value ofuDvL

maxu, but
not too strong. Indeed, the previous treatment is based on
two conditionsuVu!uHKu, uHLu, uHMu and tc!\/V, which
implies that we can perform a perturbation treatment of
spin Hamiltonian and thattc is fast enough to average theV
interaction. The conditiontc!\/V gives the higher limit of
V. If we assume that a lower limit oftc is 10213 s, which
corresponds to a typical correlation time for the motion
conduction electrons in semiconductors, and if we assu
that the conditiontc!\/V gives a ratio\/V at least one
order of magnitude higher thantc , then we get V
<30 cm21.

FIG. 6. Effect of the transverse relaxation termT2
L on optical

bistability. The simulations are performed with dimensionless
rameters.T1

L andDvL
max,0 are fixed.~a! Intensity versus frequency

the power is set at the value indicated by an arrow in~b!. ~b!
Intensity versus incident power, the frequency is set at the va
indicated by an arrow in~a!. T2

L51, 4, 10, and 50 correspond t
uDvL

maxuT2
L51, 4, 10, and 50, respectively. The critical point b

tween the monostable and bistable situation is found
uDvL

maxuT2
L54.
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From the criterionuDvL
maxu.2Gh @Eq. ~50!#, it is possible

to draw a phase diagram by plottinguDvL
maxu versusGh ~Fig.

7!. The straight line corresponds touDvL
maxu52Gh and defines

the boundary between the lower monostable domain and
upper bistable domain. Two spectroscopic ranges are con
ered in Fig. 7: the microwave range corresponding mainly
electron paramagnetic resonance~EPR! and represented by
an open rectangle in Fig. 7 and the infrared and visi
ranges, which correspond to classical absorption and fluo
cence spectroscopies represented by a gray rectangle.

For both cases, the upper and lower limits that define
different domains are not definitive and are only given
indication. For the EPR range,uDvL

maxu varies from'3.3
31026 cm21 up to '0.67 cm21 ~'0.1 MHz to '20 GHz!
and Gh from '3.331026 cm21 up to '0.17 cm21 ~'0.1
MHz to '5 GHz!. The lower and higher limits ofuDvL

maxu
andGh can be found in organic compounds and in inorga
semiconductors, respectively.29,30 In order to predict whether
a given material can exhibit a bistable EPR response,
report in Fig. 7 some literature data for several conduct
materials. The positions of the EPR points in such diagr
have already been discussed in Ref. 31. These values c
spond to Na,32 Li,33 b-Ga2O3,3 and InP,34 and were obtained
from EPR measurements performed on conduction electr
The measurements were performed at theX-band at a mag-
netic field B0 of the order of 0.35 T. The circles were ob
tained at 300 K and the triangles at 4 K. In all cases,
conduction electrons are connected toN nuclear spins by a
scalar hyperfine interactionA of the Fermi contact type and
DvL

max is thus written asuDvL
maxu5fLNAgbB0/4kBT\, where

g is theg factor associated with the conduction electron a

-

e

r

FIG. 7. Theoretical phase diagram presenting the condition
an intrinsic spectroscopic bistability representing the maxim
shift uDvL

maxu ~cm21! of the transition versus the homogenous lin
width Gh51/pT2

L ~cm21!. The circles and triangles are experime
tal data obtained in the microwave range. They correspond to
periments at ambient and liquid-helium temperature, respectiv
dd corresponds to magnetic dipole-dipole interactions and to
Lorentz local-field correction, exch. corresponds to electric mu
pole interactions, electronic exchange interactions, and virtual p
non exchange interactions.a pair ands pair means asymmetric an
symmetric pairs of ytterbium ions in CsCdBr3 .
1-11
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b is the Bohr magneton. This phase diagram predicts
only b-Ga2O3 is bistable at ambient temperature. Howev
InP and metallic lithium particles should give a bistable E
response at low temperature. These predicted bistable
spectra have been observed inb-Ga2O3,3 InP,4 and in me-
tallic lithium.5 This phase diagram demonstrates, therefo
its powerful predictability in the microwave range. We w
not discuss any further the microwave bistability in this s
tion as all these results have already been published e
where. We will come back to the case ofb-Ga2O3 in Sec.
IV A to demonstrate how such a case of bistability is tota
justified and explained in the framework of the present
proach.

Let us now focus on the infrared or visible range, which
the spectroscopic domain of interest in this work. For t
spectroscopic rangeuDvL

maxu andGh vary roughly from'3
31024 cm21 to '30 cm21 ~10 MHz–1000 GHz!. The
lower values ofuDvL

maxu correspond to typical interaction
encountered between two rare-earth ions,35 and the higher
values correspond to the interaction between two transit
ions ~see the case of chromium ion pairs in ruby f
example!.36 The higher limit of uDvL

maxu<30 cm21 is fixed
by the conditiontc!\/V as discussed previously in this se
tion. The lower limit ofGh , which gives also the lower limit
of the measurableuDvL

maxu, can be obtained for rare-eart
ions with coherent transient and hole-burning spectroscop37

High-resolution Fourier transform spectroscopy can meas
an interaction of a few 1023 cm21 in the infrared and visible
ranges. In the case of Ref. 38, for example, Chukalinaet al.
report the first observation of a resolved hyperfine struct
of 1022 cm21 and 731023 cm21 in the 4I 15/2→4I 13/2 infra-
red transition of LiYF4 :Er. In the phase diagram of Fig. 7
we divide the infrared and the visible range into two doma
depending on the nature of theV interaction. The first do-
main denoted dd in Fig. 7 and ranging from 1022 to
1021 cm21 corresponds to magnetic dipole-dipole intera
tions and to the Lorentz local-field correction based on
electric dipole-dipole interaction. The second domain
noted exch. and ranging from 1021 to 10 cm21 corresponds
to electric multipole interactions, electronic exchange, a
virtual phonon exchange interactions.35 For example,
Guillot-Noël et al. have shown that satellites in electro
paramagnetic resonance and in high-resolution fluoresc
spectra of neodymium in LiYF4 and YVO4 matrices are due
to Nd31-Nd31 pairs with the magnetic dipole-dipole inte
action varying from 1022 to 231022 cm21 and the ground-
state exchange interactionJ varying from 0.8 to 4.9 cm21.39

Basiev et al. demonstrated that a strong quadrupo
quadrupole interaction of 5 cm21 between two neodymium
ions is responsible for an observed fine splitting of the
cited Kramers levels in Nd:CaF2 compounds.40 Exchange in-
teraction can reach higher values in the case of transi
ions. In ruby, for example, exchange interactions in ch
mium ion pairs can reach 240 cm21.36 In the case of the
Lorentz local-field correction based on a ground-state dip
dipole interaction,

uDvL
maxu5

N

6«0

q2

m

Fab

vL
,
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where N is the number of absorbing ions per un
volume.13,17 This interaction gives values ofDvL

max that are
usually in the range'531022 to '1021 cm21. For ex-
ample, in Cs3Y2Br9 :10% Yb, uDvL

maxu'531022 cm21 with
N5431020 atoms/cm3, Fab5231026, and \vL
510 120 cm21.41 In YVO4:0.58% Nd, where neodymium
ions exhibit high oscillator strengths,uDvL

maxu'1021 cm21

with N57.2531019 atoms/cm3, Fab55031026, and \vL
520 000 cm21.42

A bistable response due to a fluctuating magnetic dipo
dipole-type interaction or due to the Lorentz local-field co
rection ~tc!\/V and the dd domain ranging from 1022 to
1021 cm21! implies a homogeneous linewidth of the trans
tion lower than 0.05 cm21 ~Fig. 7!. This linewidth is difficult
to obtain at ambient temperature, where the homogene
broadening is typically of 1 to 10 cm21 for rare-earth ions
~see, for example, Ref. 43! and can be broader for transitio
ions. The dominant contribution to the homogeneous li
width at ambient temperature is due to the interaction w
the lattice through one-phonon, multiphonon, Raman tw
phonon scattering processes. However, at a very low t
perature~liquid-helium temperature!, a homogeneous line
width of 0.05 cm21 can be obtained for some rare-ear
transitions,37,38 and then a bistability may exist. The pha
diagram of Fig. 7 shows that a bistability phenomenon ba
only on the Lorentz local-field correction is probably diffi
cult to obtain at ambient temperature and becomes poss
at very low temperature. However, in the cases of elec
multipole interaction, electronic exchange interaction, a
virtual phonon exchange interaction, which can reach a
cm21, a bistable response can exist at ambient tempera
For example, a maximumDvL

max shift of 2 cm21 requires at
maximum a homogeneous linewidth of 1 cm21.

IV. APPLICATION OF THE EFFECTIVE
SPIN-HAMILTONIAN APPROACH TO REAL SYSTEMS

A. In the microwave range: Bistability of the magnetic
resonance of electrons in solids

In this part we apply the model to a bistable situation
which theL system is a real electron spin. As mentioned
the Introduction, bistable electron magnetic resonance
been observed in several types of conductors~metal and
semiconductors!.3–5 Gallium oxide b-Ga2O3 is a well-
documented example of intrinsic EPR bistability.3 This com-
pound is normally an isolator with a forbidden energy gap
4.8 eV. However, it is generally ann-type semiconductor due
to oxygen vacancies compensated by two electrons. The
paired electron spins exhibit hyperfine interactions~of the
Fermi contact type! with the 69Ga and the71Ga nuclei, which
posses a nuclear spin equal to3

2 and a natural abundance o
60.1% and 39.9%, respectively. Let us callL the electron-
spin system andK the system composed ofN equivalent Ga
nuclei. Each system is represented by an effective spin e
to 1

2. For the electron, it is a real spin but in the case of
Ga nuclei, it is an effective spin. The spin Hamiltonian of
unpaired conduction electronL interacting withN equivalent
nuclear spinsK by a scalar hyperfine interactionA under an
external constant fieldB0 is written as
1-12
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H5HL1HK1HM1V ~52!

with HL5gbB0Lz , HK52gnbnB0Kz , and

V5ALzS (
p51

N

Kz,pD 1
A

2 FL1S (
p51

N

K2,pD
1L2S (

p51

N

K1,pD G , ~53!

whereb andbn are the electron Bohr magneton and nucle
Bohr magneton, respectively,g and gn are theg factors of
the electron and the nucleus, respectively.

Since the effective spin-Hamiltonian approach of bistab
ity is based on the different time scales of the system un
study, it is first necessary to identify the different charact
istic times controlling the spin dynamics. First of all, if w
look carefully at the EPR spectrum of conduction electro
in b-Ga2O3 @see Fig. 8~a!#, it is composed of a narrow singl
line with a average width of 0.05 mT at room temperatu
and low microwave power. The expected hyperfine struct
coming from the interaction between the two subsystemL
andK is not visible in the spectra showing that we are un
the conditiontc!\/A. Indeed, as previously shown in Se
II B, the hyperfine interactionV is not observed in the spec
trum and the transition is expected to be narrow under
condition. The correlation timetc of the hyperfine interac-
tion is imposed by the electronic motion in the conducti
band. tc is typically of the order of tc510213 s in
b-Ga2O3. As the gallium hyperfine interaction isA
;7800 MHz,3 giving \/A;1028 s, then the conditiontc
!\/A is fulfilled. Therefore, the previous approach is tota
justified in this case.

The relaxation timesT1
LL , T1

KK , T2
L int

, T2
K int

due to the
hyperfine interaction are of the order of 1021– 1 s.3 Other
relaxation mechanisms have to be taken into account. Fo
L system, we have to consider the electron-spin–lattice

laxation time T1
Lother

and the electron-spin–spin relaxatio

time T2
Lother

, both are of the order of 1027 s.3 For the K
system, we have to consider other relaxation terms suc
the nuclear-spin–lattice relaxation time and in the case
nuclei with nuclear spin higher than12, the quadrupolar relax

ation time. These termsT1,2
Kother

are of the order of a few
seconds.3

Under the conditiontc!\/A, and using the same ap
proximations as for Eqs.~28!–~30!, these kinetic equation
for the spin system are written as

d^Lz&
dt

52
3

4

1

T1
LL @~^Lz&2^Lz&

0!2~^Kz&2^Kz&
0!#

2
1

T1
Lother~^Lz&2^Lz&

0!1
iV1

2
~^L28 &2^L18 &!,

~54!
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d^L18 &
dt

5 i S vL2v1
NA

\
^Kz& D ^L18 &2

1

T2
L ^L18 &2 iV1^Lz&,

~55!

d^Kz&
dt

52
3

4

1

T1
KK @~^Kz&2^Kz&

0!2~^Lz&2^Lz&
0!#

2
1

T1
Kother~^Kz&2^Kz&

0! ~56!

with V15gbB1 being the Rabi frequency. As 1/T1.2
LL

!1/T1.2
Lother

, Eqs.~54! and ~55! become

FIG. 8. ~a! Experimental proof of the renormalization of th
resonance frequency in EPR spectroscopy. The spectra are
formed onb-Ga2O3 single crystal and recorded as an absorpt
derivative under decreasing variations of the external magnetic
B0 and atT5150 K. The microwave power increases from the t
to the bottom of the figure. Experimental conditions: microwa
frequency, 9.432 76 GHz; sweeping time, 0.012 mT/s; time c
stant, 41 ms; modulation amplitude, 0.01 mT; modulation f
quency, 100 kHz.~b! Selected experimental and simulated bista
EPR spectra atT5150 K, P563 mW. The simulations before an
after derivation are shown. The parameters of the simulation
P563 mW, \vL50.31 cm21, T1

L51.931027 s; T2
L51.45

31027 s corresponding toGh57.331025 cm21, DvL
max524.3

31024 cm21, uDvL
maxuT2

L512.
1-13
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d^Lz&
dt

52
1

T1
Lother~^Lz&2^Lz&

0!1
iV1

2
~^L28 &2^L18 &!,

~57!

d^L18 &
dt

5 i S vL2v1
NA

\
^Kz& D ^L18 &2

1

T2
Lother^L18 &

2 iV1^Lz&. ~58!

Under steady-state conditions, the saturation factor@Eq. ~35!#
is given by

sL5
V1

2T1
Lother

T2
Lother

11T2
Lother2

~vL
eff2v!21V1

2T1
Lother

T1
Lother

, ~59!

sL52~vL
eff2vL

eff0!
1

DvL
max ~60!

with

vL
eff5vL1

NA

\
^Kz&, ~61!

DvL
max5

f LNA^Lz&
0

\
;2

f LNAgbB0

4kBT\
~62!

in the high-temperature limit, and with the leakage factorf L
given by

f L5
3

4T1
KKS 3

4T1
KK 1

1

T1
KotherD . ~63!

The factorization operation leads to a renormalization
the resonance frequency of (NA/\)^Kz&. It means that the
nuclear-spin polarization̂ Kz& produces a nuclear field
(NA/gb)^Kz&, which adds to the external fieldB0 . The
nuclear-spin polarization and thus the shift of the electro
transition can be considerably enhanced by dynamic nuc
polarization by saturating the EPR signal of conduction el
trons. This was predicted in metals by Overhauser7 and ana-
lyzed in detail by Solomon.25 It is worth noticing that the
nuclear field produces a feedback on the electron resona
which is in turn modified. The resulting modification of th
resonance~modification ofsL! implies another modification
of the nuclear field via Eq.~56!, and so on. The nuclear fiel
becomes a function of itself as well as the saturation fac
The Overhauser effect is thus at the origin of the feedb
loop.

Figure 8~a! presents a convincing evidence of the valid
of the factorization operation through the observed conti
ous shift of the resonance frequency. The EPR spectra g
ered in Fig. 8~a! have been recorded at 150 K with a decre
ing variation of the external magnetic fieldB0 and for
different values of the incident microwave powerP. Upon
increasingP, the EPR line distorts and shifts to a low ma
netic field as a result of the increase of the nuclear fi
(NA/gb)^Kz& originating from the dynamic nuclear pola
24510
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ization. The phase diagram in Fig. 7 predicts a bistable
havior ~hysteresis! of the EPR transition inb-Ga2O3, which
can appear for an upward and downward sweep of the ex
nal magnetic fieldB0 as well as under increasing and d
creasing variations ofP.3 This bistable phenomenon i
shown in Fig. 8~b! which gathers experimental and simulat
EPR spectra for the two sweep directions of the exter
magnetic field. This figure presents the simulated spect
before and after derivation. The parameters of the simula
are P563 mW, \vL50.31 cm21, T1

L51.931027 s; T2
L

51.4531027 s corresponding toGh57.331025 cm21,
DvL

max524.331024 cm21, uDvL
maxuT2

L512. All these pa-
rameters were measured and not adjusted. The agree
between the experimental and simulated spectrum is v
satisfying knowing that there is no adjustable parameter.
spectrum exhibits a discontinuity, particularly obvious for t
upward sweep of the magnetic field. This discontinuity is
manifestation of the abrupt change from the lowera branch
to the upperg branch of the bistable system.

This example shows that bistable EPR in conductors
good illustration of our approach to intrinsic optical bistab
ity. It justifies the use of the effective spin to describe ea
subsystem and the factorization operation, which is based
the critical conditiontc!\/A.

B. In the infrared and visible range: The intrinsic optical
bistability of ytterbium ion pairs in CsCdBr 3

Hehlenet al. reported the first observation of a bistab
phenomenon in 1% ytterbium doped CsCdBr3 matrix.11 The
near-infrared luminescence and the visible cooperative em
sion of ytterbium ion pairs exhibit a hysteresis loop as
function of the incident power of the laser. The width of th
hysteresis is obtained for excitation densities varying fr
about 4000 W cm22 to about 6000 W cm22 at low tempera-
ture ~7 K! and at an excitation frequency of 10 602.8 cm21.11

In this bromide host, the rare-earth ions form exclusive
charge-compensated ion-pair centers even at low dopant
centration. The main rare-earth center is a symme
Yb31-VCd-Yb31 pair with an Yb31-Yb31 distance of 5.88
Å,44,45 VCd represents a Cd21 vacancy. Asymmetric
Yb31-Yb31-VCd pairs with a side vacancy and a
Yb31-Yb31 distance of 3.4 Å are also postulated as min
centers in CsCdBr3 . Only the asymmetric pairs, correspon
ing to the transition centered at 10 602.8 cm21 with a width
~full width at half maximum! equal to 0.6 cm21, give an
hysteresis loop up to 16.3 K.11 Previous studies have show
that the asymmetric pairs are not thermodynamically sta
and transform, even at room temperature, into the symme
center.46

As in this host, the rare-earth ions exclusively form io
pairs, it offers the opportunity to test our approach for intr
sic optical bistability in the near-infrared or visible range
the case of atomic pairs. In the following we show that t
phase diagram of Fig. 7 predicts a bistable phenomenon
for the asymmetric pairs and that the experimental res
obtained by Hehlenet al.11 and the shape of the excitatio
spectra obtained by Gamelin, Lu¨thi, and Güdel10 can be re-
produced. The two subsystemsK and L are the two Yb31
1-14
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ions of the pairs. For symmetric pairs, the two subsyste
are identical and for asymmetric pairs they are different. E
spectroscopy shows that the two Yb31 ions involved in sym-
metric pairs exhibit a very weak antiferromagnetic exchan
interactionJ521.631023 cm21. If we report this value in
the phase diagram of Fig. 7~s-Yb pair!, we remark that the
bistable domain is very small for this symmetrical center.
observe a bistability for the symmetric pairs, one need
homogeneous linewidth smaller than 831024 cm21, which
appears unlikely. The asymmetric pairs could not be
served by EPR.44 However it is possible to obtain the orde
of magnitude of the interaction between the two ytterbiu
ions in such pairs. Indeed, in another bromide h
Cs3Lu2Br9 , an antiferromagnetic exchange interactionJ of
21.43 cm21 for pairs of ytterbium ions separated by a d
tance of 3.8 Å has been measured by neutron spectrosco47

Moreover, the existence of ferromagnetically coupled pa
of Nd31 ions in neodymium doped YVO4 matrices, with
exchange coupling valuesJ in the range14.9 cm21 to 10.8
cm21 for Nd-Nd distances of 3.72–6.36 Å, has recently be
shown.39 As the Yb31-Yb31 distance in the asymmetric pa
is equal to 3.4 Å, we estimate the exchange interaction to
in the range 1 to 3 cm21. If we report this range of values in
the phase diagram~a-Yb pair in Fig. 7!, there is a large
domain where the asymmetric pair should be able to exh
a hysteresis phenomenon. The homogeneous linewidth a
ciated with the transitions of asymmetric pairs should
lesser than 0.5 cm21 in the case ofuDvL

maxu51 cm21 and
lesser than 1.5 cm21 for uDvL

maxu53 cm21. The linewidth of
the transition associated with the asymmetric pairs is equa
0.6 cm21.11 This value gives a higher limit forT2

L , as prob-
ably an important inhomogeneous broadening contribute
the total 0.6 cm21 width of this transition. If we consider a
mean value ofuDvL

maxu52 cm21 and a homogeneous line
width Gh50.6 cm21, the phase diagram predicts a bistab
behavior for the asymmetric ytterbium pairs in CsCdBr3 . As
a conclusion, based on the values of the exchange intera
measured by EPR spectroscopy for symmetric pairs and
duced from other compounds for asymmetric pairs, the ph
diagram of Fig. 7 predicts the absence of bistable beha
for symmetric pairs and a possible bistability for asymme
pairs. These predictions are in total agreement with the
sults obtained by Hehlenet al., where only the asymmetric
pairs exhibit a bistability at low temperature.11 It is important
to remember that the phase diagram for bistability consid
a fluctuating interaction with the conditiontc!\/uJu. In this
discussion we assume that this condition is fulfilled. In t
case of rare-earth ions in solids, the fluctuation of the ion-
interaction could be due to the ion-phonon interaction.
deed, these two kind of interactions~ion-ion and ion-phonon!
are competing mechanisms and the ion-phonon interac
could play an equivalent role as the motional narrowing
the EPR signal in semiconductors.

To determine if the spin-Hamiltonian approach can rep
duce in more detail the bistable phenomenon observed
the asymmetric ytterbium pairs in CsCdBr3 , the bistable
transitions are simulated in Figs. 9~a! and 9~b! by using the
coupled equations~40! and~41!. The parameters of the simu
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lations areT1
L57.831024 s,48 DvL

max522 cm21, and T2
L

51.77310211 s ~corresponding toGh50.6 cm21!, which
gives uDvL

maxuT2
L56.6. The abscissa scale in Fig. 9~a! is cali-

brated by transforming theV1
2 parameter of Eq.~40! into the

incident powerP expressed in W cm22 by using Eq.~51!
with \vL510 600 cm21. Usually ytterbium ions exhibit os-
cillator strengthsFab of around 1026. In the simulations, we
take values ofFab that vary from 1027 to 1026. For an
oscillator strength of 1027 the simulation reproduces the o
der of magnitude of the incident powerP obtained by Hehlen
et al.,11 where the hysteresis is observed for excitation d
sities varying from about 4000 W cm21 to about 6000
W cm22 at a low temperature~7 K!. For an oscillator
strength of 1026 the simulation is still good with only an
order of magnitude of discrepancy for the excitation betwe
the experimental and the simulated hysteresis. The shap
the transition can be also simulated for different powers
the incident laser. In Fig. 9~b!, we consider an oscillato
strength of 1027. As the power increases, the distortion

FIG. 9. ~a! Simulation of the bistable infrared luminescence
asymmetric ytterbium pairs in CsCdBr3 . The parameters of the
simulation are T1

L57.831024 s, DvL
max522 cm21, T2

L51.77
310211 s corresponding toGh50.6 cm21, uDvL

maxuT2
L56.6. The

abscissa position of the hysteresis loop is determined by ta
three different values for the oscillator strength of the transiti
Fab51027, 531027, 1026. ~b! Simulated shape of the absorptio
or excitation spectra associated with the asymmetric ytterbium p
in CsCdBr3 for different values of the incident laser power.
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the shape increases and an abrupt change in intensity ap
on the high-energy side of the transition. As we have alre
seen, this behavior is associated with the switch between
two steady states of the hysteresis loop. This type of a
shape has been already observed by Gamelin, Lu¨thi, and Gü-
del in the excitation spectra of Yb31: CsCdBr3 .10

It thus appears that the theoretical approach presente
this work is able to explain qualitatively all the results o
tained for the asymmetric pairs of ytterbium ions
CsCdBr3 . The phase diagram predicts only a bistable p
nomenon for these kind of centers. By taking experimen
values for T1

L , a high limit for T2
L , consideringDvL

max5
22 cm21, and an oscillator strengthFab of 1027, the simu-
lations reproduce the order of magnitude of the incid
powerP, which gives the hysteresis loop in the fluorescen
intensity as well as the observed shape of the bistable t
sition.

V. CONCLUSION

A general condition for intrinsic optical bistability is stud
ied for a systemS composed of two weakly interacting sub
systems that can be embedded in a medium such as a
matrix. The important point is that the interactionV between
the two subsystems must fluctuate with a correlation ti
tc!\/V. Under this condition the total density-matrix op
erator of the system can be factorized into two partial den
operators linked to the two subsystems. During the ti
scale of the evolution of these subsystems, the contribu
of the correlation terms can be neglected. All the approxim
tions done in this approach have been justified by this c
dition. The consequence of these rapid fluctuations is
this ‘‘factorization operation’’ leads to a renormalization~a
shift! of the resonance frequency of the optical transition
means that the frequency changes continuously during
interaction with the external field.

All the systems that are described in such way can
principle, exhibit a bistable behavior under the conditi
uDvL

maxu.2Gh , which means that the maximum shift of th
frequency has to be larger than the homogeneous linew
of the transition. Under this condition, there is at least o
value of the external control parameter that gives a bista
response of the system. It is important to notice that wh
the system is set under bistable conditions, all the con
parameters, such as the temperatureT, the frequencyv, and
the incident powerP of the external electromagnetic field
can produce a bistable phenomenon. The conditionuDvL

maxu
.2Gh can be visualized by a phase diagram that determ
the conditions for a system to exhibit a bistable respo
under a sweep of an external control parameter. This ph
diagram seems to accurately predict the systems that c
exhibit an intrinsic spectroscopic bistability.

In the microwave range corresponding to EPR spect
copy, all the compounds~b-Ga2O3, metallic lithium, and
InP! that are placed in the bistable domain of the phase
gram have revealed an experimental intrinsic bistability
the microwave~EPR! range. In this case the feedback loo
originates from the Overhauser effect.

In the near-infrared and visible range, we have shown
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a pair of ions can exhibit a bistable behavior. However,
dipole-dipole interaction, which is at the origin of the Lo
entz local-field correction, seems too small to be at the ori
of the experimental bistability. An interactionV of a few
cm21, such as an exchange-type interaction, is required
the particular case of two identical ions in scalar interacti
the shift of the resonance vanishes and the phenomenon
not exist. The phase diagram predicts the absence and
existence of a bistable luminescence of the symmetric
asymmetric ytterbium pairs in CsCdBr3 , respectively. IOB
has been experimentally demonstrated in this compound
Helhenet al.,11 and the simulations performed with our a
proach reproduce the bistable response versus incident
power as well as the shape of the excitation spectra.10

Finally, the effects of the material-dependent paramet
which are the longitudinal and transverse relaxation termsT1

L

and T2
L and the leakage factorf L , have been studied. Th

system will exhibit IOB if ~i! the homogeneous transitio
linewidth is very small implying a long transverse relaxati
time T2

L , ~ii ! the leakage factorf L is strong enough to give a
good efficiency of the polarization transfer between the t
subsystems, and~iii ! the longitudinal relaxationT1

L is suffi-
ciently long to obtain a moderate saturability of the transiti
at a rather low incident power.

The results presented in this work are only prelimina
concerning the infrared and visible range. Several po
must be developed and several questions have to be
swered to expect to find a compound that will exhibit IOB
ambient temperature:~i! How can we control the magnitud
of the interaction between the two ions involved in the pa
and the material-dependent parameters in terms o
structure-properties relationship?~ii ! What are the mecha
nisms responsible for the fluctuating interaction, allowing t
conditiontc!\/V to be fulfilled?~iii ! Is it possible to obtain
such a bistable phenomenon for other kind of interact
subsystems? All these studies are currently in progress.
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APPENDIX: CALCULATIONS OF THE KINETIC
EQUATIONS

Let us consider a systemS composed of two subsystem
K andL with a weak interactionV. Under the conditiontc
!\/V and for an integration timeDt characterized bytc

!Dt!T1,2
L int

,T1,2
K int

, the kinetic equation associated with th
quantum-mechanical average of an operatorQ is given by

d^Q&
dt

52
1

i\
KFHK1HL1(

p
~^Fp&S

~p!1^Fp* &S~p1 !!,QGL
2

1

2\2 (
p

Jpp1~vS~p!
!^†S~p1!,@S~p!,Q2Q0#‡& ,

~A1!
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where we only take into account the secular terms and wh
we have neglected imaginary terms responsible for a sec
order shift of the resonance, which are usually too smal
be detected.

If we consider the general form of the interactionV given
by Eq. ~8!, Eq. ~A1! can be written in the form

d^Q&
dt

52
1

i\
K F\vLLz1\vKKz1(

p
~^Fp&S

~p!

1^Fp* &S~p1 !!,QG L 2
1

2\2 J00~0!^†LzKz ,@LzKz ,Q

2Q0#‡&2
1

2\2 J11* ~vK2vL!

3S ^†L1K2 ,@L2K1 ,Q2Q0#‡&
1^†L2K1 ,@L1K2 ,Q2Q0#‡& D2

1

2\2 J22* ~vL!

3S ^†L2Kz ,@L1Kz ,Q2Q0#‡&
1^†L1Kz ,@L2Kz ,Q2Q0#‡& D2

1

2\2 J33* ~vK!

3S ^†LzK1 ,@LzK2 ,Q2Q0#‡&
1^†LzK2 ,@LzK1 ,Q2Q0#‡& D2

1

2\2 J44*

3~vK1vL!S ^†L2K2 ,@L1K1 ,Q2Q0#‡&
1^†L1K1 ,@L2K2 ,Q2Q0#‡& D

~A2!

with

J00~0!5^uF0u2&2tc ,

J11* ~vK2vL!5^uF1u2&
2tc

11~vK2vL!2tc
2 ,

J22* ~vL!5^uF2u2&
2tc

11~vL!2tc
2 ,

J33* ~vK!5^uF3u2&
2tc

11~vK!2tc
2 ,

J44* ~vK1vL!5^uF4u2&
2tc

11~vK1vL!2tc
2 .

Two cases have to be considered in which the two s
systemsK andL are different or identical.

~i! Different L, K systems. The following kinetic equations
are obtained for̂Lz&, ^L1&:

d^Lz&
dt

5 i
^F1&

\
~^L2&^K1&2^L1&^K2&!1 i

^F2&
\

~^L2&^Kz&

2^L1&^Kz&!1 i
^F4&

\
~^L2&^K2&2^L1&^K1&!

2
3

4

1

T1
LL ~^Lz&2^Lz&

0!1
3

4

1

T1
LK ~^Kz&2^Kz&

0!,

~A3!
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d^L1&
dt

5 i S vL1
^F0&

\
^Kz& D ^L1&22i

^F1&
\

^Lz&^K1&

22i
^F2&

\
^Lz&^Kz&22i

^F4&
\

^Lz&^K2&

1 i
^F3&

\
~^L1&^K1&1^L1&^K2&!2

1

T2
L int ^L1&

~A4!

with ^L6&050, ^K6&050 and

1

T1
LL 5

8

3\2 ^uF1u2&
tc

11~vK2vL!2tc
2

1
4

3\2 ^uF2u2&
tc

11~vL!2tc
2

1
8

3\2 ^uF4u2&
tc

11~vK1vL!2tc
2 , ~A5!

1

T1
LK 51

8

3\2 ^uF1u2&
tc

11~vK2vL!2tc
2

2
8

3\2 ^uF4u2&
tc

11~vK1vL!2tc
2 , ~A6!

1

T2
L int 51

1

3\2 ^uF0u2&tc1
4

3\2 ^uF1u2&
tc

11~vK2vL!2tc
2

1
2

3\2 ^uF2u2&
tc

11~vL!2tc
2

1
4

3\2 ^uF3u2&
tc

11~vK!2tc
2

1
4

3\2 ^uF4u2&
tc

11~vK1vL!2tc
2 . ~A7!

For ^Kz&, ^K1&, we have

d^Kz&
dt

51 i
^F1&

\
~^K2&^L1&2^K1&^L2&!1 i

^F3&
\

~^K2&

3^Lz&2^K1&^Lz&!1 i
^F4&

\
~^K2&^L2&2^K1&

3^L1&!2
3

4

1

T1
KK ~^Kz&2^Kz&

0!1
3

4

1

T1
LK ~^Lz&

2^Lz&
0!, ~A8!
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d^K1&
dt

5 i S vK1
^F0&

\
^Lz& D ^K1&22i

^F1&
\

^Kz&^L1&

22i
^F3&

\
^Kz&^Lz&22i

^F4&
\

^Kz&^L2&

1 i
^F2&

\
~^K1&^L1&1^K1&^L2&!2

1

T2
K int ^K1&

~A9!

with

1

T1
KK 5

8

3\2 ^uF1u2&
tc

11~vK2vL!2tc
2

1
4

3\2 ^uF3u2&
tc

11~vK!2tc
2

1
8

3\2 ^uF4u2&
tc

11~vK1vL!2tc
2 , ~A10!

1

T2
K int 51

1

3\2 ^uF0u2&tc1
4

3\2 ^uF1u2&
tc

11~vK2vL!2tc
2

1
4

3\2 ^uF2u2&
tc

11~vL!2tc
2

1
2

3\2 ^uF3u2&
tc

11~vK!2tc
2

1
4

3\2 ^uF4u2&
tc

11~vK1vL!2tc
2 . ~A11!

The above equations are obtained by using the well-kno
commutation rules between the different operatorsLz , L1 ,
L2 , by using the conditiontc!\/V, which allows us to
write sS5sK

^ sL and then^L (p)K (p)&5^L (p)&^K (p)&, and
by considering^Lz

2&5L(L11)/35 1
4 , ^L2&5L(L11)5 3

4 .
By applying an external field~magnetic or electric! with v
its angular frequency under the conditiontc!V1

21, where
V1 is the Rabi frequency, we can add to the above kine
equations the contribution of the Hamiltonian represent
the interaction between the external field and the system
the case of an electric field, the Rabi frequency isV1
5dj/\, whered is the electric dipole moment andj is the
amplitude of the electric field in the slowly varying envelo
approximation (j̇/j50). If we consider, for example, a tran
sition on the effective spinL and other relaxation mecha

nisms represented byT1,2
Lother

, T1,2
Kother

, which follow the usual
Bloch equations, the equations~A3!, ~A4!, ~A8!, and ~A9!
written in the quasiresonant approximationuv2vLu!vL ,
the slowly varying envelope approximation, and the rotat
coordinate system become
24510
n
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g
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d^Lz&
dt

52
3

4

1

T1
LL ~^Lz&2^Lz&

0!1
3

4

1

T1
LK ~^Kz&2^Kz&

0!

2
1

T1
Lother~^Lz&2^Lz&

0!1
iV1

2
~^L28 &2^L18 &!,

~A12!

d^L18 &
dt

51 i S vL2v1
^F0&

\
^Kz& D ^L18 &2

1

T2
L ^L18 &

2 iV1^Lz& ~A13!

with 1/T2
L51/T2

L int
11/T2

Lother
,

d^Kz&
dt

52
3

4

1

T1
KK ~^Kz&2^Kz&

0!1
3

4

1

T1
LK ~^Lz&2^Lz&

0!

2
1

T1
Kother~^Kz&2^Kz&

0!, ~A14!

d^K18 &
dt

50, ~A15!

whereL68 5L6e6 ivt. We obtain similar kinetic equations i
we apply the external field to theK system.

A lot of terms have been neglected in Eqs.~A12!–~A15!.
Indeed, near the resonance (v;vL) and in the sense of the
slowly varying envelope approximation, the dominant co
tribution to the above relaxation equations originates fr
the low-frequency terms ine6 i (v2vL)t as ^L2&, ^L1&. The
contributions of ^K7&^L6&, ^K7&^L7&, ^Kz&^L6&, and
^K6&^Lz& can be neglected because they correspond to h
frequency terms ine6 i (vL2vK)t, e6 i (vL1vK)t, e6 i (vL)t, and
e6 i (vK)t, respectively.

~ii ! Identical L, K systems. In the case of two identica
ions, the rotating coordinate system, the quasiresonant
proximationuv2vLu!vL , and the slowly varying envelope
approximation give the following set of kinetic equations:

d^Lz&
dt

52
1

T1
L ~^Lz&2^Lz&

0!1 i
V1

2
~^L28 &2^L18 &!,

~A16!

d^L18 &
dt

5 i FvL2v1S ^F0&
\

22
^F1&

\ D ^Lz&G^L18 &2
1

T2
L ^L18 &

2 iV1^Lz8& ~A17!

with

1

T1
L 52

3

4 S 1

T1
LK2

1

T1
LLD 1

1

T1
Lother ~A18!

and

1

T2
L 5

1

T2
L int 1

1

T2
Lother. ~A19!
1-18



on

,

.
,

s.

m

d

.

v

. A

et
v.

.

l-

t.
.

. B

J.

ev.

g
i-

-

b-

,

J.

.

in,

GENERAL CONDITIONS FOR INTRINSIC OPTICAL . . . PHYSICAL REVIEW B 65 245101
*Author to whom correspondence should be addressed. Electr
address: guillotn@ext.jussieu.fr

1P. Mandel, S. D. Smith, and B. S. Wherrett,From Optical Bista-
bility Towards Optical Computing, ~Elsevier, The Netherlands
1987!; E. Abraham and S. D. Smith, Rep. Prog. Phys.45, 138
~1982!.

2A. E. Kaplan, Phys. Rev. Lett.48, 138 ~1982!; G. Gabrielse, H.
Dehmelt, and W. Kells,ibid. 54, 537 ~1985!; A. E. Kaplan and
A. Elci, Phys. Rev. B29, 820 ~1984!.

3E. Aubay and D. Gourier, J. Phys. Chem.96, 5513~1992!; Phys.
Rev. B 47, 15023 ~1993!; D. Gourier, E. Aubay, and J
Guglielmi, ibid. 50, 2941 ~1994!; D. Gerbault and D. Gourier
ibid. 54, 6315~1996!; 57, 2679~1998!; D. Gourier, L. Binet, and
D. Gerbaut, Appl. Magn. Reson.14, 183 ~1998!.

4L. Binet and D. Gourier, Phys. Rev. B56, 2688~1997!.
5C. Vigreux, L. Binet, and D. Gourier, J. Phys. Chem. B102, 1176

~1998!; C. Vigreux, P. Loiseau, L. Binet, and D. Gourier, Phy
Rev. B61, 8759~2000!.

6K. Bohnert, H. Kalt, and C. Klingshirn, Appl. Phys. Lett.43,
1088 ~1983!; M. Dagenais and W. F. Sharfin,ibid. 45, 210
~1984!; R. Neuendorf, M. Quinten, and U. Kreiberg, J. Che
Phys.104, 6348~1996!.

7A. Overhauser, Phys. Rev.92, 411 ~1953!.
8M. P. Hehlen, H. U. Gu¨del, Q. Shu, J. Rai, S. Rai, and S. C. Ran

Phys. Rev. Lett.73, 1103~1994!; M. P. Hehlen, H. U. Gu¨del, Q.
Shu, and S. C. Rand, J. Chem. Phys.104, 1232~1996!.
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